The Complexity of General-Valued CSPs

Vladimir Kolmogorov ${ }^{\dagger}$
vnk@ist.ac.at

Andrei Krokhin ${ }^{\ddagger}$

andrei.krokhin@durham.ac.uk michal.rolinek@ist.ac.at

${ }^{\dagger}$ Institute of Science and Technology Austria ${ }^{\ddagger}$ Durham University, UK

Abstract

An instance of the Valued Constraint Satisfaction Problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates infeasible assignments. The goal is to find an assignment of labels to the variables that minimizes the sum.

We study, assuming that $\mathrm{P} \neq \mathrm{NP}$, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in $\{0, \infty\}$ corresponds to ordinary CSPs, where one deals only with the feasibility issue and there is no optimization. This case is the subject of the Algebraic CSP Dichotomy Conjecture predicting for which constraint languages CSPs are tractable (i.e. solvable in polynomial time) and for which NP-hard. The case when all allowed functions take only finite values corresponds to finite-valued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Živný.

An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e. the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.

1 Introduction

Computational problems from many different areas involve finding an assignment of labels to a set of variables, where that assignment must satisfy some specified feasibility conditions and/or optimize some specified objective function. In many such problems, the feasibility conditions are local and also the objective function can be represented as a sum of functions, each of which depends on some subset of the variables. Examples include: Gibbs energy minimization, Markov Random Fields (MRF), Conditional Random Fields (CRF), Min-Sum Problems, Minimum Cost

[^0]Homomorphism, Constraint Optimization Problems (COP) and Valued Constraint Satisfaction Problems (VCSP) [7, 18, 27, 38, 42, 48].

The constraint satisfaction problem provides a common framework for many theoretical and practical problems in computer science [19, 42]. An instance of the constraint satisfaction problem (CSP) consists of a collection of variables that must be assigned labels from a given domain subject to specified constraints 40. The CSP is equivalent to the problem of evaluating conjunctive queries on databases [33], and to the homomorphism problem for relational structures [23]. The CSP deals only with the feasibility issue: can all constraints be satisfied simultaneously?

There are several natural optimization versions of the CSP: Max CSP (or Min CSP) where the goal is to find the assignment maximizing the number of satisfied constraints (or minimizing the number of unsatisfied constraints) [15, 19, 30, 31, problems like Max-Ones and Min-Hom where the constraints must be satisfied and some additional function of the assignment is to be optimized [19, 32, 45], and, the most general version, valued CSP or VCSP (also known as soft CSP), where each combination of values for variables in a constraint has a cost and the goal is to minimize the aggregate cost [13, 17, 35, 47]. Thus, an instance of the VCSP amounts to minimizing a sum of functions, each depending on a subset of variables. By using infinite costs to indicate infeasible combinations, VCSP can model both feasibility and optimization aspects and so considerably generalises all the problems mentioned above [13, 17, [27]. There is much activity and very strong results concerning various aspects of approximability of (V)CSPs (see e.g. 4, 8, 12, 19, 21, 22, 25, 41 for a small sample), but in this paper we focus on solving VCSPs to optimality.

We assume throughout the paper that $\mathrm{P} \neq \mathrm{NP}$. Since all the above problems are NP-hard in full generality, a major line of research in CSP tries to identify the tractable cases of such problems (see books/surveys [16, 19, 20, 27]), the primary motivation being the general picture rather than specific applications. The two main ingredients of a constraint are (a) variables to which it is applied and (b) relations/functions specifying the allowed combinations of values or the costs for all combinations. Therefore, the main types of restrictions on CSP are (a) structural where the hypergraph formed by sets of variables appearing in individual constraints is restricted [24, 39, and (b) language-based where the constraint language, i.e. the set of relations/functions that can appear in constraints, is fixed (see, e.g. [10, 16, 19, 23, 47]). The ultimate sort of results in these directions are dichotomy results, pioneered by [43], which characterise the tractable restrictions and show that the rest are as hard as the corresponding general problem (which cannot generally be taken for granted). The language-based direction is considerably more active than the structural one, there are many partial language-based dichotomy results, e.g. [9, 11, 17, 19, 30, 31, 36, 45, but many central questions are still open. In this paper, we study VCSPs with a fixed constraint language on a finite domain, and all further discussion concerns only such CSPs and VCSPs.

Related Work. The CSP Dichotomy Conjecture, stating that each CSP is either tractable or NP-hard, was first formulated by Feder and Vardi [23]. The universal-algebraic approach to this problem was discovered in [10, 28, 29, and the precise boundary between the tractable cases and NP-hard cases was conjectured in algebraic terms in [10], in what is now known as the Algebraic CSP Dichotomy Conjecture (see Conjecture [17). The hardness part was proved in [10, and it is the tractability part that is the essence of the conjecture. This conjecture is still open in full generality and is the object of much investigation, e.g. [2, 3, [5, 1, 6, 10, 11, 16, 26]. It is known to hold for domains with at most 3 elements [9, 43], for smooth digraphs [6], and for the case when all unary relations are available [1, 11. The main two polynomial-time algorithms used for CSPs are based one on local consistency ("bounded width") and the other on compact representation of solution sets ("few subpowers"), and their applicability (in pure form) is fully characterized in [2, [5] and [26], respectively.

At the opposite (to CSP) end of the VCSP spectrum are the finite-valued VCSPs, in which functions do not take infinite values. In such VCSPs, the feasibility aspect is trivial, and one has to deal only with the optimization issue. One polynomial-time algorithm that solves tractable finite-valued VCSPs is based on the so-called basic linear programming (BLP) relaxation, and its applicability (also for the general-valued case) was fully characterized in [35] (see Theorem 18). The complexity of finite-valued VCSPs was completely classified in [47, where it is shown that all finite-valued VCSPs not solvable by BLP are NP-hard.

For general-valued VCSPs, full classifications are known for the Boolean case (i.e., when the domain is two-element) 17 and also for the case when all 0 -1-valued unary cost functions are available [36]. The algebraic approach to the CSP was extended to VCSPs in [13, 14, 17, 37, and was also key to much progress. An algebraic necessary condition for a VCSP to be tractable was recently proved by Kozik and Ochremiak in [37], where this condition was also conjectured to be sufficient (see Theorem 15 and Conjecture 16 below). This conjecture can be called the Algebraic VCSP Dichotomy Conjecture, and it is a generalization of the corresponding conjecture for CSP. A large family of VCSPs satisfying the necessary condition from 37] has recently been shown tractable via a low-level Sherali-Adams hierarchy relaxation [46].

Our proof uses the technique of "lifting a language" introduced in [34].
Our Contribution. We completely classify the complexity of VCSPs with a fixed constraint language modulo the complexity of CSPs (see Theorem (22). Clearly, for a VCSP to be tractable, it is necessary that the corresponding feasibility CSP is tractable. We prove that any VCSP satisfying this necessary condition and the necessary condition of Kozik and Ochremiak is tractable. The polynomial-time algorithm that solves such VCSP is a simple combination of the (assumed) polynomial-time algorithm for the feasibility CSP and BLP (see Theorem 23). Thus, our dichotomy theorem generalizes the dichotomy for finite-valued VCSPs from [47, and, with the help of the CSP tractability result from [5], it also implies the tractability of VCSPs shown tractable in [46].

Our result says that any dichotomy for CSP (not necessarily the one predicted by the Algebraic CSP Dichotomy Conjecture) will imply a dichotomy for VCSP. However, if the Algebraic CSP Dichotomy Conjecture holds then the necessary algebraic condition of Kozik and Ochremiak guarantees tractability of the feasibility CSP (see [37]), implying that this algebraic condition alone is necessary and sufficient for tractability of a VCSP, and also that all the intractable VCSPs are NP-hard. In particular, the Algebraic CSP Dichotomy Conjecture implies the Algebraic VCSP Dichotomy Conjecture.

2 Preliminaries

2.1 Valued Constraint Satisfaction Problems

Throughout the paper, let D be a fixed finite set and let $\overline{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$ denote the set of rational numbers with (positive) infinity.

Definition 1. We denote the set of all functions $f: D^{n} \rightarrow \overline{\mathbb{Q}}$ by $\mathcal{F}_{D}^{(n)}$ and let $\mathcal{F}_{D}=\bigcup_{n \geq 1} \mathcal{F}_{D}^{(n)}$. We will often call the functions in \mathcal{F}_{D} cost functions over D. For every cost function $f \in \mathcal{F}_{D}^{(n)}$, let $\operatorname{dom} f=\{x \mid f(x)<\infty\}$. Note that $\operatorname{dom} f$ can be considered both as an n-ary relation and as a n-ary function such that $\operatorname{dom} f(x)=0$ if and only if $f(x)$ is finite.

We will call the set D the domain, elements of D labels (for variables), and say that the cost functions in \mathcal{F}_{D} take values. Note that in some papers on VCSP, e.g. [13, 46], cost functions are called weighted relations.

Definition 2. An instance of the valued constraint satisfaction problem (VCSP) is a function from D^{V} to $\overline{\mathbb{Q}}$ given by

$$
\begin{equation*}
f_{\mathcal{I}}(x)=\sum_{t \in T} f_{t}\left(x_{v(t, 1)}, \ldots, x_{v\left(t, n_{t}\right)}\right), \tag{1}
\end{equation*}
$$

where V is a finite set of variables, T is a finite set of constraints, each constraint is specified by a cost function f_{t} of arity n_{t} and indices $v(t, k), k=1, \ldots, n_{t}$. The goal is to find an assignment (or labeling) $x \in D^{V}$ that minimizes $f_{\mathcal{I}}$. The value of an optimal assignment is denoted by $\operatorname{Opt}(\mathcal{I})$.

Definition 3. Any finite set $\Gamma \subseteq \mathcal{F}_{D}$ is called a valued constraint language over D, or simply a language. We will denote by $\operatorname{VCSP}(\Gamma)$ the class of all VCSP instances in which the constraint functions f_{t} are all contained in Γ.

This framework subsumes many other frameworks studied earlier and captures many specific well-known problems, including k-Sat, Graph k-Colouring, Max Cut, Min Vertex Cover and others (see [27]). Note that if every function in Γ takes values in $\{0, \infty\}$ then $\operatorname{VCSP}(\Gamma)$ is a pure feasibility problem, commonly known as $\operatorname{CSP}(\Gamma)$.

The main goal of our line of research is to classify the complexity of problems $\operatorname{VCSP}(\Gamma)$. Often, problems $\operatorname{CSP}(\Gamma)$ and $\operatorname{VCSP}(\Gamma)$ are defined also for infinite languages Γ and then $\operatorname{VCSP}(\Gamma)$ is called tractable if, for each finite $\Gamma^{\prime} \subseteq \Gamma, \operatorname{VCSP}\left(\Gamma^{\prime}\right)$ is tractable. Also, $\operatorname{VCSP}(\Gamma)$ is called NP-hard if, for some finite $\Gamma^{\prime} \subseteq \Gamma, \operatorname{VCSP}\left(\Gamma^{\prime}\right)$ is NP-hard. We restrict ourselves only to finite languages because we rely on some results from [37] that are at the moment known only for such languages. The tractability part of our dichotomy result, however, holds in the above sense for arbitrary languages.

2.2 Polymorphisms, Expressibility, Cores

Let $\mathcal{O}_{D}^{(m)}$ denote the set of all operations $g: D^{m} \rightarrow D$ and let $\mathcal{O}_{D}=\cup_{m \geq 1} \mathcal{O}_{D}^{(m)}$. When D is clear from the context, we will sometimes write simply $\mathcal{O}^{(m)}$ and \mathcal{O}.

Any language Γ defined on D can be associated with a set of operations on D, known as the polymorphisms of Γ, which allow one to combine (often in a useful way) several feasible assignments into a new one.

Definition 4. An operation $g \in \mathcal{O}_{D}^{(m)}$ is a polymorphism of a cost function $f \in \mathcal{F}_{D}$ if, for any $x^{1}, x^{2}, \ldots, x^{m} \in \operatorname{dom} f$, we have that $g\left(x^{1}, x^{2}, \ldots, x^{m}\right) \in \operatorname{dom} f$ where g is applied component-wise.

For any valued constraint language Γ over a set D, we denote by $\operatorname{Pol}(\Gamma)$ the set of all operations on D which are polymorphisms of every $f \in \Gamma$.

Example 5. Let $f \in \mathcal{F}_{\{0,1\}}^{(n)}$ be the function corresponding to the Horn clause $\left(x_{1} \vee \ldots \vee x_{n-1} \vee \overline{x_{n}}\right)$, i.e. $f(1, \ldots, 1,0)=\infty$ and $f\left(a_{1}, \ldots, a_{n}\right)=0$ otherwise. Then it is well known and easy to see that the binary operation $\min \in \mathcal{O}_{\{0,1\}}$ is a polymorphism of f.

Clearly, if g is a polymorphism of a cost function f, then g is also a polymorphism of $\operatorname{dom} f$. For $\{0, \infty\}$-valued functions, which naturally correspond to relations, the notion of a polymorphism defined above coincides with the standard notion of a polymorphism for relations. Note that the projections (aka dictators), i.e. operations of the form $e_{n}^{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$, are polymorphisms of all valued constraint languages. Polymorphisms play the key role important role in the algebraic approach to the CSP, but, for VCSPs, more general constructs are necessary, which we now define.
Definition 6. An m-ary fractional operation ω on D is a probability distribution on $\mathcal{O}_{D}^{(m)}$. The support of ω is defined as $\operatorname{supp}(\omega)=\left\{g \in \mathcal{O}_{D}^{(m)} \mid \omega(g)>0\right\}$.

