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0.1 Introdution

Frature mehanis has been studied for over than 50 years, but it is still re-

eiving great attention from the sienti� ommunity. One of the reasons is the

appearane of a range of new materials, suh as omposite, piezoeletri, magne-

toeletroelasti materials, just to ite a few examples. All these materials have a

ommon harateristi: they present anisotropi behaviour, so material response

to a given exitation is also onditioned to the rystal arrangements of this ma-

terial (for more about rystal arrangements see [1℄ for instane). Anisotropi

materials have been widely employed in the aerospae and automobile indus-

tries, wind power generators, sporting goods, and also as piezoeletri sensors

and atuators.

Analytial formulations to deal with anisotropi material in frature me-

hanis problems are very limited [2, 3℄. Hene, frature mehanis problems

are solved using numerial methods, suh as the Finite Element Method (FEM)

[4℄ and the Boundary Element Method (BEM) [5℄. It has been shown that

BEM is more aurate and e�etive than FEM. However, in the last 15 years, a

new paradigm has been established for the FEM, where the partition of unity

[6℄ was applied to desribe the disontinuity due to the presene of the rak,

where the rak is then modelled through additional degrees of freedom in the

elements ontaining the rak. This approah was named Extended Finite El-

ement Method (X-FEM) [7℄ and it has been shown that it an provide similar

auray to the one found in BEM models [8℄.

In this work we develop an alternative BEM formulation for anisotropi

frature problems using the partition of unity method (PUM). This idea has

already been disussed by [9℄ for isotropi materials, and our objetive is to

generalise this approah for anisotropi materials. To this end, the PUM is

implemented in a dual BEM ontext. The enrihment funtions are derived in

terms of the Stroh formalism [10℄ and further details on the implementation of

the X-BEM are disussed.

Furthermore, we ompare the results of the X-BEM with those obtained

by alternative numerial tehniques: dual BEM implemented in ombination

with disontinuous quarter-point elements [11, 12℄ and X-FEM with anisotropi

enrihment funtions [8℄.
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0.2 Constitutive equations

Consider an anisotropi elasti domain Ω, then the stati equilibrium equations

in the presene of body fores b are de�ned as

σij,j + bi = 0 (0.1)

Symmetry holds for the stress and strain tensors σ and ε, respetively,

σij = σji (0.2)

εij = εji, (0.3)

where

εij =
1

2
(ui,j + uj,i) (0.4)

and ui represent the displaements.

The linear onstitutive equations are given by the generalized Hooke's law

σij = Cijklεkl (0.5)

where Cijkl de�ne the material onstants tensor, satisfying the following sym-

metry relations

Cijkl = Cjikl = Cijlk = Cklij (0.6)

0.3 The Dual Boundary Element Method (DBEM)

The boundary element method (BEM) has been established as a referene nu-

merial method when dealing with linear elasti frature mehanis problems

[5℄. BEM is known to be more aurate and robust than domain disretisation

methods suh as the more popular �nite element method (FEM).

The dual BEM (DBEM) is the usual hoie when dealing with frature

mehanis problems. Hong and Chen [13℄ presented the idea of the ombined

use of a BIE and its derivative. This was used for the �rst time in a frature

mehanis ontext when [14℄ presented the DBEM. It an be summarised by a

displaement boundary integral equation (DBIE)

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) =

∫

Γ

u∗
ij(x, ξ)pj(x)dΓ(x) (0.7)

and a tration boundary integral equation (TBIE), obtained by the di�erentia-

tion of (0.7) and further substitution in (0.5)

cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) = Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x) (0.8)

where Γ represents all the boundaries (inluding rak boundaries) of domain

Ω; Nr is the outward unit normal to the boundary at the olloation point ξ;

cij is the free term deriving from the Cauhy Prinipal Value integration of
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the strongly singular kernels p∗ij ; u
∗
ij and p∗ij are the displaement and tration

fundamental solutions; d∗rij and s∗rij follow from di�erentiation and substitution

into the generalised Hooke's law of u∗
ij and p∗ij , respetively. The kernels u∗

ij

and p∗ij are given by

u∗
ij = − 1

π
ℜ
{

AjmQmi ln(zxm − zξm)
}

(0.9)

p∗ij =
1

π
ℜ
{

BjmQmi

µmn1 − n2

zxm − zξm

}

(0.10)

where n = (n1, n2) is the unit normal at the observation point; zxm = x1 +
µmx2, z

