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Abstract. A distance constraint satisfaction problem is a constraint sat-
isfaction problem (CSP) whose constraint language consists of relations
that are first-order definable over (Z; succ), i.e., over the integers with
the successor function. Our main result says that every distance CSP is
in P or NP-complete, unless it can be formulated as a finite domain CSP
in which case the computational complexity is not known in general.

1 Introduction

“Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk.”4 Leopold Kronecker

A constraint satisfaction problem is a computational problem where the input
consists of a finite set of variables and a finite set of constraints, and where
the question is whether there exists a mapping from the variables to some fixed
domain such that all the constraints are satisfied. When the domain is finite,
and arbitrary constraints are permitted in the input, the CSP is NP-complete.
However, when only constraints for a restricted set of relations are allowed in
the input, it might be possible to solve the CSP in polynomial time. The set
of relations that is allowed to formulate the constraints in the input is often
called the constraint language. The question which constraint languages give
rise to polynomial-time solvable CSPs has been the topic of intensive research
over the past years. It has been conjectured by Feder and Vardi [8] that CSPs
for constraint languages over finite domains have a complexity dichotomy: they
are in P or NP-complete.

A famous CSP over an infinite domain is feasibility of linear inequalities
over the integers. It is of great importance in practice and theory of computing,
and NP-complete. In order to obtain a systematic understanding of polynomial-
time solvable restrictions and variations of this problem, Jonsson and Lööw [13]
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proposed to study the class of CSPs where the constraint language Γ is definable
in Presburger arithmetic; that is, it consists of relations that have a first-order
definition over (Z;≤,+). Equivalently, each relation R(x1, . . . , xn) in Γ can be
defined by a disjunction of conjunctions of the atomic formulas of the form
p ≤ 0 where p is a linear polynomial with integer coefficients and variables from
{x1, . . . , xn}. The constraint satisfaction problem for Γ , denoted by CSP(Γ ), is
the problem of deciding whether a given conjunction of formulas of the form
R(y1, . . . , yn), for some n-ary R from Γ , is satisfiable in Γ . By appropriately
choosing such a constraint language Γ , a great variety of problems over the
integers can be formulated as CSP(Γ ). Several constraint languages Γ over the
integers are known where the CSP can be solved in polynomial time. However,
a complete complexity classification for the CSPs of Jonsson-Lööw languages
appears to be a very ambitious goal.

In this paper, we study one of the most basic classes of constraint languages
that falls into the framework of Jonsson and Lööw, namely the class of distance
constraint satisfaction problems [1]. A distance constraint satisfaction problem
is a CSP for a constraint language over the integers whose relations have a first-
order definition over (Z; succ) where succ is the successor function. The structure
(Z; succ) has quantifier-elimination, and it is easy to see that a relation is first-
order definable over (Z; succ) if and only if it can be defined by a disjunction of
conjunctions of literals of the form x = succc(y) or x 6= succc(y) for c ∈ N.

It has been shown previously that distance CSPs for constraint languages
whose relations have bounded Gaifman degree are either NP-complete, or in P,
or can also be formulated with a constraint language over a finite domain [1].
The finite Gaifman degree assumption is quite strong; however, here we prove
that the same is true even if we drop this assumption. In other words, we show
that if the Feder-Vardi dichotomy conjecture for finite domain CSPs is true, then
also the class of all distance CSPs exhibits a complexity dichotomy.

Our proof relies on the so-called universal-algebraic approach; this is the first
time that this approach has been used for constraint languages that are not finite
or countably infinite ω-categorical. The central insight of the universal-algebraic
approach to constraint satisfaction is that the computational complexity of a
CSP is captured by the set of polymorphisms of the constraint language. One
of the ideas of the present paper is that in order to use polymorphisms when
the constraint language is not ω-categorical, we have to pass to the countably
saturated model of the integers with successor. The relevance of saturated models
for the universal-algebraic approach has already been pointed out in joint work
of the authors with Martin Hils [2], but this is the first time that this perspective
has been used to perform complexity classification for a large class of concrete
computational problems.

