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ABSTRACT
Target tracking complexity within conventional video
imagery can be fundamentally attributed to the am-
biguity associated with actual 3D scene position of a
given tracked object in relation to its observed position
in 2D image space. Recent work, within thermal-band
infrared imagery, has tackled this challenge head on
by returning to classical photogrammetry as a means
of recovering the true 3D position of pedestrian tar-
gets. A key limitation in such approaches is the as-
sumption of posture – that the observed pedestrian is
at full height stance within the scene. Whilst prior
work has shown the effects of statistical height vari-
ation to be negligible, variations in the posture of the
target may still pose a significant source of potential er-
ror. Here we present a method that addresses this issue
via the use of Support Vector Machine (SVM) regres-
sion based pedestrian posture estimation operating on
Histogram of Orientated Gradient (HOG) feature de-
scriptors. Within an existing tracking framework, we
demonstrate improved target localization that is inde-
pendent of variations in target posture (i.e. behaviour)
and within the statistical error bounds of prior work for
pedestrian height posture varying from 0.4-2.4m over a
distance to target range of 7-30m.

Keywords: thermal target tracking, temporal fil-
tering, intelligent target reporting, thermal imaging,
pedestrian detection, people detection, sensor networks,
temporal fusion, passive target positioning, 3D pedes-
trian localization

1. INTRODUCTION
Target tracking within conventional video imagery
poses a significant challenge that is increasingly being
addressed via complex algorithmic solutions. The com-
plexity of this problem can be fundamentally attributed
to the ambiguity associated with actual 3D scene po-
sition of a given tracked object in relation to its ob-
served position in 2D image space. Recent work has
tackled this challenge directly by returning to classi-
cal photogrammetry, within the context of current tar-
get detection and classification techniques, as a means
of recovering the true 3D position of pedestrian tar-
gets within the bounds of current accuracy norms [1].

However, a key limitation in such approaches is the
assumption of posture - that the observed pedestrian
is at full height stance within the scene. Whilst prior
work has shown the effects of statistical height varia-
tion to be negligible [1], variations in the posture of
the target may still pose a significant source of poten-
tial error (see Figure 1). A non-cooperative pedestrian
target may use variations within their posture to sub-
vert accurate localization of their position within the
scene (e.g. crawling or crouching). Despite this issue,
in many applications the upright stance of a pedestrian
target is indeed assumed [1–4].

Within the context of pedestrian tracking, our prior
work in [1] demonstrated that reasonable performance
can practically be achieved through the combined use
of infrared imagery (thermal-band, spectral range: 8-
12µm) and the application of real-time photogram-
metry. A key advantage of such thermal-band infrared
(IR) imagery for pedestrian localization is both andro-
bust detection of human shape signatures within the
scene [5–7] and robust localization of their scene bounds
in pixel-space (e.g. Figure 1). As such, the principles of
photogrammetry can be used to recover 3D pedestrian
position within the scene based on a known camera pro-
jection model and an assumption that variance in hu-
man height is in fact quite small (statistically supported
by [8, 9]). In [1] we experimentally investigated the ac-
curacy of classical photogrammetry, within the context
of current target detection and classification techniques
[5–7], as a means of recovering the true 3D position of
pedestrian targets within the scene. A real-time ap-
proach for the detection, classification and localization
of pedestrian targets via thermal-band (infrared) sens-
ing was presented with supporting statistical evidence
underpinning the key photogrammetric assumptions.

Overall, despite extensive work in ground-based sen-
sor networks [10–13], the use of photogrammetry within
this context has received only limited attention [1, 14,
15]. The visible-band work of [15] uses a similar ap-
proach within a Bayesian 3D tracking framework but
does not explicitly address issues of accuracy or its use
within a detection filtering framework [1]. In addition,
some general scene understanding approaches have also
used this principle to determine relative object dimen-
sions and positions within the scene [16, 17] although al-



ternative approaches such as active sensing [18], struc-
ture from motion [19] and monocular depth recovery
[20, 21] have become increasingly popular within this
task of late.