Definition 7. A m-ary fractional operation ω on D is said to be a fractional polymorphism of a cost function $f \in \mathcal{F}_{D}$ if, for any $x^{1}, x^{2}, \ldots, x^{m} \in \operatorname{dom} f$, we have

$$
\begin{equation*}
\sum_{g \in \operatorname{supp}(\omega)} \omega(g) f\left(g\left(x^{1}, \ldots, x^{m}\right)\right) \leq \frac{1}{m}\left(f\left(x^{1}\right)+\ldots+f\left(x^{m}\right)\right) \tag{2}
\end{equation*}
$$

For a constraint language $\Gamma, \mathrm{fPol}(\Gamma)$ will denote the set of all fractional operations that are fractional polymorphisms of each function in Γ. Also, let $\operatorname{Pol}^{+}(\Gamma)=\left\{g \in \mathcal{O}_{D} \mid g \in \operatorname{supp}(\omega), \omega \in\right.$ $\mathrm{fPol}(\Gamma)\}$.

The intuition behind the notion of fractional polymorphism is that it allows one to combine several feasible assignments into new feasible assignments so that the expected value of a new assignment (non-strictly) improves the average value of the original assignments.

Example 8. If ω is a binary fractional operation on $D=\{0,1\}$ such that $\omega(\min)=\omega(\max)=1 / 2$, then it is well-known and easy to check that the finite-valued functions with fractional polymorphism ω are the submodular functions. Moreover, functions with this fractional polymorphism that are not necessarily finite-valued precisely correspond to submodular functions defined on a ring family.

More examples of fractional polymorphisms can be found in [27, 35, 47].
The following notion is useful for the general algebraic theory of VCSPs [13, 37], but we will need it only to connect some statements from [37] with fractional polymorphisms.

Definition 9. Let C be a set of m-ary operations in $\operatorname{Pol}(\Gamma)$. A function $\varpi: C \rightarrow \mathbb{Q}$ is called a weighting (of C) if $\sum_{g \in C} \varpi(g)=0$ and $\varpi(g)<0$ only if g is a projection. A weighting ϖ is called a weighted polymorphism of Γ if, for any $f \in \Gamma$ and any $x^{1}, \ldots, x^{m} \in \operatorname{dom} f$, it holds that

$$
\sum_{g \in C} f\left(g\left(x^{1}, \ldots, x^{m}\right)\right) \leq 0
$$

The support of $\varpi i s \operatorname{supp}(\varpi)=\{g \in C \mid \varpi(g)>0\}$.
The key observation in the algebraic approach to (V)CSP is that neither the complexity nor the algebraic properties of a language Γ change when functions "expressible" from Γ in a certain way are added to it.

Definition 10. For a constraint language Γ, let $\langle\Gamma\rangle$ denote the set of all functions $f\left(x_{1}, \ldots, x_{k}\right)$ such that, for some instance \mathcal{I} of $\operatorname{VCSP}(\Gamma)$ with objective function $f_{\mathcal{I}}\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)$, we have

$$
f\left(x_{1}, \ldots, x_{k}\right)=\min _{x_{k+1}, \ldots, x_{n}} f_{\mathcal{I}}\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

We then say that Γ expresses f, and call $\langle\Gamma\rangle$ the expressive power of Γ.
Lemma 11 ([14, 17]). Let $f \in\langle\Gamma\rangle$. Then

1. if $\omega \in \operatorname{fPol}(\Gamma)$ then ω is a fractional polymorphism of f and of $\operatorname{dom} f$;
2. $\operatorname{VCSP}(\Gamma)$ is tractable if and only if $\operatorname{VCSP}(\Gamma \cup\{f, \operatorname{dom} f\})$ is tractable;
3. $\operatorname{VCSP}(\Gamma)$ is $N P$-hard if and only if $\operatorname{VCSP}(\Gamma \cup\{f, \operatorname{dom} f\})$ is $N P$-hard.

The dichotomy problem for VCSPs can be reduced to a class of constraint languages called rigid cores, defined below. Apart from reducing the cases that need to be considered, this reduction enabled the use of much more powerful results from universal algebra than what can be done without this restriction (see, e.g. (37]).

For a subset $D^{\prime} \subseteq D$, let $u_{D^{\prime}}$ be the function defined as follows: $u_{D^{\prime}}(d)=0$ if $d \in D^{\prime}$ and $u_{D^{\prime}}(d)=\infty$ otherwise. We write u_{d} for $u_{\{d\}}$. Let $\mathcal{C}_{D}=\left\{\left\{u_{d}\right\} \mid d \in D\right\}$.

Lemma 12 (37$]$). For any valued constraint language Γ^{\prime} on a finite set D^{\prime}, there is a subset $D \subseteq D^{\prime}$ and a valued constraint language Γ on D such that $\mathcal{C}_{D} \subseteq \Gamma$ and the problems $\operatorname{VCSP}\left(\Gamma^{\prime}\right)$ and $\operatorname{VCSP}(\Gamma)$ are polynomial-time equivalent.

This language Γ is called the rigid core of Γ^{\prime}, and it can be obtained from Γ^{\prime} as follows. Let g^{\prime} be a unary operation on D^{\prime} with minimum $\left|g^{\prime}\left(D^{\prime}\right)\right|$ among all unary operations $g^{\prime} \in \operatorname{Pol}^{+}\left(\Gamma^{\prime}\right)$. Then D is set to be $g^{\prime}\left(D^{\prime}\right)$ and Γ is set to be $\left\{\left.f\right|_{D}: f \in \Gamma^{\prime}\right\} \cup \mathcal{C}_{D}$. Thus, the intuition behind moving to the rigid core is that (a) one removes labels from the domain that can always be (uniformly) replaced in any solution to an instance without increasing its value, and (b) one allows constraints of the form u_{d} that can be used to fix labels for variables, leading to applicability of more powerful algebraic results.

2.3 Cyclic and symmetric operations

Several types of operations play a special role in the algebraic approach to (V)CSP.
Definition 13. An operation $g \in \mathcal{O}_{D}^{(m)}, m \geq 2$, is called

- idempotent if $g(x, \ldots, x)=x$ for all $x \in D$;
- cyclic if $g\left(x_{1}, x_{2}, \ldots, x_{m}\right)=g\left(x_{2}, \ldots, x_{m}, x_{1}\right)$ for all $x_{1}, \ldots, x_{m} \in D$;
- symmetric if $g\left(x_{1}, x_{2}, \ldots, x_{m}\right)=g\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(m)}\right)$ for all $x_{1}, \ldots, x_{m} \in D$, and any permutation π on $[m]$.

A fractional operation ω is said to be idempotent/cyclic/symmetric if all operations in $\operatorname{supp}(\omega)$ have the corresponding property. Similarly, a weighting ϖ with $\operatorname{supp}(\varpi) \neq \emptyset$ is idempotent/cyclic/symmetric if all operations in $\operatorname{supp}(\varpi)$ are such.

It is well known and easy to see that all polymorphisms and fractional polymorphisms of a rigid core are idempotent.

The following lemma mentions Taylor operations, but the reader does not need to know what they are because we use them only in order to state some results from [37] in terms of cyclic fractional polymorphisms. In this lemma, the equivalence of (1) and (2) is from [3], the equivalence of (2) and (3) is Proposition 39 in [37], and the equivalence of (3) and (4) can easily be shown from Definiitons 7 and 9

Lemma 14. Let Γ be a rigid core. Then the following are equivalent:

1. $\operatorname{Pol}^{+}(\Gamma)$ contains a Taylor operation of arity at least 2
2. $\operatorname{Pol}^{+}(\Gamma)$ contains a cyclic operation of arity at least 2,
3. Γ has a cyclic weighted polymorphism of arity at least 2,
4. Γ has a cyclic fractional polymorphism of arity at least 2.

The following theorem is Theorem 30 from [37], restated, using Lemma 14] via cyclic fractional polymorphisms.

Theorem 15 ([37]). Let Γ be a valued constraint language that is a rigid core. If Γ does not have a cyclic fractional polymorphism ω of arity at least 2, then $\operatorname{VCSP}(\Gamma)$ is $N P$-hard.

Kozik and Ochremiak state a conjecture (which they attribute to L. Barto) that the above theorem describes all NP-hard valued constraint languages, and all other languages are tractable. Again, we restate the original conjecture via cyclic fractional polymorphisms.

Conjecture 16 ([37]). Let Γ be a valued constraint language that is a rigid core. If Γ has a cyclic fractional polymorphism ω of arity at least 2, then $\operatorname{VCSP}(\Gamma)$ is tractable.

For the case when Γ consists of $\{0, \infty\}$-valued functions, $\operatorname{VCSP}(\Gamma)$ is actually a CSP. For such Γ, any probability distribution on polymorphisms (of the same arity) is a fractional polymorphism. Then a theorem and a conjecture (the latter now known as the Algebraic CSP Dichotomy Conjecture) equivalent to Theorem 15 and Conjecture 16 were given in 10 .

Conjecture 17 (Algebraic CSP Dichotomy Conjecture [10, 3]). Let Γ be a valued constraint language that is a rigid core and that consists of $\{0, \infty\}$-valued functions. If Γ has a cyclic polymorphism of arity at least 2, then $\operatorname{VCSP}(\Gamma)$ is tractable. Otherwise, $\operatorname{VCSP}(\Gamma)$ is NP-hard.

In view of this, it is natural to call Conjecture 16 the Algebraic VCSP Dichotomy Conjecture.

2.4 Basic LP relaxation

Symmetric operations are known to be closely related to LP-based algorithms for CSP-related problems. One algorithm in particular has been known to solve many VCSPs to optimality. This algorithm is based on the so-called basic LP relaxation, or BLP, defined as follows.

Let \mathbb{M}_{n} be the set of probability distributions over labelings in D^{n}, i.e. $\mathbb{M}_{n}=\left\{\mu \geq 0 \mid \sum_{x \in D^{n}} \mu(x)=\right.$ $1\}$. We also denote $\Delta=\mathbb{M}_{1}$; thus, Δ is the standard $(|D|-1)$-dimensional simplex. The corners of Δ can be identified with elements in D. For a distribution $\mu \in \mathbb{M}_{n}$ and a variable $v \in\{1, \ldots, n\}$, let $\mu_{[v]} \in \Delta$ be the marginal probability of distribution μ for v :

$$
\mu_{[v]}(a)=\sum_{x \in D^{n}: x_{v}=a} \mu(x) \quad \forall a \in D .
$$

Given a VCSP instance \mathcal{I} in the form (11), we define the value $\operatorname{BLP}(\mathcal{I})$ as follows:

$$
\begin{array}{rlrl}
\operatorname{BLP}(\mathcal{I})=\min & \sum_{t \in T} \sum_{x \in \operatorname{dom} f_{t}} \mu_{t}(x) f_{t}(x) \tag{3}\\
\text { s.t. }\left(\mu_{t}\right)[k] & =\alpha_{v(t, k)} & \forall t \in T, k \in\left\{1, \ldots, n_{t}\right\} \\
\mu_{t} & \in \mathbb{M}_{n_{t}} & & \forall t \in T \\
\mu_{t}(x) & =0 & & \forall t \in T, x \notin \operatorname{dom} f_{t} \\
\alpha_{v} & \in \Delta & & \forall v \in V
\end{array}
$$

If there are no feasible solutions then $\operatorname{BLP}(\mathcal{I})=\infty$. The objective function and all constraints in this system are linear, therefore this is a linear program. Its size is polynomial in the size of \mathcal{I}, so $\operatorname{BLP}(\mathcal{I})$ can be found in time polynomial in $|\mathcal{I}|$.

We say that BLP solves \mathcal{I} if $\operatorname{BLP}(\mathcal{I})=\min _{x \in D^{n}} f_{\mathcal{I}}(x)$, and BLP solves $\operatorname{VCSP}(\Gamma)$ if it solves all instances \mathcal{I} of $\operatorname{VCSP}(\Gamma)$. If BLP solves $\operatorname{VCSP}(\Gamma)$ and Γ is a rigid core, then the optimal solution
for every instance can be found by using the standard self-reducibility method. In this method, one goes through the variables in some order, finding $d \in D$ for the current variable v such that instances \mathcal{I} and $\mathcal{I}+u_{d}(v)$ have the same optimal value (which can be checked by BLP), updating $\mathcal{I}:=\mathcal{I}+u_{d}(v)$, and moving to the next variable. At the end, the instance will have a unique feasible assignment whose value is the optimum of the original instance.

Theorem 18 ([35]). BLP solves $\operatorname{VCSP}(\Gamma)$ if and only if, for every $m>1$, Γ has a symmetric fractional polymorphism of arity m.

Theorem 19 (35,47$])$. Let Γ be a rigid core constraint language that is finite-valued. If Γ has a symmetric fractional polymorphism of arity 2 then $B L P$ solves $\operatorname{VCSP}(\Gamma)$, and so $\operatorname{VCSP}(\Gamma)$ is tractable. Otherwise, $\operatorname{VCSP}(\Gamma)$ is NP-hard.

3 Main Result

Definition 20. Let \mathcal{I} be a VCSP instance over variables V with domain D. The feasibility instance, Feas (\mathcal{I}), associated to \mathcal{I} is a CSP instance obtained from \mathcal{I} by replacing each constraint function f_{t} with $\operatorname{dom} f_{t}$.

