
Eckhardt, Glas, Korzh, Wallner, Weinzierl /

On-the-fly memory compression for
multibody algorithms

Wolfgang ECKHARDT a , Robert GLAS b , Denys KORZH a , Stefan WALLNER b and
Tobias WEINZIERL c,1

a Department of Informatics, Technische Universität München, Germany
b Physics Department, Technische Universität München, Germany

c School of Engineering and Computing Sciences, Durham University, Great Britain

Abstract. Memory and bandwidth demands challenge developers of particle-based
codes that have to scale on new architectures, as the growth of concurrency outper-
forms improvements in memory access facilities, as the memory per core tends to
stagnate, and as communication networks cannot increase bandwidth arbitrary. We
propose to analyse each particle of such a code to find out whether a hierarchical
data representation storing data with reduced precision caps the memory demands
without exceeding given error bounds. For admissible candidates, we perform this
compression and thus reduce the pressure on the memory subsystem, lower the total
memory footprint and reduce the data to be exchanged via MPI. Notably, our anal-
ysis and transformation changes the data compression dynamically, i.e. the choice
of data format follows the solution characteristics, and it does not require us to alter
the core simulation code.

Keywords. n-body simulation, data compression, communication-reducing algorithms

Introduction

Widening memory gaps between compute units and the main memory, stagnating main
memory per core as well as network bandwidth restrictions [1] lead into a dilemma in
supercomputing: scientific interest and weak scaling laws require codes to increase the
problem size, while strong scaling tells us that scaling is limited; but upscaling that keeps
pace with the growth of concurrency misfits the aforementioned architectural trends.
This problem can be studied at hands of multibody problems such as smoothed particle
hydrodynamics (SPH) where upscaling translates into an increase of particle counts.

Facing memory and bandwidth constraints, it is convenient to switch from double
to single precision. This allows to run twice as many computations for the same mem-
ory access characteristics, twice as many particles can be studied with the same mem-
ory footprint, and the bandwidth requirements for a given setup are halved. Where the
rigorous switch from the C datatype double to float is not feasible for accuracy and
stability constraints, some codes switch from one representation into the other in differ-

1Corresponding Author: Tobias Weinzierl, School of Engineering and Computing Sciences,
Durham University, Lower Mountjoy South Road, DH1 3LE Durham, United Kingdom; E-mail:
tobias.weinzierl@durham.ac.uk.

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

ent application phases. Notably in linear algebra algorithms such techniques have been
applied successfully—though mainly due to speed reasons rather than concerns about
the memory footprint [2]. Yet it remains a problem-specific, sometimes tricky and often
even experiment-dependent decision whether to work with reduced accuracy. Further-
more, mixed precision algorithms require the modification of core compute functions
(kernels). They are not minimally invasive in terms of coding, while the best-case savings
are limited to a factor of two.

We study SPH’s memory footprint challenge at hands of the Sedov blast Sod shock
benchmark (see [3,4], e.g.) realised with a C++ merger of the AMR framework Peano
and its particle administration [5,6,7] with the SPH kernels from SWIFT [8] using double
precision. To lower the memory demands without kernel modifications, we propose to
generalise concepts from [9]. Control volumes cluster the computational domain. Cells
of linked-cell or modified linked lists algorithms [10] act as such volumes. Within each
volume, we analyse all particles located inside as soon as all computational work such
as force computations or particle position and velocity updates for these particles have
terminated. We determine the average value and deviation of the particles’ attributes such
as position, speed or density from the average, and we switch into a hierarchical attribute
representation, i.e. to hold the derivations from the means. Basically, one reference parti-
cle is chosen per cell and all values are stored relative to this particle’s properties. These
hierarchical values are stored with only few bytes where global accuracy constraints al-
low us to do so. Before their next usage, all particle data is back-transformed into plain
C++ data types. We compress and uncompress the particles on-the-fly. The same tech-
nique is applied to the MPI data exchange.

To the best of our knowledge, our realisation of this simple idea goes significantly
beyond other work: First, we are able to offer precision formats with down to two bytes
per floating point value. This allows us to introduce savings beyond the magic factor of
two experienced for double vs. float. Second, our approach is completely dynamic,
i.e. it anticipates the solution behaviour. It compresses data only where compression is
beneficial and preserves a prescribed accuracy. In SPH, it anticipates the smoothness of
the solution. Third, our compressing is deployed to separate threads and runs parallel
to the original code. Fourth, it does not require any alterations of the original compute
kernels. It is minimally invasive. Finally, the idea also can be applied straightforwardly
to MPI data exchange.