Prior work explicitly dealing with thermal-band (IR)
imagery within an automated surveillance context is
presently largely focused upon pedestrian detection
[3, 5, 7, 22, 23] and tracking [24, 25]. More recently
extended studies have investigated the fundamentals of
both background scene modeling [26, 27] and feature
point descriptors [28] that commonly form the basis
of many such techniques [3, 5]. Early thermal-band
work by [14] proposes a shape driven methodology for
posture estimation based on torso orientation and limb
localization but does not relate directly to numerical re-
covery of relative height as we specifically address here.

The work presented in this paper is a direct exten-
sion of [1] that demonstrates photogrammetric pedes-
trian localization within thermal-band imagery incor-
porating a lightweight tracking solution akin to that
of [6]. In [1] photogrammetric pedestrian target local-
ization is presented to an accuracy significantly within
the commonly regarded “gold-standard” of consumer-
level Global Position System (GPS) positioning (typi-
cally ±5m under ideal conditions [29]). This success is
based on a) the key advantage of reduced pixel-space lo-
calization ambiguity within thermal-band infrared im-
agery [5] and b) recent statistical results that report
narrow standard deviations within large-scale surveys
of human height variation [8, 9]. Furthermore, it is
achieved using solely passive sensing from a monocular
infrared imaging camera, with no a priori environment
calibration.

Building directly on this framework presented in [1],
here we present a method that addresses the remaining
issue of posture variation via the use of regression based
pedestrian posture estimation. The posture of a pedes-
trian target detected within the scene is estimated as
a percentage of full height (maximal posture) based on
the use of a Histogram of Orientated Gradient (HOG)
feature descriptor extracted from each detected scene
target and the use of Support Vector Machine (SVM)
based machine learning regression. In contrast to prior
work in the field, we leverage the key advantages of
thermal-band infra-red (IR) imagery for pedestrian lo-
calization with a tracking framework [6] and demon-
strate robust target localization, independent of vari-
ations in target posture (i.e. behaviour), within the
statistical error bounds outlined in [1]. This is demon-
strated for variations in pedestrian target height, due to
posture, ranging from 0.4-2.4m over a distance to tar-
get range of 7-30m (Figure 3). We show that the robust

localization and foreground target separation, afforded
via infrared imagery, that facilitates accurate 3D posi-
tion estimation of targets to within the error bounds of
conventional Global Position System (GPS) positioning
[1] can be extended to maintain such accuracy bounds
despite variations in target posture. Based on our im-
proved photogrammetric estimation of target position,
we then illustrate the efficiency of regular Kalman filter
based tracking operating on actual 3D pedestrian scene
trajectories.

2. PEDESTRIAN TARGET
LOCALIZATION

We perform localization, and subsequent tracking in
real-world 3D space (“scene space”), based on the ini-
tial detection (Section 2.1) and photogrammetric based
localization (Section 2.2). This follows the approach
outlined in the prior work of [1].

2.1 Pedestrian Detection

Our approach is illustrated against the backdrop of clas-
sical two stage automated visual surveillance [1]. First
we detect initial candidate regions within the scene
(Section 2.1.1), thus facilitating efficient feature extrac-
tion over isolated scene regions, to which an identified
target type is assigned via secondary object classifica-
tion (Section 2.1.2) [5].

2.1.1 Candidate Region Detection

In order to facilitate overall real-time performance, ini-
tial candidate region detection identifies isolated re-
gions of interest within the scene facilitating localized
feature extraction and classification. By leveraging the
stationary position of our sensor, this is achieved us-
ing a combination of two adaptive background model-
ing approaches [30, 31] working in parallel to produce
a single robust foreground model over varying environ-
mental conditions and notably within varying ambient
thermal/infrared illumination conditions within com-
plex, cluttered environments.

