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Abstract: Macroscopic traffic flow model calibration is an optimisation problem typically solved
by a derivative-free population based stochastic search methods. This paper reports on the use
of a gradient based algorithm using automatic differentiation. The ADOL-C library is coupled
with the METANET source code and this system is embedded within an optimisation algorithm
based on RPROP. The result is a very efficient system which is able to be calibrate METANET’s
second order model by determining the density and speed equation parameters as well as the
fundamental diagrams used. Information obtained from the system’s Jacobian provides extra
insight into the system dynamics. A 22 km site is considered near Sheffield, UK and the results
of a typical calibration and validation process are reported.
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1. INTRODUCTION

In Poole and Kotsialos (2012) an optimisation formulation
was introduced for the macroscopic traffic flow model
calibration problem which was solved by means of a ge-
netic algorithm. The METANET Messmer and Papageor-
giou (1990); Kotsialos et al. (1998, 2002) model was em-
ployed, treated as a simulation black box. An additional
requirement was the automatic spatial assignment, i.e.
determining the location and extension, of fundamental
diagrams (FD). The motivation behind this is that current
calibration practice either uses expert engineering opinion
to make a decision about the FD or use a separate FD
for every discrete road segment resulting from the model’s
discretisation rules. In the first case, intuition, past ex-
perience, visual inspection and preliminary data analysis
result to an ad-hoc approach leading away from systems
that embed knowledge in their own structure and the
display of more intelligent forms of automation, Kotsialos
and Poole (2013). In the latter case, overparametrisation is
a clear risk since typically three parameters are necessary
for defining a FD.

The problem formulation suggested in Poole and Kotsialos
(2012) allows the arbitrary selection of FD location for
homogeneous road stretches, which themselves are split
into segments, but also penalised the variance between
their parameters. The rationale behind this penalisation
is that by treating the FD as an extensive quantity whose
start and end are decision variables in an optimisation
problem, the parameter variance penalty will result to
solutions that favour similar FD. This kind of similarity
was employed as guidance when validating the large scale
model of the Amsterdam motorway networks, Kotsialos
et al. (1998, 2002). An additional constraint imposed a
maximum number of FD to be used for a site. It is left up
to the optimisation algorithm to decide how many FD to
be used and over which area to place them.

FD are aggregate descriptions of the infrastructure-
vehicle-driver system. The variation in capacity and free
speeds observed in real data are projections of the same
traffic flow adapting to local inhomogeneities, e.g. drop of
lanes, or different traffic composition. Variations of that
system should be reflected on the FD but all FD model
the same traffic flow process. This does not mean that
the optimisation algorithm will equate all FD, since error
minimisation is still the dominant objective.

The optimisation problem as formulated in Poole and
Kotsialos (2012) is a nonlinear mixed integer optimisation
problem. A genetic algorithm was used there in order to
demonstrate the soundness of the approach. Based on this
work, a more detailed calibration work using classic and
recent variants of particle swarm optimisation (PSO) and
cuckoo search algorithms was reported in Poole and Kot-
sialos (2016). These evolutionary algorithms were used for
calibrating the Heathrow site used in Poole and Kotsialos
(2012) in addition to a road stretch near Sheffield, which is
considered here as well. The results reported demonstrate
the validity of the approach. Optimal parameters were
determined capturing the essential characteristics of the
underlying traffic dynamics as was shown in the ensuing
model validation, see Poole and Kotsialos (2016) for more
details.

All the calibration methods used there are population
based treating the METANET simulator as a simple
executable invoked for each fitness function evaluation.
This approach follows the common choice made regarding
the optimisation algorithm used for model parameter
estimation, see e.g. Spiliopoulou et al. (2014) and Ngoduy
and Maher (2012). Here, a gradient based optimisation
method is introduced for solving this calibration problem.
Extra information that becomes available from the process
of calculating partial derivatives is highlighted as well. The
gradient calculation is performed by use of the automatic



differentiation algorithm ADOL-C, Walther and Griewank
(2012).

Section 2 provides a brief overview of the METANET
model. Section 3 outlines the optimisation problem formu-
lation. A brief site description and overview of available
data are given in section 4 and results are discussed in
section 5. Section 6 concludes this paper providing the
key areas of future work.

2. METANET MODEL OVERVIEW

METANET is a well known macroscopic traffic flow model.
A road network is represented as a directed graph con-
sisting of nodes and links. Links represent homogeneous
road sections, where the number of lanes is a constant
and there is no significant change of curvature or gradient.
Nodes are connected by links and are used at places where
the geometry of the motorway changes or at on-/off-ramp
junctions. Traffic enters via origin links and leaves through
destination links.

Time is discretised globally with a time step T and
the time horizon is K steps. Each motorway link m is
discretised into Nm segments of equal length Lm. The
variables describing traffic conditions in segment i of link
m, at time instant t = kT , k = 0, 1, . . . ,K, are the traffic
density ρm,i(k) (veh/km/lane) of a link m with λm lanes,
the mean speed vm,i(k) (km/h) and the traffic flow qm,i(k)
(veh/h). The discrete time motorway second order traffic
flow model is the following.

