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0.1 Introdu
tion

Fra
ture me
hani
s has been studied for over than 50 years, but it is still re-


eiving great attention from the s
ienti�
 
ommunity. One of the reasons is the

appearan
e of a range of new materials, su
h as 
omposite, piezoele
tri
, magne-

toele
troelasti
 materials, just to 
ite a few examples. All these materials have a


ommon 
hara
teristi
: they present anisotropi
 behaviour, so material response

to a given ex
itation is also 
onditioned to the 
rystal arrangements of this ma-

terial (for more about 
rystal arrangements see [1℄ for instan
e). Anisotropi


materials have been widely employed in the aerospa
e and automobile indus-

tries, wind power generators, sporting goods, and also as piezoele
tri
 sensors

and a
tuators.

Analyti
al formulations to deal with anisotropi
 material in fra
ture me-


hani
s problems are very limited [2, 3℄. Hen
e, fra
ture me
hani
s problems

are solved using numeri
al methods, su
h as the Finite Element Method (FEM)

[4℄ and the Boundary Element Method (BEM) [5℄. It has been shown that

BEM is more a

urate and e�e
tive than FEM. However, in the last 15 years, a

new paradigm has been established for the FEM, where the partition of unity

[6℄ was applied to des
ribe the dis
ontinuity due to the presen
e of the 
ra
k,

where the 
ra
k is then modelled through additional degrees of freedom in the

elements 
ontaining the 
ra
k. This approa
h was named Extended Finite El-

ement Method (X-FEM) [7℄ and it has been shown that it 
an provide similar

a

ura
y to the one found in BEM models [8℄.

In this work we develop an alternative BEM formulation for anisotropi


fra
ture problems using the partition of unity method (PUM). This idea has

already been dis
ussed by [9℄ for isotropi
 materials, and our obje
tive is to

generalise this approa
h for anisotropi
 materials. To this end, the PUM is

implemented in a dual BEM 
ontext. The enri
hment fun
tions are derived in

terms of the Stroh formalism [10℄ and further details on the implementation of

the X-BEM are dis
ussed.

Furthermore, we 
ompare the results of the X-BEM with those obtained

by alternative numeri
al te
hniques: dual BEM implemented in 
ombination

with dis
ontinuous quarter-point elements [11, 12℄ and X-FEM with anisotropi


enri
hment fun
tions [8℄.
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0.2 Constitutive equations

Consider an anisotropi
 elasti
 domain Ω, then the stati
 equilibrium equations

in the presen
e of body for
es b are de�ned as

σij,j + bi = 0 (0.1)

Symmetry holds for the stress and strain tensors σ and ε, respe
tively,

σij = σji (0.2)

εij = εji, (0.3)

where

εij =
1

2
(ui,j + uj,i) (0.4)

and ui represent the displa
ements.

The linear 
onstitutive equations are given by the generalized Hooke's law

σij = Cijklεkl (0.5)

where Cijkl de�ne the material 
onstants tensor, satisfying the following sym-

metry relations

Cijkl = Cjikl = Cijlk = Cklij (0.6)

0.3 The Dual Boundary Element Method (DBEM)

The boundary element method (BEM) has been established as a referen
e nu-

meri
al method when dealing with linear elasti
 fra
ture me
hani
s problems

[5℄. BEM is known to be more a

urate and robust than domain dis
retisation

methods su
h as the more popular �nite element method (FEM).

The dual BEM (DBEM) is the usual 
hoi
e when dealing with fra
ture

me
hani
s problems. Hong and Chen [13℄ presented the idea of the 
ombined

use of a BIE and its derivative. This was used for the �rst time in a fra
ture

me
hani
s 
ontext when [14℄ presented the DBEM. It 
an be summarised by a

displa
ement boundary integral equation (DBIE)

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) =

∫

Γ

u∗
ij(x, ξ)pj(x)dΓ(x) (0.7)

and a tra
tion boundary integral equation (TBIE), obtained by the di�erentia-

tion of (0.7) and further substitution in (0.5)

cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) = Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x) (0.8)

where Γ represents all the boundaries (in
luding 
ra
k boundaries) of domain

Ω; Nr is the outward unit normal to the boundary at the 
ollo
ation point ξ;

cij is the free term deriving from the Cau
hy Prin
ipal Value integration of
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the strongly singular kernels p∗ij ; u
∗
ij and p∗ij are the displa
ement and tra
tion

fundamental solutions; d∗rij and s∗rij follow from di�erentiation and substitution

into the generalised Hooke's law of u∗
ij and p∗ij , respe
tively. The kernels u∗

ij

and p∗ij are given by

u∗
ij = − 1

π
ℜ
{

AjmQmi ln(zxm − zξm)
}

(0.9)

p∗ij =
1

π
ℜ
{

BjmQmi

µmn1 − n2

zxm − zξm

}

(0.10)

where n = (n1, n2) is the unit normal at the observation point; zxm = x1 +
µmx2, z