We study the proposed ideas on a cluster equipped with Xeon Phi accelerators.
Memory constraints here play an important role. While we focus on a benchmark setup,
our methodological contributions apply to other application areas and real-world setups
as well. The remainder is organised as follows: We start from a description of our bench-
mark code (Section 1) before we introduce our idea of on-the-fly compression in Section
2. Some remarks how this compression embeds into the simulation life cycle precede
numerical results in Section 4. A brief outlook and remarks on future work (Section 5)
close the discussion.

1. Case study

As the present paper studies data layout considerations at hands of SPH, it studies a
continuous medium represented by particles (Figure 1). Each particle carries a unique

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

:Particle

- attribute1: bool
- attribute2: double
- attribute3: double
- attribute4: double

:ParticleHull

- attribute1: bool
- attribute2BPA: 2
- attribute3BPA: 4
- attribute4BPA: 3

attribute2
attribute2
attribute3
attribute3
attribute3
attribute3
attribute4
attribute4
attribute4

Byte

Figure 1. Left: A snapshot of a typical Sedov blast simulation. Right: tearApart decomposes a particle
object into its hull and a byte stream.

smoothing length and interacts with any other particle closer than the smoothing length.
We restrict to short-range interactions modelled with finite smoothing lengths. The ex-
tension of the present ideas to long-range interactions is technically straightforward.

Figure 2. Pseudo-code of overall case study algorithm.
1: while time<terminal time do
2: // 1st sweep: calculate density
3: for all cells c in grid do
4: for all cells c′ that share at least one face with c do . Includes cell c
5: Load c′ if not loaded before throughout this sweep
6: for all particles p in c do . Outer loop
7: for all particles p′ in c′ do . Inner loop
8: If p 6= p′, update attributes of p such as density dermining smoothing length
9: end for

10: Newton iteration: re-evaluate inner loop if smoothing length computation not converged
11: end for
12: Store away c′ if not required anymore throughout traversal
13: Adopt the AMR structure if smoothing lenghts permit/require
14: end for
15: end for
16: // 2nd sweep: calculate forces . Same loop structure as density calculation
17: // 3rd sweep: half kick and drift, i.e. increase time by ∆t/2 . Same loop structure as density
18: . calculation without particle-particle interaction; might change admissible ∆t
19: // 4th sweep: recalculate density . Same code as density calculation before
20: // 5th sweep: calculate forces . Same loop structure as density calculation
21: // 6th sweep: half kick, i.e. increase time by ∆t/2 . Same loop structure as previous half kick
22: end while

Our simulation workflow comprises a sequence of nested loops (Figure 2). An outer
loop steps through the simulation time. We rely on a global time stepping where each
particle advances in time by the same delta. Local time stepping has no impact on the
data flow. Yet, it changes the memory access characteristics. The time stepping itself is
realised in leap frog form. It splits up the particles’ position updates into two updates
corresponding to half the time step size each. Each update comprises a force calculation,
a position update (and an update of other quantities) as well as a recomputation of the
particles’ smoothing lengths. Such a scheme is in O(|P|2) for |P| particles. It would
be inefficient to compare all particles with all particles because of the finite smoothing
length. We thus rely on a grid and linked cell lists [11,12]:

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

We split up the computational domain into cells—in our case cubes due to a space-
tree/octree formalism—track for each cell all adjacent cells, embed the particles into the
cells, i.e. make each cell hold its particles, and check only particles from one cell vs. par-
ticles of its own or neighbouring cells. Adaptive mesh refinement (AMR) is directly in-
troduced by nonuniform smoothing lengths. To keep the computational work as small
as possible, our dynamic refinement criterion tries to introduce as small cells as possi-
ble. To allow us to realise the plain linked cell idea where only direct neighbour cells
are checked, this minimum mesh size is constrained by the maximum of the smooth-
ing lengths of all particles held within a cell. It may never underrun. Such an AMR-
based linked cell strategy is popular in various other application areas such as molec-
ular dynamics, too. Different to the latter codes, our smoothing length is a non-linear,
time-dependent function of the particle properties.

