High Throughput Indexing for Large-scale
Semantic Web Data

Long Cheng', Spyros Kotoulas?, Tomas E Ward?, Georgios Theodoropoulos*

! Technische Universitéat Dresden, Germany
% National University of Ireland Maynooth, Ireland

2 |BM Research, Ireland
4 Durham University, UK

long.cheng@tu-dresden.de, spyros.kotoulas@ie.ibm.com, tomas.ward@nuim.ie, theogeorgios@gmail.com

ABSTRACT

Distributed RDF data management systems become increas-
ingly important with the growth of the Semantic Web. Cur-
rently, several such systems have been proposed, however,
their indexing methods meet performance bottlenecks either
on data loading or querying when processing large amounts
of data. In this work, we propose an high throughout in-
dex to enable rapid analysis of large datasets. We adopt
a hybrid structure to combine the loading speed of similar-
size based methods with the execution speed of graph-based
approaches, using dynamic data repartitioning over query
workloads. We introduce the design and detailed implemen-
tation of our method. Experimental results show that the
proposed index can indeed vastly improve loading speeds
while remaining competitive in terms of performance. There-
fore, the method could be considered as a good choice for
RDF analysis in large-scale distributed scenarios.

1. INTRODUCTION

RDF stores are the backbone of the Semantic Web, al-
lowing storage and retrieval of semi-structured information.
Research and engineering on RDF stores is a very active area
with many standalone systems such as Jena [15], Sesame [5],
Hexastore [22], SW-Store [2] and RDF-3X [16] being intro-
duced in the past years. However, as the size of RDF data
increases, such single-machine approaches meet performance
bottlenecks, in terms of both data loading and querying.
Such bottlenecks are mainly due to (1) limited parallelism
on symmetric multi-threaded systems, (2) limited system
I/0, and (3) large volumes of intermediate query results
producing memory pressure. Therefore, a system with effi-
cient parallelization of data loading and querying based on
distributed architectures becomes increasingly desirable.

Several approaches for distributed RDF data processing
have been proposed [21, 19, 12, 14], along with clustered
versions of more traditional approaches [11, 7, 4]. Depend-
ing on the data partitioning and placement patterns, dis-
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Figure 1: An RDF graph and the responsible triples.
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Figure 2: Two queries in the form of graph patterns.
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tributed join processing can be divided into the following
four categories. To better understand the basic idea of each
approach in the following descriptions, we take an simple
example, including four triples and two queries, which is
shown in Figure 1 and Figure 2 respectively. We present the
detailed implementation of each method over a two-node
system and assume that terms with an odd number hash to
the first node and constants with an even number hash to
the second node (e.g. B1 hashes to node 1, B2 hashes to
node 2).

Similar-size Partitioning. Systems based on similar-size
partitioning place similar volumes of raw triples on each
computation node without a global index. During query
processing, nodes provide bindings for each triple pattern
can be implemented in parallel, and the intermediate (or
final) results can be then formulated by parallel joins [21].
Figure 3(a) shows the details of the partitioning that each
node will hold two triples. Then during query execution,
the solution mapping of each triple pattern will be located
to a same node to implement local joins and consequently
formulate the intermediate or final results. For example, for
the Query(a) in Figure 2, the result of the first triple pattern
<?a pl ?b> at the first node <A1l B2> will be transferred
to the second node, based on the hash value of the join key
B2, to join with the <B2 C1> at the second node, and then
output of the query result <Al B2 C1>.

It can be seen that this schema has obvious performance
advantages on data loading, as similar-size is very easy to
achieve and each computing node can simply load its local
data in parallel without inter-node communications. Re-



gardless, for any query including join operations, there will
always be data movements in the specific implementations,
which can consequently decrease the query performance, be-
cause network communication is always considered as the
slowest operator in distributed data management systems
deployed for large-scale analytics [18].

Hash-based Partitioning. Exploiting the fact that SPARQL

queries often contain star graph patterns, triples under this
scheme are commonly hash partitioned (by subject) across
multiple machines and accessed in parallel at query time. As
shown in Figure 3(b), the three triples with subject Al are
assigned to the first node while the other is assigned to the
second node. Clearly, this kind of assignment will be more
time cost than the above similar-size method, and there
also exist same data movements when implementing the
Query(a). However, when a query containing star pattern,
for instance the Query(b) in the figure, then the included
join operations will be totally computed locally, which can
efficiently reduce the costly network communications and
consequently improve the query performance.