ξ
m = ξ1 + µmξ2 are evaluated at the observation and 
ollo
ation points,

respe
tively; ℜ denotes the real part ; Q = A−1(L−1+L
−1

)
−1

with L = iAB−1

and L represents the 
omplex 
onjugate of L.
The matri
es A, B and 
onstant µm are parameters from the Stroh formal-

ism and 
an be obtained through the following eigenvalue problem

( −C2ij2
−1C2ij1 −C2ij2

−1

C1ij1 −C2ij1
TC2ij2

−1C2ij1 −C2ij1
TC2ij2

−1

)(

Am

Bm

)

= µm

(

Am

Bm

)

(0.11)

where there is no summation on the m index.

0.3.1 Extended Boundary Element Method (X-BEM)

The extended boundary element method (X-BEM) was �rst proposed by Simp-

son and Trevelyan [9℄ for fra
ture me
hani
s problems in isotropi
 materials.

The main idea is the same as for the X-FEM, to model the asymptoti
 be-

haviour of the displa
ements around the 
ra
k tips by introdu
ing new degrees

of freedom. The displa
ements uh(x) are thus rede�ned as

uh(x) =
∑

i∈N

Ni(x)ui +
∑

k∈NCT

Nk(x)
∑

α

Fα(x)a
α
k (0.12)

where N and N CT
are the sets of all nodes and the enri
hed nodes, respe
tively,

Ni is the standard Lagrangian shape fun
tion asso
iated with node i, ui is the

ve
tor of nodal degrees of freedom, and aαk represents the amplitudes of the

enri
hed basis fun
tions whi
h 
apture the asymptoti
 behaviour around the


ra
k tips. In elasti
 materials, aαk is an 8-
omponent ve
tor for two-dimensional

problems, sin
e only two nodal variables (u1, u2) and four enri
hment fun
tions

are needed to des
ribe all the possible deformation states in the vi
inity of the


ra
k-tip [8℄.

In this work, we use the anisotropi
 enri
hment fun
tions obtained by [8℄ for

the X-FEM:

Fl(r, θ) =
√
r









ℜ{A11B
−1
11 β1 +A12B

−1
21 β2}

ℜ{A11B
−1
12 β1 +A12B

−1
22 β2}

ℜ{A21B
−1

11 β1 +A22B
−1

21 β2}
ℜ{A21B

−1

12 β1 +A22B
−1

22 β2}









(0.13)
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where βm =
√
cos θ + µm sin θ, r is the distan
e between the 
ra
k tip and

an arbitrary position, θ is the orientation measured from a 
oordinate system


entred at the 
ra
k tip.

Let us emphasise that the anisotropi
 enri
hment fun
tions 
an also be used

for isotropi
 materials, sin
e this is a degenerated 
ase from anisotropi
 materi-

als. For more details please refer to referen
e [8℄.

The X-BEM formulation is similar to the one used by Simpson and Trevelyan

[9℄ for isotropi
 materials. The extended DBIE and the TBIE 
an be restated

as

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)Fα(x)a
α
kdΓ =

∫

Γ

u∗
ij(x, ξ)pj(x)dΓ(x)

(0.14)

cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) +Nr

∫

Γc

s∗rij(x, ξ)Fα(x)a
α
kdΓ =

Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x)

(0.15)

where Γc = Γ+∪Γ− stands for the 
ra
k surfa
es Γ+ and Γ−. In this work, only

the element 
ontaining the 
ra
k tip re
eives the enri
hment fun
tion. Let us

re
all that strongly singular and hypersingular terms arise from the integration

of the p∗ij , d
∗
rij and s∗rij kernels and they are regularised in the same way as

shown in [15℄.

The enri
hment fun
tions add new degrees of freedom in the BEM formu-

lation, whi
h 
auses the linear system of equations to be
ome indeterminate.

An easy form to over
ome this issue is to in
lude additional 
ollo
ation points.

Ea
h new 
ollo
ation point will provide 2 new equations (in x1 and x2 dire
-

tions). In this work, 3 nodes are enri
hed in ea
h 
ra
k fa
e, whi
h will add

3× 4× 2× 2 = 48 new degrees of freedom to the problem. Therefore, 24 extra


ollo
ation points are ne
essary to solve the linear system of equations.