The Sedov blast Sod shock setup acts as test bed for the introduced algorithmic in-
gredients (Figure 1). Cubic splines dominate the particle-particle interaction, and bound-
ary treatment effects are neglected as we simulate only few time steps. For the realisation
of the AMR, we rely on our meshing framework Peano [5,7]. All physics code fragments
stem from SWIFT [8]. For the assignment of particles to the grid and vice versa, i.e. for
gluing particles and grid together, we rely on the PIDT technique [6].

Several application characteristics guide our considerations: All reasonable and ac-
curate simulations depend on the ability to handle as many particles as possible. If the to-
tal memory available is small, this memory has to be used carefully. All particle-particle
interactions are computationally intense—one reason for the growing popularity of par-
ticle formalisms in supercomputing (see for example [13] for other application areas)—
and thus natural vectorisation candidates given a proper data layout. All time steps move
particles (twice) and the data structures thus have to be well-suited to reorder particle
sets and to exchange particles between ranks and cores.

Such a melange of characteristics poses an interesting challenge for clusters with
Xeon Phi accelerators. The arithmetic intensity and the localised operations make it
promising with respect to the wide vector registers and high core counts. Its memory
requirements, the Phi’s strict alignment rules and the comparably small memory per core
as well as the interconnect heterogeneity (core to core, accelerator to accelerator on same
host, accelerator to accelerator on different hosts, . . .) however render efficient coding
challenging. Proper data structure choices play a major role. In this context, we further-
more note that SPH-type codes are complex. Changes of the data layout thus are prob-
lematic both economically and with respect to bugs. A minimally invasive approach to
memory footprint tuning that keeps computational kernels unaltered is desirable. Our
approach is minimally invasive and relies on a simple smoothness assumption similar to
[9]: As the particles represent a continuum, spatially close particles often hold similar
physical properties.

2. On-the-fly data compression

Each cell in the grid holds an set of particles. Since particles change their position only in
two out of six sweeps, since only few particles travel from one cell into another cell per
position update, and since we have to obtain high vectorisation efficiency, we hold them
continuously rather than in linked lists or maps. For the majority of steps, the particle

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

sequences remain invariant. Each particle carries eleven scalar floating point quantities
plus three vector quantities being the curl, the velocity and the position in space. Tra-
ditionally, two storage paradigms for such a setup do exist: array of structs (AoS) and
struct of arrays (SoA). Hybrids are possible.

There are pros and cons coming along with each variant. SoA is advantageous for
vectorisation. Its memory access characteristics are better than AoS if individual steps
require subsets of the particles’ attributes. The former property might loose importance
due to gather and scatter instructions in future AVX versions as long as particle sets fit
into the caches. AoS makes the particles’ reassignment to cells and distributed memory
parallelisation easier as particles are collocated in memory. Challenges however arise if
particles are augmented with non-double attributes on hardware such as the Xeon Phi that
require strict alignment. Compilers can reduce memory fill-ins (padding) due to attribute
reordering—attributes are held in a struct with decreasing size—but some memory is
‘lost’. As no scheme is always superior to the other, some codes change representations
on-the-fly. For simplicity, our case study code is based upon AoS only, and we neglect
tuning techniques transforming AoS into SoA temporarily to exploit vector units. AoS
also integrates directly into our particle handling [6] triggering MPI calls.

We observe that the information density for a particular attribute within a cell is
limited. Let a(p) be a generic attribute of particle a ∈ P. It is held in double precision.

A(c) =
1
|P(c)| ∑

p∈P(c)
a(p)

is the standard mean for all particle attributes within a cell. Then,

â(p) = a(p)−A(c)

is a hierarchical attribute representation, i.e. the attribute value relative to the mean value.
We use the term hierarchical as our idea is geometrically inspired [9]. It introduces a
two-scale notion of attributes, as the nodal (read real) attribute content results from a
coarse/generalised mean value plus a surplus. We assume that for many particles within
one cell, the number of significant bits in â is small. Significant bits are those that are
required to reconstruct the original value a up to sufficient/machine precision. Though
there might be escapees, most particle attributes cluster around their respective mean
value as the particles represent a continuum. If represented in hierarchical form, double
precision of these attributes is luxury.

