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ABSTRACT

This paper presents a quasi-static configurational force (CF) brittle fracture propagation method, [1], using the
discontinuous Galerkin (dG) symmetric interior penalty (SIP) method, [2]. The method is derived from the first
law of thermodynamics with consideration of the Gri�th fracture criterion [1]. The criterion is evaluated by
finding the di↵erence between the power applied to the domain and the rate of internal energy change at every
point in the domain. If a node within the element mesh satisfies the criterion, a crack will propagate in the CF
direction. Around the crack tip the advantage of element specific degrees of freedom in dG methods enables
simple p-adaptivity to determine the CF in the spatial domain. In the material domain r-adaptivity is implemented,
where the CF direction is used to align element edges, which are then split to propagate the crack.

Key Words: Crack propagation; configurational force; discontinuous Galerkin; symmetric interior penalty;
rp-adaptation

1. Introduction
Fracture propagation is the generation of new surfaces in a domain through crack growth. Numerical
implementations of brittle fracture propagation is relatively rare and remains to be one of the most
significant challenges in solid mechanics. Numerical frameworks must be able to predict the initiation
of a crack and the subsequent path. A promising technique, known as r-adaptivity, which mitigates
influence from the mesh on the direction of the crack path has been presented by Miehe et al., [1, 3,
4]. The method is based on the concept of material configuration force, [5, 6, 7], with the use of a
Gri�th brittle fracture failure criterion to determine crack growth. The unique aspect of the method is
the realignment of an element face with the direction of the configurational force vector at the crack tip.
The face is then split to propagate the crack.

In this paper the SIP dG finite element (FE) scheme, [8], is used to apply the r-adaptivity method in con-
junction with hierarchical shape functions for p-adaptivity [9]. The connectivity between elements in the
dG space is generated through dG face sti↵ness terms, not shared degrees of freedom. The implication is
that new surfaces can be generated by removing dG face terms between elements, in the global element
sti↵ness matrix. The second implication is adjacent elements can have varying degrees of freedom with-
out concern over hanging nodes. Moreover, it is simple to incorporate new higher order elements into an
already existing data structure as it is only necessary to ensure the new degrees of freedom are unique
to a single element and that new dG face sti↵ness terms are calculated for the higher order element’s
connectivity to its adjacent elements.

In this paper the SIP dG method is initially defined as the scheme to model the CF crack growth. This is
then followed by a definition of the CF, the growth rate and the corresponding consistency conditions.
Next the method for applying rp-adaptivity within a SIP dG framework is outlined. Lastly results are
represented to validate CF values and the crack propagation path against analytical solutions.
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2. Discontinuous Galerkin method for linear elasticity
Here we introduce SIP dG for the linear elasticity problem,

�r · �(u) = f in ⌦, n · �(u) = gN on @⌦N and u = gD on @⌦D . (1)

⌦ is a polygonal domain and f is a force vector in [L2(⌦)]2. ⌦ is divided into elements K . We set
Wh = {w 2 [L2(⌦)]2 : 8K,w |K 2 Pp

K

(K )} where Pp
K

(K ) is the space of polynomial functions of
degree at most pK > 1 on K . The elementwise approximation of u is defined uh 2 Wh . (1) is weakly
satisfied by uh such that a(uh , v) = l (v). Here, a(uh , v) =

P
K 2⌦ aK (uh , v) and l (v) =

P
K 2⌦ lK (v)

where,

aK (uh , v) = (�(uh ),✏ (v))K � h{�(uh )},~v�i@K\@⌦ � h~uh�, {�(v)}i@k\@⌦ + �hh�1~uh�,~v�i@K\@⌦, (2)

and
lK (v) = ( f , v)K . (3)

� is a penalty term for linear elastic SIP dG defined by [10], h is the element face length, and {·}, ~·�,
(·, ·) and h·, ·i are defined in [2]. The displacement boundary conditions are applied in the strong form.