The formal definitions of CSPs and distance CSPs can be found in Section 2.
The border between distance CSPs in P and NP-complete distance CSPs can be
most elegantly stated using the terminology of the mentioned universal-algebraic
approach to constraint satisfaction. This is why we first give a brief introduction
to this approach in Section 3, and only then give the technical description of our



main result in Section 4. Section 5 gives a classification of distance constraint
languages that might be of independent interest; this classification is the basis
of our classification of the complexity of distance CSPs. Our algorithmic results
can be found in Section 6. Finally, we put all the results together to prove our
main result in Section 7. We discuss our result and promising future research
questions in Section 8.

2 Distance CSPs

Let Γ be a structure with a finite relational signature τ . When R is a relation
symbol from τ , we write RΓ for the relation it denotes in the structure Γ .

A τ -formula is a first-order formula built from the relations from τ , and
equality. A τ -formula is primitive positive (pp) if it is of the form ∃x1, . . . , xk(ψ1∧
· · · ∧ψm) where each ψi is an atomic τ -formula. Sentences are formulas without
free variables.

Definition 1 (CSP(Γ )). The constraint satisfaction problem for Γ is the fol-
lowing computational problem.
Input: A primitive positive τ -sentence Φ.
Question: Γ |= Φ?

The structure Γ will also be called the constraint language of CSP(Γ ). A
relational structure Γ is a reduct of a structure ∆ if it has the same domain as
∆ and every relation RΓ of arity k is first-order definable over ∆, that is, there
exists a first-order formula ϕ in the signature of ∆ with k free variables such that
for all elements u1, . . . , uk of Γ we have RΓ (u1, . . . , uk)⇔ ∆ |= ϕ(u1, . . . , uk).

We write (Z; succ) for the structure of the integers with the successor func-
tion.

Definition 2 (Distance CSP). A distance CSP is a constraint satisfaction
problem where the constraint language is finite and a reduct of (Z; succ).

It is well-known that (Z; succ) admits quantifier elimination (this is easy to
prove, and can be found explicitly in [9]). Moreover, it is easy to see that every
quantifier-free formula is over (Z; succ) equivalent to a quantifier-free formula
in conjunctive normal form (CNF) where every atomic formula is of the form
y = succn(x) for n ∈ N, where succn(x) is defined inductively by succ0(x) = x,
and succn+1(x) = succ(succn(x)). We will call formulas of this form standardized.

Example 1. We give examples of reducts of (Z; succ); the relations from those
examples will re-appear in later sections.

1. (Z; DiffS), where DiffS := {(x, y) : x, y ∈ Z, y−x ∈ S} for a finite set S ⊂ Z.
2. (Z; Diff{2}, {(x, y) : |x− y| ≤ 2}).
3. (Z;F ) where F is the 4-ary relation {(x, y, u, v) : x = succ(y) ⇔ u =

succ(v)}.
4. (Z; 6=,Disti) where Disti := {(x, y) : |x− y| = i}.



The last two examples have unbounded Gaifman degree (see Section 5.1), so
they do not fall into the scope of [1]. The following is easy to see.

Proposition 1. All distance CSPs are in NP.

3 The Algebraic Approach

The starting point of the universal algebraic approach to analyze the complexity
of CSPs is the observation that when a relation R can be defined by a primitive
positive formula over Γ , then CSP(Γ ) allows to simulate the ‘richer’ problem
CSP(∆) where ∆ = (Γ,R) has been obtained from Γ by adding R as another
relation. The proof of this fact given by Jeavons, Cohen, and Gyssens [12] works
for all structures Γ over finite or over infinite domains. Since we will use this
fact very frequently, we will not explicitly refer back to it from now on.

Polymorphisms are an important tool to study the question of which rela-
tions are primitive positive definable in Γ . We say that a function f : Dn → D
preserves a relation R ⊆ Dm if for all t1, . . . , tn ∈ R the tuple f(t1, . . . , tn)
obtained by applying f componentwise to the tuples t1, . . . , tn is also in R; oth-
erwise, f violates R. A polymorphism of a relational structure Γ with domain
D is a function from Dn to D, for some finite n, which preserves all relations
of Γ . We write Pol(Γ ) for the set of all polymorphisms of Γ . It is clear that
a polymorphism of a structure Γ also preserves all relations that are primitive
positive definable in Γ ; this holds for arbitrary finite and infinite structures Γ . If
Γ is finite or ω-categorical [5], then a relation is preserved by all polymorphisms
if and only if it is primitive positive definable in Γ .