We hence introduce tearApart and glueTogether. glueTogether is the inverse
of tearApart subject to precision considerations as detailed below. Both require a refer-
ence particle defining the mean values A(p). tearApart furthermore is passed an error
threshold ε . It removes all double precision arguments from the particle and returns a
particle hull—an object with all the non-double attributes such as bools plus one num-
ber per double attribute with values from one to six—as well as a stream of bytes (Fig-
ure 1). The hull can be stored with techniques from [9] efficiently and does not require
any alignment. Efficiently means that all the integer numbers are squeezed into one long
integer. The byte stream is a linearisation of all the attributes. They first are converted
into their hierarchical representation. Second, we rewrite them as ŝ · 2ê, ŝ ∈ N, i.e. we
explicitly break up IEEE double precision. The exponent ê third is stored as one byte
on the stream. Finally, we store ŝ as an integer value with a fixed number of bytes such
that the whole attribute needs bpa ≥ 2 bytes. bpa (bytes per attribute) is held within

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

the hull. Let fbpa(a(p)) encode the storage of an attribute. tearApart chooses bpa
minimal subject to | fbpa(a(p))− a(p)| ≤ ε . For bpa > 7, no memory is saved. In this
case, tearApart skips any particle transformation and returns the unaltered particle. For
bpa≤ 7, tearApart reduces the memory requirements. A combination of the two oper-
ations and their byte stream idea with SoA is straightforward but not followed up here. If
we apply tearApart on a sequence of particles, we note that we obtain a heterogeneous
sequence of objects regarding their memory footprint. Depending on the particles’ prop-
erties and the precision threshold, tearApart decides for each particle how many bytes
are sufficient to encode the data or whether tearing them apart pays off at all. Obviously,
the inverse glueTogether does not require a threshold.

3. Integration into simulation workflow and parallelisation

We do not use our decomposition into hierarchical, compressed attributes plus hull as one
and only data representation. Instead, we apply tearApart after a cell’s data has been
used for the last time throughout a grid traversal. Its counterpart glueTogether acts as
preamble to any computation after the first load of a cell. Particles are compressed in-
between two grid traversals and are held with double values as long as they are required
for computations. The two data conversations plug into all algorithm phases.

To facilitate this life-cycle, we rewrite A(c) per cell into a tuple (A, Ã)(c).
tearApart relies on A(c) input to decompose the particles. In parallel, it determines the
average value of attribute a in Ã(c). glueTogether reconstructs all particle structs at
hands of A(c). Afterwards, it sets A(c)← Â(c). This tuple-based scheme allows for a
single pass realisation. Each compression works with an average from the previous grid
traversal. Though A(c)s’ lagging behind by one traversal probably yields non-optimal
compression factors, it does not harm the correctness.

As compression and reconstruction of the particles plug into the first usage or the
last usage of a cell as a preamble or epilogue respectively, no alterations of the com-
pute kernels are necessary. The approach is minimally invasive. As we stick to AoS
throughout the computations, memory movements due to particle moves/reordering are
minimised and the transfer of whole particles through MPI is straightforward. As we
analyse the average attribute values on-the-fly on a per-cell basis, our approach is lo-
calised. It yields high compression rates where the particle attributes are homogeneous.
Yet it is robust in regions where they differ significantly from each other. As we decide
per particle whether compression pays off, iterations end up with data structures where
some particles are compressed and others not. Since we hold the particles per cell in
an array that obviously has to be able to grow due to glueTogether, tearApart and
glueTogether implicitly sort the particles according to their derivation from the mean
values: We make tearApart run through a cell’s particle sequence reversely, and we
make glueTogether append particles at the end of a sequence. A plain C++ vector suf-
fices. The later the particle within a cell’s particle sequence the higher the probability
that it is compressed. This sorting that implicitly kicks in after the first iteration ensures
that no frequent particle reordering due compression is necessary.