3. Evaluation of the configurational force for fracture mechanics
Miehe et al., [1], provide a robust derivation based on the work on the configuration force by Eshelby
[5, 6, 11], to determine the configurational force as,

GI = lim
|C |!0

Z
C

⌃ · ndS, (4)

where � = @✏ ̂(✏ ) and ⌃ =  ̂(✏ )1 � hd
>� are the symmetric Cauchy stress tensor and non-symmetric

Eshelby stress tensor, n is an inward normal to the crack,  ̂(✏ ) is the free energy function, C is a
surface around the crack tip and hd is the displacement gradient. The method is cast within an arbitrary
Lagrangian-Eulerian description of motion requiring a reference material domain and spacial domain.
The velocity of the crack, �aI , is controlled by the isotropic Gri�th failure criterion function �̂(GI ) =
|GI | � gc  0 where gc is the material parameter specifying the critical energy release pre unit length.
Propagation of the crack tip is controlled by the following consistency conditions,

�aI = ��I
GI

|GI | , where ��I � 0, �̂(GI )  0, and ��I �̂(GI ) = 0. (5)

If the Gri�th failure criterion is satisfied then ��I = Hc , where Hc is the length of the face to be split.

4. RP-adaptivity
For our simulations hierarchical shape functions are employed for both the material and spacial domain.
All elements are triangular and have a shape function order of 1 except those at the crack tip with an
order p. The configurational force is evaluated at the crack tip using the domain method presented by
Denzer et al., [12]. If |GI | � gc is true then the crack will propagate in the direction G

I/|G
I

| and the
rp-adaptivity method will be applied, see Figure 1.

The r-adaptivity step occurs in two stages. First, the face in the material domain most aligned to the CF
direction is rotated about the crack node to be exactly parallel with the CF direction, [1]. Secondly, the
crack surface is propagated by removing dG face sti↵ness terms from all future sti↵ness calculations for
the manoeuvred face.

To initiate p-adaptivity all components of (2) for elements 1-6, and all external elements sharing faces
with elements 1-6, are recalculated and steered back into the global sti↵ness matrix. This is necessary to
accommodate changes in element topology, crack surfaces and element order. Management of the data
structure is relatively simple, the only consideration being degrees of freedom must be unique to a single
element.
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Figure 1: The rp-adaptivity for the element mesh at the crack tip with its corresponding sparsity matrix.
Sparsity components with a grey box and X are removed dG face sti↵ness terms to increase the crack
length. Black components are elements which undergo a reduction in polynomial order, white no change,
and grey an increase.

5. Experimental results
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(a) CF value for varying element length and local p-
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(b) CF angle deviation from 0 degrees for a developing
crack.

Figure 2: a) CF values for a force applied to a static crack, inset the experimental setup and mesh. b) CF
angle for a propagating crack with a displacement boundary condition. CF values were calculated using
the method presented by Denzer et al. [12], with a radius of 0.05 m.

A plane stress experiment using the SIP dG method was performed to validate CF values at the crack tip
of a stationary crack against a known solution provided by [13]. The experimental setup is described in
Figure 2a, the geometric parameters a b and l have values 0.1 m, 0.5 m and 1 m respectively. The plate
has a Young’s modulus of 208 GPa and Poisson’s ratio of 0.3. The tensile stress, P, was 10 Mpa.

The unstructured mesh consists of triangular element generated using Triangle, [14]. The element face
length is varied around the crack tip. The element polynomial order of elements that share a node at the
crack tip is defined p, all other elements have an order 1. The CF force values for varying element length
and polynomial order is displayed in Figure 2a.

In comparison to the analytical solution of 256.65 N/m, the results converge to a value with an error
⇡ 8%. The error value similar to those expressed by [1] for the same experiment. Faster convergence is
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achieved for meshes with higher element order around the crack tip.

A second experiment was performed to test how varying polynomial order of elements on the advancing
crack tip e↵ected the validity of the CF angle against the expected value of 0o , as shown in Figure 2b.
The problem was set up with the same geometric and material parameters as before, however an axial
load in the form of a 0.1 m displacement boundary condition on either end of the plate is applied instead
of P. All elements other than those at the crack tip have a polynomial order 1. The element length at the
crack tip was 0.01m.

6. Conclusion
This paper has presented an rp-adaptivity method to model small strain quasi-static configurational-
force-driven crack propagation. Problems are restricted to two-dimensions with linear geometric and
material properties. A comparison of the CF values between analytical solutions and those calculated
from surface integrals is presented. The application and results of applying the SIP dG method with
hierarchical shape functions for a propagating and stationary crack have been presented.
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