The structures that we consider in this paper will not be ω-categorical; how-
ever, following the philosophy in [2], one can refine these universal-algebraic
methods to apply them also in our situation. The (first-order) theory of a struc-
ture Γ , denoted by Th(Γ ), is the set of all first-order sentences that are true
in Γ . We define some notation to conveniently work with models of Th(Γ ) and
their reducts.

Definition 3 (κ.Z). Let κ be a cardinal. We write κ.Z for κ copies of Z indexed
by the elements of κ; formally, κ.Z is the set {(a, z) : a ∈ κ, z ∈ Z}. Then
(κ.Z; succ) is the structure where succ denotes the function that maps (a, z) to
(a, z + 1).

It is well-known and easy to see that the models of Th(Z; succ) are precisely
the structures isomorphic to (κ.Z; succ), for some cardinal κ. When k ∈ Z and
u = (a, z) ∈ κ.Z, we write u+ k for (a, z + k).

Definition 4 (κ.Γ ). Let Γ be a reduct of (Z; succ) with signature τ . Then κ.Γ
denotes the ‘corresponding’ reduct of (κ.Z; succ) with signature τ . Formally, when
R ∈ τ and ϕR is a formula that defines RΓ , then Rκ.Γ is the relation defined by
ϕR over (κ.Z; succ).



We use ω to denote the smallest infinite cardinal throughout the article. Note
that (ω.Z; succ) is isomorphic to the structure (Q;x 7→ x+ 1). In the following,
we identify (Z; succ) with the copy of (Z; succ) induced by 0.Z in (ω.Z; succ).
That is, we view (Z; succ) as a substructure of (ω.Z; succ), and consequently Γ
as a substructure of ω.Γ for each reduct Γ of (Z; succ).

A type of a structure ∆ is a set p of formulas with one free variable x such that
p∪Th(∆) is satisfiable (that is, {ϕ(c) : ϕ ∈ p}∪Th(∆), for a new constant symbol
c, has a model). A τ -structure Γ is ω-saturated if for all choices of finitely many
constants c1, . . . , cn for elements of Γ , and every type p of (Γ, c1, . . . , cn), there
exists an element d of Γ such that (Γ, c1, . . . , cn) |= ϕ(d) for all ϕ ∈ p. When Γ
and ∆ are two countable ω-saturated structures with the same first-order theory,
then Γ and ∆ are isomorphic [11]. Note that (ω.Z; succ) is ω-saturated. More
generally, ω.Γ is ω-saturated for every reduct Γ of (Z; succ).

We define the function − : (κ.Z)2 → (Z ∪ {ω}) for x, y ∈ κ.Z by

x− y := z ∈ Z if x = succz(y) for z ≥ 0,

or y = succ−z(x) for z < 0;

x− y := ω otherwise.

When Γ and ∆ are two structures with the same relational signature τ ,
then a homomorphism from Γ to ∆ is a function from the domain of Γ to the
domain of ∆ such that for every R ∈ τ of arity k we have RΓ (u1, . . . , uk) ⇒
R∆(f(u1), . . . , f(uk)). It is straightforward to see that if there is a homomor-
phism from Γ to ∆, and vice versa, then CSP(Γ ) and CSP(∆) are the same
computational problem.

Lemma 1 (See Lemma 2.1 in [2]). Let Γ be ω-saturated, let ∆ be countable,
let d1, . . . , dk be elements of ∆, and let c1, . . . , ck be elements of Γ . Suppose
that for all primitive positive formulas ϕ such that ∆ |= ϕ(d1, . . . , dk) we have
Γ |= ϕ(c1, . . . , ck). Then there exists a homomorphism from ∆ to Γ that maps
di to ci for all i ≤ k.

An endomorphism is a unary polymorphism. To classify the computational
complexity of the CSP for all reducts of a structure Γ , it often turns out to
be important to study the possible endomorphisms of those reducts first, before
studying the polymorphisms, e.g. for the reducts of (Q;<) in [4] and the reducts
of the countably infinite random graph in [6].

