
Parser Hybridisation for Natural Languages

The University of Manchester

Manchester, United Kingdon

Abstract
Identifying and establishing structural relations between words in natural language sentences is called Parsing. Ambiguities in natural
languages make parsing a difficult task. Parsing is more difficult when dealing with a structurally complex natural language such as
Arabic, which contains a number of properties that make it particularly difficult to handle. In this paper, we briefly highlight some of
the complex structure  of Arabic,  and we identify different  parsing approaches (grammar-driven and data-driven approaches)  and
briefly discuss their limitations. Our main goal is to combine different parsing approaches and produce a hybrid parser, which retains
the advantages of data-driven approaches but is guided by grammatical rules to produce more accurate results. We describe a novel
technique for directly combining different parsing approaches. Results for initial experiments that we have conducted in this work, and
our plans for future work is also presented.

Keywords: Parsing, Hybrid Parsing, Natural Language Processing, Dependency Parsing

1. Introduction

Establishing  the  structural  relations  between  natural
language words is called parsing (Aho and Ullman, 1972,
p.63).  Parsing is  one of  the  core  components  of  many
natural  language  processing  applications  (Farghaly  and
Shaalan,  2009),  such  as:  Machine  Translation,  Speech
recognition,  and  dialogue  based  Systems.  However,
parsing is a challenging task due to language ambiguities
(Collins,  2003),  which  is  caused  by  multiple
interpretations  of  words,  word  order  freedom,  and
missing  items.  Hence,  adequate  parsers  are  often
unavailable,  particularly  for  languages  with  complex
structures such as Arabic (Lee et al., 2008, p.82). 
It  is desirable that parsers  have three main features:  (i)
efficiency  (consuming  as  little  time  as  possible),  (ii)
robustness  (successfully  parsing  a  large  proportion  of
input strings), and (iii) accuracy (produce correct results).
It  has been argued that it  is not possible to achieve all
three  features  at  once  (Nivre,  2006).  Our  goal  is  to
optimise speed  and  accuracy  while  maintaining  a
reasonable level of robustness by combining features of
data-driven  and  grammar-driven  approaches.  We  test
our  parser  on  Arabic  because  Arabic  is  structurally
complex, which makes it hard to parse and it will act as a
rigorous test-bed for our approach.

2. Natural language parsing approaches
There are wo approaches to parsing natural languages: (i)
grammar-driven, and (ii) data-drives. Each approach has
some   limitations.  A parser is considered robust if it can
analyse a large proportion of  a  set  of natural  language
sentences.   Grammar-driven  approaches  normally  lack
robustness because sometimes grammatical  rules of the
natural language may not exist in order for parsers to be
able  to  produce  analyses  for  a  given  input  string,  and
because a given input string may be understandable by a
speaker  but  it  is  not  part  of  the natural  language,  e.g.,
when a word in misspelled, or if material is omitted in a

sentence. Some researchers argue that robustness problem
in grammar-driven approaches can be solved by relaxing
grammar constraints in parsers  (Samuelsson and Wir’n,
2000).   However,  relaxing  grammars  may  result  in
parsers  producing  several  analyses  for  a  given  input
string, which means that parsers will consume more time
and  computing  resources  for  exploring  these  analyses
which  may  consequently  affect  efficiency.  Moreover,
having several candidate analyses for a given input string
may increase  the  risk  of  parsers  selecting  an  incorrect
analysis  as  the  final  result,  which  could  aggravate  the
problem of accuracy. 
Data-driven parsers on the other hand, use an inductive
mechanism for mapping input strings to output analyses.
According to Nivre (2006), in most existing data-driven
parsers  any  input  strings  are  assigned  at  least  one
analysis, which means that data-driven parsers are highly
robust.  However,  the extreme robustness of  data-driven
parsers  means  that  they  will  assign  analyses  that  are
probably  grammatically  incorrect,  hence  data-driven
parsers  may  not  produce  highly  accurate  parse  results
compared with its counterpart grammar-driven parsers. 
Furthermore,  the  problem  of  disambiguation  can  be
severe  in  data-driven  parsers  because  the  improved
robustness is the result of extreme constraints relaxation.
But,  this  is  compensated  by the fact  that  the inductive
inference  scheme,  which  is  obtained  by using machine
learning  algorithms  in  data-driven  parsers,  provides  a
mechanism for   disambiguation  by  associating  a  score
with  each  analysis  intended  to  reflect  some  optimality
criterion, or by implicitly maximising this criterion in a
deterministic  selection.  Regarding  the  problem  of
efficiency,  it  is  argued  that  data-driven  approaches  is
superior to grammar-driven approaches (Nivre, 2006), but
it is often at the expense of less accurate output (Kaplan
et al., 2004)