0.4 Numeri
al results

In this se
tion we show the 
ra
k opening displa
ement (COD) for anisotropi


materials in two fra
ture me
hani
s examples. The numeri
al results are 
om-

pared with the results from the extended BEM, the dual BEM with quarter-

point elements [11℄ and the X-FEM.

The BEM formulation presented in [11℄ has the parti
ularity of modelling

only one 
ra
k surfa
e, thus obtaining the COD straight from the solution of

the linear system of equations.
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0.4.1 Double edge 
ra
k

Figure 0.1 illustrates a square plate (h/w = 1) with two edge 
ra
ks of length

a under a uniform loading σ. The size of the 
ra
k is de�ned by a/w = 0.25.
The material is a four graphite-epoxy laminate, where the elasti
 properties are:

E1 = 144.8 GPa, E2 = 11.7 GPa, G12 = 9.66 GPa and ν12 = 0.21. The COD
was obtained for two distin
t �bre orientation, φ = 75◦ and φ = 90◦. Results

for the X-FEM are obtained using topologi
al and geometri
al enri
hment, with

a �xed area of re/a = 0.2 and a mesh of 4525 elements. For more information

about both adopted enri
hment types please refer to [8℄ for instan
e.

w

ha a

σ

σ

E2

E1

φ

Figure 0.1: Double edge 
ra
k problem.

For the dual BEM and the X-BEM a 10 
ontinuous quadrati
 element per

side mesh was used. The 
ra
k is dis
retised with 10 dis
ontinuous elements.

The dual BEM presents a quarter-point in the element at the 
ra
k tip, while

the X-BEM presents an enri
hed element.

Results are given in Figures 0.2 and 0.3. The COD of the X-FEM models is

smaller than the ones of the BEM models. The X-BEM COD is higher at the

upper 
ra
k fa
e than its equivalent using quarter point. In this 
ase, the X-FEM

results 
an be underestimated 
ompared to the BEM results. Nevertheless, the

displa
ements around the 
ra
k tip have the same

√
r behaviour.

0.4.2 Slanted 
entred 
ra
k

A square plate h/w = 1 with a slanted 
entred 
ra
k of length 2a under a

uniform loading is represented in Figure 0.4, where β = 30◦. The size of the


ra
k is a/w = 0.5. The material is a glass-epoxy 
omposite with the following
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Figure 0.2: COD for the double edge 
ra
k - θ = 75◦.

elasti
 properties: E1 = 48.26 GPa, E2 = 17.24 GPa, G12 = 6.89 GPa and

ν12 = 0.29. The �bre orientation angle φ assumes values of 90◦ and 120◦ in

this example. The BEM meshes present 6 quadrati
 elements per side, and 10

dis
ontinuous elements at the 
ra
k. The X-FEM mesh 
ontain 2025 elements

and the geometri
al enri
hment uses a �xed area of re/a = 0.2.
The results are shown in Figures 0.5 and 0.5 for φ = 90 and 120◦, respe
-

tively. Here we present the results in terms of the u2 displa
ement only, sin
e it

is di�
ult to get an a

urate COD for the X-FEM model, whi
h 
an be seen by

the deformed shape of the COD. Both CODs from the BEM models result in

symmetri
al relative displa
ements. The COD from the extended BEM is 
on-

siderably larger than the other referen
e solutions. One of the possible reasons

is that the extended BEM model is underestimating the sti�ness of the plate,

resulting in a larger COD.

0.5 Summary

An enri
hed boundary element method was proposed in this work. This method

uses the bene�ts of the partition of unit to model in a more general way the

asymptoti
 displa
ements around the 
ra
k tip. Existing anisotropi
 enri
hment

fun
tions for the X-FEM were employed at the proposed method. Some numer-

i
al examples were evaluated, and the results 
ompared to a well established

BEM formulation and the X-FEM . The 
ra
k opening displa
ement was 
om-
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Figure 0.3: COD for the double edge 
ra
k - θ = 90◦.
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β

Figure 0.4: Slanted 
entred 
ra
k problem.

pared with the quarter point BEM and the X-FEM. For a �at horizontal edge


ra
k, both BEM models have the same behaviour around the 
ra
k tip, and the
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Figure 0.5: COD for the slanted 
ra
k problem - φ = 90◦.
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Figure 0.6: COD for the slanted 
ra
k problem - φ = 120◦.

X-BEM 
onsiders a larger COD at the end of the 
ra
k. In a slanted 
ra
k, the

COD in the X-BEM model is larger than both BEM and X-FEM. The X-BEM


ould be used an alternative to the dual BEM with quarter-point elements.
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