We are now in the position to state a general result, Theorem 1, that might ex-
plain the importance of ω-saturated models for the universal-algebraic approach.
When Γ is a structure, then the orbit of a k-tuple (a1, . . . , ak) of elements of Γ
is the set {(α(a1), . . . , α(ak)) | α ∈ Aut(Γ )}.

Theorem 1. Let Γ be a countable ω-saturated structure, let ∆ be a reduct of
Γ , and R a relation with a first-order definition in Γ . Then

– R has a first-order definition in ∆ if and only if R is preserved by the auto-
morphisms of ∆;



– R has an existential positive definition in ∆ if and only if R is preserved by
the endomorphisms of ∆;

– if R consists of n orbits of k-tuples in Γ , then R has a primitive positive
definition in ∆ if and only if R is preserved by all polymorphisms of ∆ of
arity n.

4 Statement of Results

The border between NP-complete successor CSPs and successor CSPs in P can
be described as follows, modulo the Feder-Vardi dichotomy conjecture. A reduct
Γ of (Z; succ) is positive if all relations of Γ have a positive first-order definition
in (Z; succ), this is, by a first-order formula without negation. We write N for
the natural numbers including 0, and N+ for the set of positive natural numbers.

Definition 5. For d ∈ N+, the d-modular maximum, maxd : Z2 → Z, is defined
by maxd(x, y) := max(x, y) if x = y mod d and maxd(x, y) := x otherwise. The
d-modular minimum is defined analogously.

Note that these two operations are not commutative when d > 1.

Theorem 2. Let Γ be a reduct of (Z; succ) with finite signature. Then there
exists a structure ∆ such that CSP(∆) equals CSP(Γ ) and one of the following
cases applies.

1. ∆ has a finite domain, and the CSP for Γ is conjectured to be in P or
NP-complete [8].

2. ∆ is a reduct of (Z; succ) and preserved by a modular max or modular min.
In this case, CSP(Γ ) is in P.

3. ∆ is a reduct of (Z; succ) such that ω.∆ is preserved by an (equivalently, all)
isomorphisms between (ω.Z; succ)2 and (ω.Z; succ). In this case, CSP(Γ ) is
in P.

4. CSP(Γ ) is NP-complete.

5 Definability of Successor

The goal of this section is a proof that the CSPs for reducts of (Z; succ) fall into
four classes. This will allow us to focus in later sections on reducts of (Z; succ)
where succ is pp-definable, where succ is now used to denote the graph of the
successor function, that is, succ = {(x, y) ∈ Z2 | y = x+ 1}.

Theorem 3. Let Γ be a reduct of (Z; succ) with finite signature. Then CSP(Γ )
equals CSP(∆) where ∆ is one of the following:

1. a finite structure;
2. a reduct of (Z; =);
3. a reduct of (Z;F ) where Distk is pp-definable for all k ≥ 1 (see Example 1);
4. a reduct of (Z; succ) where succ is pp-definable.



The proof of this result requires some effort and spreads over the following
subsections. Before we go into this, we explain the significance of the four classes
for the CSP.

It is easy to see that there exists a structure ∆ with a finite domain such
that CSP(Γ ) equals CSP(∆) if and only if Γ has an endomorphism with finite
range. So we will assume in the following that this is not the case.

The CSPs for reducts of (Z; =) have been studied in [3]; they are either in P
or NP-complete. Hence, we are also done if there exists a reduct ∆ of (Z; =) such
that CSP(∆) = CSP(Γ ). Several equivalent characterizations of those reducts
Γ will be given in Section 5.2. This is essential for proving Theorem 3.

When Γ is a reduct of (Z; succ) where for all k ≥ 1 the relation Distk is pp-
definable, then CSP(Γ ) is NP-complete; this is a consequence of the following
proposition from [1].

Proposition 2 (Proposition 26 in [1]). Suppose that the relations Dist1 and
Dist5 are pp-definable in Γ . Then CSP(Γ ) is NP-hard.

The previous paragraphs explain why Theorem 3 indeed reduces the com-
plexity classification of CSPs for finite-signature reducts Γ of (Z; succ) to the
case where succ is pp-definable in Γ .

