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Abstract—Communication technologies are critical in achiev-
ing potential advantages of smart gird (SG), as they enable
electric utilities to interact with their devices and customers.
This paper focuses on the integration of a massive multiple-input
multiple-output (MIMO) technique into a SG communication
architecture. Massive MIMO has the benefits of offering higher
data rates, whereas operating a large number of antennas in prac-
tice could increase the system complexity and energy consump-
tion. We propose to use antenna selection to preserve the gain pro-
vided by the large number of antennas, and investigate an energy
efficient massive MIMO system design for SG communications.
Specifically, we derive a closed-form asymptotic approximation to
the system energy efficiency function in consideration of channel
spatial correlation, which exhibits an excellent level of accuracy
for a wide range of system dimensions in SG communication
scenarios. Based on the accurate approximation, we propose a
novel antenna selection scheme aiming at maximizing the system
energy efficiency, using only the long-term channel statistics.
Simulation results show that the proposed antenna selection
scheme can always achieve an energy efficiency gain compared
to other selection schemes or baseline systems without antenna
selection, and thus is particularly valuable for enabling an energy
efficient communication system of the SG.

I. INTRODUCTION

Smart Grid (SG) is a modernized electrical grid that uses

information and communications technology for improving

the efficiency, reliability, and economics of the traditional

electrical grid [1]. Communication technologies are the key

to achieving the potential advantages of SG, as they enable

electrical utilities to interact with their devices and customers

on a near real-time basis [2]. In general, a SG communication

architecture consists of a home area network (HAN), neighbor

area network (NAN), and wide area network (WAN) [3]. Var-

ious advanced communication technologies have been consid-

ered for their applications in the SG [4]. In this paper, we focus

on implementing a massive multiple-input and multiple-output

(MIMO) technique that improves the transmission reliability

and system throughput for SG communications.

The idea of massive MIMO is that a large number of low-

power antennas located at a base station node or distributed

geographically transmit concentrated beams to the receivers

concurrently using the same frequency band [5] [6]. The

massive MIMO technique can be employed in NAN and/or

WAN, and has the benefits of eliminating many random

effects (e.g. uncorrelated noise and small-scale fading) and

thus leading to higher data rates. However, deploying such

systems in practice could increase the complexity and energy

consumption for operating extra hardware at the base station,

e.g. for multiple radio-frequency (RF) chains, and channel

estimation, which can trigger energy-efficiency concerns for

SG. In addition, insufficient spacing between antennas can

yield highly correlated spatial channels [6]. To combat these

difficulties in implementing the massive MIMO technique for

SG communications, we design the number of RF chains at the

base station to be smaller than the number of antenna elements

to reduce the hardware complexity and high cost, and use

appropriate antenna selection to preserve the gain provided

by the large number of antennas. Regarding the massive

MIMO technique, antenna selection has been discussed in [7]

and [8]: an antenna selection algorithm is designed in [7]

for the specific 60 GHz channel with a strong line-of-sight

property; and in [8], the antenna subset is selected to maximize

the system capacity. Compared to aiming at maximizing the

capacity, maximizing energy efficiency (EE) or equivalently

minimizing the total energy consumption is more meaningful

for the system design [9], especially when there is a common

requirement for the future SG communications to become

more energy efficient.

In this paper, we design an energy efficient massive MIMO

system in a smart grid NAN scenario. It is worth mentioning

that the proposed system design is not limited to the NAN,

and can be readily extended to a WAN scenario. Our main

contributions can be summarized as follows. Firstly, we derive

a closed-form asymptotic approximation to the system EE

function in consideration of channel correlation and a realistic

power model. The EE approximation exhibits a high level of

accuracy for the entire range of system dimensions in the NAN

scenario. In addition, We propose a novel antenna selection

scheme that maximizes the system EE, based on long-term

channel statistics. The proposed scheme can achieve an EE

gain compared to other selection schemes or baseline systems

without antenna selection.

The rest of this paper is organized as follows. Section II

specifies the system model. The system EE is analyzed in

Section III, and an energy efficient antenna selection scheme

is proposed in Section IV. Simulation results are shown in

Section V, and Section VI concludes the paper.



II. SYSTEM MODEL

We consider a SG NAN consisting of a concentrator and a

number of data aggregate points (DAPs) [3], as shown in Fig.