3. Arabic
Ambiguities  in  natural  languages  affect  parsers’
efficiency,  robustness and accuracy,  hence it  is a major
problem in parsing natural language sentences (Baptista,



1995;  Collins,  2003).  Arabic  has  a  complex  syntactic
structure  (Daimi,  2001),  which  makes  it  particularly
challenging to parse, below are some of the major source
of ambiguities in Arabic.
 Word order freedom: The  canonical  order  of

Arabic sentences is VSO. But, Arabic has a high
degree of  syntactic flexibility (Daimi, 2001), hence
a range of other word orders such as VOS, SVO and
OVS are also possible (Ramsay and Mansour, 2006),
which  is  considered  as  a  source  of  ambiguities  in
Arabic  (Attia,  2008,  p.179)  because  reordering
words  in  Arabic  sentences  makes  it  hard  to
distinguish  between  nominative  and  accusative
cases.  For  example,  in  the  sentence  “Ahmad
yahatarm Ali” “Ahmed respects Ali” it is clear that
“Ahmed” is the subject in the sentence and “Ali” is
the object.  But,  reordering  the words as  “yahtarm
’Ahmad Ali”  “respects  Ahmed Ali” means that  the
subject could be either “Ahmed” or “Ali” which lead
to structural ambiguity.

 Clitics: Clitics  are  morphemes  that  possess  the
syntactic  characteristics  of  a  word  but  they  are
morphologically  bound  to  other  words  (Crystal,
1980). Arabic clitics could be attached to the start or
end of words, which it often alters their formation,
such as from nouns to verbs, or even alters the verb
type  from  transitive  to  intransitive  (Nelken  and
Shieber, 2005). 

Arabic  conjunctions  often  appear  as  clitics  and  they
modify  Arabic  verbs.  For  instance,  the  sentence
“wlyahum AlyuN fy AlmasAla” “Ali is the leader in
their  situation”  where  “wlyahum” “their  leader”,
which is a  noun,  is  ambiguous because  the letters
“w" and  "l" could be clitics attached to the word
“yahum” “take charge” and can modify these words
into verbs,  as  in  the  sentence  “wlyahum AlyuN fy
AlmasAla" “and Ali to take charge of the situation”,
where the word is a verb.

 Noun multifunctional: It is difficult to define Arabic
nouns  in  comparison  to  its  verbs  because  they
encompass a wide range of categories.  One of the
reasons that Arabic nouns create ambiguities is that
some nouns are  derived  from verbs,  and  they  can
function  as  verbs  sometimes  (Attia,  2008).  e.g.,
“Albahth”  “search”  can  function  as  a  noun  as  in
“istamarra  Altilmythu  fy  Albahthy  liljAmiaT”  “the
student continued in his research for the university”,
and  as  a  verb  as  in  “istamarra  Altilmythu  fy
Albahthy  an  AljAmiaT”  “the  student  continued
searching for the university”

