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0.1 Introduction

Fracture mechanics has been studied for over than 50 years, but it is still re-
ceiving great attention from the scientific community. One of the reasons is the
appearance of a range of new materials, such as composite, piezoelectric, magne-
toelectroelastic materials, just to cite a few examples. All these materials have a
common characteristic: they present anisotropic behaviour, so material response
to a given excitation is also conditioned to the crystal arrangements of this ma-
terial (for more about crystal arrangements see [1] for instance). Anisotropic
materials have been widely employed in the aerospace and automobile indus-
tries, wind power generators, sporting goods, and also as piezoelectric sensors
and actuators.

Analytical formulations to deal with anisotropic material in fracture me-
chanics problems are very limited [2, 3]. Hence, fracture mechanics problems
are solved using numerical methods, such as the Finite Element Method (FEM)
[4] and the Boundary Element Method (BEM) [5]. Tt has been shown that
BEM is more accurate and effective than FEM. However, in the last 15 years, a
new paradigm has been established for the FEM, where the partition of unity
[6] was applied to describe the discontinuity due to the presence of the crack,
where the crack is then modelled through additional degrees of freedom in the
elements containing the crack. This approach was named Extended Finite El-
ement Method (X-FEM) [7] and it has been shown that it can provide similar
accuracy to the one found in BEM models [8].

In this work we develop an alternative BEM formulation for anisotropic
fracture problems using the partition of unity method (PUM). This idea has
already been discussed by [9] for isotropic materials, and our objective is to
generalise this approach for anisotropic materials. To this end, the PUM is
implemented in a dual BEM context. The enrichment functions are derived in
terms of the Stroh formalism [10] and further details on the implementation of
the X-BEM are discussed.

Furthermore, we compare the results of the X-BEM with those obtained
by alternative numerical techniques: dual BEM implemented in combination
with discontinuous quarter-point elements [11, 12] and X-FEM with anisotropic
enrichment functions [8].



0.2 Constitutive equations

Consider an anisotropic elastic domain €2, then the static equilibrium equations
in the presence of body forces b are defined as

Oij,5 + b; =0 (01)

Symmetry holds for the stress and strain tensors o and g, respectively,

Uij = Uji (02)
Eij = Eji, (03)

where 1
eij = 5 (i + ) (0.4)

and u; represent the displacements.
The linear constitutive equations are given by the generalized Hooke’s law

0ij = Cijki€kl (0.5)

where Cjjp; define the material constants tensor, satisfying the following sym-
metry relations
Cijit = Cjirt = Cijie = Chisj (0.6)

0.3 The Dual Boundary Element Method (DBEM)

The boundary element method (BEM) has been established as a reference nu-
merical method when dealing with linear elastic fracture mechanics problems
[5]. BEM is known to be more accurate and robust than domain discretisation
methods such as the more popular finite element method (FEM).

The dual BEM (DBEM) is the usual choice when dealing with fracture
mechanics problems. Hong and Chen [13] presented the idea of the combined
use of a BIE and its derivative. This was used for the first time in a fracture
mechanics context when [14] presented the DBEM. It can be summarised by a
displacement boundary integral equation (DBIE)

cij(ﬁ)ug'(é)+/Fp?j(w,€)Uj(m)dF(m) :/FUZ‘j(m,é)pj(w)dF(w) (0.7)

and a traction boundary integral equation (TBIE), obtained by the differentia-
tion of (0.7) and further substitution in (0.5)

Cz‘j(ﬁ)pj(ﬁ)+NT/FSiij(iB,E)Uj(iB)dF(iB) :NT/Fd:ij(was)pj(w)dr(w) (0.8)

where I' represents all the boundaries (including crack boundaries) of domain
Q; N, is the outward unit normal to the boundary at the collocation point &;
cij is the free term deriving from the Cauchy Principal Value integration of



the strongly singular kernels p;; u;; and p;; are the displacement and traction
fundamental solutions; dy;; and s;,;; follow from differentiation and substitution
into the generalised Hooke’s law of u;; and pj;, respectively. The kernels u;
and pj; are given by
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where n = (n1,n2) is the unit normal at the observation point; 2%, = z1 +
pmTa, 25, = &1 + wn&a are evaluated at the observation and collocation points,
respectively; i denotes the real part ; Q = A~} (L1 +f71) ' with L = iAB™*
and L represents the complex conjugate of L.