1. The NAN connects smart meters in a HAN, and interacts

with a utility’s head-end system in a WAN. In the NAN, the

concentrator is equipped with N -antenna and the value of

N is large. The concentrator communicates with K single-

antenna DAPs, and the communication is operated on a time-

division duplexing (TDD) mode with channel reciprocity.1 The
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Fig. 1. Illustration of a SG communication architecture, where massive
antennas are equipped at a concentrator in a NAN.

received signal ym at the mth DAP can be expressed as

ym =
√

Pt gHm s + nm. (1)

The N -by-1 vector gm represents the uplink channel from the

mth DAP to the concentrator, which can be obtained by using

pilot-based channel estimation, and the scalar Pt denotes the

average transmit power per antenna at the concentrator. We

model the channel vector as gm = Φ
1/2
m hm where hm denotes

the independent fast fading vector in which components are

i.i.d. and have circularly-symmetric complex Gaussian random

distribution with unit variance and zero mean. The N -by-N
matrix Φm denotes the long-term channel statistics (LTCS).2

For a common channel model, i.e. a centralized massive

MIMO system with all antennas colocated at one concentrator,

we have Φm = (Ktd
ζ
m)−1

Θm, where Θm represents the

spatial correlation matrix at the concentrator side, dm is

the distance from the concentrator to the mth DAP, ζ is

the path loss exponent, and Kt is a constant indicating the

physical characteristics of the channel and the power amplifier

[10]. In addition, the N -by-1 vector s in (1) represents the

transmit vector at the concentrator, which can be given as

s =
√
βWx, where W = [w1 · · ·wK ] is a N -by-K precoding

matrix and the K-by-1 vector x = [x1 · · ·xK ]T ∼ CN (0, IK)
contains the data symbols intended for the K DAPs. The

parameter β normalizes the average power per antenna to

Pt, i.e. E[Pt

N sHs] = Pt, where E[·] denotes the expectation

operation. We thus have β = 1/E[ 1N trWWH]. The scalar

nm∼CN (0, σ2) is the additive white Gaussian noise (AWGN)

at the receiver, and σ2 denotes the noise variance.

From a communications perspective, the total power supply

of a concentrator (for supporting communications) includes

1That is, the downlink channel vector is the Hermitian transpose of the
associated uplink channel vector [6].

2The matrix Φm is related to the concentrator antenna properties, the
single-scattering angles for user m, and the path loss of user m.

various power elements such as the power for RF circuitry,

baseband unit, and power amplifier. To quantify the total power

consumption, we classify the power consumption Ptot into

three categories: load dependent power, scaling circuit power,

and static circuit power, i.e.,

Ptot = NξPt +NP0 + Ps, (2)

where Pt is the transmit power, ξ is the scaling factor of the

load-dependent power, P0 is the circuit power scalable with N ,

and Ps is the static circuit power that describes most of the

baseband processing power not scaling with N . Parameters

of the power model for different concentrator types can be

abstracted from the practical measurements as used in the

EARTH project [11]. When Nt antennas are selected from N
antennas for transmission, the total power consumption will

be changed to P
(s)
tot = NtξPt +NtP0 + Ps.

III. SYSTEM ENERGY EFFICIENCY EVALUATIONS

In this section, we evaluate the system spectral efficiency

and EE for the NAN using the massive MIMO technique, and

derive a tight and explicit approximation to the EE function.

The EE approximation will provide analytical insight into the

design of the antenna selection scheme in Section IV.

A. Achievable Rates and Asymptotic Analysis

It is shown in [6] that when the antenna arrays grow

large, linear precoding methods with perfect channel state

information can have a good level of performance, which

is comparable to the capacity-achievable nonlinear precoding

strategies (e.g. dirty paper coding). We thus consider a linear

precoder, matched filter (MF) pre-coder, at the concentrator,

and have W = G = [g1 · · · gK ]. The ergodic achievable rate

of the mth DAP is Rm = BmE[log2(1 + γm)] where Bm is

the communication bandwidth allocated to the mth DAP, and

γm is the signal-to-interference-plus-noise ratio (SINR) which

is given by [12]

γm =
E
[

|gH
mwm|2

]

E

[

σ2

βPt
+
∑K

i=1,i6=m |gH
i wm|2

] . (3)

As the massive MIMO technique is used, we consider the

system where N grows infinitely large, i.e., N → ∞, and

lim sup
N→∞

K
N < ∞. In realistic systems, one would expect that

more than one hundred antennas at the concentrator serve

tens of single-antenna DAPs simultaneously [6]. We use the

asymptotic analysis to provide approximations for finite N and

K . Now we derive deterministic approximations γ̄m of the

SINR γm, such that γm − γ̄m
a.s.−−−−→

N→∞
0 where

a.s.−−→ denotes

almost sure convergence.