Sharded/Partitioned Indexes. This approach is very
closed to the centralized stores, triple indexes in the form
of SPO, OPS etc. are distributed across all the computing
nodes and stored locally as a B-Tree. Most of the existing
parallel systems such as YARS2 [11], Clustered-TDB [17],
Virtuoso-cluster [7] and 4store [10] belong to such a schema.
Their operations are more similar to single-node RDF stores,
normally offering lower loading speeds but can achieve per-
sistence and more space-efficient indexing over a distributed
system. Meanwhile, system I/O and join throughput of
queries can be improved as well on that basis.

Graph-based Partitioning. Graph partitioning algorithms
are used to partition RDF data in a manner that triples close
to each other can be assigned to the same computation node.
SPARQL queries generally take the form of graph pattern
matching so that sub-graphs on each computation node can
be matched independently and in parallel, as much as possi-
ble. Using such method, all the previous four triples will be
placed on the same node based on a 2-hop graph (namely
distance between two node is 2 maximum) as shown as Fig-
ure 3(c). Compared to the three approaches above, it can be
seen that there will be no network communication for such a
method during query executions, for both the queries in Fig-
ure 2. However, as graph partitioning is always complex, es-
pecially for large graph, the connections between each node
will increase exponentially with increasing the graph, which
could induce a very large time cost before loading the data.

In general, the techniques outlined above operate on a
trade-off between loading complexity and query efficiency,
with the earlier ones in the list offering superior loading per-
formance at the cost of more complex/slower querying and
the latter ones requiring significant computational effort for
loading and/or partitioning. In fact, fast loading speed and
query interactivity are important for exploration and analy-
sis of RDF data at Web scale. For example, in a large-scale
distributed scenario, large computational resources would be
tapped in a short time, which requires very fast data load-
ing of the target dataset(s). In turn, to shorten the data
processing life-cycle for each query, exploration and analy-
sis should be done in an interactive manner. To meet such
a challenge, we are proposing a hybrid method for process-

ing RDF using dynamic data re-partitioning to enable rapid
analysis of large datasets.

Our approach combines both the similar-size and graph-
based methods, and adopts a two-tier index architecture
on each computation node for the implementation: (1) a
lightweight primary index, to keep loading times low, and
(2) a series of dynamic, multi-level secondary indexes, cal-
culated during query execution, to decrease or remove inter-
machine data movement for subsequent queries that con-
tain the same graph patterns. This method is straightfor-
ward, yet not trivial, and have not been studied or evaluated.
Consequently, the following three questions arising form the
scheme are becoming to interested, in terms of performance:

e hybrid: using the approach, can we smoothly com-
bine the loading speed of similar-size partitioning with
the execution speed of graph-based partitioning, and
achieve competitive performance with current solutions?

e dynamic: how will the dynamic construction of sec-
ondary indexes cost, is it worth to build such indexes
so as to achieve runtime speedups in the presence of
queries?

e scalability: will runtime of queries over the secondary
indexes be scalable with increasing the number of com-
putation nodes?

In this work, we introduce a hybrid and dynamic dis-
tributed RDF indexing approach, which specially targets
fast loading data and computing queries on large RDF data,
with a focus on analytical queries. We present the detailed
design and implementation of the proposed method and con-
duct an experimental evaluation over a cluster with 16 nodes
(192 cores). The results demonstrate that: (1) Our primary
index results in very fast loading speeds, it takes only 7.4
minutes to load 1.1 billion triples, notably outperforming
the single node system RDF-3X [16] and the cluster solution
4store [10]. (2) The secondary indexes significantly speed up
query execution, bringing the performance of our implemen-
tation competitive to that of RDF-3X and 4store. Moreover,
building secondary indexes is light-weighted and queries over
the indexes are shown to be scalable.

The rest of this paper is organized as follows: In the fol-
lowing Section, we present the design rationale and algo-
rithms for our approach. In Section 3, we evaluate a proto-
type implementation and compare to RDF-3X and 4store.
In Section 4, we reported on related work. Finally, in Sec-
tion 5, we conclude the paper and point to directions for
future work.