For a language Γ, let $\operatorname{Feas}(\Gamma)=\{\operatorname{dom} f \mid f \in \Gamma\}$. Then the instances of the problem $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$ are the instances $\operatorname{Feas}(\mathcal{I})$ where \mathcal{I} runs through all instances of $\operatorname{VCSP}(\Gamma)$.

Definition 21. Let \mathcal{I} be a VCSP instance over variables V with domain D. For each variable $v \in V$, let $D_{v}=\{d \in D \mid d=\sigma(v)$ for some feasible solution σ for $\mathcal{I}\}$. Then $(1, \infty)$-minimal instance $\overline{\mathcal{I}}$ associated with \mathcal{I} is the VCSP instance obtained from \mathcal{I} by adding, for each $v \in V$, the constraint $u_{D_{v}}\left(x_{v}\right)$.

Note that if Γ is a rigid core and the problem $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$ is tractable, then, for any instance \mathcal{I} of $\operatorname{VCSP}(\Gamma)$, one can construct the associated $(1, \infty)$-minimal instance in polynomial time. Indeed, to find out whether a given $d \in D$ is in D_{v}, one only needs to decide whether the CSP instance obtained from Feas (\mathcal{I}) by adding the constraint $u_{d}\left(x_{v}\right)$ is satisfiable. Since Γ is a rigid core, the latter instance is also an instance of $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$.

If Γ is a rigid core then, for $\operatorname{VCSP}(\Gamma)$ to be tractable, Γ must satisfy the assumption of Conjecture 16, and also, clearly, the feasibility part of the problem, $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$, must be tractable. Our main result shows that if these necessary conditions are satisfied then $\operatorname{VCSP}(\Gamma)$ is indeed tractable.

Theorem 22. Let Γ be a valued constraint language over domain D that is a rigid core. If the following conditions hold then $\operatorname{VCSP}(\Gamma)$ is tractable:

1. Γ has a cyclic fractional polymorphism of arity at least 2, and
2. $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$ is tractable.

Otherwise, $\operatorname{VCSP}(\Gamma)$ is not tractable.
As we explained in Section $\mathbb{1}$ if the Algebraic CSP Dichotomy Conjecture holds, then condition (2) in Theorem [22 can be omitted and all intractable VCSPs are NP-hard.

In Theorem [22, the intractability part for (absence of) the first condition follows from Theorem [15, and it is obvious for the second condition. The tractability part follows from Theorem 23] below.

Theorem 23. Let Γ be an arbitrary language that has a cyclic fractional polymorphism of arity at least 2. If \mathcal{I} is an instance of $\operatorname{VCSP}(\Gamma)$ and $\overline{\mathcal{I}}$ is its associated $(1, \infty)$-minimal instance, then $\operatorname{Opt}(\mathcal{I})=\operatorname{BLP}(\overline{\mathcal{I}})$.

Indeed, the equality $\operatorname{Opt}(\mathcal{I})=\operatorname{BLP}(\overline{\mathcal{I}})$ means that we can find the optimum value for \mathcal{I} by constructing $\overline{\mathcal{I}}$ (which we can do efficiently because Γ is a rigid core and $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$ is tractable) and then applying BLP to it. Then we can find an optimal assignment by self-reduction (see discussion before Theorem (18).

Let us now explain how the above theorems imply the dichotomy result from 47] (Theorem 19) and the tractability result from [46] (stated below).

If Γ is finite-valued then, trivially, $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$ is tractable, and, for any instance \mathcal{I} of $\operatorname{VCSP}(\Gamma), \mathcal{I}$ and $\overline{\mathcal{I}}$ differ only by constraints taking a unique value 0 . If Γ fails to satisfy condition 1 from Theorem 22 then $\operatorname{VCSP}(\Gamma)$ is NP-hard by Theorem 15, and, otherwise, Theorem 23 implies that BLP solves $\operatorname{VCSP}(\Gamma)$. In the latter case, by [35], Γ has a binary symmetric fractional polymorphism.

An idempotent operation $g \in \mathcal{O}_{D}$ of arity at least 2 with $g(y, x, x \ldots, x, x)=g(x, y, x, \ldots, x, x)=$ $\ldots=g(x, x, x, \ldots, x, y)$ for all $x, y \in D$ is called a weak near-unanimity operation. The tractability result result from [46] states that if $\mathrm{Pol}^{+}(\Gamma)$ contains weak near-unanimity operations of all but finitely many arities, then $\operatorname{VCSP}(\Gamma)$ is tractable (in fact, via a specific algorithm based on SheraliAdams hierarchy, which does not follow from our results). This condition on $\mathrm{Pol}^{+}(\Gamma)$ is well known in the algebraic approach to the CSP, it characterizes (when appropriately formulated) CSPs of bounded width [5]. So assume that $\operatorname{Pol}^{+}(\Gamma)$ satisfies this condition. Since $\operatorname{Pol}^{+}(\Gamma) \subseteq \operatorname{Pol}(\Gamma)$, the set $\operatorname{Pol}(\Gamma)$ also contains these operations, so $\operatorname{CSP}(\operatorname{Feas}(\Gamma))$ is tractable by [5. Moreover, by 3], $\mathrm{Pol}^{+}(\Gamma)$ then also contains a cyclic operation of arity at least 2. Now Proposition 39 of 37 implies that Γ has a cyclic fractional polymorphism of arity at least 2, and then tractability of VCSP (Γ) follows from Theorem 22 ,

Proof of Theorem [23: reduction to a "block-finite language" We will prove Theorem 23]by constructing, from a given (feasible) instance \mathcal{I}, a valued constraint language Γ^{\prime} on some finite set D^{\prime} and an instance \mathcal{I}^{\prime} of $\operatorname{VCSP}\left(\Gamma^{\prime}\right)$ such that $\operatorname{Opt}(\mathcal{I})=\operatorname{Opt}(\overline{\mathcal{I}})=\operatorname{Opt}\left(\mathcal{I}^{\prime}\right)=\operatorname{BLP}\left(\mathcal{I}^{\prime}\right)=\operatorname{BLP}(\overline{\mathcal{I}})$. The first two equalities will follow trivially from the construction of Γ^{\prime} and \mathcal{I}^{\prime}, the last equality holds by Lemma 24 below, while the key equality $\operatorname{Opt}\left(\mathcal{I}^{\prime}\right)=\operatorname{BLP}\left(\mathcal{I}^{\prime}\right)$ will follow from the fact that BLP solves $\operatorname{VCSP}\left(\Gamma^{\prime}\right)$ that we prove, using Theorem 18, in Theorem 27, The construction is inspired by [34], where a similar technique of "lifting" a language was used in a different context.

Let V be the set of variables of instance \mathcal{I}, and let

$$
\begin{equation*}
f_{\mathcal{I}}(x)=\sum_{t \in T} f_{t}\left(x_{v(t, 1)}, \ldots, x_{v\left(t, n_{t}\right)}\right) \quad \forall x: V \rightarrow D \tag{4}
\end{equation*}
$$

be its objective function. For the $(1, \infty)$-minimal instance $\overline{\mathcal{I}}$, the objective function is

$$
\begin{equation*}
f_{\overline{\mathcal{I}}}(x)=\sum_{t \in T} f_{t}\left(x_{v(t, 1)}, \ldots, x_{v\left(t, n_{t}\right)}\right)+\sum_{v \in V} u_{D_{v}}\left(x_{v}\right) \quad \forall x: V \rightarrow D \tag{5}
\end{equation*}
$$

Now let $D_{v}^{\prime}=\left\{(v, a) \mid a \in D_{v}\right\}$ be a unique copy of D_{v}. We now define a new language Γ^{\prime} over domain $D^{\prime}=\bigcup_{v \in V} D_{v}^{\prime}$ as follows:

$$
\Gamma^{\prime}=\bigcup_{t \in T}\left\{f_{t}^{\left\langle v(t, 1), \ldots, v\left(t, n_{t}\right)\right\rangle}, \operatorname{dom} f_{t}^{\left\langle v(t, 1), \ldots, v\left(t, n_{t}\right)\right\rangle}\right\} \cup \bigcup_{v \in V}\left\{u_{D_{v}^{\prime}}\right\} \cup\left\{=_{D^{\prime}}\right\}
$$

where functions $u_{D_{v}^{\prime}}$ are as defined above, $=D_{D^{\prime}}$ is the binary $\{0, \infty\}$-valued function corresponding to the equality relation, and, for an n-ary function f over D and variables $v_{1}, \ldots, v_{n} \in V$, we define function $f^{\left\langle v_{1}, \ldots, v_{n}\right\rangle}:\left(D^{\prime}\right)^{n} \rightarrow \overline{\mathbb{Q}}$ as follows:

$$
f^{\left\langle v_{1}, \ldots, v_{n}\right\rangle}(x)=\left\{\begin{array}{ll}
f(\hat{x}) & \text { if } x=\left(\left(v_{1}, \hat{x}_{1}\right), \ldots,\left(v_{n}, \hat{x}_{n}\right)\right) \\
\infty & \text { otherwise }
\end{array} \quad \forall x \in\left(D^{\prime}\right)^{n}\right.
$$

The above mentioned instance \mathcal{I}^{\prime} of $\operatorname{VCSP}\left(\Gamma^{\prime}\right)$ is obtained from $\overline{\mathcal{I}}$ by replacing each function f_{t} with $f_{t}^{\left\langle v(t, 1), \ldots, v\left(t, n_{t}\right)\right\rangle}$ and replacing each function $u_{D_{v}}$ with $u_{D_{v}^{\prime}}$.

It is straightforward to check that there is a one-to-one correspondence between the sets of feasible solutions to BLP relaxations for \mathcal{I}^{\prime} and $\overline{\mathcal{I}}$, and that this correspondence also preserves the values of solutions.

Lemma 24. We have $\operatorname{BLP}\left(\mathcal{I}^{\prime}\right)=\operatorname{BLP}(\overline{\mathcal{I}})$.
Lemma 25. If Γ has a cyclic fractional polymorphism of arity $m>1$ then Γ^{\prime} has the same property.
Proof. Let ω be a cyclic fractional polymorphism of Γ. Fix an arbitrary element $d^{\prime} \in D^{\prime}$. For each operation $g \in \operatorname{supp}(\omega)$, define the operation g^{\prime} on D^{\prime} as follows:

$$
g^{\prime}\left(x_{1}, \ldots, x_{m}\right)= \begin{cases}\left(v, g\left(\hat{x}_{1}, \ldots, \hat{x}_{m}\right)\right) & \text { if } x_{1}=\left(v, \hat{x}_{1}\right), \ldots, x_{m}=\left(v, \hat{x}_{m}\right) \text { for some } v \in V \\ d^{\prime} & \text { otherwise }\end{cases}
$$

Clearly, each operation g^{\prime} is cyclic. Consider the fractional operation ω^{\prime} on D^{\prime} such that $\omega\left(g^{\prime}\right)=$ $\omega(g)$ for all $g \in \operatorname{supp}(\omega)$. It is straightforward to check that ω^{\prime} is a fractional polymorphism of Γ^{\prime} 。

To prove Theorem 23, it remains to show that $\operatorname{Opt}\left(\mathcal{I}^{\prime}\right)=\operatorname{BLP}\left(\mathcal{I}^{\prime}\right)$. We will prove the more general fact that BLP solves $\operatorname{VCSP}\left(\Gamma^{\prime}\right)$. The properties of the language Γ^{\prime} that we use for this (apart from having a cyclic fractional polymorphism) are given in Definition 26.

4 Block-finite languages

Definition 26. A language Γ is called block-finite if its domain D can be partitioned into disjoint subsets $\left\{D_{v} \mid v \in V\right\}$ such that
(a) For any $a \in D_{v}$ with $v \in V$ there exists a polymorphism $g_{a} \in \mathcal{O}^{(1)}$ of Feas (Γ) such that $g_{a}(b)=a$ for all $b \in D_{v}$.
(b) For any n-ary function $f \in \Gamma$, the relation $\operatorname{dom} f$ (viewed as a function $D^{n} \rightarrow\{0, \infty\}$) belongs to Γ. Furthermore, the binary equality relation on D, denoted as $=_{D}: D^{2} \rightarrow\{0, \infty\}$, also belongs to Γ.
(c) Any n-ary function $f \in \Gamma-\left\{=_{D}\right\}$ satisfies $\operatorname{dom} f \subseteq D_{v_{1}} \times \ldots \times D_{v_{n}}$ for some $v_{1}, \ldots, v_{n} \in V$.

It is easy to see that the language Γ^{\prime} defined in the previous section is block-finite. It obviously has properties (b) and (c), and it has property (a) because the instance \mathcal{I}^{\prime} is $(1, \infty)$-minimal. Indeed, if $a=(v, d) \in D_{v}^{\prime}$ then, by definition, \mathcal{I} has a feasible solution $\sigma: V \rightarrow D$ with $\sigma(v)=d$. Define function g_{a} as follows: for each $a^{\prime}=\left(v^{\prime}, d^{\prime}\right) \in D^{\prime}$, set $g_{a}\left(a^{\prime}\right)=\left(v^{\prime}, \sigma\left(v^{\prime}\right)\right)$. It is easy to check that g_{a} has the required properties.

From now on, we forget about the original language Γ from the previous section and about the specific language Γ^{\prime} and work with an arbitrary block-finite language that has a cyclic fractional polymorphism of arity at least 2. For simplicity, we denote our language by Γ. Note that Γ is not necessarily a (rigid) core, but this property is not required in Theorem 18, By Theorem 18, in order to prove Theorem 23, it remains to show the following.