The matrices A, B and constant p,, are parameters from the Stroh formal-
ism and can be obtained through the following eigenvalue problem

< —Caij2~ ' Caijt | —Coye! > < Ay, ) — < Am )
Ciij1 — Caiji” Caijz ' Caij1 | —Caiji” Caijz ' B, "\ Bn

(0.11)

where there is no summation on the m index.

0.3.1 Extended Boundary Element Method (X-BEM)

The extended boundary element method (X-BEM) was first proposed by Simp-
son and Trevelyan [9] for fracture mechanics problems in isotropic materials.
The main idea is the same as for the X-FEM, to model the asymptotic be-
haviour of the displacements around the crack tips by introducing new degrees
of freedom. The displacements u”(x) are thus redefined as

u'(x) =Y Nixui+ Y Ne(x)) Fa(x)af (0.12)

1EN keNCT

where A and NC7 are the sets of all nodes and the enriched nodes, respectively,
N, is the standard Lagrangian shape function associated with node i, u; is the
vector of nodal degrees of freedom, and aj} represents the amplitudes of the
enriched basis functions which capture the asymptotic behaviour around the
crack tips. In elastic materials, af is an 8-component vector for two-dimensional
problems, since only two nodal variables (u1, u2) and four enrichment functions
are needed to describe all the possible deformation states in the vicinity of the
crack-tip [8].

In this work, we use the anisotropic enrichment functions obtained by [8] for
the X-FEM:

R{A11 By B1 + A12B3 B2}
R{A11 B3 b1 + A12B5y Ba}
R{ A1 By B1 + A2z By B2}
R{ A2 By 1 + A2 Boy' B}

Fy(r,0) = Vr (0.13)



where (,, = +/cosf + p,,sinf, r is the distance between the crack tip and
an arbitrary position, 6 is the orientation measured from a coordinate system
centred at the crack tip.

Let us emphasise that the anisotropic enrichment functions can also be used
for isotropic materials, since this is a degenerated case from anisotropic materi-
als. For more details please refer to reference [8].

The X-BEM formulation is similar to the one used by Simpson and Trevelyan
[9] for isotropic materials. The extended DBIE and the TBIE can be restated
as

cu(sﬁ@(ﬁ)%-/gp%(w,ﬁﬁ@(w)dF(w)4—j£ P} (@, €)Fa ()adl’ =

c

jgu;<m,sny(myﬂwm>
(0.14)

o€ €)+ Ny [ sty@ @ @)+ Ny [ 51y (€ Fu(a)agar -

mémmwmwww
(0.15)

where I'. = 'y UI'_ stands for the crack surfaces I'y and I'_. In this work, only
the element containing the crack tip receives the enrichment function. Let us
recall that strongly singular and hypersingular terms arise from the integration
of the pj;, dy;; and sy, kernels and they are regularised in the same way as
shown in [15].

The enrichment functions add new degrees of freedom in the BEM formu-
lation, which causes the linear system of equations to become indeterminate.
An easy form to overcome this issue is to include additional collocation points.
Each new collocation point will provide 2 new equations (in z; and x5 direc-
tions). In this work, 3 nodes are enriched in each crack face, which will add
3 x 4 x 2 x 2 =48 new degrees of freedom to the problem. Therefore, 24 extra
collocation points are necessary to solve the linear system of equations.