With the uncompress-compute-compress life-cycle, the effective memory demands
of the code depend on the fact how long particles have to remain uncompressed; how long
they are ‘active’, i.e. in-use. In-between grid sweeps, the memory footprint is smaller

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

than or equal to the original scheme besides the average value tuples per cell. As cells
are by an order of magnitude fewer than particles, this impact can be neglected. For reg-
ular Cartesian grids, an estimate on the upper number of active cells is straightforward.
Assuming homogeneous particle counts per cell then yields statements on the maximum
memory footprint. Such bounds are, to the best of our knowledge, unknown for AMR in
general. Empirically known however is the fact that a traversal of the adaptive grid by
a space-filling curve (SFC) is advantageous. SFCs yield localised traversals due to their
underlying Hölder continuity. Subdomains induced by a segment of an SFC have a small
surface relative to their volume, i.e. their contained cells [14]. This property translates
into the subdomain of active cells. The total memory footprint of uncompressed particles
thus is relatively small. However, quantitative bound exist only for regular tessellations.
We use the Peano SFC.

While the particle moving and, thus, the exchange of whole particles via MPI rely
on plain structs, all other application phases in Algorithm 2 do not exchange all particle
data such as particle positions. They exchange attribute subsets. Our code transfers these
quantities in Jacobi-style, i.e. they are computed and sent out at the end of the traversal.
Prior to the subsequent grid sweep we then merge them into the data on the receiver side.
We therefore may either send out data prior to the compression epilogue or exchange
compressed quantities. The latter reduces the bandwidth requirements.

Our grid decomposition is non-overlapping [7]: Cells are uniquely assigned to ranks
while the vertices in-between are replicated along domain decomposition boundaries.
We propose—in accordance with the PIDT scheme from [6]—to hold particles within
the dual grid. Technically, the particle lists P(c) are split 2d times, assigned to vertices,
and all particles are stored within those lists whose vertices whose vertices are closest
to their particle positions. As vertices along subdomain boundaries are replicated among
all adjacent ranks, also the mean values are available on each rank; a payoff of the tuple
storage. MPI data exchange thus can use the average tuples. No modifications become
necessary. The compressed MPI exchange is minimally invasive.

tearApart is an operation that delays the program execution. We model it as task.
Once all particles within a cell are not used anymore, their memory location remains in-
variant. We spawn a tearApart task compressing data while the original SPH algorithm
continues. The compression runs parallel to computations. In return, we introduce a flag
per particle list that is secured by a semaphore. It is set once tearApart finishes and
checked by the load process triggering glueTogether prior to any uncompression.

glueTogether introduces overhead as well. As grid traversals are deterministic,
this phase can be deployed to a prefetching task, too. While this is, in principle, straight-
forward, we do not follow-up it here. tearApart/glueTogether tasks are not visible
to the original code and do not increase its complexity. However, estimates on the to-
tal memory footprint have to be validated carefully for the concurrent particle handling.
Conversions might be delayed, and thus the total memory footprint might increase.

4. Results

All experiments were conducted on the Beacon system’s Xeon Phi 5110P accelerators.
Each accelerator hosts 8 GByte of memory, and four accelerators are plugged into one
Xeon E5-2670 host. The Phis are programmed in native mode, and we do not use the

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

no
comp

2

3

4

5

6

7

1
10

102

104

106

108

109ε=1e-12
ε=1e-8
ε=1e-4

1 2 4 10 20 40 60 120 240
threads

103

104

105

#
p
a
rt

ic
le

s/
s

#particles=8.00e+03, ξ=0.0

no comp
ε=1e-4

ε=1e-8

ε=1e-12

linear

Figure 3. Left: Number of attribute compressions with different bpa for ξ = 0.8,h = 0.008. Right: TBB
scaling on one Xeon Phi for different compression rates (solid lines) and scaling if tearApart is deployed to
separate tasks (dotted lines).

host. All codes were translated with the Intel 2015 compiler, all results are given in
particle updates per second, i.e. the timings are normalised by the total particle count.
The shared memory parallelisation relies on Intel’s Threading Building Blocks (TBB).

Our setup starts from particles aligned in a Cartesian grid with spacing h. Each par-
ticle experiences a slight random perturbation ξ ·h of its position with ξ ∈ (0,1), i.e. the
setup is not perfectly symmetric. The AMR criterion is chosen initially such that the
smoothing length corresponds to 1.1255h. The particles’ mass is set to h3, and their inter-
nal energy equals 3

2 ·10−5 everywhere besides in a sphere of radius 0.1 around the centre
of the cubic computational domain. Within the sphere, the particles’ internal energy is
increased by 103

33 ·h
3. This additional energy component triggers the blast (Figure 1). An

increase in time is to some degree equivalent to increasing ξ .