5.1 Degrees

We consider three notions of degree for relations R that are first-order definable
in (Z; succ):

– For x ∈ Z, we consider the number of y ∈ Z that appear together with x
in a tuple from R; this number is the same for all x ∈ Z, and called the
Gaifman-degree of R (it is the degree of the Gaifman graph of (Z;R)).

– The distance degree of R is the supremum of d such that there are x, y ∈ Z
that occur together in a tuple of R and |x− y| = d.

– The quantifier-elimination-degree (qe-degree) of R is the minimal q so that
there is a quantifier-free definition of R containing no nesting of succ that is
greater than q.

The degree of a reduct of (Z; succ) is the supremum of the degrees of its rela-
tions, for any of the three notions of degree. The paper [1] considered reducts
of (Z; succ) with finite Gaifman-degree. Note that the Gaifman-degree is finite
if and only if the distance degree is finite. In this paper, qe-degree will play the
central role, as any reduct of (Z; succ) with finite relational signature clearly
has finite qe-degree. We call a binary relation trivial if it is pp-definable over
(Z; succ), and non-trivial otherwise.

5.2 Petrus

The following theorem is the rock upon which we build our church.



Theorem 4 (Petrus). Let Γ be a reduct of (Z; succ) with finite relational sig-
nature and without an endomorphism of finite range. Then the following are
equivalent:

1. there exists a reduct ∆ of (Z; =) such that CSP(∆) equals CSP(Γ );
2. ω.Γ has an endomorphism whose range induces a structure isomorphic to a

reduct of (Z; =);
3. for all ` greater than the qe-degree of Γ , there exists e ∈ End(Γ ) so that the

range of e is included in {`z | z ∈ Z};
4. for all t ≥ 1, there is an e ∈ End(Γ ), z ∈ Z, such that |e(z + t)− e(z)| > t;
5. for all t ≥ 1, there is an e ∈ End(ω.Γ ), z ∈ ω.Z, such that |e(z+t)−e(z)| > t;
6. all binary relations with a primitive positive definition in Γ are either the

equality relation or have unbounded distance degree;
7. for all distinct z1, z2 ∈ Z there is a homomorphism h : Γ → ω.Γ such that

h(z1)− h(z2) = ω;
8. for all distinct z1, z2 ∈ Z there is an e ∈ End(ω.Γ ) such that e(z1)− e(z2) =

ω, and for all x, y ∈ ω.Z with x− y = ω we have e(x)− e(y) = ω;
9. there exists an e ∈ End(ω.Γ ) with infinite range such that e(x) − e(y) = ω

or e(x) = e(y) for any two distinct x, y ∈ ω.Γ .

We would like to mention that the finite-signature assumption in the state-
ment of Theorem 4 is necessary.

Example 2. Consider the reduct Γ := (Z; I1, I2, . . . ) of (Z; succ) where Ii :=
{(x, y) : x 6= succi(y)}. Then the endomorphisms of Γ are precisely the auto-
morphisms of (Z; succ), and hence Γ does not satisfy items (3) and (4), but it
does satisfy the remaining items.

5.3 Boundedness and Rank

Let Γ be a reduct of (Z; succ) without a finite-range endomorphism. Theorem 4
(Petrus) characterized the “degenerate case” when CSP(Γ ) is the CSP for a
reduct of (Z; =). For such Γ , as we have mentioned before, the complexity of the
CSP has already been classified. In the following we will therefore assume that
the equivalent items of Theorem 4, and in particular, item (5), do not apply. To
make the best use of those findings, we introduce the following terminology.

Definition 6. Let k ∈ N+, c ∈ N. A function e : κ1.Z→ κ2.Z is (k, c)-bounded
if for all u ∈ κ1.Z we have |e(u+ k)− e(u)| ≤ c .
We say that e is tightly-k-bounded if it is (k, k)-bounded, and k-bounded if it
is (k, c)-bounded for some c ∈ N. We say that κ.Γ is (k, c)-bounded if all its
endomorphisms are; similarly, κ.Γ is tightly-k-bounded if all its endomorphisms
are. We call the smallest t ∈ N+ such that κ.Γ is tightly-t-bounded the tight
rank of κ.Γ . Similarly, we call the smallest r ∈ N+ such that κ.Γ is r-bounded
the rank of κ.Γ . The negation of item (5) in Theorem 4 says that there exists
a t ∈ N+ such that ω.Γ is tightly-t-bounded. Clearly, being tightly-t-bounded
implies being t-bounded. Hence, the negation of item (5) in Theorem 4 also
implies that ω.Γ has finite rank r ≤ t.