 Pro-drop: The subject of a sentence could be omitted
if the verb’s agreement features are rich enough to
recover its  content (Chomsky,  1981).  Arabic  verbs
recover missing subjects by conjugating themselves
to  indicate  the  gender,  number  and  person  of  the
omitted  pronoun  subject  (Attia,  2008).  Arabic
pronouns  may be  omitted  if  the  verb  can  recover
them, as  in,  “Akalat  Al dajAjT” “ate the chicken”.
The verb “Akalat” “ate” indicates  that  the missing
subject  is  a  singular,  feminine,  and  third  person

pronoun. In Arabic, verbs can be transitive and also
intransitive  when  a  pronoun  is  dropped.  It  is  not
clear from the above sentence that the noun phrase
(NP) “Al dajAjT” “the chicken” following the verb
“Akalat”  “ate”  is  the  subject.  The sentence  would
mean  the chicken was eaten and the verb “Akalat”
“ate” is intransitive if the NP is the subject. But, the
sentence would mean “she ate the chicken” and the
verb  “Akalat”  “ate”  is  transitive  if  the  NP is  the
object  of  the  verb  and  the  subject  is  an  omitted
pronoun (as “she”). Hence, due to pro-drops, parsers
generate different structural analysis.

4. Related work
Combining data-driven and grammar-driven approaches
is increasingly becoming popular. Some works involved
combining  state-of-art  dependency  data-driven  parsers,
such  as  MaltParser  (Nivre,  2006)  and  MSTParser
(MacDonald, 2006), while some other works focused on
combining data-driven and grammar-driven approaches.
The latter is the type of work that is more relevant to the
work  we  present  in  this  paper,  However,  they  are  not
directly combining them, they instead use the output of
one parser as input to another parser.
Øvrelid  et  al(2009) combined a grammar-driven parser,
that  was based on Lexical  Functional  Grammar (LFG),
with a data-driven parser (MaltParser). In their approach,
they supply MaltParser with outputs from the LFG parser.
The  LFG  parser  outputs  phrase  structured  trees
containing grammatical features. They convert the output
of the LFG parser to dependency trees in order to have
two  parallel  versions  of  their  original  data:  (i)  a  gold
standard  Treebank,  and  (ii)  a  dependency  Treebank  by
converting  the  parser  output  which  contains  additional
grammatical  features.  They  extend  the  gold  standard
Treebank  with  additional  information  from  the
corresponding LFG analyses. MaltPaser is then trained on
the  enhanced  gold  standard  Treebank.  Their  results
showed a small improvement in accuracy when applied to
English and German. 
A similar  work in this area is conducted by Sagae and
Miyao  (2007).  They  constrain  a  Head-driven  Phrase
Structure Grammar (HPSG) parser  with outputs from a
data-driven parser. HPSG parsers use a small number of
schemas for explaining general construction rules, and a
large  number  of  lexical  entries  for  expressing  word-
specific syntactic and semantic constraints. HPSG parse
trees are converted to Context Free Grammar style (CFG-
style)  trees.  A dependency  Treebank  is  then  extracted
from the CFG-style trees.  The dependency Treebank is
used for training a dependency data-driven parser, such as
MaltPaser  and  MSTParser.  Outputs  from  data-driven
parsers  are  then  used  to  constrain  the  HPSG  parser.
During HPSG parsing process,  the lexical head of each
partial parse tree is stored and in each schema application
the  head  child  is  determined.  Having  such  information
about the head child and the lexical head, the dependency
produced  by  the  schema  application  is  identified  and
whether the schema application violates the dependencies
in the dependency Treebank is checked. The HPSG parser
is forced to produce parse trees that are consistent with



the dependency trees. This approach is tested on English
and some improvements in accuracy were achieved.