0.4 Numerical results

In this section we show the crack opening displacement (COD) for anisotropic
materials in two fracture mechanics examples. The numerical results are com-
pared with the results from the extended BEM, the dual BEM with quarter-
point elements [11] and the X-FEM.

The BEM formulation presented in [11] has the particularity of modelling
only one crack surface, thus obtaining the COD straight from the solution of
the linear system of equations.



0.4.1 Double edge crack

Figure 0.1 illustrates a square plate (h/w = 1) with two edge cracks of length
a under a uniform loading o. The size of the crack is defined by a/w = 0.25.
The material is a four graphite-epoxy laminate, where the elastic properties are:
El = 144.8 GPa, EQ =11.7 GPa, G12 = 9.66 GPa and Vig = 0.21. The COD
was obtained for two distinct fibre orientation, ¢ = 75° and ¢ = 90°. Results
for the X-FEM are obtained using topological and geometrical enrichment, with
a fixed area of r./a = 0.2 and a mesh of 4525 elements. For more information
about both adopted enrichment types please refer to [8] for instance.
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Figure 0.1: Double edge crack problem.
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For the dual BEM and the X-BEM a 10 continuous quadratic element per
side mesh was used. The crack is discretised with 10 discontinuous elements.
The dual BEM presents a quarter-point in the element at the crack tip, while
the X-BEM presents an enriched element.

Results are given in Figures 0.2 and 0.3. The COD of the X-FEM models is
smaller than the ones of the BEM models. The X-BEM COD is higher at the
upper crack face than its equivalent using quarter point. In this case, the X-FEM
results can be underestimated compared to the BEM results. Nevertheless, the
displacements around the crack tip have the same /r behaviour.

0.4.2 Slanted centred crack

A square plate h/w = 1 with a slanted centred crack of length 2a under a
uniform loading is represented in Figure 0.4, where 5 = 30°. The size of the
crack is a/w = 0.5. The material is a glass-epoxy composite with the following
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Figure 0.2: COD for the double edge crack - § = 75°.

elastic properties: Fy = 48.26 GPa, Fy; = 17.24 GPa, G152 = 6.89 GPa and
12 = 0.29. The fibre orientation angle ¢ assumes values of 90° and 120° in
this example. The BEM meshes present 6 quadratic elements per side, and 10
discontinuous elements at the crack. The X-FEM mesh contain 2025 elements
and the geometrical enrichment uses a fixed area of r./a = 0.2.

The results are shown in Figures 0.5 and 0.5 for ¢ = 90 and 120°, respec-
tively. Here we present the results in terms of the us displacement only, since it
is difficult to get an accurate COD for the X-FEM model, which can be seen by
the deformed shape of the COD. Both CODs from the BEM models result in
symmetrical relative displacements. The COD from the extended BEM is con-
siderably larger than the other reference solutions. One of the possible reasons
is that the extended BEM model is underestimating the stiffness of the plate,
resulting in a larger COD.

0.5 Summary

An enriched boundary element method was proposed in this work. This method
uses the benefits of the partition of unit to model in a more general way the
asymptotic displacements around the crack tip. Existing anisotropic enrichment
functions for the X-FEM were employed at the proposed method. Some numer-
ical examples were evaluated, and the results compared to a well established
BEM formulation and the X-FEM . The crack opening displacement was com-
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Figure 0.3: COD for the double edge crack - 6 = 90°.
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Figure 0.4: Slanted centred crack problem.
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pared with the quarter point BEM and the X-FEM. For a flat horizontal edge
crack, both BEM models have the same behaviour around the crack tip, and the
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Figure 0.5: COD for the slanted crack problem - ¢ = 90°.
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Figure 0.6: COD for the slanted crack problem - ¢ = 120°.
X-BEM considers a larger COD at the end of the crack. In a slanted crack, the

COD in the X-BEM model is larger than both BEM and X-FEM. The X-BEM
could be used an alternative to the dual BEM with quarter-point elements.
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