Within the first model, a Mixture of Gaussian (MoG)
based adaptive background model, each image pixel is
modeled as a set of Gaussian distributions, commonly
termed as a Gaussian mixture model, that capture both
noise related and periodic (i.e. vibration, movement)
changes in pixel intensity at each and every location
within the image over time [30, 32]. This background
model is adaptively updated with each frame received
and each pixel is probabilistically evaluated as being ei-
ther part of the scene foreground or background follow-
ing this methodology. The second model comprises the



Figure 1. An example of real-time multiple pedestrian detection and tracking in infrared imagery with associated geo-
referenced 3D tracks in the presence of posture variation - presented using basic photogrammetric position estimation
(P1-P4 left, [1]) and with additional regression based posture estimation for localization correction (R1-R4 right, Section
2.2.2).



use of Bayesian classification in a closed feedback loop
with Kalman filtered predictions of foreground compo-
nent position [31]. Within this model, each pixel is sim-
ilarly probabilistically classified as either foreground or
background but this is further reinforced via Kalman
predictions for the positions of foreground objects (i.e.
connected component foreground regions [33]) present
in the previous time-step. This object-aware model
significantly aids in the recovery of fast moving fore-
ground objects under varying illumination conditions
such as the thermal gradients inherent within infrared
imagery. Overall this combined approach provides a
slowly-adapting background model in the traditional
sense [30], that can be robust to rapid illumination
gradients, whilst similarly providing foreground consis-
tency to fast moving scene objects [31]. The binary
output of each foreground, based on a probabilistic clas-
sification threshold, is combined conjunctively to pro-
vide robust detection of both static and active scene
objects. For illustrative examples and further discus-
sion the reader is directed to [1].

2.1.2 Pedestrian Classification

Subsequent classification follows the bag of visual words
(or codebook) methodology [34–36] using Speeded Up
Robust Features (SURF) approach [37] as our multi-
dimensional features empirically suited towards ther-
mal infrared imagery [1, 3, 5, 28]. Following this
methodology, we perform feature extraction and clus-
tering over all of the example training imagery (for all
object classes) to produce a set of general feature clus-
ters that characterise the overall feature space. Com-
monly this set of feature clusters is referred to as a
codebook or vocabulary as it is subsequently used to en-
code the features detected on specific object instances
(pedestrian or non-pedestrian) as fixed length vectors
for input to both the initial off-line classifier training
and on-line classification phase of such machine learn-
ing driven classification approaches. Here we perform
clustering using the common-place k -means clustering
algorithm in 128-dimensional space (i.e. SURF feature
descriptor length of 128 [37]) into 1000 clusters. A given
object instance is encoded as a fixed length vector based
on the membership of the features detected within the
object to a given feature cluster based on nearest neigh-
bour (hard) cluster assignment. Essentially the original
variable number of SURF features detected over each
training image or candidate region is encoded as a fixed
length histogram representing the membership of these
features to each of these clusters. This fixed length dis-
tribution of features forms a feature vector that is then
used to differentiate between positive and negative in-
stances of a given class based on a trained classifier.

The feature vector forms the input to a two-class SVM
classifier, pedestrian = {yes, no}, that is trained using
a RBF kernel, via grid-based kernel parameter optim-
ization, within a cross-validation based training regime
[38].

2.2 Photogrammetric Position Estimation
Firstly, we present a brief recap of our baseline local-
ization approach as presented in [1] (Section 2.2.1) and
subsequently show how this can be extended to ad-
dress posture variation within detected pedestrian tar-
gets (Section 2.2.2).

2.2.1 Baseline Photogrammetry

Based on automated detection (Section 2.1.2), target
position is initially known within “sensor space” (i.e.
pixel position within the image). Consequently, target
position is estimated based on the principles of pho-
togrammetry together with knowledge of the perspec-
tive transform under which targets are imaged and an
assumption on the physical (real-world) dimension of a
target in one plane [1]. All targets are imaged under a
standard perspective projection [33] as follows:

x = f
X

Z
, y = f

Y

Z
(1)

where real-world object position, (X,Y, Z), in 3D
scene co-ordinate space is imaged at image pixel posi-
tion, (x, y), in pixel co-ordinate space for a given cam-
era focal length, f . We assume both positions are the
centroid of the object with (x, y) being the centre of
the bounding box, of the image sub-region, for a tar-
get (object) detected in the scene (Section 2.1.1, e.g.
Figure 2).