2. OUR APPROACH

We describe our approach in two parts, data loading and
querying. The former includes primary index building while
the latter focuses on secondary index building. We refer to
the primary index as (I1) and secondary indexes as 2nd-level
(I2), 3rd-level (I3), etc.

2.1 Loading

As terms in RDF are represented by long strings, oper-
ating directly on them will result in (1) unnecessarily high
space, memory and bandwidth consumption and (2) poor
query performance, since computing on strings is computa-
tionally intensive. For converting the long strings to ids, we



Node 1

Node 1 Node 2

Node 1 Node 2 A1 p2 A2
A1 p2 A2 B2 p2 C1 A1 p1 B2
A1 p1 B2 A1 p3 C1 A1l p3 C1

(a) similar-size partitioning

(b) hash-based partitioning

Node 2
A1 p2 A2
B2 p2 C1 A1 p1 B2
B2 p2 C1
A1 p3 C1

(c) graph-based partitioning

Figure 3: Different kinds of RDF data partitioning over a two-node system.

take a similar dictionary encoding approach as the one de-
scribed in [3]. Experimental results show that it has achieved
higher throughput than any other methods in the litera-
ture [3]. Moreover, such method is more flexible for various
semantic application scenarios, such as transactional data
processing and incremental updates.

After encoding, we build the primary index [ for the en-
coded triples at each node. Similar to many triple stores, the
index itself contains all the data. We use a modified vertical
partitioning approach [1] to decompose the local data into
multiple parts. Triples in [1] are placed into n two-column
vertical tables (n is number of unique properties), which has
been shown to be faster for querying than a single table.
However, in [1], to efficiently locate data, all the subjects in
each table are sorted, which is costly (Nlog(N)) in terms of
data loading, especially when the tables are huge. In com-
parison, we only use linear-time operations for indexing, in-
serting each tuple in an unordered list in a corresponding
vertical table. To support multiple access patterns, we build
additional tables. By default, we build P — SO, PS — O
and PO — S, corresponding to the most common access
patterns.

For example, for the triples described in Figure 3(a), the
first segment of Figure 4 shows the vertical tables of the pri-
mary index [;, which is based on partitioning on the predi-
cate and the predicate-subject of each encoded triple at each
node (note that the triples are in the form of integers in this
step, we use the string format in our examples just for read-
ability). As each node builds their tables independently,
there is no communication over the network for this step.
Local indexing is very fast, so we could support additional
indexes, e.g. to support more efficient joins on the predicate
position, with minimal impact on performance.

As in all RDF stores, there is an element of redundancy in
terms of data replication. Our index consumes more space
than the vertical partitioning approach in [1], or a com-
pressed index approach such as the one found in [16]. Nev-
ertheless, our focus is on speed and horizontal scalability,
which increases total available memory. In addition, based
on the fast encoding method described above, the build pro-
cess of the primary index is very lightweight: (1) triples
are encoded and indexed completely in-memory and all ac-
cesses are memory-aligned, reducing CPU cost; (2) there is
no global index as we only build an index for local data
on each computation node, reducing the need for commu-
nication; (3) we avoid sorting, or any non-constant time
operation, meaning that the complexity of our approach is
O(N), where N is the number of local statements; and (4)
the encoding algorithm achieves good load balancing, which
translates to good load balancing for the (local) indexing.
The above factors contribute to very fast indexing, as we
will show in our evaluation.

2.2 Querying
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Figure 4: Query execution and the secondary index
building.

Parallel Hash Joins. Once we have built the primary in-
dex, we can implement SPARQL queries through a sequence
of lookups and joins. With the primary index 1, we can eas-
ily look up the results for a statement pattern at each node.
For example, for the two triple patterns in Figure 2, through
looking up the vertical tables with the predicates pl and p2,
we can easily get the bindings for the variables (7a,?b) and
(?b,7¢) at each node:

node 1 node 2
(?a, 7b) (A1, B2) /
(70, ?¢) (A1, A2) (B1, C1)

This lookup process can be implemented in parallel and
independently for each node. Nevertheless, a join between
any two sub-queries can not be executed independently at
each node since we have no guarantee that join keys will
be located on the same node. We adopt the parallel hash-
join approach in our implementation. Namely, results of
each subquery are redistributed among computation nodes
by hashing the values of their join keys, so as to ensure that
the appropriate results for the join are co-located [21]. Based
on that, we redistribute the results of the two triple patterns
by hashing bindings for the variable 7b, and then implement
the local joins for the received terms at each node. This
process is shown in the first two segments of Figure 4.