Theorem 27. Suppose that a block-finite language Γ admits a cyclic fractional polymorphism ν of arity at least 2. Then, for every $m \geq 2, \Gamma$ admits a symmetric fractional polymorphism of arity m.

In the rest of the paper we prove Theorem 27 ,

5 A graph of generalized operations

In this section we describe a basic tool that will be used for constructing new fractional polymorphisms, namely a graph of generalized operations introduced in 35].

Let $\mathcal{O}^{(m \rightarrow m)}$ be the set of mappings $\mathbf{g}: D^{m} \rightarrow D^{m}$ and let $\mathbb{1} \in \mathcal{O}^{(m \rightarrow m)}$ be the identity mapping. Consider a sequence x of m labelings $x \in\left[D^{n}\right]^{m}$; this means that $x=\left(x^{1}, \ldots, x^{m}\right)$ where $x^{i} \in D^{n}$. For an n-ary function f, we define $f^{m}(x)=\frac{1}{m}\left(f\left(x^{1}\right)+\ldots+f\left(x^{m}\right)\right)$. For a mapping $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right) \in \mathcal{O}^{(m \rightarrow m)}$, we also denote $x^{\mathbf{g} i}=g_{i}(x)$ for $i \in[m]$ and $\mathbf{g}(x)=\left(x^{\mathbf{g} 1}, \ldots, x^{\mathbf{g m}}\right)$. A probability distribution ρ over $\mathcal{O}^{(m \rightarrow m)}$ will be called a (generalized) fractional polymorphism of Γ of arity $m \rightarrow m$ if each function $f \in \Gamma$ satisfies

$$
\begin{equation*}
\sum_{\mathbf{g} \in \operatorname{supp}(\rho)} \rho(\mathbf{g}) f^{m}(\mathbf{g}(x)) \leq f^{m}(x) \quad \forall x \in[\operatorname{dom} f]^{m} \tag{6}
\end{equation*}
$$

We will sometimes represent fractional polymorphisms of arity m and generalised fractional polymorphisms of arity $m \rightarrow m$ as vectors in $\mathbb{R}^{\mathcal{O}^{(m)}}$ and $\mathbb{R}^{\mathcal{O}^{(m \rightarrow m)}}$, respectively. For $g \in \mathcal{O}^{(m)}$ and $\mathbf{g} \in \mathcal{O}^{(m \rightarrow m)}$, we denote the corresponding characteristic vectors by χ_{g} and $\chi_{\mathbf{g}}$ respectively. It can be checked that a generalized fractional polymorphism ρ of arity $m \rightarrow m$ can be converted into a fractional polymorphism ρ^{\prime} of arity m, as follows:

$$
\rho^{\prime}=\sum_{\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right) \in \operatorname{supp}(\rho)} \frac{\rho(\mathbf{g})}{m}\left(\chi_{g_{1}}+\ldots+\chi_{g_{m}}\right)
$$

We will use the following construction in several parts of the proof. Assume that we have some probability distribution ω with a finite support such that (i) each element $s \in \operatorname{supp}(\omega)$ corresponds to an element of $\mathcal{O}^{(m \rightarrow m)}$ denoted as $\mathbb{1}^{s}$, and (ii) this distribution satisfies the following property for each $f \in \Gamma$:

$$
\begin{equation*}
\sum_{s \in \operatorname{supp}(\omega)} \omega(s) f^{m}\left(\mathbb{1}^{s}(x)\right) \quad \leq f^{m}(x) \quad \forall x \in[\operatorname{dom} f]^{m} \tag{7a}
\end{equation*}
$$

Condition (7a) then can be rephrased as saying that vector $\sum_{s \in \operatorname{supp}(\omega)} \omega(s) \chi_{\mathbb{1}^{s}}$ is a fractional polymorphism of Γ of arity $m \rightarrow m$. We will also consider the following condition:

$$
\begin{equation*}
\sum_{s \in \operatorname{supp}(\omega)} \omega(s) f\left(x^{\mathbb{1}^{s} i}\right) \leq f^{m-1}\left(x_{-i}\right) \quad \forall x \in[\operatorname{dom} f]^{m}, i \in[m] \tag{7b}
\end{equation*}
$$

where $x_{-i} \in[\operatorname{dom} f]^{m-1}$ denotes the sequence of $m-1$ labelings obtained from x by removing the i-th labeling. Note that condition (7b) implies (7a) (since summing (7b) over $i \in[m]$ and
dividing by m gives (7a1)). The second condition will be used only in one of the results; unless noted otherwise, ω is only assumed to satisfy (7a).

For a mapping $\mathbf{g} \in \mathcal{O}^{(m \rightarrow m)}$ denote $\mathbf{g}^{s}=\mathbb{1}^{s} \circ \mathbf{g}$. (This notation is consistent with the earlier one since $\mathbb{1}^{s} \circ \mathbb{1}=\mathbb{1}^{s}$ for any $\left.s\right)$. We use $\mathbf{g}^{s_{1} \ldots s_{k}}$ to denote $\left(\ldots\left(\mathbf{g}^{s_{1}}\right) \cdots\right)^{s_{k}}=\mathbb{1}^{s_{k}} \circ \ldots \circ \mathbb{1}^{s_{1}} \circ \mathbf{g}$. Next, define a directed graph (\mathbb{G}, E) as follows:

- $\mathbb{G}=\left\{\mathbb{1}^{s_{1} \ldots s_{k}} \mid s_{1}, \ldots, s_{k} \in \operatorname{supp}(\omega), k \geq 0\right\}$ is the set of all mappings that can be obtained from $\mathbb{1}$ by applying operations from $\operatorname{supp}(\omega)$;
- $E=\left\{\left(\mathbf{g}, \mathbf{g}^{s}\right) \mid \mathbf{g} \in \mathbb{G}, s \in \operatorname{supp}(\omega)\right\}$.

This graph can be decomposed into strongly connected components, yielding a directed acyclic graph (DAG) on these components. We define $\operatorname{Sinks}(\mathbb{G}, E)$ to be the set of those strongly connected components $\mathbb{H} \subseteq \mathbb{G}$ of (\mathbb{G}, E) that are sinks of this DAG (i.e. have no outgoing edges). Any DAG has at least one sink, therefore $\operatorname{Sinks}(\mathbb{G}, E)$ is non-empty. We denote $\mathbb{G}^{*}=\bigcup_{\mathbb{H} \in \operatorname{Sinks}(\mathbb{G}, E)} \mathbb{H} \subseteq \mathbb{G}$ and Range $_{n}\left(\mathbb{G}^{*}\right)=\left\{\mathbf{g}^{*}(x) \mid \mathbf{g}^{*} \in \mathbb{G}^{*}, x \in\left[D^{n}\right]^{m}\right\}$. Also, for a tuple $\hat{x} \in D^{m}$ we will denote $\mathbb{G}(\hat{x})=\{\mathbf{g}(\hat{x}) \mid \mathbf{g} \in \mathbb{G}\} \subseteq D^{m}$.

The following facts can easily be shown (see Appendix A).
Proposition 28. (a) If $\mathbf{g}, \mathbf{h} \in \mathbb{G}$ then $\mathbf{h} \circ \mathbf{g} \in \mathbb{G}$. Moreover, if $\mathbf{g} \in \mathbb{H} \in \operatorname{Sinks}(\mathbb{G}, E)$ then $\mathbf{h} \circ \mathbf{g} \in \mathbb{H}$. (b) Consider connected components $\mathbb{H}^{*}, \mathbb{H} \in \operatorname{Sinks}(\mathbb{G}, E)$. For each $\mathbf{g}^{*} \in \mathbb{H}^{*}$ there exists $\mathbf{g} \in \mathbb{H}$ satisfying $\mathbf{g} \circ \mathbf{g}^{*}=\mathbf{g}^{*}$.
(c) For each $x \in$ Range $_{n}\left(\mathbb{G}^{*}\right)$ and $\mathbb{H} \in \operatorname{Sinks}(\mathbb{G}, E)$ there exists $\mathbf{g} \in \mathbb{H}$ satisfying $\mathbf{g}(x)=x$.

Proposition 29. Suppose that $\hat{x} \in \operatorname{Range}_{1}\left(\mathbb{G}^{*}\right)$ and $x \in \mathbb{G}(\hat{x})$.
(a) There holds $x \in \operatorname{Range}_{1}\left(\mathbb{G}^{*}\right)$.
(b) There exists $\mathbf{g} \in \mathbb{G}$ such that $\mathbf{g}(x)=\hat{x}$.

We now state main theorems related to the graph (\mathbb{G}, E), they are also proved in Appendix A.
Theorem 30. Let $\widehat{\mathbb{G}}$ be a subset of \mathbb{G} satisfying the following property: for each $\mathbf{g} \in \mathbb{G}$ there exists a path in (\mathbb{G}, E) from \mathbf{g} to some node $\widehat{\mathbf{g}} \in \mathbb{\mathbb { G }}$. Then there exists a fractional polymorphism ρ of Γ of arity $m \rightarrow m$ with $\operatorname{supp}(\rho)=\widehat{\mathbb{G}}$.

We will use this result either for the set $\widehat{\mathbb{G}}=\mathbb{G}$ or for the set $\widehat{\mathbb{G}}=\mathbb{G}^{*}$; clearly, both choices satisfy the condition of the theorem. The first choice gives that Γ admits a fractional polymorphism ρ with $\operatorname{supp}(\rho)=\mathbb{G}$; therefore, if $\mathbf{g} \in \mathbb{G}, f \in\langle\Gamma\rangle$ and $x \in[\operatorname{dom} f]^{m}$ then $\mathbf{g}(x) \in[\operatorname{dom} f]^{m}$.

Theorem 31. Consider function $f \in\langle\Gamma\rangle$ of arity n and labelings $x \in \operatorname{Range}_{n}\left(\mathbb{G}^{*}\right) \cap[\operatorname{dom} f]^{m}$.
(a) There holds $f^{m}(\mathbf{g}(x))=f^{m}(x)$ for any $\mathbf{g} \in \mathbb{G}$.
(b) Suppose that condition (7b) holds. Then there exists a probability distribution λ over \mathbb{G}^{*} (which is independent of f, x) such that $f_{i^{\prime}}^{\lambda}(x)=f_{i^{\prime \prime}}^{\lambda}(x)$ for any $i^{\prime}, i^{\prime \prime} \in[m]$ where

$$
\begin{equation*}
f_{i}^{\lambda}(x)=\sum_{\mathbf{g} \in \mathbb{G}^{*}} \lambda_{\mathbf{g}} f\left(x^{\mathbf{g} i}\right) \tag{8}
\end{equation*}
$$

6 Constructing special functions

In this section, we construct special functions in $\langle\Gamma\rangle$ that play an important role in the proof of Theorem 27

For a sequence $x=\left(x^{1}, \ldots, x^{m}\right) \in D^{m}$ and a permutation π of $[m]$, we define $x^{\pi}=\left(x^{\pi(1)}, \ldots, x^{\pi(m)}\right)$. Similarly, for a mapping $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right) \in \mathcal{O}^{(m \rightarrow m)}$ define $\mathbf{g}^{\pi}=\left(g_{\pi(1)}, \ldots, g_{\pi(m)}\right)$. Let Ω be the set of mappings $\mathbf{g} \in \mathcal{O}^{(m \rightarrow m)}$ that satisfy the following condition:

- $\mathbf{g}^{\pi}(x)=\mathbf{g}\left(x^{\pi}\right)$ for any $x \in D^{m}$ and any permutation π of $[m]$.

Equivalently, $g_{\pi(i)}(x)=g_{i}\left(x^{\pi}\right)$ for any $i \in[m]$.
Proposition 32. If $\mathbf{g}, \mathbf{h} \in \Omega$, then $\mathbf{g} \circ \mathbf{h} \in \Omega$.
Proof. Just note that

$$
(\mathbf{g} \circ \mathbf{h})^{\pi}(x)=\mathbf{g}^{\pi}(\mathbf{h}(x))=\mathbf{g}\left(\mathbf{h}^{\pi}(x)\right)=\mathbf{g}\left(\mathbf{h}\left(x^{\pi}\right)\right)=(\mathbf{g} \circ \mathbf{h})\left(x^{\pi}\right)
$$

for any $x \in D^{m}$.
Consider all generalized fractional polymorphisms ω of Γ of arity $m \rightarrow m$ satisfying $\operatorname{supp}(\omega) \subseteq$ Ω. At least one such polymorphism exists, namely $\omega=\chi_{\mathbb{1}}$ where $\mathbb{1} \in \mathcal{O}^{(m \rightarrow m)}$ is the identity mapping. Among such ω 's, pick one with the largest support. It exists due to the following observation: if $\omega^{\prime}, \omega^{\prime \prime}$ are generalized fractional polymorphisms of Γ of arity $m \rightarrow m$ then so is the vector $\omega=\frac{1}{2}\left[\omega^{\prime}+\omega^{\prime \prime}\right]$, and $\operatorname{supp}(\omega)=\operatorname{supp}\left(\omega^{\prime}\right) \cup \operatorname{supp}\left(\omega^{\prime \prime}\right)$.