Example 3. There are rank one reducts of (Z; succ) which do have non-injective
endomorphisms, but no finite-range endomorphisms. Consider the second struc-
ture in the Example 1:

Γ := (Z; Diff{2}, {(x, y) : |x− y| ≤ 2}) .

Note that Γ has rank one: as e preserves the relation {(x, y) : |x − y| ≤ 2}) we
have |e(x+1)−e(x)| ≤ 2. Also note that Γ has the non-injective endomorphism
e defined by e(x) = x for even x, and e(x) = x+ 1 for odd x.

These two notions of rank are the key to generalize the results from [1] about
reducts of (Z; succ) with finite distance degree to general finite-signature reducts.

Remark. All reducts of (Z; succ) are strongly minimal (see [11][14]), another
important concept from model theory. Our notion of rank resembles the notion
of dimension in this context. However, the two notions are different. Consider
for instance the structure(

Z; succ2, 6=, {(x, y) : x 6= succ3(y)}
)
.

This structure has dimension one, since the algebraic closure of any of its ele-
ments is all of Z. However, the rank of this structure is two and not one.

In order to understand the relations pp-definable in a reduct of (ω.Z, succ)
with finite rank, we start with the structures which have rank 1, and then show
how to factor structures with higher rank to structures of rank 1.

Theorem 5. Let Γ be a finite-signature reduct of (Z; succ) so that ω.Γ has rank
one. Then CSP(Γ ) equals CSP(∆) where ∆ is one of the following:

1. a finite structure;

2. a reduct of (Z;F ) where Distk is pp-definable for all k ≥ 1 (see Example 1);

3. a reduct of (Z; succ) where succ is pp-definable.

Definition 7. Let Γ be a reduct of (Z; succ) and k ∈ N+. Then we write Γ/k
for the substructure of Γ induced by the set {z ∈ Z : z = 0 mod k}.

For instance, in Example 3 the structure Γ/2 is isomorphic to

(Z; succ, {(x, y) : |x− y| ≤ 1}) .

Proposition 3. Let Γ be a reduct of (Z; succ) such that ω.Γ has rank r ∈ N.
Then Γ/r has the same CSP as Γ , and is isomorphic to a reduct ∆ of (Z; succ)
such that ω.∆ has rank one.

Theorem 3 can now be proved using a combination of Proposition 3, Theo-
rem 5, and Theorem 4.



6 Algorithms

We treat items 2 and 3 in Theorem 2. Let si be any isomorphism between
(ω.Z, succ)2 and (ω.Z, succ). A standardized formula is Horn if all its clauses
have at most one positive literal, i.e., a literal of the form x = succp(y).

Proposition 4. Let Γ be a reduct of (Z; succ). If ω.Γ is preserved by si then
every relation of Γ has a quantifier-free Horn definition over (Z; succ). In this
case, CSP(Γ ) is in P.

The key algorithmic result here is that satisfiability of Horn formulas can be
decided as follows: when the positive unit clauses imply that a literal in the input
is false (this can be checked in polynomial time), remove this literal. Repeat this
step. If we derive an empty clause in this way, there is no satisfying assignment.
Otherwise, we are finally in a situation in which every literal is satisfied by a
solution to the positive clauses. Using the assumption that si is a polymorphism
of ω.Γ , we obtain a satisfying assignment for all clauses in the input.

Theorem 6. Let Γ be a finite-signature reduct of (Z; succ) preserved by maxd
or mind for some d ∈ N. Then CSP(Γ ) is in P.

We describe two ideas for the proof of Theorem 6. The first is to reduce
CSP(Γ ) to CSP(Γ/d). We prove that Γ/d is preserved by max or min. The second
idea is to solve CSP(Γ/d) using the (still polynomial-time) uniform version of the
arc-consistency procedure, where both the instance and the (finite) template are
given in the input. It suffices to work with templates that are finite substructure
of Γ/d whose size is linear in the size of the instance of CSP(Γ/d).