Secondary Indexes. The local lookup for each triple pat-
tern at each node is very fast, since we only need to locate
the corresponding index table in I1, and then retrieve all the
elements. E.g. for the pattern <?b p2 ?7¢>, we can find
the vertical table p2 and return its results in constant time
(since we use hashtables to index in the partitioned tables).

For join operations, as we have to redistribute all results
for each triple pattern as well as the intermediate results,
data transfers across nodes become costly, in terms of band-
width and coordination overhead. To minimize data move-
ment and improve query performance, we build secondary
indexes (l2 ... ln), based on the redistribution of data dur-
ing query execution. The build process of such indexes is
presented in Algorithm 1. We have a queue of queries Q.



Algorithm 1 Query Execution and Secondary Index Build-
ing
The primary index I; has been built, let Q be a query
queue to be processed, I the secondary indexes initialized
as () at each node, r the intermediate results to be joined
initialized as 0.

Main procedure:

1: for each Q € Q do

2: r=plan(Q) //Plan query with root r
3: compute(r)

4: end for

Procedure compute(n):
5: r; = l.lookup(n)
6: if r; # null then
7.

8

return r; // If an index already has the result
: else
9: for each child c in n parallel do
10: if c is a triple pattern then
11: lr;=l1.Jookup(n)
12: re=redistribute(lr;)
13: else
14: re=compute(c)
15: end if
16: r.add(r¢)
17: if isIndexable(r.) then
18: lindex(c,r.)
19: end if
20: end for
21: return join(r)
22: end if

For each query @, we assume a planning method (which
is beyond the scope of this paper) that results in an exe-
cution plan represented as a tree with root r. We assume
that queries in the queue are processed sequentially and each
node keeps a set of indexes of various levels [1.,. All nodes
start with index /1 built and all other indexes empty.

We evaluate the expressions in the tree bottom-up, in
parallel (lines 9 and 14), redistributing results as required
(line 12). The function isIndexable() determines whether
nodes should retain the (indexed) data from remote nodes.
The construct parallel do implies synchronization at end
for. Results from existing indexes are re-used when pos-
sible (lines 6 and 7). Once the results of all children of a
node become available, a join is executed. Note that this
process implies a high degree of parallelism since individual
joins are executed in parallel and multiple join expressions
are calculated in parallel, when possible. From example,
as demonstrated in the third segment of Figure 4, a set of
new tables is built on l2: for *plx and *p2x, when we first
implement the query.

It can be seen that the building process is straightfor-
ward that the index is constructed just by a simple copy
of the redistributed data, which is introduced by a join
of a query. Namely, it is a byproduct of query execution.
Regardless, this index is efficient on improving query per-
formance in a analysis environment, because it can be re-
used by other queries that contain patterns in common. We
are using the term indexing instead of caching, because the
data is re-partitioned on demand and is fully indexed in a

sharded manner, as opposed to storing intermediate results
and re-using them, such as the cache used in centralised
RDF stores [20]. This means that indexes can be re-used
for any query containing them and the consequent cost is
that we need to re-compute the joins locally.

Index Levels. According to Algorithm 1, the k-th level in-
dex [, is built based on the redistribution of the data stored
in the level k — 1. In the meantime, if a query is indexed by
the index I, the the execution of joins in this query will be
cost-free in terms of network communication. This means
that, there will be only local joins for the query then.

In the process of building the k-th level index i, if we
run all possible queries, what will the data on each node
look like? In fact, according to the terminology regarding
graph partitioning used in [12], the 2nd-level index in our
method on each node will construct a 2-hop subgraph, the
3rd-level one will be a 3-hop subgraph, and [ will be a k-
hop subgraph. For example, the two triple <A1l pl B2> and
<B2 p2 C1> at the second node of Figure 4 construct an
instance of the 2-hop subgraph. This means that our method
essentially does dynamic graph-based partitioning starting
from an initial equal-size partitioning, based on the query
load. Therefore, our system can combine the advantages of
fast data loading and efficient querying. We will show that
this design is indeed efficient in our evaluation presented in
Section 3. In addition, the theoretical results from [12] can
be applied for our approach as well.