Proposition 1: Consider a NAN where an N -antenna con-

centrator communicates with K DAPs; The massive MIMO

technique is deployed, i.e., N → ∞ and lim sup
N→∞

K
N < ∞;

Suppose that the long-term channel matrices are uniformly



bounded with respect to N , i.e., lim sup
N→∞

sup
1≤m≤K

‖Φm‖ < ∞.

Then the approximation γ̄m of the SINR γm can be given by

γ̄m =
(trΦm)

2

σ2

PtN

∑K
i=1 trΦi +

∑K
i=1 trΦmΦi

. (4)

Proof : See Appendix A.

The approximations of γm and Rm become more accurate

as N grows. According to the continuous mapping theorem

of convergent sequences [13], we have

Rm −Bm log2(1 + γ̄m)
a.s.−−−−→

N→∞
0. (5)

B. Energy Efficiency Analysis

We use the well-known definition of the achievable EE as

the number of bits transmitted per Joule of energy, i.e. Es=

KRm/Ptot in bits/Joule/aggregator [10].

Proposition 2: Consider the NAN where the N -antenna

concentrator communicates with K DAPs; Suppose N → ∞,

lim sup
N→∞

K
N < ∞, and lim sup

N→∞
sup

1≤m≤K
‖Φm‖ < ∞. Then the

deterministic EE approximation Ēm is given by

Ēm = KRm×
{

ξσ2
[

(trΦm)2

(2Rm−1)
∑

K

i=1
trΦi

−
∑

K

i=1
trΦmΦi∑

K

i=1
trΦi

]−1

+NP0+Ps

}−1

.

(6)

Proof : Both Ptot and Rm are related to the transmit power Pt;

we thus reshape Em as

Em = KRm[Nξf−1(Rm) +NP0 + Ps]
−1, (7)

where f−1: Rm ∈ [0,+∞) 7→ Pt ∈ [0,+∞) is the inverse

function of Rm. Due to the random channel realizations,

f−1(Rm) does not have a straightforward formulation. A

feasible approach would be to use the deterministic approxi-

mations γ̄m for finding an explicit solution. We use (5) and

(4) to solve f−1(Rm) and then insert it into (7), leading to

(6). This completes the proof.

The above approximations of EE will become increasingly

accurate as N grows. Our simulations will show that the

approximations are also tight for a practical set of N and

K in realistic system dimensions. The antenna selection is

performed by maximizing EE using the approximation in (6).

IV. ENERGY EFFICIENT ANTENNA SELECTION SCHEME

We aim to use antenna selection to reduce the cost of

too many RF chains and to improve the system EE for SG

communications. Suppose that at the concentrator, the number

of RF chains Nt is smaller than N . We propose to select Nt

out of N transmit antennas based on the EE maximization

criterion, as shown in Fig. 2, using only LTCS. The channel

statistics normally vary with the antenna spacing, the single-

scattering angles and the path loss, and thus may change very

slowly. As a result, the proposed selection process does not

change at each channel instance, but is updated when the

channel statistics vary or new DAPs enter.
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Fig. 2. A block diagram of a massive MIMO system with antenna selection
for the SG NAN scenario.

Fig. 2 shows a block diagram of antenna selection for the

NAN implemented with the massive MIMO technique. From

a communications perspective, the concentrator comprises a

baseband unit (including a forward error correction encoder, a

symbol mapper, a demultiplexer, and a precoder [14]), Nt RF

chains, an antenna selection and switch unit, and N antennas.

In the antenna selection and switch unit, LCS is obtained and

then used to select the best Nt antennas out of N antennas.

The selection criterion will be shown in the following. The

selected Nt antennas are connected to the RF chains and then

used for transmission; and the selected antenna index is fed

back to the precoder such that the updated Nt-by-K channel

matrix is used for precoding.