Let us apply the construction of Section 5 starting with the chosen distribution ω, where for $\mathbf{g} \in \operatorname{supp}(\omega)$ we define operation $\mathbb{1}^{\mathbf{g}} \in \mathcal{O}^{(m \rightarrow m)}$ via $\mathbb{1}^{\mathbf{g}}=\mathbf{g}$. Let the resulting graph be (\mathbb{G}, E). It is straightforward to check that condition (7a) holds: it simply expresses the fact that ω is a generalized fractional polymorphsism of Γ of arity $m \rightarrow m$.

Proposition 33. It holds that $\operatorname{supp}(\omega)=\mathbb{G}$.
Proof. If $\mathbf{g} \in \operatorname{supp}(\omega)$ then $\mathbf{g}=\mathbb{1}^{\mathbf{g}} \in \mathbb{G}$. Conversely, suppose that $\mathbf{g} \in \mathbb{G}$. We can write $\mathbf{g}=$ $\mathbb{1}^{\mathbf{g}_{k}} \circ \ldots \circ \mathbb{1}^{\mathrm{g}_{1}}=\mathrm{g}_{k} \circ \cdots \circ \mathrm{~g}_{1}$ with $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{k} \in \operatorname{supp}(\omega) \subseteq \Omega$. Since Ω is closed under composition by Proposition [32, we get $\mathrm{g} \in \Omega$. By Theorem 30 there exists a generalized fractional polymorphism ρ with $\operatorname{supp}(\rho)=\mathbb{G}$, and so $\mathbf{g} \in \operatorname{supp}(\rho)$. By maximality of ω we get $\mathbf{g} \in \operatorname{supp}(\omega)$.

In the remainder of this section we prove the following theorem.
Theorem 34. For any $\hat{x} \in D^{m}$ there exists a function $f \in\langle\Gamma\rangle$ of arity m with $\arg \min f=\mathbb{G}(\hat{x})$.
Proof. Let Γ^{+}be the set of pairs (f, x) with $f \in \Gamma$ and $x \in[\operatorname{dom} f]^{m}$. Let $\Omega^{\prime} \subseteq \Omega$ be the set of mappings $\mathbf{g} \in \Omega$ that satisfy $\mathbf{g}(x) \in[\operatorname{dom} f]^{m}$ for all $(f, x) \in \Gamma^{+}$. Note that $\mathbb{G}=\operatorname{supp}(\omega) \subseteq \Omega^{\prime}$. By the choice of ω, the following system does not have a solution with rational $\rho \geq 0$:

$$
\begin{align*}
& \sum_{\mathbf{g} \in \Omega^{\prime}} \rho(\mathbf{g}) f^{m}(x)-\sum_{\mathbf{g} \in \Omega^{\prime}} \rho(\mathbf{g}) f^{m}(\mathbf{g}(x)) \geq 0 \quad \forall(f, x) \in \Gamma^{+} \tag{10a}\\
& \sum_{\mathbf{g} \in \Omega^{\prime}-\mathbb{G}}-\rho(\mathbf{g})<0 \tag{10b}
\end{align*}
$$

Next, we use the following well-known result (see, e.g. [44]).
Lemma 35 (Farkas Lemma). Let A be a $p \times q$ matrix and b be a p-dimensional vector. Then exactly one of the following is true:

- There exists $\lambda \in \mathbb{R}^{q}$ such that $A \lambda=b$ and $\lambda \geq 0$.
- There exists $\mu \in \mathbb{R}^{p}$ such that $\mu^{T} A \geq 0$ and $\mu^{T} b<0$.

If A and b are rational then λ and μ can also be chosen in \mathbb{Q}^{q} and \mathbb{Q}^{p}, respectively.
By this lemma, the following system has a solution with rational $\lambda \geq 0$:

$$
\begin{array}{rlrl}
\sum_{(f, x) \in \Gamma^{+}} \lambda(f, x)\left(f^{m}(x)-f^{m}(\mathbf{g}(x))\right. & =0 & \forall \mathbf{g} \in \mathbb{G} \\
\sum_{(f, x) \in \Gamma^{+}} \lambda(f, x)\left(f^{m}(x)-f^{m}(\mathbf{g}(x))=-1\right. & \forall \mathbf{g} \in \Omega^{\prime}-\mathbb{G} \tag{11b}
\end{array}
$$

We will now define several instances of $\operatorname{VCSP}(\Gamma)$ where it will be convenient to use constraints with rational positive weights; these weights can always be made integer by multiplying the instances by an appropriate positive integer, which would not affect the reasoning, but make notation cumbersome.

We will define a Γ-instance \mathcal{I} with $m|D|^{m}$ variables $\mathcal{V}=\left\{(i, z) \mid i \in[m], z \in D^{m}\right\}$. The labelings $\mathcal{V} \rightarrow D$ for this instance can be identified with mappings $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right) \in \mathcal{O}^{(m \rightarrow m)}$, if we define $\mathbf{g}(i, z)=g_{i}(z)$ for the coordinate $(i, z) \in \mathcal{V}$. We define the cost function of \mathcal{I} as follows:

$$
\begin{equation*}
f_{\mathcal{I}}(\mathbf{g})=\sum_{(f, x) \in \Gamma^{+}, \lambda(f, x) \neq 0} \lambda(f, x) f^{m}(\mathbf{g}(x)) \quad \forall \mathbf{g} \in \mathcal{O}^{(m \rightarrow m)} \tag{12}
\end{equation*}
$$

From (11) we get

$$
\begin{align*}
f_{\mathcal{I}}(\mathbb{1})=f_{\mathcal{I}}(\mathbf{g})<\infty & \forall \mathbf{g} \in \mathbb{G} \tag{13a}\\
f_{\mathcal{I}}(\mathbb{1})<f_{\mathcal{I}}(\mathbf{g})<\infty & \forall \mathbf{g} \in \Omega^{\prime}-\mathbb{G} \tag{13b}
\end{align*}
$$

Let T be the set of tuples (i, j, x, y) where $i, j \in[m], x, y \in D^{m}$ and $i=\pi(j), y=x^{\pi}$ for some permutation π of $[m]$. Define another Γ-instance \mathcal{I}^{\prime} with variables \mathcal{V} and the cost function

$$
\begin{equation*}
f_{\mathcal{I}^{\prime}}(\mathbf{g})=f_{\mathcal{I}}(\mathbf{g})+\sum_{(i, j, x, y) \in T}=_{D}(\mathbf{g}(i, x), \mathbf{g}(j, y))+\sum_{(f, x) \in \Gamma^{+}}(\operatorname{dom} f)^{m}(\mathbf{g}(x)) \quad \forall \mathbf{g} \in \mathcal{O}^{(m \rightarrow m)} \tag{14}
\end{equation*}
$$

where $={ }_{D}$ is the equality relation on D. The instance \mathcal{I}^{\prime} is a Γ instance because of condition (b) in the definition of a block-finite language. Note that the second term in (14) for $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right)$ equals 0 if $g_{\pi(j)}(x)=g_{j}\left(x^{\pi}\right)$ for all $j \in[m], x \in D^{m}$ and permutation π of $[m]$. Otherwise the second term equals ∞. In other words, the second term is zero if and only if mapping \mathbf{g} satisfies condition (9), i.e. if and only if $\mathbf{g} \in \Omega$. Similarly, the third term in (14) is zero if $\mathbf{g} \in \Omega^{\prime}$, and ∞ if $\mathrm{g} \in \Omega-\Omega^{\prime}$. We obtain that

$$
\begin{array}{ll}
f_{\mathcal{I}^{\prime}}(\mathbb{1})=f_{\mathcal{I}^{\prime}}(\mathbf{g})<\infty & \forall \mathbf{g} \in \mathbb{G} \\
f_{\mathcal{I}^{\prime}}(\mathbb{1})<f_{\mathcal{I}^{\prime}}(\mathbf{g})<\infty & \forall \mathbf{g} \in \Omega^{\prime}-\mathbb{G} \\
f_{\mathcal{I}^{\prime}}(\mathbf{g})=\infty & \forall \mathbf{g} \in \mathcal{O}^{(m \rightarrow m)}-\Omega^{\prime} \tag{15c}
\end{array}
$$

These equations imply that $\arg \min f_{\mathcal{I}^{\prime}}=\mathbb{G}$. We can finally prove Theorem 34. We define function $f \in\langle\Gamma\rangle$ with m variables as follows:

$$
f(x)=\min _{\mathbf{g} \in \mathcal{O}^{(m \rightarrow m)}: \mathbf{g}(\hat{x})=x} f_{\mathcal{I}^{\prime}}(\mathbf{g}) \quad \forall x \in D^{m}
$$

Consider tuple $x \in D^{m}$. We have $x \in \arg \min f$ if and only if there exists $\mathbf{g} \in \arg \min f=\mathbb{G}$ with $\mathbf{g}(\hat{x})=x$. The latter condition holds if and only if $x \in \mathbb{G}(\hat{x})$.

7 Proof of Theorem 27

We will prove the following result.
Theorem 36. Assume that one of the following holds:
(a) $m=2$ and Γ admits a cyclic fractional polymorphism of arity at least 2.
(b) $m \geq 3$ and Γ admits a symmetric fractional polymorphism of arity $m-1$.

Let $f \in\langle\Gamma\rangle$ be a function of arity m with $\arg \min f=\mathbb{G}(\hat{x})$, where $\hat{x} \in$ Range $_{1}\left(\mathbb{G}^{*}\right)$. Then for every distinct pair of indices $i, j \in[m]$ there exists $x \in \arg \min f$ with $x_{i}=x_{j}$.

We claim that this will imply Theorem 27. Indeed, we can use the following observation.
Proposition 37. Suppose that $\hat{x} \in$ Range $_{1}\left(\mathbb{G}^{*}\right)$, and there exists $x \in \mathbb{G}(\hat{x})$ with $x_{i}=x_{j}$ for some $i, j \in[m]$. Then $\hat{x}_{i}=\hat{x}_{j}$.

Proof. By Proposition 29(b), there exists $\mathbf{g} \in \mathbb{G}$ such that $\mathbf{g}(x)=\hat{x}$. Let π be the permutation of $[m]$ that swaps i and j. By the choice of x, we have $x^{\pi}=x$. We can write $\hat{x}_{j}=g_{j}(x)=g_{\pi(i)}(x)=$ $g_{i}\left(x^{\pi}\right)=g_{i}(x)=\hat{x}_{i}$. This proves the claim.

Corollary 38. If the precondition of Theorem 36 holds, then Γ admits a symmetric fractional polymorphism of arity m.

Proof. Using Theorem 34, Theorem 36, and Proposition 37, we conclude that for any $\hat{x} \in$ Range $_{1}\left(\mathbb{G}^{*}\right)$ we have $\hat{x}_{1}=\ldots=\hat{x}_{m}$. Indeed, by Theorem 34 there exists a function $f \in\langle\Gamma\rangle$ with $\mathbb{G}(\hat{x})=$ $\arg \min f$. Theorem 36 implies that the precondition of Proposition 37 holds for any distinct pair of indices $i, j \in[m]$, and therefore $\hat{x}_{i}=\hat{x}_{j}$.

By Theorem 30, there exists a generalized fractional polymorphism ρ of Γ of arity $m \rightarrow m$ with $\operatorname{supp}(\rho)=\mathbb{G}^{*}$. Vector $\sum_{\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{G}^{*}} \rho(\mathbf{g}) \frac{1}{m}\left[\chi_{g_{1}}+\ldots+\chi_{g_{m}}\right]$ is then an m-ary fractional polymorphism of Γ; all operations in its support are symmetric because $\mathbb{G}^{*} \subseteq \Omega$ and $\hat{x}_{1}=\ldots=\hat{x}_{m}$ for any $\hat{x} \in \operatorname{Range}_{1}\left(\mathbb{G}^{*}\right)$.

It remains to prove Theorem [36. A proof of parts (a) and (b) of Theorem 36 is given in Sections 7.1 and 7.2, respectively. In both parts we will need the following result; it exploits the fact Γ is block-finite.

Lemma 39. Suppose that $\hat{x} \in \operatorname{Range}_{1}\left(\mathbb{G}^{*}\right), x \in \mathbb{G}(\hat{x})$ and f is an m-ary function in $\langle\Gamma\rangle$ with $\arg \min f=\mathbb{G}(\hat{x})$. Then $(a, \ldots, a) \in \operatorname{dom} f$ for any $a \in\left\{x_{1}, \ldots, x_{m}\right\}$.

Proof. We say that a tuple $z \in D^{m}$ is proper if $z_{1}, \ldots, z_{m} \in D_{v}$ for some $v \in V$. We will show that x is proper; the lemma will then follow from condition (a) from the definition of a block-finite language and the fact that $x \in \operatorname{dom} f$.

Fix an arbitrary element $a \in D$, and define mapping $\mathbf{g} \in \mathcal{O}^{(m \rightarrow m)}$ as follows:

$$
\mathbf{g}(z)= \begin{cases}z & \text { if } z \text { is proper } \\ (a, \ldots, a) & \text { otherwise }\end{cases}
$$

We claim that $\mathbf{g} \in \Omega$. Indeed, consider $z \in D^{m}$. If $\mathbf{g}(z)=z$, the condition (9) holds trivially. Otherwise, we can easily check that

$$
\mathbf{g}^{\pi}(z)=(a, \ldots, a)^{\pi}=(a, \ldots, a)=\mathbf{g}\left(z^{\pi}\right)
$$

and so the condition (9) holds either way.
Let us now show that the vector $\rho=\chi_{\mathbf{g}}$ is a generalized fractional polymorphism of Γ of arity $m \rightarrow m$. Checking inequality (6) for binary equality relation $f=\left(=_{D}\right)$ is straighforward. Consider function $f \in \Gamma-\left\{=_{D}\right\}$. Since Γ is block-finite, we have $\operatorname{dom} f \subseteq D_{v_{1}} \times \ldots \times D_{v_{n}}$ for some $v_{1}, \ldots, v_{n} \in V$. This implies that for any $x \in[\operatorname{dom} f]^{m}$ we have $\mathbf{g}(x)=x$ (this can be checked coordinate-wise). Therefore, we have an equality in (6).