Secondary indexes I, can reduce/remove the network com-
munication for a query. As k increases, the transferred
data between nodes decreases, resulting in improved per-
formance. However, the space for the entire index [ also
increases, constituting a trade-off between space and perfor-
mance. It is possible to use the method discriminative and
frequent predicate path presented in [23] to reduce the size,
regardless, this is beyond the scope of this work.

3. EVALUATION

In this section, we present an experimental evaluation
of our approach and compare its performance with a top-
performing RDF store running on a single node as well as a
cluster RDF store.

Platform. We use 16 IBM servers with each containing two
6-core Intel Xeon X5679 processors clocked at 2.93 GHz,
128GB of RAM and a single 1TB SATA hard-drive, con-
nected using Gigabit Ethernet. We use Linux kernel version
2.6.32-220, X10 version 2.3 compiled to C++ and gcc version
4.4.6.

Setup. We implemented our approach with the X10 paral-
lel programming language [6]'. We have taken RDF-3X [16]
and 4store [10] for the performance references of our im-
plementation. The former represents the state-of-the-art in
terms of single machine stores, which is widely used for com-
parison in recent solutions [12, 25]. The latter is a clustered
RDF store, which is designed to operate mainly in mem-
ory?. To focus on analyzing the core performance of query
execution, we only counter the number of results but not
output them. We do not compare with MapReduce-based
approaches since, due to platform overhead, they do not ex-
ecute interactive queries in reasonable time. For example,

1Our method can be implemented in any programming lan-
guages, such as MPI or C++.
“Refer to http://4store.org/trac/wiki/Tuning



Table 1: Time to load 1.1 billion triples
Throughput

System Loading time (s) triples /sec per node
RDF-3X 23296 472K 47.2K
4store 7078 155.4K 9.7K
Read from disk: 103
Our Triple encoding: 254
method  Building l;: (P, PO, PS) 86 2483.1K 155.2K
Total: 443

SHARD [19], has runtimes for LUBM in the hundreds of
seconds.

Benchmark. We load LUBM(8000), containing about 1.1
billion triples (about 190GB) and run all 14 queries on this
data. As our system does not support RDF inference, we use
a modified query set to get results for most queries®. For ex-
ample, since the basic graph pattern <7x type Student> re-

turns no results in Query 10, we use <?7x type GraduateStudent>

instead.

We are focusing on an indexing method as opposed to a
full clustered RDF store in this work, therefore, we have
chosen a relative simple benchmark in our test - LUBM [8],
which includes BGPs with varying selectivity and complex-

ity, and also have been adpoted in recently distributed stores [12,

25, 9]. To conduct a fair performance comparison, we load
and query data in memory, so as to reduce the effect of I/O.
Therefore, we set the index locations of RDF-3X and 4store
to a tmpfs file system resident in memory at each node, so
that queries can be fully implemented over distributed mem-
ory. For data loading, because our tmpfs file system at each
node can not hold all 1.1 billion triples, we load data from
hard disk to memory for the two stores. Although our sys-
tem can operate completely in the distributed memory, in
the interest of a fair comparison, we read data from disks as
well during the data loading process.

3.1 Loading

We load 1.1 billion triples and build three primary indexes
(on P, PO and PS). For RDF-3X and 4store, we report the
time to bulk load data from disk into the memory parti-
tion(s). For both systems, we are using the default indexes.

As shown in Table 1, our system takes 103 seconds to
read the data into memory, 254 seconds to encode triples
and 86 seconds to build the primary index l;, for an av-
erage throughput of 429MB or 2.48M triples per second.
In comparison, 4store takes 7078 seconds?, for an average
throughput of 155K triples per second. The reason is that
our loading process is fully parallel and our indexes are very
lightweight, while 4store needs to do global sorts and uses a
master node for coordination.

We also see that RDF-3X takes about 6.5 hours, for an
average throughput of 47K triples per second, performing
much worse than the other two systems (presumably be-
cause we are running on one node and because of the heav-
ier indexing scheme of RDF-3X). From the results reported
n [12], the graph-based partitioning method (used for par-

3The rewritten queries can be found at the same link of our
code.