From the approximation Ēm shown in (6), we clearly

distinguish the long-term channel effect on EE from the in-

stantaneous channel effect. We can now proceed with antenna

selection based on LTCS. Since trΦm is only related to the

number of selected antennas Nt but not affected by how the

antennas are selected, the selection criterion that maximizes

EE is equivalent to minimizing the term
∑K

i=1,i6=m trΦmΦi.

This selection criterion is asymptotically optimal.

The work flow of the proposed LTCS-based antenna se-

lection scheme (LASS) in shown in Table I. We begin by

considering all N antennas and perform antenna selection

in stages. In the jth stage, we consider all possible antenna

subsets Λ
l(j), 1 ≤ l ≤ (N − j + 1), update the channel

statistics Φ1...ΦK , compute the corresponding term ΩΛl(j) =
∑K

i=1,i6=m trΦmΦi, and then select the optimal subset Λ∗(j)
with the minimum ΩΛl(j). As described in Table I, the process

will repeat and continue until Nt antennas are left.

TABLE I
WORK FLOW OF THE PROPOSED LASS

Inputs: The long-term channel statistics Φ1 · · ·ΦK .

1. Initialize j = 0, Λ∗(0) = {1, 2, · · · , N}.
2. Repeat

a). j = j + 1;

b). obtain all possible antenna subsets Λ
l(j), 1 ≤ l ≤ (N − j + 1),

by removing only one antenna each time from the original set
Λ

∗(j − 1);
c). for each subset, update Φ1 · · ·ΦK , and calculate

Ω
Λl(j) =

K∑

i=1,i6=m

trΦmΦi;

d). select the optimal antenna subset by Λ
∗(j) = arg min

Λl(j)
Ω

Λl(j).

3. Until j ≥ N −Nt, stop antenna selection.

4. Outputs: The optimal antenna subset Λ∗(j).



V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the EE performance gain obtained

by using the proposed massive MIMO system with antenna

selection for the SG NAN senario. The physical channel prop-

agation parameters are adopted from the 3GPP LTE standard

models. The channels are modeled as Rayleigh fading channel.

The average distance from the concentrator to the DAPs is set

to 1500 meters, the path loss exponent is set to 4, and the

constant indicating the physical characteristics of the channel

and the power amplifier is set to 10−3 [10]. We consider

the noise power density as -174 dBm/Hz, and data channel

is 10 MHz. The values of the power model parameters for

the concentrator are calculated from practical measurements

as used in the EARTH project [11]: We select the Micro

type of transmitter and thus ξ = 2.6, P0 = 23.6 W, and

Ps = 64.8 W. The target spectral efficiency (SE) is set to 2

bits/s/Hz/aggregator. A uniform linear antenna array under rich

scattering conditions is considered, and an exponential model

is used to quantify the spatial correlation. More specifically,

the antenna correlation matrix is constructed using a single

coefficient φ(|φ| ≤ 1): The entries [Θ(φ)]ij equals φ|j−i| if

i ≤ j, and the complex conjugate of φ|i−j| if i > j.

We firstly exam the accuracy of our closed-form approx-

imations to the ergodic achievable rate given in (4) and (5).

Fig. 3 shows both simulation and analytical results of Rm as a

function of N for K = 20 DAPs. We consider that the averaged

received SNR equals 10 dB, and use different values of φ to

represent different levels of correlation. The figure shows that

the proposed closed-form approximations are quite closed to

the simulation results for the entire range of N (even when N
is not large, i.e. for realistic system dimensions), regardless of

the values of φ, and thus used for analytically addressing the

antenna selection problem.
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versus the number of antennas N , where K = 20 and the averaged SNR
equals 10 dB.

In Fig. 4, we compare the proposed antenna selection

scheme to the random antenna selection scheme (RASS) in

terms of the EE performance gain. With RASS, we randomly

select Nt from N antennas. We consider the total number

of antennas is fixed (N = 256), K = 20 DAPs, and the

number of selected antennas Nt varies. The expected SE is

set to 2 bits/s/Hz/aggregator. Two cases of the correlation with

φ = 0.2 and 0.6 are investigated. The proposed LASS can

achieve an EE gain compared to RASS. The gain improves

with increasing the value of the coefficient φ.
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Fig. 4. System downlink EE versus the number of selected antennas Nt.
(The total number of antennas N = 256; the number of DAPs K = 20; SE =
2 bits/s/Hz/aggregator.)