ξ
m = ξ1 + µmξ2 are evaluated at the observation and olloation points,

respetively; ℜ denotes the real part ; Q = A−1(L−1+L
−1

)
−1

with L = iAB−1

and L represents the omplex onjugate of L.
The matries A, B and onstant µm are parameters from the Stroh formal-

ism and an be obtained through the following eigenvalue problem

( −C2ij2
−1C2ij1 −C2ij2

−1

C1ij1 −C2ij1
TC2ij2

−1C2ij1 −C2ij1
TC2ij2

−1

)(

Am

Bm

)

= µm

(

Am

Bm

)

(0.11)

where there is no summation on the m index.

0.3.1 Extended Boundary Element Method (X-BEM)

The extended boundary element method (X-BEM) was �rst proposed by Simp-

son and Trevelyan [9℄ for frature mehanis problems in isotropi materials.

The main idea is the same as for the X-FEM, to model the asymptoti be-

haviour of the displaements around the rak tips by introduing new degrees

of freedom. The displaements uh(x) are thus rede�ned as

uh(x) =
∑

i∈N

Ni(x)ui +
∑

k∈NCT

Nk(x)
∑

α

Fα(x)a
α
k (0.12)

where N and N CT
are the sets of all nodes and the enrihed nodes, respetively,

Ni is the standard Lagrangian shape funtion assoiated with node i, ui is the

vetor of nodal degrees of freedom, and aαk represents the amplitudes of the

enrihed basis funtions whih apture the asymptoti behaviour around the

rak tips. In elasti materials, aαk is an 8-omponent vetor for two-dimensional

problems, sine only two nodal variables (u1, u2) and four enrihment funtions

are needed to desribe all the possible deformation states in the viinity of the

rak-tip [8℄.

In this work, we use the anisotropi enrihment funtions obtained by [8℄ for

the X-FEM:

Fl(r, θ) =
√
r









ℜ{A11B
−1
11 β1 +A12B

−1
21 β2}

ℜ{A11B
−1
12 β1 +A12B

−1
22 β2}

ℜ{A21B
−1

11 β1 +A22B
−1

21 β2}
ℜ{A21B

−1

12 β1 +A22B
−1

22 β2}









(0.13)
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where βm =
√
cos θ + µm sin θ, r is the distane between the rak tip and

an arbitrary position, θ is the orientation measured from a oordinate system

entred at the rak tip.

Let us emphasise that the anisotropi enrihment funtions an also be used

for isotropi materials, sine this is a degenerated ase from anisotropi materi-

als. For more details please refer to referene [8℄.

The X-BEM formulation is similar to the one used by Simpson and Trevelyan

[9℄ for isotropi materials. The extended DBIE and the TBIE an be restated

as

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)Fα(x)a
α
kdΓ =

∫

Γ

u∗
ij(x, ξ)pj(x)dΓ(x)

(0.14)

cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) +Nr

∫

Γc

s∗rij(x, ξ)Fα(x)a
α
kdΓ =

Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x)

(0.15)

where Γc = Γ+∪Γ− stands for the rak surfaes Γ+ and Γ−. In this work, only

the element ontaining the rak tip reeives the enrihment funtion. Let us

reall that strongly singular and hypersingular terms arise from the integration

of the p∗ij , d
∗
rij and s∗rij kernels and they are regularised in the same way as

shown in [15℄.

The enrihment funtions add new degrees of freedom in the BEM formu-

lation, whih auses the linear system of equations to beome indeterminate.

An easy form to overome this issue is to inlude additional olloation points.

Eah new olloation point will provide 2 new equations (in x1 and x2 dire-

tions). In this work, 3 nodes are enrihed in eah rak fae, whih will add

3× 4× 2× 2 = 48 new degrees of freedom to the problem. Therefore, 24 extra

olloation points are neessary to solve the linear system of equations.