4Though 4store is a quad-store and has to index graphs IDs,
there is only one graph in the dataset and the overhead is
very small.

Throughput

allel solutions) is even slower than RDF-3X, which highlight
the advantage of our approach again, in terms of loading
speed.

3.2 Querying

Runtime. To test how fast can we achieve on querying, we
execute all LUBM queries using /1 and l2, since the number
of joins in most queries is small. Although our system does
not use a cache as such, one could consider executions with
secondary indexes as warm runs and [; as a cold run (we
explain further regarding the costs and benefits of additional
index levels later in this section).

Table 2 shows the execution time for each query. Both
RDF-3X and 4store are very fast for most queries, staying
under 1lms, since many queries in LUBM are very simple.
There is only a marginal difference between cold and warm
runs, since we are operating in memory. In our system, the
execution over [z is generally much faster than over /1, which
shows that query performance can be vastly improved by
building a secondary index. The lowest speedup is achieved
on Q2, Q9, Q6 and Q14, the reasons being that (1) Q2
and Q9 are complex and the intermediate results still need
redistribution over the I3 index; and (2) Q6 and Q14 contain
only a single triple pattern, thus l2 is not built.

Comparing the warm run of RDF-3X and our implemen-
tation with the 2nd-level index: (1) our approach is slower
than RDF-3X for simple and selective queries such as Q1
and Q3. RDF-3X uses some hundreds of us to finish the
operations of lookup and joins for candidate results while
our system (and 4store) has to do synchronization over a
distributed architecture, which has an overhead of about 10
ms; (2) our system is much faster at complex queries, for
example Q2 and Q9, as we can implement joins in parallel;
and queries having low selectivity, for example Q6 and Q14,
since it has higher aggregate I1/O; or possibly both reasons,
such as Q13.

Meanwhile, compared to 4store, we are slower for some
queries, such as for the Q1, Q5, Q6, Q10, Q11 and Q13. Re-
gardless, the difference of the time cost is very small, only
in the order of ms. The possible reason could be the over-
head of our join operations but not our indexing approach,
because we only adopt hash join as local joins in our imple-
mentation and we have to build hash tables firstly which are
then probes. We are also slower on Q4, Q7, Q8 and Q12, in
the order of 7100 ms, which could be because 4store optimizes
the coordination between each node, while our system cur-
rently involves all nodes in each query. However, the much
faster loading time, in combination with the fact that our
approach always stay in the interactive range, makes our
approach better suited for some applications.

For the more complex queries Q2 and Q9, our approach is
obviously much faster, in the order of sec. Moreover, we can
further improve the performance of our system by employing
higher level indexes. On the other hand, our method is also
faster than 4store for the simple queries Q3 and Q14. The
reason could be that we can quickly locate required indexes
and then organize scans for large number of tuples (for Q14)
or the used local hash join demonstrates its advantages on
small-large table joins (for Q3).

Indexes. We examine the time cost to build the secondary
indexes, and examine query performance on executing Q2
and Q9, which are the most complex queries containing more
triple pattern than others. Figure 5 shows that building a



Table 2: Execution times for the LUBM queries over RDF-3X and 4store with cold and warm runs, as well
as our system with the primary index l; and second-level index l> (ms)

RDF-3X 4store Our system # RDF-3X 4store Our system #

Q. cold warm cold warm 151 lo Results Q. cold warm cold warm 151 lo Results
1 0.19 0.17 9 8 500 14 4 8 1.73 1.55 0.69 0.64 5145 564 1874
2 11303 11217 4635 4510 8244 3917 2528 9 10253 9803 18148 17972 9533 4173 0

3 0.26 0.25 24 22 1635 20 6 10 0.21 0.17 5.76 4.79 986 15 4

4 0.34 0.28 0.45 0.32 10597 445 10 11 0.21 0.17 1.24 1.20 505 13 0

5 0.22 0.18 4.08 3.57 1012 13 146 12 125 124 0.24 0.20 1285 384 125
6 409 382 6.49 5.71 12 12 20 mil. 13 202 199 18.49 16.01 1141 18 19905
7 0.64 0.54 0.19 0.15 8129 731 0 14 1147 1055 21.19 20.45 16 16 63 mil.
224
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Figure 5: Runtime for RDF-3X and 4store, and de-
tailed runtime of each implementation for our ap-
proach (over Q2 and Q9 using 192 cores).
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Table 3: Runtime by varying the number of cores
over 2nd-level index