5. Parser hybridisation
In this section, we describe the steps for implementing a
hybrid  parser.  We  have  implemented  a  data-driven
dependency parser and we integrated a scoring technique
into it in order to easily convert it to a hybrid parser. The
parser  is  driven  by  data  where  a  machine  learning
algorithm is used for parser training, but it is guided by a
set of dependency relations that behaves as grammatical
rules for constraining the parser to produce more accurate
analysis.  The  first  stage  of  our  work  was  to  obtain  a
dependency  format  treebank  data  because  we  are
implementing a data-driven dependency parser. We then
experimented  with  a  number  of  machine  learning
algorithms  in  order  to  identify  an  algorithm  that  can
classify  our  data  accurately  so  that  we  extract
question:answer pairs from its output and use them for
guiding  the  parser.  Finally,  we have  extracted  a  set  of
dependency relations  from the dependency treebank so
that we restrict the parser using these relations to produce
correct analyses. The goal of using dependency relations
is for testing the concept that we are using for hybridizing
the  data-driven  parser  and  conduct  preliminary
experiments  to  examine  how  we  can  improve  parser
accuracy while keeping it reasonably efficient and robust.

5.1.  From  phrase  structure  to  dependency
structure
The Penn Arabic Treebank (PATB) (Maamouri and Bies,
2004) is a large collection of annotated modern standard
Arabic text containing rich linguistic information, which
is  appropriate  for  parsing  Arabic  texts.  However,  the
main challenge in using PATB is that it is based on phrase
structure trees but the parser we are attempting to develop
is  a  dependency  based  parser.  We opt  for  dependency
parsing because it is proven that dependency parsing can
be  robust,  efficient  and  fairly  accurate  (Nivre,  2006;
MacDonald,  2006).  In  order  to  make  the  PATB  data
appropriate  for  our  use,  we  have  converted  it  to  a
dependency format. The principle of the conversion from
phrase  structures  to  dependency  structures  is  described
clearly  by  (Xia,  2001)  as  (i)  use  the  head  percolation
table  for  marking  the  head  child  of  each  node  in  a
constituency format, and (ii) make the head of each non-
head child depend on the head of the head-child in the
dependency structure. 

5.2 Dependency relations extraction from PATB
Once  we  have  a  dependency  format  of  the  PATB,  we
have extracted dependency relations between words from
it.  The  technique  that  we  have  used  for  extracting
dependency relations from a bracketed dependency tree is
simple, which we describe below:

1. Get the head of the tree, which is the first
item on the dependency tree.

2. Get the daughter(s) of the head, which is the
next list of items in the dependency tree that
follows the head.

3. Establishes  dependency  relationship

between  the  head  and  the  head  of  the
daughter(s)  and store  the  relationship  in  a
set of the relations.

4. If there is more than one daughter for the
head, then process each daughter in turn by
repeating from step 1  to  3.  otherwise,  the
daughter is not the head of anything and we
can terminate.

[ate, [man, [the]], [apple, [an]] ]
Fig. 1: Bracketed dependency tree

ate

man apple

the  an
Fig. 2: Dependency tree

[ [ate>man], [ate>apple], [man>the], [apple>an] ]
Fig. 3: Dependency relation set

For  example,  we  can  extract  the  dependency  relations
from the bracketed tree in Fig. 1 using the technique we
have described above. We first get the head of the tree,
i.e., the first item in the list, which is “ate”. second, we
get the daughters of “ate”, which is the lists ([man, [the]]
and  [apple,  [an]]).  We  then  establish  dependency
relations1 between “ate” and its daughters, which would
be “ate” as the head of “man” and “ate” as the head of
“apple”,  where  “man” and “apple” are  the head of  the
daughters of “ate”,  i.e.,  “man” and “apple” are the first
items in the lists [man, [the]] and [apple, [an]]. Thirdly,
we store the relations in a set of relations as in Fig. 3.
Since the head (ate) has more daughters, we process each
of its daughter starting from the first daughter which is
[man,  [the  ]].  Starting  from  step  1  above,  we  choose
“man” as the head and establish relations between “man”
and its daughter(s) which is “the”. Since the daughter of
“man” does not have any daughter of its own, we process
the remaining daughters of “ate” until all of the daughters
of “ate” and its sub-daughters are processed.