In Fig. 5, we compare the EE performance achieved by

the LASS to conventional massive MIMO systems without

selection (i.e. N or Nt antennas are used without selection)

to highlight the importance of antenna selection in spatially

correlated massive MIMO channels for SG communications.

The correlation coefficient φ = 0.2 and 0.6, and the same fixed

number of antennas N = 256, K = 20 DAPs and SE =
2 bits/s/Hz/aggregator as used in the above two figures. In

contrast with the system using all the 256 antennas, LASS

provides a huge performance gain in terms of EE for a

wide range of Nt. Using LASS, there exists a certain region

of Nt corresponding to a better level of EE performance,

which provides insight into how many antennas should be

selected to maximize the system EE. In addition, compared

to the base-line case Nt antennas (without selection) used

at the concentrator, deploying additional (N − Nt) anten-

nas and employing LASS can provide a superior level of

performance, especially when the correlation level is high.

Therefore, the proposed system design with the associated

LASS is particularly valuable for enabling an energy efficient

SG communication architecture.

VI. CONCLUSIONS

In this paper, we have investigated the integration of the

massive MIMO technique into the SG communication archi-

tecture, and focused on improving the system EE. Considering

spatially correlated fading channels and a realistic power

model, we have derived the asymptotic approximation to the

EE function in a simple and closed form; the approximation

exhibits a very good accuracy for a wide range of N , even

for realistic system dimensions. Based on the accurate ap-

proximation, we proposed an antenna selection scheme that

maximizes the system EE. The selection criterion is based on
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long-term channel statistics, instead of instantaneous channel

information, and thus the computational burden is low.

Our results have demonstrated that, the proposed antenna

selection scheme for the SG massive MIMO systems can

achieve an EE gain compared to other selection schemes. The

obtained EE gain improves with an increase in the correlation

level. Compared to the conventional systems without antenna

selection, deploying additional antenna elements and employ-

ing LASS to perform antenna selection can help to improve

the system EE, especially when the channel correlation level is

high. The proposed massive MIMO system with the associated

LASS is thus particularly valuable and attractive for future SG

communication networks to become more energy efficient.
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APPENDIX A

PROOF OF PROPOSITION 1

To prove this proposition, we first recall several preliminary

results on large random matrices [13, Thm. 3.4, Thm. 3.8]: Let

A ∈ CN×N be deterministic and z ∈ CN be a random vector

of independent entries. Suppose that z ∼ CN (0, 1

N
IN) and A

is uniformly bounded with respect to N . For p ≥ 1, we have

zHAz − 1

N
trA

a.s.−−−−→
N→∞

0; (8)

E

[∣

∣

∣

∣

zHAz − 1

N
trA

∣

∣

∣

∣

p]

= O
(

1

Np/2

)

. (9)

Since the MF detector is considered, from (3), we have

γm =
E
[

|gH
mgm|2

]

E

[

σ2

βPt
+
∑K

i=1,i6=m |gH
i gm|2

] . (10)

Dividing the denominator and numerator of γm by 1
N2 , and

using (8) and (9), the computation of signal power yields

1

N2
E
[

|gH
mgm|2

]

= E

[

∣

∣

∣

∣

1

N
hH
mΦmhm

∣

∣

∣

∣

2
]

a.s.−−−−→
N→∞

(

1

N
trΦm

)2

.

(11)

Then for the noise and interference power, considering β =
1

E[ 1N trWWH]
, we have

1

N2
E

[

σ2

βPt

]

=
σ2

PtN2
E

[

1

N

K
∑

l=1

gH
l gl

]

a.s.−−−−→
N→∞

σ2

PtN2

(

K
∑

l=1

1

N
trΦl

)

, (12)

1

N2
E





K
∑

i=1,i6=m

gH
i gmgH

mgi





a.s.−−−−→
N→∞

1

N2

K
∑

i=1

trΦmΦi. (13)

We add one term (trΦ2
m)/N2 in (13) which can be neglected

for large N . Inserting (11), (12), and (13) into (10), we thus

have (4). This completes the proof. �
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