# nodes 12 24 48 96 192
Q2 20.804  15.613  13.027 6.827  3.917
Q9 11.453 9.516 7.908 5.272  4.173

high-level index takes only hundreds of ms, which is ex-
tremely small compared to the query execution time. This
operation is very fast, since it only involves indexing using
in-memory hashtables. We can also see that, the higher the
level of index is, the lower the execution time. For exam-
ple, with I3, Q2 and Q9 can be executed in 0.45 seconds,
which is orders of magnitude faster than with [z, RDF-3X
and 4store. The reason is that, for I3, there is no data move-
ment between nodes for joins and we only need to perform
local joins.

Scalability. We also test the scalability of our implementa-
tion by varying the number of processing cores. We run Q2
and Q9 over the second-level index and double the number
of cores from 12 (a single node) till 192. The results are pre-
sented in Table 3. It can be seen that the execution time of
both queries decreases with increasing the number of cores.
Nevertheless, both queries reach a plateau at around 4 sec-
onds. The reason for this is that overhead starts dominating
the runtime. With 192 cores, for each core, there will be ap-
proximately 191 (one from each other node) messages, with
the associated coordination overhead, for a total of 532K
and 375K tuples transferred for Q2 and Q9 respectively. As
future work, we will work on methods to reduce the distri-
bution for small indexes, so as to avoid this messaging and
coordination overhead.

size data partitioning model. In this respect, these systems
are similar to the one proposed here in terms of fast data
loading and minimal or no pre-processing. However, they
execute queries directly over the raw data without any en-
coding process or additional index, resulting in a heavy net-
work communication costs for complex queries and signifi-
cant startup overhead. For example, while [14] can process
massive datasets with zero loading time, its minimum run-
time is in minutes, not seconds.

Systems such as SHARD [19] and the one in [13] gener-
ally adopt hash-based partitioning techniques. This leads
to slower loading of RDF data, e.g. 0.5 hour to load 270
million triples is reported in [12]. These systems are similar
to our system using the 2nd-level index. Therefore, they
can avoid communication for simple queries containing star
graph patterns. For complex queries with higher-level oper-
ations, our system is much faster, because large amounts of
data in these systems still needs to be redistributed across
the network to perform joins.

Clustered RDF stores such as Virtuoso Cluster [7], YARS2 [11]
and 4store [10] distribute indexes over nodes in a cluster to
improve I/O and join throughput. They are more similar in
operation to single-node RDF stores than to our approach,
offering lower loading speeds but also persistence and more
space-efficient indexing. As shown in our tests, we are much
faster than 4store in data loading and also outperform it for
complex queries.

Systems using graph-based partitioning such as the ones
in [12, 24, 25|, are similar to the ones using high-level indexes
proposed here, which impacts positively on query perfor-
mance. However, graph partitioning and triple placement
in these systems happens at indexing time, hampering load-
ing throughput. For example, the system described in [12]
takes 4 hours to assign 270 million triples according to a
2-hop construction. Although [25] stores data as a graph,
time spent on graph partitioning will still increase expo-
nentially with increasing either the size of a graph or the
parameter hop, because the connections between vertexes
becomes more complex. In contrast, our system has no such
costly operations, but organizes the sub-graph dynamically.
Moreover, our incremental indexing process has proven to be
very lightweight, requiring only hundreds of ms, in addition
to query execution time.

5. CONCLUSION



In this work, based on the analysis of current indexing ap-
proaches, we present an efficient hybrid structure designed
for fast loading and querying large-scale RDF data over dis-
tributed systems. We implement our approach over a com-
modity cluster and the experimental results demonstrate
that our approach is extremely fast at loading data while
still keeping query response time within an interactive range.
Future work lies in further extensions to our design through
the application of methods for indez size reduction (or index
management) and sort-based local joins, to develop a highly
scalable distributed analysis system for extreme-scale RDF
data.
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