7 The Classification

In this section we prove Theorem 2. By Theorem 3, we are essentially left with
the task to classify the CSP for finite-signature expansions of (Z; succ), i.e.,
reducts of (Z; succ) which have succ among their relations.

Theorem 7. Let Γ be a first-order expansion of (Z; succ). Then at least one of
the following is true:

1. Γ is positive and preserved by maxd or mind for some d ∈ N,
2. Γ is non-positive and ω.Γ is preserved by si,
3. CSP(Γ ) is NP-hard.

To show this theorem, we first prove the following lemma. A standardized
formula over the signature of (Z; succ) in DNF is called reduced when every
formula obtained by removing literals or clauses is not equivalent over (Z; succ).
It is clear that every quantifier-free formula is equivalent to a reduced formula.

Lemma 2. For a first-order expansion Γ of (ω.Z; succ), are equivalent:



1. every reduced DNF that defines a relation of Γ is positive,
2. Γ has an endomorphism that violates the binary relation given by |x−y| = ω,
3. Γ does not pp-define a non-trivial binary relation of infinite distance degree.

Using Lemma 2, we treat positive and non-positive expansions Γ of (Z; succ)
separately. In the non-positive case, we first show that when ω.Γ omits si as a
polymorphism, then there exists a non-trivial binary relation with finite distance
degree with a pp-definition in Γ . Together with the non-trivial binary relation of
infinite distance degree from Lemma 2, one can then prove hardness of CSP(Γ )
by a reduction from CSPs for finite undirected graphs G, using the classic result
that CSP(G) is hard if G contains an odd cycle [10].

To treat the positive case, we make essential use of results and techniques
that have been developed for reducts with finite distance degree in [1], based on
the following lemma.

Lemma 3. Let Γ be a positive first-order expansion of (Z; succ) that does not
admit a modular max or modular min polymorphism. Then there is a non-trivial
finite binary relation pp-definable in Γ .

One of the concepts needed in the proof of Lemma 3 above and Proposition 5
below is the notion of decomposability. A relation R of arity n is r-decomposable
if R(x1, . . . , xn) is equivalent to

∧
J ∃j 6∈Jxj .R(x1, . . . , xn) where J ranges over

all the r-element subsets of {1, . . . , n}.

Definition 8. A d-progression is a set of the form [a, b | d] := {a, a + d, a +
2d, . . . , b}, for a ≤ b with b− a divisible by d.

One can show that if there is a non-trivial finite binary relationR pp-definable
in Γ , and {b − a ∈ Z | (a, b) ∈ R} is not a d-progression for any d ≥ 1, then
CSP(Γ ) is NP-hard. By considering Γ/d instead of Γ , we can reduce to the case
d = 1. In order to prove Theorem 7, it thus suffices to show the following.

Proposition 5. Let Γ be a positive first-order expansion of (Z; succ), and S ⊂ Z
a 1-progression, |S| > 1, such that DiffS is pp-definable in Γ . Then Γ is preserved
by max or min; or CSP(Γ ) is NP-hard.

In the proof of this proposition we use known results about finite domain
CSPs. More specifically, we apply these results to substructures ∆ of (Γ, 0) in-
duced by {−n, . . . , n}. All singleton unary relations are pp definable in ∆. Then
it is known that CSP(∆) is NP-hard, or ∆ has a so-called weak near unanimity
polymorphism of arity k ≥ 2 (combining a result from [7] with a result from [15]).
We show that in our situation, such polymorphisms must generate min or max
on {−n, . . . , n}, which then implies that also Γ is preserved by min or max.

8 Discussion

The structure (Z; succ) is among the simplest structures that is not ω-categorical.
Note that (Z; succ) and its reducts are uncountably categorical and ω-stable.
They are also automatic in the sense of algorithmic model theory.



We want to stress that the difficulties we had to overcome when classifying
reducts of (Z; succ) will be present in classifications of reducts of richer struc-
tures, such as (Z; succ,≤) (which has the same reducts as (Z;<)), (Z; +), or even
(Z; +,≤), i.e., Presburger arithmetic, and we view it as an interesting question
which of our techniques might generalise to such more general contexts.
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