By the results above we obtain that $\mathrm{g} \in \mathbb{G}$. We are now ready to prove that x is proper. Suppose that this is not true, then $\mathbf{g}(x)=(a, \ldots, a)$. We have $\hat{x} \in$ Range $_{1}\left(\mathbb{G}^{*}\right)$ and $x \in \mathbb{G}(\hat{x})$, so by Proposition 29(a) we conclude that $x \in \operatorname{Range}_{1}\left(\mathbb{G}^{*}\right)$. We also have $(a, \ldots, a) \in \mathbb{G}(x)$, so Proposition 37 gives that $x_{1}=\ldots=x_{m}$. This means that x is proper, which contradicts the earlier assumption.

7.1 Case $m=2$: proof of Theorem 36(a)

We start with the following observation.
Proposition 40. If $(a, b) \in \mathbb{G}(\hat{x})$ then $(b, a) \in \mathbb{G}(\hat{x})$.
Proof. Consider mapping $\overline{\mathbb{1}}=\left(e_{2}^{2}, e_{2}^{1}\right)$, where $e_{2}^{k} \in \mathcal{O}^{(2)}$ is the projection to the the k-th variable. It can be checked that $\overline{\mathbb{1}} \in \Omega$, and $\chi_{\overline{1}}$ is a generalized fractional polymorphism of Γ of arity $2 \rightarrow 2$. Therefore, $\overline{\mathbb{1}} \in \mathbb{G}$.

We have $(a, b)=\mathbf{g}(\hat{x})$ for some $\mathbf{g} \in \mathbb{G}$. We also have $(b, a)=(\overline{\mathbb{1}} \circ \mathbf{g})(\hat{x})$ and $\overline{\mathbb{1}} \circ \mathbf{g} \in \mathbb{G}$, and therefore $(b, a) \in \mathbb{G}(\hat{x})$.

Denote $A=\left\{x_{1} \mid x \in \mathbb{G}(\hat{x})\right\} \subseteq D$, and let a be an element in A that minimizes $f(a, a)$. Note that $(a, a) \in \operatorname{dom} f$ by Lemma 39, Condition $\arg \min f=\mathbb{G}(\hat{x})$ and Proposition 40 imply that $(a, b),(b, a) \in \arg \min f$ for some $b \in A$. By assumption, Γ admits a cyclic fractional polymorphism ν of some arity $r \geq 2$. Let us apply it to tuples $(a, b),(b, a),(a, a), \ldots,(a, a)$, where (a, a) is repeated $r-2$ times:

$$
\begin{equation*}
\sum_{h \in \operatorname{supp}(\nu)} \nu(h) f(h(a, b, a, \ldots, a), h(b, a, a, \ldots, a)) \leq \frac{2}{r} f(a, b)+\frac{r-2}{r} f(a, a) \tag{16}
\end{equation*}
$$

We have $h(a, b, a, \ldots, a)=h(b, a, a, \ldots, a)$ since ν is cyclic; denote this element as a_{h}. We claim that $a_{h} \in A$ for any $h \in \operatorname{supp}(\nu)$. Indeed, consider a unary function $u_{A}\left(x_{1}\right)=\min _{x_{2}} f\left(x_{1}, x_{2}\right)$. It can be checked that $\arg \min u_{A}=A$; the existence of such function in $\langle\Gamma\rangle$ implies the claim.

By the choice of a we have $f(a, a) \leq f\left(a_{h}, a_{h}\right)$ for any $h \in \operatorname{supp}(\nu)$. From (16) we thus get

$$
\begin{equation*}
f(a, a) \leq \frac{2}{r} f(a, b)+\frac{r-2}{r} f(a, a) \tag{17}
\end{equation*}
$$

and so $f(a, a) \leq f(a, b)$, implying $(a, a) \in \arg \min f$.

7.2 Case $m \geq 3$: proof of Theorem 36(b)

We define binary function $\bar{f} \in\langle\Gamma\rangle$ as follows: $\bar{f}(a, b)=\min _{x \in D^{m}: x_{i}=a, x_{j}=b} f(x)$.
If $z=\left(z_{1}, \ldots, z_{m}\right)$ is some sequence of size m and k is an index in $\left[m\right.$] then we will use z_{-k} to denote the subsequence of z of size $m-1$ obtained by deleting the k-th element.

Let $\tilde{\omega}$ be a symmetric fractional polymorphism of Γ of arity $m-1$. Following the construction in [35], we define graph $(\tilde{\mathbb{G}}, \tilde{E})$ as described in Section [5, starting with the distribution $\tilde{\omega}$ where for $s \in \operatorname{supp}(\tilde{\omega})$ mapping $\mathbb{1}^{s} \in \mathcal{O}^{(m \rightarrow m)}$ is defined as follows:

$$
\mathbb{1}^{s}(x)=\left(s\left(x_{-1}\right), \ldots, s\left(x_{-m}\right)\right) \quad \forall x \in D^{m}
$$

It can be checked that if $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right) \in \tilde{\mathbb{G}}$ and $s \in \operatorname{supp}(\tilde{\omega})$ then $\mathbf{g}^{s}=\left(s \circ \mathbf{g}_{-1}, \ldots, s \circ \mathbf{g}_{-m}\right)$. It can also be checked that condition (7b) holds for any $f \in \Gamma$: it corresponds to the fractional polymorphism $\tilde{\omega}$ applied to $m-1$ tuples $x_{-i} \in[\operatorname{dom} f]^{m-1}$.
Proposition 41. There holds $\widetilde{\mathbb{G}} \subseteq \mathbb{G}$.
Proof. We claim that $\mathbb{1}^{s} \in \Omega$ for any $s \in \operatorname{supp}(\tilde{\omega})$. Indeed, for a permutation π of $[m]$ and $x \in D^{m}$ we can write

$$
\mathbb{1}^{s}\left(x^{\pi}\right)=\left(s\left(x_{-1}^{\pi}\right), \ldots, s\left(x_{-m}^{\pi}\right)\right)=\left(s\left(x_{-\pi^{-1}(1)}\right), \ldots, s\left(x_{-\pi^{-1}(m)}\right)\right)=\left(\mathbb{1}^{s}\right)^{\pi}(x) .
$$

Since each $\mathbf{g} \in \tilde{\mathbb{G}}$ has the form $\mathbf{g}=\mathbb{1}^{s_{k}} \circ \ldots \circ \mathbb{1}^{s_{1}}$ for some $s_{1}, \ldots, s_{k} \in \operatorname{supp}(\tilde{\omega})$ and Ω is closed under composition by Proposition 32, we get $\tilde{\mathbb{G}} \subseteq \Omega$.

Applying Theorem 30 (with $\widetilde{\mathbb{G}}$ as both \mathbb{G} and $\widehat{\mathbb{G}}$), we obtain a generalized fractional polymorphism $\tilde{\rho}$ with $\operatorname{supp}(\tilde{\rho})=\widetilde{\mathbb{G}} \subseteq \Omega$. By maximality of ω we get the desired $\tilde{\mathbb{G}}=\operatorname{supp}(\tilde{\rho}) \subseteq \operatorname{supp}(\omega)=$ \mathbb{G}.

For each $\mathbf{g} \in \tilde{\mathbb{G}}$ and $k \in[m]$ let us define labeling $x^{[g k]} \in D^{2}$ as follows: set $x=\mathbf{g}(\hat{x})$, and then

- If $k=i$, set $x^{[\boldsymbol{g} k]}=\left(x_{i}, x_{j}\right)$. We have $x^{[\boldsymbol{g} \boldsymbol{i}]} \in \arg \min \bar{f}$ since $x \in \mathbb{G}(\hat{x})=\arg \min f$.
- If $k=j$, set $x^{[g k]}=\left(x_{j}, x_{i}\right)$.
- If $k \neq i$ and $k \neq j$, set $x^{[g k]}=\left(x_{k}, x_{k}\right)$. We have $x^{[\boldsymbol{g} k]} \in \operatorname{dom} \bar{f}$ by Lemma 39,

Proposition 42. Suppose that $\mathbf{g} \in \tilde{\mathbb{G}}$ and $\mathbf{g}^{s}=\mathbf{h}$ where $s \in \operatorname{supp}(\tilde{\omega})$ (so that $\mathbf{h} \in \tilde{\mathbb{G}}$). Then

$$
\mathbb{1}^{s}\left(x^{[\mathbf{g} 1]}, \ldots, x^{[\mathbf{g} m]}\right)=\left(x^{[\mathbf{h} 1]}, \ldots, x^{[\mathbf{h} m]}\right) .
$$

Proof. Denote $x=\mathbf{g}(\hat{x})$ and $y=\mathbf{h}(\hat{x})$. We have $y=\mathbb{1}^{s}(x)$, or $y_{k}=s\left(x_{-k}\right)$ for any $k \in[m]$. Also,

$$
x^{[\mathbf{g} k]}=\left\{\begin{array}{ll}
\left(x_{i}, x_{j}\right) & \text { if } k=i \\
\left(x_{j}, x_{i}\right) & \text { if } k=j \\
\left(x_{k}, x_{k}\right) & \text { if } k \neq i \text { and } k \neq j
\end{array} \quad x^{[\mathbf{h} k]}= \begin{cases}\left(y_{i}, y_{j}\right) & \text { if } k=i \\
\left(y_{j}, y_{i}\right) & \text { if } k=j \\
\left(y_{k}, y_{k}\right) & \text { if } k \neq i \text { and } k \neq j\end{cases}\right.
$$

It can be checked coordinate-wise that $x^{[\mathbf{h} k]}=s\left(\left(x^{[\mathrm{g} 1]}, \ldots, x^{[\mathrm{g} m]}\right)_{-k}\right)$ for any $k \in[m]$. This gives the claim.
Denote $\tilde{\mathbb{G}}^{*}=\bigcup_{\mathbb{H} \in \operatorname{Sinks}(\tilde{\mathbb{G}}, \tilde{E})} \mathbb{H} \subseteq \tilde{\mathbb{G}}$. Let us fix an arbitrary $\tilde{\mathbf{g}} \in \tilde{\mathbb{G}}^{*}$, and define $\tilde{x}=\left(x^{[\tilde{\mathbf{g}} 1]}, \ldots, x^{[\tilde{\mathbf{g}} m]}\right) \in$ $\left[D^{2}\right]^{m}$.
Proposition 43. For any $\mathbf{g} \in \tilde{\mathbb{G}}$ there holds $\mathbf{g} \circ \tilde{\mathbf{g}} \in \tilde{\mathbb{G}}$ and $\mathbf{g}(\tilde{x})=\left(x^{[(\mathbf{g} \circ \tilde{\mathbf{o}}) 1]}, \ldots, x^{[(\mathbf{g} \circ \tilde{\mathbf{g}}) m]}\right)$.

Proof. The first claim is by Proposition [28(a); let us show the second one. Let $d(\mathbb{1}, \mathbf{g})$ be the shortest distance from $\mathbb{1}$ to \mathbf{g} in the graph $(\tilde{\mathbb{G}}, \tilde{E})$. (By the definition of this graph, we have $0 \leq d(\mathbb{1}, \mathbf{g})<\infty$ for any $\mathbf{g} \in \tilde{\mathbb{G}}$, and $\mathbb{1} \in \tilde{\mathbb{G}}$.) We will use induction on $d(\mathbb{1}, \mathbf{g})$. The base case $d(\mathbb{1}, \mathbf{g})=0$ (i.e. $\mathbf{g}=\mathbb{1}$) holds by construction. Suppose that the claim holds for all mappings $\mathbf{g} \in \mathbb{G}$ with $d(\mathbb{1}, \mathbf{g})_{\tilde{\mathbb{G}}}=k \geq 0$, and consider mapping $\mathbf{h} \in \tilde{\mathbb{G}}$ with $d(\mathbb{1}, \mathbf{h})=k+1$. There must exist mapping $\mathbf{g} \in \mathbb{G}$ and operation $s \in \operatorname{supp}(\tilde{\omega})$ such that $d(\mathbb{1}, \mathbf{g})=k$ and $\mathbf{g}^{s}=\mathbf{h}$. Observe that $(\mathbf{g} \circ \tilde{\mathbf{g}})^{s}=\mathbb{1}^{s} \circ \mathbf{g} \circ \tilde{\mathbf{g}}=\mathbf{g}^{s} \circ \tilde{\mathbf{g}}=\mathbf{h} \circ \tilde{\mathbf{g}}$. We can thus write

$$
\mathbf{h}(\tilde{x})=\left(\mathbb{1}^{s} \circ \mathbf{g}\right)(\tilde{x})=\mathbb{1}^{s}(\mathbf{g}(\tilde{x})) \stackrel{(1)}{=} \mathbb{1}^{s}\left(x^{[(\mathbf{g} \circ \tilde{\mathbf{g}}) 1]}, \ldots, x^{[(\mathbf{g} \circ \tilde{\mathbf{g}}) m]}\right) \stackrel{(2)}{=}\left(x^{[(\mathbf{h} \circ \tilde{\mathbf{g}}) 1]}, \ldots, x^{[(\mathbf{h} \circ \tilde{\mathbf{g}}) m]}\right)
$$

where (1) holds by the induction hypothesis is (2) is by Proposition 42 ,
Proposition 44. There holds $\tilde{x} \in \operatorname{Range}_{2}\left(\tilde{\mathbb{G}}^{*}\right) \cap[\operatorname{dom} \bar{f}]^{m}$.
Proof. By Proposition 28(b) there exists $\mathbf{g} \in \tilde{\mathbb{G}}^{*}$ with $\mathbf{g} \circ \tilde{\mathbf{g}}=\tilde{\mathbf{g}}$. Using Proposition 43, we can write $\mathbf{g}(\tilde{x})=\left(x^{[(\mathbf{g o \tilde { g }}) 1]}, \ldots, x^{[(\mathbf{g} \circ \tilde{\tilde{g}}) m]}\right)=\left(x^{[\tilde{\mathbf{g}} 1]}, \ldots, x^{[\tilde{\mathbf{g}} m]}\right)=\tilde{x}$. This shows that $\tilde{x} \in \operatorname{Range}_{2}\left(\tilde{\mathbb{G}}^{*}\right)$.