1 2 4 10 20 40 60
threads per rank

103

104

105

#
p
a
rt

ic
le

s/
s

h=0.02, ε=1e-12

1/20

1/30

2/20

2/30

3/20

3/30

4/20

4/30

N ppn rpp tpr no comp -1e-8 -1e-12
1 1 30 1 49,067 64,848 46,814
1 1 30 2 73,741 83,746 67,565
1 1 30 10 82,425 79,295 78,741
1 1 40 1 48,326 59,436 45,467
1 1 40 2 63,909 66,385 59,204
1 1 40 10 65,597 61,513 62,313
1 2 30 1 57,434 67,161 54,411
1 2 30 2 75,873 92,684 72,077
1 2 30 10 86,267 92,287 82,055
1 3 30 1 59,817 73,298 57,112
1 3 30 2 80,106 91,154 55,218
1 3 30 10 87,389 76,706 76,852
2 1 30 1 59,064 71,281 55,811
2 1 30 2 77,964 87,222 77,982
2 1 30 10 91,752 98,843 88,700
4 1 30 1 61,875 70,723 59,901
4 1 30 2 82,149 84,785 60,920
4 1 30 10 93,154 87,544 71,332

Figure 4. Left: Throughput for different combinations of accelerator count/MPI ranks per Xeon Phi (ξ = 0).
The compression is not applied on MPI messages. Right: Throughput of hybrid code where compression is
always applied to the MPI message sizes. If compression inside the domain is switched off, the domain bound-
ary applies ε = 10−12 . N=number of nodes, ppn=phis used per node, rpp=ranks per phi, tpr=threads per rank.
Results are strong scaling measurements with h = 0.01.

While small ε increase the number of particles that are not or almost not compressed
(bpa = 6), bpa = 2 is sufficient for the majority of particles for all ε (Figure 3). The
original memory footprint stems from particles with 176 bytes each plus the memory
required for the AMR grid. For both, bit optimisations from [9] have been applied. The
hull of the particle including the bpa flags in contrast is 40 bytes. As such, we compress

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

the memory footprint to 0.25 (ε = 10−12), 0.21 (ε = 10−8) or 0.17 (ε = 10−4). These
measurements comprise overheads required for dynamic data structures.

We observe reasonable scaling of the code (Figure 3), but the code can not exploit
more than one hardware thread per floating point unit. While the compression allows us
to upscale the problem per node, it reduces the code’s throughput. However, we note that
the compression can be ran in the background of the actual solve. With the compres-
sion in the background, we flood the Phi with tasks [15] and thus start to make up for
the compression’s runtime penalty. It remains open whether task-based glueTogether

could close the gap completely.
If we use more than one Xeon Phi with compression only applied within the domain,

we obtain the best throughput for three Xeon Phis running 20 MPI ranks with 4 TBB
threads each: with a hybrid code, slight overbooking of the floating point units pays
off. If we use more than one node, the performance deteriorates. If we study the best-
case throughputs and apply the compression on data exchanged via MPI (Figure 4), we
observe that more signficiant overbooking (30 ranks with 10 threads, e.g.) starts to pay
off. We also are faster than TBB-only codes on one accelerator. Up to three Xeon Phis per
node yield a performance improvement—though far from linear—while the compression
with background tasks allows the hybrid code now to offer the memory compression
for free in terms of runtime. Multithreading has closed the compression’s runtime gap.
We furthermore observe that four accelerators distributed among four nodes yield higher
throughput than four accelerators plugged into one node. Reasons for this have to be
some kind of resource competition. All in all, the compression of the MPI messages
speeds up the code by a factor of five compared to an uncompressed data exchange, while
the basic performance characteristics remain preserved. See [6] for a discussion of the
code’s scaling behaviour—the present figures study soley strong scaling.

5. Outlook and conclusion

The present work introduces techniques that help us to squeeze more simulation into
given memory and communication bandwidth allowance. This will become mandatory
for the exascale era [1]. Picking up the seminal fourth recipe of [16], our approach might
fall into a class of techniques that help us to deliver more science per byte. An important
advantage of the present work compared to classic mixed precision is that the original
compute kernels remain unaltered.