5.3 Developing a dependency data-driven parser
We  have  developed  a  parser  based  on  shift-reduce
algorithm  (Aho  and  Ullman,  1972)  with  dynamic
programming.  The parser  process  an agenda,  where  an
agenda  contains  a  list  of  parse  states.  A  parse  state
consists of data structures, a set of dependency relations,
a score for each state, and a parse action. States on the
agenda are sorted by their scores in descending order. The
parser  proceeds  by  processing  the  first  state  on  the
agenda.  Processing  each  state  results  in  creating  new
states, which are added to the agenda. The data structures
consist of a queue of input strings, and a stack of tokens
(which  may  include  processed  strings).  Input  strings

1 Relations between head and daughter are represented 
using '>' symbol.



contain  various  features  such  as:  part-of-speech  tags,
word forms, word start position in the sentence, word end
position in the sentence, and parse actions that may have
been applied to them.
The parser performs three operations on the queues and
the stacks: (i) shift, (ii) left-reduce, and (iii) right-reduce,
where  each  of  these  operations  results  in  a  new parse
state. Shift operation moves the first item from the queue
to the top of the stack. Left-reduce operation makes the
item from the stack a dependency parent of the item at
the  beginning  of  the  queue.  Right-reduce  operation
makes the first item on the queue a dependency parent of
an item on the stack. Each parse operation creates new
states which are stored in an agenda and the parser then
process each state until it reaches a final parse state. If the
parser reaches a state where there is an empty queue and
a stack with one item, in which the item’s start and end
position on the stack covers the whole sentence length in
question, then the parser successfully parsed the given set
of input. Otherwise, the parse is unsuccessful.
In order to convert this parser to a hybrid parser where
we  uses  the  extracted  dependency  relations  as
grammatical  rules  for  constraining the  parser,  we  have
implemented a scoring algorithm into the parser  which
assigns different  scores  to  parse  states.  We can  briefly
describe our scoring technique below:
(a)  WML is  1  if  the  parser  follows  machine  learning
suggestion, otherwise it is 0.
(b) WG is 0 if the machine learning suggestion leads to a
grammatical  analysis,  i.e.,  the  suggested  dependency
relations by the machine learning algorithm conform to
the relations in the set of dependency relations we have
extracted from the PATB. Otherwise it is -0.5.
(c) A is the sum of  (ML * WML) + (G * WG), where ML
and G are weights that are used to determine the parser
type.  Given  0  weight  to  G  then  the  parser  follows
machine  learning suggestions and ignores  Grammatical
rules,  which  makes  it  a  data-driven  parser.  Given  0
weight to ML then the parser follows grammatical rules
and  ignores  the  machine  learning  suggestions,  which
makes  it  a  grammar-driven  parser.  Given  intermediate
weights to ML and G then the parser uses the machine
learning  suggestions  and  the  grammatical  rules,  which
makes it a hybrid parser. 
Once we obtain scores for each parse states, we  then sort
all  states  in  the  agenda  in  descending  order  (because
states  with  the  highest  score  indicate  that  they  are
suggested  by  the  machine  learning  algorithm and they
also leads to correct analysis).
We have used a software toolkit, weka , which contains a
large number of machine learning algorithms in order to
experiment  with  a  number  of  machine  learning
algorithms for parser training by supplying it with data
containing different parse states. Our aim was to train the
parser  to perform appropriate  parse actions in different
situations.  We  have  integrated  a  J48  algorithm  in  the
parser  due  to  its  high  classification  accuracy  (91%)
compared with some other algorithms, such as Support
Vector  Machine  (SVM)  algorithm.  We  have  used  the
output  of  the  J48  algorithm  for  extracting
question:answer pairs for guiding the parser  to perform

shift action or reduce action deterministically. Finally, we
have conducted some initial experiments on the parser by
running it as pure data-driven parser by given a weight of
0 to G and 1 ML. We have also experimented with the
parser  by  running  it  as  a  hybrid  parser  to  evaluate  its
accuracy. 