Now let us show $x^{[\tilde{\mathbf{g}} k]} \in \operatorname{dom} \bar{f}$ for each $k \in[m]$. It suffices to prove it for $k=j$ (for other indices k the claim holds by construction). We have $\tilde{\mathbf{g}} \in \mathbb{H}$ for some strongly connected component $\mathbb{H} \in \operatorname{Sinks}(\tilde{\mathbb{G}}, \tilde{E})$. There is a path from $\tilde{\mathbf{g}}$ to $\tilde{\mathbf{g}}$ in $(\mathbb{H}, E[\mathbb{H}])$, therefore there exists mapping $\mathbf{h} \in \mathbb{H} \subseteq$ $\tilde{\mathbb{G}^{*}}$ and $s \in \operatorname{supp}(\tilde{\omega})$ with $\mathbf{h}^{s}=\tilde{\mathbf{g}}$. Define $x=\left(x^{[\mathbf{h} 1]}, \ldots, x^{[\mathbf{h} m]}\right)$, then by Proposition 42 we have $\mathbb{1}^{s}(x)=\tilde{x}$. In particular, $x^{[\tilde{g} j]}=s\left(x_{-j}\right)$. Also, we have $x_{-j} \in[\operatorname{dom} \bar{f}]^{m-1}$ by construction. Since Γ admits $\tilde{\omega}$ and $s \in \operatorname{supp}(\tilde{\omega})$, we conclude that $x^{[\tilde{\mathbf{g}} j]} \in \operatorname{dom} \bar{f}$.

Pick $k \in[m]-\{i, j\}$. By Theorem 31(b) we obtain that there exists a probability distribution λ over $\tilde{\mathbb{G}}^{*}$ such that $\bar{f}_{i}^{\lambda}(\tilde{x})=\bar{f}_{k}^{\lambda}(\tilde{x})$. Using Proposition 43, we can rewrite this condition as

$$
\sum_{\mathbf{g} \in \tilde{\mathbb{G}}^{*}} \lambda_{\mathbf{g}} \bar{f}\left(x^{[(\mathbf{g} \circ \tilde{\mathbf{g}})]]}\right)=\sum_{\mathbf{g} \in \tilde{\mathbb{G}}^{*}} \lambda_{\mathbf{g}} \bar{f}\left(x^{[(\mathbf{g o g}) k]}\right)
$$

Every tuple $x^{[(\mathrm{g} \circ \tilde{\mathrm{g}}) \mathrm{i}]}$ on the LHS belongs to $\arg \min \bar{f}$. Therefore, every tuple $x^{[(\mathrm{gog}) k]}$ on the RHS corresponding to mapping $\mathbf{g} \in \widetilde{\mathbb{G}}^{*}$ with $\lambda_{\mathbf{g}}>0$ also belongs to $\arg \min \bar{f}$.

We proved that there exists $x \in \arg \min f$ with $x_{i}=x_{j}$.

A Proofs for Section 5

In this section we prove the properties of graph (\mathbb{G}, E) stated in Section 5 .

A. 1 Proof of Proposition 28

Part (a) We have $\mathbf{g}=\mathbb{1}^{s_{1} \ldots s_{k}}$ and $\mathbf{h}=\mathbb{1}^{s_{k+1} \ldots s_{\ell}}$ for some $s_{1}, \ldots, s_{\ell} \in \operatorname{supp}(\omega)$ and $0 \leq k \leq \ell$. Therefore, $\mathbf{h} \circ \mathbf{g}=\left[\mathbb{1}^{s_{\ell}} \circ \ldots \circ \mathbb{1}^{s_{k+1}}\right] \circ\left[\mathbb{1}^{s_{k}} \circ \ldots \circ \mathbb{1}^{s_{1}}\right]=\mathbb{1}^{s_{1} \ldots s_{k}} \in \mathbb{G}$. Also, $\mathbf{h} \circ \mathbf{g}=\mathbf{g}^{s_{k+1} \ldots s_{\ell}}$, and so there is path from \mathbf{g} to $\mathbf{h} \circ \mathbf{g}$ in (\mathbb{G}, E). Since no edges leave the strongly connected component \mathbb{H}, we obtain that if $\mathbf{g} \in \mathbb{H}$ then $\mathbf{h} \circ \mathbf{g} \in \mathbb{H}$.

Part (b) Pick $\hat{\mathbf{g}} \in \mathbb{H}$. Since \mathbb{H}^{*} is strongly connected, there is a path from $\hat{\mathbf{g}} \circ \mathbf{g}^{*} \in \mathbb{H}^{*}$ to $\mathbf{g}^{*} \in \mathbb{H}^{*}$ in (\mathbb{G}, E), i.e. $\mathbf{g}^{*}=\left[\hat{\mathbf{g}} \circ \mathbf{g}^{*}\right]^{s_{1} \ldots s_{k}}=\mathbf{h} \circ \hat{\mathbf{g}} \circ \mathbf{g}^{*}$ where $\mathbf{h}=\mathbb{1}^{s_{1} \ldots s_{k}}$. It can be checked that mapping $\mathbf{g}=\mathbf{h} \circ \hat{\mathbf{g}}$ has the desired properties.

Part (c) By assumption, $x=\mathbf{g}^{*}(y)$ for some $\mathbf{g}^{*} \in \mathbb{H}^{*} \in \operatorname{Sinks}(\mathbb{G}, E)$ and $y \in\left[D^{n}\right]^{m}$. By part (b) there exists $\mathbf{g} \in \mathbb{H}$ satisfying $\mathbf{g} \circ \mathbf{g}^{*}=\mathbf{g}^{*}$. We get that $\mathbf{g}(x)=\mathbf{g}\left(\mathbf{g}^{*}(y)\right)=\left(\mathbf{g} \circ \mathbf{g}^{*}\right)(y)=\mathbf{g}^{*}(y)=x$.

A. 2 Proof of Proposition 29

By assumption, we have $\hat{x}=\mathbf{g}^{*}(y)$ for some $\mathbf{g}^{*} \in \mathbb{G}^{*}, y \in D^{m}$ and $x=\mathbf{h}(\hat{x})$ for some $\mathbf{h} \in \mathbb{G}$.
Part (a) We have $x=\left(\mathbf{h} \circ \mathbf{g}^{*}\right)(y)$ with $\mathbf{h} \circ \mathbf{g}^{*} \in \mathbb{G}^{*} ;$ this establishes the claim.
Part (b) Let $\mathbb{H} \in \operatorname{Sinks}(\mathbb{G}, E)$ be the strongly connected component to which \mathbf{g}^{*} belongs. There exists a path in $(\mathbb{H}, E[\mathbb{H}])$ from $\mathbf{h} \circ \mathbf{g}^{*} \in \mathbb{H}$ to $\mathbf{g}^{*} \in \mathbb{H}$, i.e. $\mathbf{g}^{*}=\mathbb{1}^{s_{1} \ldots s_{k}} \circ \mathbf{h} \circ \mathbf{g}^{*}$ for some $s_{1}, \ldots, s_{k} \in$ $\operatorname{supp}(\omega)=\mathbb{G}$. Define $\mathbf{g}=\mathbb{1}^{s_{1} \ldots s_{k}} \in \mathbb{G}$, then $\mathbf{g}^{*}=\mathbf{g} \circ \mathbf{h} \circ \mathbf{g}^{*}$. We have $\hat{x}=\mathbf{g}^{*}(y)=\left(\mathbf{g} \circ \mathbf{h} \circ \mathbf{g}^{*}\right)(y)=$ $(\mathbf{g} \circ \mathbf{h})(\hat{x})=\mathbf{g}(x)$, as claimed.

A. 3 Proof of Theorem 30

First, we make the following observation.
Proposition 45. Suppose vector ρ is a fractional polymorphism of Γ of arity $m \rightarrow m$ and $\mathbf{g} \in$ $\operatorname{supp}(\rho)$. Then the following vector is also a fractional polymorphism of Γ of arity $m \rightarrow m$:

$$
\begin{equation*}
\rho[\mathbf{g}]=\rho+\frac{\rho(\mathbf{g})}{2}\left[-\chi_{\mathbf{g}}+\sum_{s \in \omega} \omega(s) \chi_{\mathbf{g}^{s}}\right] \tag{18}
\end{equation*}
$$

Proof. Denote the vector in the square brackets as δ. Consider function $f \in \Gamma$ and labeling $x \in[\operatorname{dom} f]^{m}$. Since ρ is a fractional polymorphism of Γ, we have $\mathbf{g}(x) \in[\operatorname{dom} f]^{m}$. We can write

$$
\sum_{\mathbf{h} \in \operatorname{supp}(\rho[\mathbf{g}])} \delta(\mathbf{h}) f^{m}(\mathbf{h}(x))=-f^{m}(\mathbf{g}(x))+\sum_{s \in \operatorname{supp}(\omega)} \omega(s) f^{m}\left(\mathbf{g}^{s}(x)\right) \leq 0
$$

where the last inequality follows from condition (7a) applied to labelings $\mathbf{g}(x)$. Thus, adding the extra term to ρ in (18) will not violate the fractional polymorphism inequality for any $x \in$ $[\operatorname{dom} f]^{m}$.

Note that $\operatorname{supp}(\rho[\mathbf{g}])=\operatorname{supp}(\rho) \cup\left\{\mathbf{g}^{s} \mid s \in \operatorname{supp}(\omega)\right\}$ for $\mathbf{g} \in \operatorname{supp}(\rho)$.
We claim that Γ admits a fractional polymorphism $\widehat{\rho}$ with $\operatorname{supp}(\widehat{\rho})=\mathbb{G}$. Indeed, we can start with vector $\rho=\chi_{\mathbb{1}}$ and then repeatedly modify it as $\rho \leftarrow \rho[\mathbf{g}]$ for mappings $\mathbf{g} \in \operatorname{supp}(\rho)$ that haven't appeared before; after $|\mathbb{G}|-1$ steps we get a vector $\widehat{\rho}$ with the claimed property.

Let Ω be the set of fractional polymorphisms ρ of Γ with $\operatorname{supp}(\rho) \subseteq \mathbb{G}$ that satisfy $\rho(\mathbf{g}) \geq \widehat{\rho}(\mathbf{g})$ for all $\mathbf{g} \in \widehat{\mathbb{G}}$. Set Ω is non-empty since it contains $\widehat{\rho}$. Let ρ be a vector in Ω that maximizes $\rho(\widehat{\mathbb{G}})=\sum_{\mathbf{g} \in \widehat{\mathbb{G}}} \rho(\mathbf{g})$. (This maximum is attained since Ω is a compact subset of $\mathbb{R}^{|\mathbb{G}|}$). We claim that $\operatorname{supp}(\rho)=\widehat{\mathbb{G}}$. Indeed, the inclusion $\widehat{\mathbb{G}} \subseteq \operatorname{supp}(\rho)$ is by construction. Suppose there exists $\mathbf{g} \in \operatorname{supp}(\rho)-\widehat{\mathbb{G}}$. By the condition of Theorem 30 there exists a path $\mathbf{g}_{0}, \ldots, \mathbf{g}_{k}$ in (\mathbb{G}, E) from $\mathbf{g}_{0}=\mathbf{g}$ such that $\mathbf{g}_{0}, \ldots, \mathbf{g}_{k-1} \in \mathbb{G}-\widehat{\mathbb{G}}$ and $\mathbf{g}_{k} \in \widehat{\mathbb{G}}$. It can be checked that vector $\rho^{\prime}=\rho\left[\mathbf{g}_{0}\right] \ldots\left[\mathbf{g}_{k-1}\right]$ satisfies $\rho^{\prime} \in \Omega, \rho^{\prime}(\mathbf{g}) \geq \rho(\mathbf{g})$ for $\mathbf{g} \in \widehat{\mathbb{G}}$, and $\rho^{\prime}\left(\mathbf{g}_{k}\right)>\rho\left(\mathbf{g}_{k}\right)$. This contradicts the choice of ρ.