With knowledge of the camera focal length, f , the
original object (target) position, (X,Y, Z), can be re-
covered based on (assumed) knowledge of either ob-
ject width, 4X, or object height, 4Y (i.e. the differ-
ence in minimum and maximum positions in each of
these dimensions for the object). From the bounds of
the detected targets (Section 2.1.2) we can readily re-
cover the corresponding object width, 4x, and object
height, 4y, in the image. Based on this knowledge, re-
arranging and substituting into Eqn. 1 we can recover
the depth (distance to target, Z) of the object position
as follows:

Z = f ′
4Y
4y

(2)

Knowing Z via Eqn. 2, we can now substitute back
into Eqn. 1 and with knowledge of the object cen-
troid in the image, (x, y), we can recover both X and



Figure 2. Photogrammetry facilitates the approximate recovery of a camera to target distance for an example target
(person) without any need for additional (active) range sensing [5]

Y resulting in full recovery of real-world target position,
(X,Y, Z), relative to the camera. In Eqn. 2, f ’ repre-
sents focal length, f , translated from standard units,
mm, to focal length measured in pixels:-

f ′ =
widthimage . f

widthsensor
(3)

where widthimage represents the width of the image
(pixels), widthsensor represents the camera CCD sen-
sor width (mm).

Crucially, if we now assume a fixed width, 4X, or
height, 4Y , for our object we can recover complete
3D scene position relative to the camera. For pedes-
trian detection we can assume average adult human
height based on available medical statistics [8, 9]. De-
spite commonly held beliefs, notable large-scale stud-
ies have shown variance on human height within the
adult population to be low (“in populations of Euro-
pean descent, the average height is ∼178 cm for males
and ∼165 cm for females, with a standard deviation of
∼7 cm” [9]). As concluded in [1] this translates into
a Z position error, attributable to height variation, at
60m distance is within GPS error tolerances (±5m) for
approximately the ∼2-98% percentile of the population
(based on height distribution). The reader is directed
to both the extensive statistical presentation and em-
pirical verification of [1] for further discussion.

2.2.2 Addressing Posture Variation

Of course, a key limitation within this approach (Sec-
tion 2.2.1) is variation in human height that is arti-
ficially introduced outside of this statistical variation
- what if the pedestrian varies their posture such that
their height does not conform to the statistical assump-
tions in use? In order to address this issue we use a re-
gression based approach to map a dense gradient-based
feature descriptor extracted from the image, itself cap-
turing inherent body posture, to a numerical approxi-
mation of height relative to full upright posture.

Based on our detected pedestrian region (from Sec-
tion 2.1), we thus extract Histogram of Oriented Gra-
dient (HOG) features [4] as an input to SVM regressor.
This predicts the numerical percentage of full human
height, {0..100+}, represented by the current posture.
The HOG descriptor is based on histograms of oriented
gradient responses in a local region around a given pixel
of interest. A rectangular block, pixel dimension b×b, is
first divided into n×n (sub-)cells and for each cell a his-
togram of gradient orientation is computed (quantised
into H histogram bins for each cell, weighted by gradi-
ent magnitude). The histograms for all cells are then
concatenated and normalised to represent the HOG
descriptor as a vector, −→v HOG, for a given block (i.e.
associated pixel location). For image gradient compu-
tation centred gradient filters [−1, 0, 1] and [−1, 0, 1]T

are used as per [4].

To construct our HOG descriptor, the localized
pedestrian region is first zero-padded to form a square
image region and subsequently re-sampled to a uniform
128 × 64 pixel image size, (h × w). We then compute
the global HOG descriptor of this localized region us-
ing a block stride, s = 8 (H = 9, n = 2, b = 16 from
[4]), to form the input to the SVM regressor (υ-support
vector regression, [39]). Based on this 3780 dimensional
vector, −→v HOG, (i.e. H × n2 × (h

s − 1) × (w
s − 1)) we

train using both Radial Basis Function (RBF) and lin-
ear kernels, with grid-based kernel parameter optimiz-
ation, within a cross-validation based training regime.
Training is performed over ∼11,000 example images
captured of 10 individuals at varying heights (crawl-
ing to stretching, ∼40-140% of full height based on
[8, 9]) under varying environmental conditions over dis-
tances in the range 6-60m (Figure 3). This results
in a SVM regression function capable of mapping the
HOG feature descriptor representation to a numerical
approximation of current posture as a percentage of
full height, fSVM () :−→v HOG →∼ {40...140}. Examples
of the training images used for this task are shown
in Figure 3. Empirically we use an output range of



Figure 3. An illustrative subset of the training examples use for training the SVM regressor.

fSVM () u{40...140} to allow for pedestrian posture
stretching beyond their head (e.g. in activities such
as digging, climbing and alike, Figure 3).