6. Preliminary results
We have conducted some experiments on the parser by
running it as a purely data-driven parser. The parser, by
construction, is efficient and robust, because we provide
it  with  shift,  left-reduce  or  right-reduce  action  at  each
parse step, which deterministically lead to some analyses.
However,  the  efficiency  and  robustness  of  the  parser
comes at the expense of its accuracy because the parser is
guided by the machine learning alogrithm where it will
always  leads  to  some  analyses,  however,  suggestions
made by the machine learning algorithm are not always
leading  to  correct  analyses,  hence  the  accuracy  is
affected.  Having  a  hybrid  parser  that  is  driven  by  a
machine learning algorithm but is constraint by rules, we
can improve parser  accuracy significantly.  Table.  1 and
Table. 2 show the differences between running the parser
as  purely  data-driven  and  running  as  hybrid.  We have
trained the parser on 10000 words, and tested with 10000
words.

Training 
data (No. 
Sentences

Testing 
date (No. 
Sentences

Labelled 
attachment
score

Unlabelled
attachment
score

Label 
Accuracy

Time 
Taken 
(seconds)

70000 7000 48.8% 48.8% 88.7% 142

Table. Data-driven parser testing

Training 
data (No. 
Sentences

Testing 
date (No. 
Sentences

Labelled 
attachment
score

Unlabelled
attachment
score

Label 
Accuracy

Time 
Taken 
(seconds)

70000 7000 72.5 72.5 94.7 612

Table. Hybrid parser testing

7. Future work
We would like to find out how the hybrid parser performs
when  it  is  evaluated  using  grammatical  rules  that  are
linguistically  sound.  We  have  conducted  these
preliminary  tests  using  dependency  relations  extracted
from the PATB which behave as  grammatical  rules  for
restricting the parser to output analysis that obey a set of
dependency  relations.  We  anticipate  that  using
linguistically  sound  grammatical  rules  may  have  an
interesting  impact  on  the  hybrid  parser,  which  we  are
planning to investigate it in the near future. In order to
prepare grammatical rule for testing our hybrid parser, we
are planning to produce a large number of grammatical
rule using linguistic data available from the PATB and in-
house grammar driven parser (Parasite). 

8. Conclusion
Problems  associated  with  using  grammar-driven
approaches and data-driven approaches are discussed in
this paper. The main structural complexities of Arabic are
identified  and  briefly  described.  We  have  very  briefly
highlighted  the  techniques  that  we  have  used  for



converting  the  Penn  Arabic  Treebank  form  phrase
structure  to  dependency  format,  and  we  also  briefly
highlighted  a  technique  for  extracting  dependency
relations from dependency treebanks. The first stage of
our  approach  to  hybrid  parsing  is  explained,  we  also
described our technique for  developing a hybrid parser
that  directly  combines  features  from  data-driven
approaches  and  grammar-driven  approaches.  We  have
presented our preliminary results for the parser the results
at  this  stage  is  encouraging.  The  parser  is  tested  on
Arabic  because  it  is  a  complex  language,  compare  to
some other languages, hence it provides a rigorous test-
bed.  Finally,  various  related  works  in  hybrid  parsing
approaches for natural language processing is identified
and briefly described.

References 
Aho, A., V. & Ullman, J., D. (1972). The Theory of

Parsing, Translation, and
 Compiling, Vol. 1, Prentic-Hall.

Attia,  M.  A.  (2008).  Handling  Arabic
Morphological and Syntactic Ambiguities

 within the LFG Framework with a View to Machine
Translation, PhD Thesis,

 School  of  Languages,  Linguistics  and  Cultures,
Manchester University.

Baptista, M. (1995). On the Nature of Pro-drop in
Capeverdean Creole, 5: 3–17.

Chomsky,  N.  (1981).  Lectures  on Goverment  and
Binding, Dordrecht: Foris.

Collins, M. (2003). Head-Driven Statistical Models
for Natural Language Parsing,

 Comput. Linguist. 29(4): 589–637.