A. 4 Proof of Theorem 31(a)

Consider component $\mathbb{H} \in \operatorname{Sinks}(\mathbb{G}, E)$, and denote $\mathbb{H}^{*}=\arg \min \left\{f^{m}(\mathbf{g}(x)) \mid \mathbf{g} \in \mathbb{H}\right\}$. We claim that $\mathbb{H}^{*}=\mathbb{H}$. Indeed, consider $\mathbf{g} \in \mathbb{H}^{*}$. Applying inequality (7a) to labelings $\mathbf{g}(x) \in[\operatorname{dom} f]^{m}$ gives

$$
\begin{equation*}
\sum_{s \in \operatorname{supp}(\omega)} \omega(s) f^{m}\left(\mathbf{g}^{s}(x)\right) \leq f^{m}(\mathbf{g}(x)) \quad \forall x \in[\operatorname{dom} f]^{m} \tag{19}
\end{equation*}
$$

For each $s \in \operatorname{supp}(\omega)$ we have $\mathbf{g}^{s} \in \mathbb{H}$ and thus $\mathbf{g}^{s}(x) \geq \mathbf{g}(x)$. This means that $\mathbf{g}^{s}(x)=\mathbf{g}(x)$. We showed that if $\mathbf{g} \in \mathbb{H}^{*}$ and $(\mathbf{g}, \mathbf{h}) \in E$ then $\mathbf{h} \in \mathbb{H}^{*}$. Since \mathbb{H} is a strongly connected component of (\mathbb{G}, E), we conclude that $\mathbb{H}=\mathbb{H}^{*}$.

We showed that $f^{m}(\mathbf{g}(x))$ is the same for all $\mathbf{g} \in \mathbb{H}$. By Proposition [28(c) there exists $\mathbf{h} \in \mathbb{H}$ with $\mathbf{h}(x)=x$, and therefore $f^{m}(\mathbf{g}(x))=f^{m}(\mathbf{h}(x))=f^{m}(x)$ for all $\mathbf{g} \in \mathbb{H}$. Since this holds for any $\mathbb{H} \in \operatorname{Sinks}(\mathbb{G}, E)$, the claim follows.

A. 5 Proof of Theorem 31 (b)

We mainly follow an argument from 47] (although without using the language of Markov chains, relying on the Farkas lemma instead, as in 35).

Let $\left(\mathbb{G}^{*}, E^{\prime}\right)$ be the subgraph of (\mathbb{G}, E) induced by \mathbb{G}^{*}. For an edge $(\mathbf{g}, \mathbf{h}) \in E^{\prime}$, define positive weight $w(\mathbf{g}, \mathbf{h})=\sum_{s \in \operatorname{supp}(\omega): \mathbf{g}^{s}=\mathbf{h}} \omega(s)$. Note that we have $\sum_{\mathbf{h}:(\mathbf{g}, \mathbf{h}) \in E^{\prime}} w(\mathbf{g}, \mathbf{h})=1$ for all $\mathbf{g} \in \mathbb{G}^{*}$.

We claim that there exists vector $\lambda \in \mathbb{R}_{\geq 0}^{\mathbb{G}^{*}}$ that satisfies

$$
\begin{align*}
\sum_{\mathbf{g}:(\mathbf{g}, \mathbf{h}) \in E^{\prime}} w(\mathbf{g}, \mathbf{h}) \lambda_{\mathbf{g}}-\lambda_{\mathbf{h}} & =0 \quad \forall \mathbf{h} \in \mathbb{G}^{*} \tag{20a}\\
\sum_{\mathbf{g} \in \mathbb{G}^{*}} \lambda_{\mathbf{g}} & =1 \tag{20b}
\end{align*}
$$

Indeed, suppose system (20) does not have a solution. By Farkas Lemma (see Lemma 35), there exists a vector $y \in \mathbb{R}^{\mathbb{G}^{*}}$ and a scalar $z \in \mathbb{R}$ such that

$$
\begin{align*}
z-y_{\mathbf{g}}+\sum_{\mathbf{h}:(\mathbf{g}, \mathbf{h}) \in E^{\prime}} w(\mathbf{g}, \mathbf{h}) y_{\mathbf{h}} & \geq 0 \quad \forall \mathbf{g} \in \mathbb{G}^{*} \tag{21a}\\
z & <0 \tag{21b}
\end{align*}
$$

Consider $\mathbf{g} \in \mathbb{G}^{*}$ with the maximum value of $y_{\mathbf{g}}$. We have

$$
0 \leq z-y_{\mathbf{g}}+\sum_{\mathbf{h}:(\mathbf{g}, \mathbf{h}) \in E^{\prime}} w(\mathbf{g}, \mathbf{h}) y_{\mathbf{h}} \leq z-y_{\mathbf{g}}+\sum_{\mathbf{h}:(\mathbf{g}, \mathbf{h}) \in E^{\prime}} w(\mathbf{g}, \mathbf{h}) y_{\mathbf{g}}=z-y_{\mathbf{g}}+y_{\mathbf{g}}=z
$$

This contradicts (21b), and thus proves that vector $\lambda \geq 0$ satisfying (20) exists. Next, we will show that this vector satisfies the property of Theorem 31(b).

Let us rewrite condition (7b) as follows:

$$
\begin{equation*}
\sum_{s \in \operatorname{supp}(\omega)} \omega(s) f\left(x^{\mathbf{g}^{s} i}\right) \leq \frac{1}{m-1} \sum_{j \in[m]-\{i\}} f\left(x^{\mathbf{g} j}\right) \quad \forall \mathbf{g} \in \mathbb{G}^{*}, i \in[m] \tag{22}
\end{equation*}
$$

Multiplying this inequality by $\lambda_{\mathbf{g}}$ and summing over $\mathbf{g} \in \mathbb{G}^{*}$ (for a fixed $i \in[m]$) gives

$$
\begin{equation*}
\sum_{\mathbf{g} \in \mathbb{G}^{*}} \sum_{\mathbf{h}:(\mathbf{g}, \mathbf{h}) \in E^{\prime}} w(\mathbf{g}, \mathbf{h}) \lambda_{\mathbf{g}} f\left(x^{\mathbf{h} i}\right) \leq \frac{1}{m-1} \sum_{\mathbf{g} \in \mathbb{G}^{*}} \lambda_{\mathbf{g}} \sum_{j \in[m]-\{i\}} f\left(x^{\mathbf{g} j}\right) \quad \forall i \in[m] \tag{23}
\end{equation*}
$$

Rearranging terms gives

$$
\begin{equation*}
\sum_{\mathbf{h} \in \mathbb{G}^{*}}\left[\sum_{\mathbf{g}:(\mathbf{g}, \mathbf{h}) \in E^{\prime}} w(\mathbf{g}, \mathbf{h}) \lambda_{\mathbf{g}}\right] f\left(x^{\mathbf{h} i}\right) \leq \frac{1}{m-1} \sum_{j \in[m]-\{i\}} \sum_{\mathbf{g} \in \mathbb{G}^{*}} \lambda_{\mathbf{g}} f\left(x^{\mathbf{g} j}\right) \quad \forall i \in[m] \tag{24}
\end{equation*}
$$

By (20a) the expression in the square brackets equals $\lambda_{\mathbf{h}}$, and therefore (24) can be rewritten as

$$
\begin{equation*}
f_{i}^{\lambda}(x) \leq \frac{1}{m-1} \sum_{j \in[m]-\{i\}} f_{j}^{\lambda}(x) \quad \forall i \in[m] \tag{25}
\end{equation*}
$$

Consider index $i \in[m]$ with the maximum value of $f_{i}^{\lambda}(x)$. We have $f_{i}^{\lambda}(x) \geq f_{j}^{\lambda}(x)$ for all $j \in$ [m] - \{i\}, which together with (25) gives $f_{i}^{\lambda}(x)=f_{j}^{\lambda}(x)$ for all $j \in[m]-\{i\}$, as claimed.

References

[1] L. Barto. The dichotomy for conservative constraint satisfaction problems revisited. In Proceedings of the 26th IEEE Symposium on Logic in Computer Science (LICS'11), pages 301-310. IEEE Computer Society, 2011.
[2] L. Barto. The collapse of the bounded width hierarchy. Journal of Logic and Computation, 2014. accepted.
[3] L. Barto and M. Kozik. Absorbing subalgebras, cyclic terms and the constraint satisfaction problem. Logical Methods in Computer Science, 8(1):1-26, 2012.
[4] L. Barto and M. Kozik. Robust satisfiability of constraint satisfaction problems. In STOC'12, pages 931-940, 2012.
[5] L. Barto and M. Kozik. Constraint satisfaction problems solvable by local consistency methods. Journal of the ACM, 61(1):Article 3, 2014.
[6] L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM Journal on Computing, 38(5):1782-1802, 2009.
[7] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approximations. In Computer Vision and Pattern Recognition, pages 648-655. IEEE Computer Society, 1998.
[8] J. Brown-Cohen and P. Raghavendra. Combinatorial optimization algorithms via polymorphisms. Technical report, ArXiv:1501.01598, 2015.
[9] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3 -element set. Journal of the ACM, 53(1):66-120, 2006.
[10] A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the Complexity of Constraints using Finite Algebras. SIAM Journal on Computing, 34(3):720-742, 2005.
[11] A. A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Transactions on Computational Logic, 12(4), 2011. Article 24.
[12] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. Approximate constraint satisfaction requires large LP relaxations. In FOCS, pages 350-359, 2013.
[13] D. Cohen, M. Cooper, P. Creed, P. Jeavons, and S. Živný. An algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing, 42(5):1915-1939, 2013.
[14] D. Cohen, M. Cooper, and P. Jeavons. An algebraic characterisation of complexity for valued constraints. In CP'06, volume 4204 of $L N C S$, pages 107-121, 2006.
[15] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Supermodular functions and the complexity of Max CSP. Discrete Applied Mathematics, 149(1-3):53-72, 2005.
[16] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chapter 8. Elsevier, 2006.
[17] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The Complexity of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983-1016, 2006.
[18] Y. Crama and P. L. Hammer. Boolean Functions - Theory, Algorithms, and Applications. Cambridge University Press, 2011.
[19] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathematics and Applications. 2001.
[20] N. Creignou, P. Kolaitis, and H. Vollmer, editors. Complexity of Constraints, volume 5250 of LNCS. Springer, 2008.
[21] V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin. The approximability of Max CSP with fixed-value constraints. Journal of the ACM, 55(4):Article 16, 2008.
[22] A. Ene, J. Vondrák, and Y. Wu. Local distribution and the symmetry gap: Approximability of multiway partitioning problems. In $S O D A$, pages 306-325, 2013. Update at arXiv1503.03905.
[23] T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on Computing, 28(1):57-104, 1998.
[24] G. Gottlob, G. Greco, and F. Scarcello. Tractable optimization problems through hypergraphbased structural restrictions. In Proceedings of ICALP'09, pages 16-30, 2009.
[25] J. Håstad. Every 2-CSP allows nontrivial approximation. Computational Complexity, 17(4):549-566, 2008.
[26] P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Tractability and learnability arising from algebras with few subpowers. SIAM Journal on Computing, 39(7):3023-3037, 2010.
[27] P. Jeavons, A. Krokhin, and S. Zivny. The complexity of valued constraint satisfaction. Bulletin of the EATCS, 113:21-55, 2014.
[28] P. G. Jeavons. On the Algebraic Structure of Combinatorial Problems. Theoretical Computer Science, 200(1-2):185-204, 1998.
[29] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal of the ACM, 44(4):527-548, 1997.
[30] P. Jonsson, M. Klasson, and A. Krokhin. The approximability of three-valued Max CSP. SIAM Journal on Computing, 35(6):1329-1349, 2006.
[31] P. Jonsson, F. Kuivinen, and J. Thapper. Min CSP on four elements: Moving beyond submodularity. In Proceedings of CP'11, pages 438-453, 2011.
[32] P. Jonsson and G. Nordh. Introduction to the Maximum Solution problem. In Complexity of Constraints, volume 5250 of LNCS, pages 255-282. 2008.
[33] P. Kolaitis and M. Vardi. Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences, 61:302-332, 2000.
[34] V. Kolmogorov, M. Rolínek, and R. Takhanov. Effectiveness of structural restrictions for hybrid CSPs. arXiv1504.07067, 2015.
[35] V. Kolmogorov, J. Thapper, and S. Živný. The power of linear programming for general-valued CSPs. SIAM Journal on Computing, 44(1):1-36, 2015.
[36] V. Kolmogorov and S. Živný. The complexity of conservative valued CSPs. Journal of the ACM, 60(2):Article 10, 2013.
[37] M. Kozik and J. Ochremiak. Algebraic properties of valued constraint satisfaction problem. arXiv1403.0476, 2015.
[38] S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.
[39] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM, 60(6):Article 42, 2013.
[40] U. Montanari. Networks of Constraints: Fundamental properties and applications to picture processing. Information Sciences, 7:95-132, 1974.
[41] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In STOC'08, pages 245-254, 2008.
[42] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier, 2006.
[43] T. J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC’78), pages 216-226. ACM, 1978.
[44] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[45] R. Takhanov. A dichotomy theorem for the general minimum cost homomorphism problem. In STACS'10, pages 657-668, 2010.
[46] J. Thapper and S. Živný. Sherali-Adams relaxations for valued CSPs. Technical report, arXiv:1502.05301, 2015.
[47] J. Thapper and S. Živný. The complexity of finite-valued CSPs. In Proceedings of the 45 th ACM Symposium on the Theory of Computing (STOC'13), pages 695-704. ACM, 2013.
[48] M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inferences. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.

[^0]: ${ }^{\dagger}$ The first and third authors are supported by the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 616160.