This estimation of posture as a percentage of full
height is then used as a scaling factor to adjust the
pedestrian pixel height detected within the image, 4y,
in order to compensate for posture within Eqn. 2 to
recover target position such that 4y′ = 1004y

fSV M () .

3. EVALUATION

Our results are presented using both quantitative mea-
sures of pedestrian localization accuracy (Table 1 /
Figure 4) and qualitative assessment of 3D localiza-
tion and tracking performance over a range of exem-
plar scenarios (Figures 1, 5, 6). All evaluation imagery
is captured using an un-cooled infra-red camera (Ther-
moteknix Miricle 307k, spectral range: 8-12µm) with
statistical performance measured using validation test
set of 2,500 images drawn from the same variation and
environmental conditions as used for training. Evalua-
tion was performed around a variety of urban/industrial
(cluttered) and suburban environments immediately
around the School of Engineering and Computing Sci-
ences, Durham University. Under evaluation conditions
GPS accuracy locally was found to be ±5m, based on
a consumer GPS unit [29].

Statistical variation is based on the coefficient of de-
termination, r2, that measures how well our given re-
gression model, fSVM , approximates a set of true data
samples ({yi}, i.e. the test set) with a result of r2 = 1
indicating a perfect regressive fit to the data sample.
The coefficient of determination is defined as the frac-
tional remainder of the sum of squares of residuals (also
called the residual sum of squares) over the total sum of
squares (proportional to the variance of the data set).
This is defined, as shown in Eqn. 4, for a given re-
gressor function with predictive output, fi(), for sample
i against associated ground truth value, yi, where m̄ is
the mean of the entire sample data set, {yi}.

r2 = 1−
∑

i(yi − fi)2∑
i(yi − m̄)2

(4)

Here we have a SVM regressor function, fi() =
fSVM () and regressive target values, yi u {40...140},
from which we calculate our r2 statistics over the train-
ing set as presented in Table 1. In addition we present
the mean estimation error (in % of full height, against
ground truth data set {yi}) and the associated stan-
dard deviation (Table 1). From the statistical evalua-
tion of Table 1 we can see a strong regressive fit to the
test sample data set based on the coefficient of determ-
ination outcome with the use of a RBF kernel with
the SVM marginally outperforming the use of a lin-
ear kernel under the same conditions. In practice, the
mean estimation error is also low for both kernel options
(∼ 3%) representing a real-world height estimation er-
ror of approximately 0.06±0.04m on the average male
height of 1.77m [9] (Table 1) which is within the error
margins considered by [1] for reliable localization. The
high standard deviation, compared to the mean, indi-
cates high variability in the regressive estimation that
is further illustrated by Figure 6.

The strong performance of the linear kernel, determ-
ining a decision boundary in the original feature space
without the use of a projective kernel such as RBF,
provides strong evidence that the 3780 dimension HOG
descriptor indeed provides a good discriminator of hu-
man posture as a numerical percentage of full height.
This general statistical evaluation (Table 1) is further
supported by the specific statistical evaluation presen-
ted in the graph of Figure 4 where we again measure
the coefficient of determination for a single individual
performing various activities of varying posture over a
range of (ground truth) distances in the range 7-28m.
Figure 4 shows the stability of the numerical posture
estimation approach over varying distance ranges.

This quantitative statistical evaluation (Table 1 /
Figure 4) is further supported by the qualitative results



coefficient of
determination

(r2)

mean estimation
error (% of full
height, ±σ)

mean height error (on
1.77m male, ±σ) (m)

SVM (RBF kernel) 0.95 3.2±2.4 0.057±0.043
SVM (linear kernel) 0.93 3.8±3.0 0.067±0.053