Crystal, D. (1980). A First Dictionary of Linguistics
and Phonetics, Deutsch,

 London.

Daimi, K. (2001). Identifying Syntactic Ambiguities
in Single-parse Arabic Sentence, 35: 333–349.

Farghaly, A. & Shaalan, K. (2009). Arabic Natural
Language Processing: Challenges and Solutions,
ACM Computing Surveys 8(4): 1–22.

Kaplan, R. M., Riezler, S., King, Tracy, H.,Maxwell
III, John, T., Vasserman, A.

 &  Crouch,  R.  (2004).  Speed  and  accuracy  in
shallow and deep stochastic

 parsing,  Proceedings  of  Human  Langauge
Technology and the Conference of

 the North American Chapter of the Association for

Computational Linguistics
 (HLT-NAACL, pp. 97–104.

Lee, C., Day, M., Sung, C., Lee, Y., Jiang, T., Wu,
C., Shih, C., Chen, Y. & Hsu,

 W. (2008). Boosting Chinese Question Answering
with Two Lightweight

 Methods: ABSPs and SCO-QAT, 7(4): 12:1–12:29.

Maamouri,  M.  & Bies,  A.  (2004).  Developing an
Arabic treebank: Methods,

 guidelines, procedures, and tools, in A. Farghaly &
K. Megerdoomian (eds),

 COLING  2004  Computational  Approaches  to
Arabic Script-based Languages,

 COLING, Stroudsburg, PA, USA, pp. 2–9.

MacDonald,  R.  (2006).  Discriminative  Learning
and Spanning Tree Algorithms

 for  Dependency  Parsing,  PhD Thesis,  Computer
and Information Science, the

 University of Pennsylvania.

Nelken,  R.  &  Shieber,  Stuart,  M.  (2005).  Arabic
Diacritization Using Weighted

 Finite-State Transducers,  Proceedings of the ACL
Workshop on Computational

 Approaches  to  Semitic  Languages,  Semitic  ’05,
Association for Computational

 Linguistics, Stroudsburg, PA, USA, pp. 79–86.

Nivre,  J.  (2006).  Inductive  Dependency  Parsing,
Springer.

Øvrelid,  L.,  Kuhn,  J.  &  Spreyer,  K.  (2009).
Improving data-driven dependency

 parsing  using  large-scale  lfg  grammars,
Proceedings of the ACL-IJCNLP

 2009  Conference  Short  Papers,  ACLShort  ’09,
Association for Computational

 Linguistics, Stroudsburg, PA, USA, pp. 37–40.
 URL: http://dl.acm.org/citation.cfm
Ramsay,  A.  &  Mansour,  H.  (2006).  Local

Constraints on Arabic Word Order,  Proceedings
of the 5th international conference on Advances
in Natural Language

 Processing,  FinTAL’06,  Springer-Verlag,  Berlin,
Heidelberg, pp. 447–457.

Sagae, K. & Miyao, Y. (2007). Hpsg parsing with
shallow dependency constraints,

 In Proc. ACL 2007.

Samuelsson,  C.  &  Wir`  n,  M.  (2000).  Parsing
techniques, Marcel Dekker.



Xia,  F.  &  Palmer,  M.  (2001).  Converting
dependency  structures  to  phrase  structures,
Proceedings of the first international conference on
Human language
 technology  research,  HLT  ’01,  Association  for
Computational Linguistics,

Stroudsburg, PA, USA, pp. 1–5.

URL: http://dx.doi.org/10.3115/1072133.1072147

Zitouni,  I.,  Sorensen,  Jaffery,  S.  &  Sarikaya,  R.
(2006). Maximum Entropy Based
 Restoration  of  Arabic  Diacritics,  Proceedings  of
the  21st  International  Conference  on
Computational  Linguistics  and  the  44th  annual
meeting of the

Association  for  Computational  Linguistics,
Association for Computational
 Linguistics, Stroudsburg, PA, USA, pp. 577–584.