0.4 Numerial results

In this setion we show the rak opening displaement (COD) for anisotropi

materials in two frature mehanis examples. The numerial results are om-

pared with the results from the extended BEM, the dual BEM with quarter-

point elements [11℄ and the X-FEM.

The BEM formulation presented in [11℄ has the partiularity of modelling

only one rak surfae, thus obtaining the COD straight from the solution of

the linear system of equations.
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0.4.1 Double edge rak

Figure 0.1 illustrates a square plate (h/w = 1) with two edge raks of length

a under a uniform loading σ. The size of the rak is de�ned by a/w = 0.25.
The material is a four graphite-epoxy laminate, where the elasti properties are:

E1 = 144.8 GPa, E2 = 11.7 GPa, G12 = 9.66 GPa and ν12 = 0.21. The COD
was obtained for two distint �bre orientation, φ = 75◦ and φ = 90◦. Results

for the X-FEM are obtained using topologial and geometrial enrihment, with

a �xed area of re/a = 0.2 and a mesh of 4525 elements. For more information

about both adopted enrihment types please refer to [8℄ for instane.

w

ha a

σ

σ

E2

E1

φ

Figure 0.1: Double edge rak problem.

For the dual BEM and the X-BEM a 10 ontinuous quadrati element per

side mesh was used. The rak is disretised with 10 disontinuous elements.

The dual BEM presents a quarter-point in the element at the rak tip, while

the X-BEM presents an enrihed element.

Results are given in Figures 0.2 and 0.3. The COD of the X-FEM models is

smaller than the ones of the BEM models. The X-BEM COD is higher at the

upper rak fae than its equivalent using quarter point. In this ase, the X-FEM

results an be underestimated ompared to the BEM results. Nevertheless, the

displaements around the rak tip have the same

√
r behaviour.

0.4.2 Slanted entred rak

A square plate h/w = 1 with a slanted entred rak of length 2a under a

uniform loading is represented in Figure 0.4, where β = 30◦. The size of the

rak is a/w = 0.5. The material is a glass-epoxy omposite with the following
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Figure 0.2: COD for the double edge rak - θ = 75◦.

elasti properties: E1 = 48.26 GPa, E2 = 17.24 GPa, G12 = 6.89 GPa and

ν12 = 0.29. The �bre orientation angle φ assumes values of 90◦ and 120◦ in

this example. The BEM meshes present 6 quadrati elements per side, and 10

disontinuous elements at the rak. The X-FEM mesh ontain 2025 elements

and the geometrial enrihment uses a �xed area of re/a = 0.2.
The results are shown in Figures 0.5 and 0.5 for φ = 90 and 120◦, respe-

tively. Here we present the results in terms of the u2 displaement only, sine it

is di�ult to get an aurate COD for the X-FEM model, whih an be seen by

the deformed shape of the COD. Both CODs from the BEM models result in

symmetrial relative displaements. The COD from the extended BEM is on-

siderably larger than the other referene solutions. One of the possible reasons

is that the extended BEM model is underestimating the sti�ness of the plate,

resulting in a larger COD.

0.5 Summary

An enrihed boundary element method was proposed in this work. This method

uses the bene�ts of the partition of unit to model in a more general way the

asymptoti displaements around the rak tip. Existing anisotropi enrihment

funtions for the X-FEM were employed at the proposed method. Some numer-

ial examples were evaluated, and the results ompared to a well established

BEM formulation and the X-FEM . The rak opening displaement was om-
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Figure 0.3: COD for the double edge rak - θ = 90◦.
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Figure 0.4: Slanted entred rak problem.

pared with the quarter point BEM and the X-FEM. For a �at horizontal edge

rak, both BEM models have the same behaviour around the rak tip, and the
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Figure 0.5: COD for the slanted rak problem - φ = 90◦.
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Figure 0.6: COD for the slanted rak problem - φ = 120◦.

X-BEM onsiders a larger COD at the end of the rak. In a slanted rak, the

COD in the X-BEM model is larger than both BEM and X-FEM. The X-BEM

ould be used an alternative to the dual BEM with quarter-point elements.
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