Table 1. Statistical evaluation of pedestrian height regression accuracy (general)

presented in Figures1, 5 & 6. Figures 1 and 5 both illus-
trate a pedestrian tracking sequence using using stan-
dard photogrammetric position localization as per prior
work [1] (P1-P4 left, Figures 1/5) and posture estima-
tion via regression for localization correction as per Sec-
tion 2.2.2 (R1-R4 right, Figures 1/5). These images are
sequentially sub-sampled from the test scenarios with
tracking and spatio-temporal detection performed as
outlined in [1]. Within each sub-figure (Figures 1 &
5 R1-R4/P1-P4) we present the detected pedestrian(s)
using a bounding box, associated 2D image projection
of the track (P1-P4/R1-R4 insets, right) and the planar
view of the {Y/Z} tracked position relative to the cam-
era (P1-P4/R1-R4 insets, left). Tracking and detection
performance is as per [1].

From Figures 1 and 5 we can see that the accuracy
and continuity of the {Y/Z} position localization of the
pedestrian from standard photogrammetric techniques
[1] (shown in P1-P4 left, Figures 1/5) is significantly
effected by changes in posture. Changes in posture
in Figure 1 (e.g. transitions P1 →P2 and P3 →P4)
show significant erroneous jumps in the spatial local-
ity of pedestrian target when the planar view of the
{Y/Z} tracked position history is considered. This is
similarly present in Figure 5 (e.g. transitions P1 →P2
and into both of P3/P4) where again significant erro-
neous jumps in spatial locality are present despite the
continuity of the target position relative to the camera
within the scene. By contrast, with the use of posture
estimation via regression to perform localization cor-
rection in both the Figure 1 and Figure 5 sequences we
see a planar view of the {Y/Z} tracked position history
than remains consistent with the target position from
the camera despite changes in posture. Our use of a re-
gression based approach is shown to facilitate effective
compensation for variations in target posture within
photogrammetric pedestrian localization with (Figures
1/5).

Furthermore, Figure 6 shows an extended compari-
son of the resulting reported target position tracks as
a planar view of the {Y/Z} tracked position (for the
scenario of Figure 5). These are reported relative to
the camera position as per [1, 7]. This is illustrated
using both standard photogrammetric position local-

ization as per prior work [1] (Figure 6 A) and posture
estimation via regression for localization correction as
per Section 2.2.2 (Figure 6 B). As can be seen from
Figure 6, without any compensation for variations in
target posture we suffer significant erroneous jumps in
the spatial locality of pedestrian target due to posture
variation effecting the photogrammetric estimation of
target position (Figure 6 A). By contrast, the use of
posture estimation via regression facilitates recovery of
a smooth track of the target motion (Figure 6 B) that
is consistent with ground truth target motion within
the scene (illustrated in sub-samples of Figure 5). The
pedestrian target traverses away from the camera per-
forming various (posture varying) activities and 15m,
25m and 35m marker points (Figure6 B).

4. CONCLUSIONS

Overall we have shown that the use of SVM driven re-
gression facilitates effective posture estimation to en-
able improved 3D localization and tracking of pedes-
trians within infrared imagery based on the principles
of photogrammetry. This directly advances the robust-
ness of prior work in field for pedestrian localization
in the presence of posture variation [1, 5]. Within the
context of improved pedestrian localization in infrared
thermal imagery and the use of the pedestrian track-
ing approach outlined in [1] significant improvements
in spatial localization and hence track consistency are
experimentally illustrated. These are further supported
by a strong statistical evaluation of the chosen regres-
sion methodology.

This work further strengthens the application of
pedestrian tracking within 3D scene-space that facili-
tates the ready disambiguation of multiple target track-
ing scenarios using low-complexity approaches with re-
duced computational overheads [1]. Our approach is
demonstrated over multiple scenarios in cluttered envi-
ronments where a clear improvement in tracking con-
sistency is illustrated.

Future work will look to investigate the extension
of this approach to the recovery of multiple pose
attributes [14, 40], as an enabler to human activity
classification [6, 41, 42] and also into visible-band
imagery using recent advances in real-time salient



Figure 4. Statistical evaluation of pedestrian height regression accuracy against distance to target (specific, SVM with
RBF kernel)

object detection [43]. Applicability within the context
of mobile platform navigation [44–47], driver assistance
systems [48–50] and for multi-platform, multi-modal
wide-area search and surveillance tasks [7, 51, 52] will
be further explored.
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