While our algorithmic setting is flexible, we find that basically either aggressive
compression with two bytes per floating point numbers or (almost) no compression at all
are used. Reasons for this might be a result of the chosen use case, but the effect deserves
further studies. If only few bpa choices are sufficient, the particle hull footprint can be
reduced further. In the context of data compression, we reiterate that our technique is
well-suited to equip codes with higher than double precision without making the memory
footprint explode. Also, we suggest that a reduction of memory footprint and, thus, data
moves reduces the energy consumption of codes. This deserves further investigation.

Eckhardt, Glas, Korzh, Wallner, Weinzierl /

Acknowledgements

We appreciate the support from Intel through Durham’s Intel Parallel Computing Centre
(IPCC) which gave us access to latest Intel software. Special thanks are due to Matthieu
Schaller for his support and advise on the SWIFT code [8]. All underlying software is
open source and available at [5]. This material is based upon experimental work sup-
ported by the National Science Foundation under Grant Number 1137097 and by the
University of Tennessee through the Beacon Project. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation or the University of
Tennessee. The project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 671698 (ExaHyPE).

References

[1] J. Dongarra, P. H. Beckman, et al. The International Exascale Software Project Roadmap. IJHPCA,
25(1):3–60, 2011.

[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov. Ac-
celerating scientific computations with mixed precision algorithms. Computer Physics Communications,
180:2526–2533, 2009.

[3] P. Gonnet. Efficient and scalable algorithms for smoothed particle hydrodynamics on hybrid
shared/distributed-memory architectures. SISC, 37(1):C95–C121, 2015.

[4] V. Springel. E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving
mesh. arxiv e-prints, 0901.4107, mnras. Mon. Not. of the R. Astron. Soc., 2009.

[5] T. Weinzierl et al. Peano—a Framework for PDE Solvers on Spacetree Grids, 2015. www.peano-
framework.org.

[6] T. Weinzierl, B. Verleye, P. Henri, and D. Roose. Two particle-in-grid realisations on spacetrees. Parallel
Computing, 2015. (submitted, arXiv, 1508.02435).

[7] T. Weinzierl. The Peano software—parallel, automaton-based, dynamically adaptive grid traversals.
Technical Report arXiv150604496W, eprint arXiv:1506.04496, Durham University, 2015.

[8] P. Gonnet, M. Schaller, et al. Swift—shared-memory parallel smoothed particle hydrodynamics (sph)
code for large-scale cosmological simulations, 2015. http://www.swiftsim.com.

[9] H.-J. Bungartz, W. Eckhardt, T. Weinzierl, and C. Zenger. A precompiler to reduce the memory footprint
of multiscale pde solvers in c++. Future Generation Computer Systems, 26(1):175–182, January 2010.

[10] W. Mattson and B. M. Rice. Near-neighbor calculations using a modified cell-linked list method. Com-
puter Physics Communications, 119(2-3):135–148, 1999.

[11] B. Quentrec and C. Brot. New method for searching for neighbors in molecular dynamics computations.
Journal of Computational Physics, 13(3):430 – 432, 1973.

[12] R. Hockney and J. Eastwood. Computer Simulation Using Particles. Academic Press, 1988.
[13] R. Yokota, G. Turkiyyah, and D. Keyes. Communication complexity of the fast multipole method and

its algebraic variants. Supercomputing frontiers and innovations, 1(1), 2014.
[14] H.-J. Bungartz, M. Mehl, and T. Weinzierl. Euro-Par 2006, Parallel Processing, 12th International

Euro-Par Conference, volume 4128 of LNCS, chapter A Parallel Adaptive Cartesian PDE Solver Using
Space–Filling Curves, pages 1064–1074. Springer-Verlag, Berlin, Heidelberg, 2006.

[15] M. Schreiber, T. Weinzierl, and H.-J. Bungartz. Cluster optimization and parallelization of simulations
with dynamically adaptive grids. In F. Wolf, B. Mohr, and D. an Mey, editors, Euro-Par 2013, volume
8097 of Lecture Notes in Computer Science, pages 484–496, Berlin Heidelberg, 2013. Springer-Verlag.
preprint.

[16] D. E. Keyes. Four Horizons for Enhancing the Performance of Parallel Simulations Based on Partial
Differential Equations. In A. Bode, T. Ludwig, W. Karl, and R. Wismüller, editors, Euro-Par ’00:
Proceedings from the 6th International Euro-Par Conference on Parallel Processing, volume 1900 of
Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, 2000.