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm
[qm,i−1(k)− qm,i(k)] (1)

qm,i(k) = ρm,i(k)vm,i(k)λm (2)

vm,i(k + 1) = vm,i(k) +
T

τ
{V [ρm,i(k)]− vm,i(k)}

+
T

Lm
vm,i(k)[vm,i−1(k)− vm,i(k)]

− νT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
(3)

where ν and κ are speed equation parameters and
V [ρm,i(k)] is the FD given by

V [ρm,i(k)] = vf,m · exp

[
− 1

αm

(
ρm,i(k)

ρcr,m

)αm]
(4)

where ρcr,m is the critical density of link m and αm a
parameter.

In order to account for speed drops due to on-ramp in-
flow the term −δTqµ(k)vm,1(k)/ (Lmλm(ρm,1(k) + κ))
is added at (3), where δ is a constant parameter, µ
the merging link and m is the leaving link. This term
is included only when the speed equation is applied to
the first segment of the downstream link m. Speed de-
creases due to weaving is accounted by adding the term
−φT∆λρm,Nm(k)vm,Nm(k)2/(Lmλmρcr,m) to (3), where
∆λ is the reduction in the number of lanes and φ is
another parameter. Constraints are imposed in the form
of a minimum speed vmin and a maximum density ρmax.

Traffic volume measurements at origins over the period
of K steps are required. Speed measurements can also

be used to better inform the model dynamics, but they
are not necessary. In order for the speed equation to be
applied at destinations s, measurements of the density
trajectories ρs(k) over the entire time horizon are provided
as boundary conditions as well. For a full description of the
METANET, see Messmer and Papageorgiou (1990) or its
manual, METANET (2008).

3. OPTIMISATION PROBLEM FORMULATION

Equations (1)–(4) applied on an arbitrary motorway net-
work can be expressed in the following discrete dynamic
state-space system form

x(k + 1) = f [x(k),d(k); z] . (5)

The state vector consists of the density and mean speed
of every link segment, i.e.

x =
[
ρ1,1 v1,1 . . . ρM1,NM1

vM1,NM1

]T
(6)

where M1 is the number of motorway links in the network.

The disturbance vector d consists of the inflows qo entering
the system from entry points (origin links) like on-ramps
or the upstream main site boundary and optionally the
speeds vo at these locations; the densities ρs at the exit
locations (destination links) like off-ramps or downstream
main site boundaries; and the turning rates βµn at every
split node n, where µ is the main out-link. Hence,

d =
[
q1 v1 . . . qM2

vM2
ρ1 . . . ρM3

βµ1

1 . . . β
µM4

M4

]T
(7)

where M2 is the number of origins, M3 the number of
destinations, M4 the number of split junctions.

z ∈ RΓ consists of the model parameters as encountered
in the dynamic density (1), speed (3) and fundamental
diagram (4) equations. It includes the network-wide global
parameters of the maximum density ρmax, minimum speed
vmin and the mean speed equation (3) parameters τ , ν,
φ, δ and κ. It also contains parameters related to the
fundamental diagram, i.e. vf , α, and ρcr.

A set of measurements y from a number of locations along
the motorway, are used for comparing reality and model
output. The resulting minimisation problem is

min
z
J [x(k),y(k)] (8)

subject to

x(k + 1) = f [x(k),d(k); z] , x(0) = x0 (9)

zmin ≤ z ≤ zmax (10)

where J [x(k),y(k)] is a suitable error function and zmin

and zmax are the lower and upper bounds, respectively, of
z’s elements. The evaluation of J at z requires the forward
integration of (9) given as input the measurements of x0

and d(k).

Let N̂ the number of FDs used; each one’s parameters ρcr,
α and vf are included in z, i.e.

z =
[
τ κ ν ρmax vmin δ φ v

1
f α

1 ρ1
cr . . . v

N̂
f αN̂ ρN̂cr

]T
. (11)

When N̂ = 1 a single fundamental diagram is used. If

N̂ = M1 then every link has its own FD; this is the case for



the gradient based optimisation method presented here in
order to avoid integer decision variables whose derivatives
are not defined.

Assume there are M5 loop detectors at the site giving
speed measurements yj,v(k), j = 1, . . . ,M5. The measure-
ments vector for period k y(k) has the form

y(k) = [y1,v(k) . . . yM5,v(k)]
T
. (12)

Speed measurements are sufficient for the validation of a
second order model by virtue of the conservation equation,
as pointed out in Spiliopoulou et al. (2014).

A global list is retained assigning each sensor to the
corresponding motorway link it belongs to. For each model
time period k the measurement and the model outputs are
compared assuming the same measurement value, since the
model sample time is smaller than the sensor’s.

Measurement location j’s contribution to speed square
error terms is given by

Ej,v [x(k),y(k)] =
[
yj,v(k)− vmj ,ij (k)

]2
. (13)

The total error is given by

Jv [x(k),y(k)] =
1

KM5

K∑
k=1

M5∑
j=1

Ej,v [x(k),y(k)] . (14)

In order to implicitly achieve the automatic assignment
of similar FDs a penalty term Jp(z) is included in the
objective function.

Jp(z) =
N̂−1∑
`=1

N̂∑
r=`+1

[
wv
(
v`f − vrf

)2
+wρ

(
ρ`cr − ρrcr

)2
+ wα

(
α` − αr

)2]
(15)

where wv, wρ and wα are weighting parameters set to
0.001, 0.0015 and 1.0, respectively.

The problem’s objective function (8) takes the form

J [x(k),y(k), z] = Jv [x(k),y(k)] + wpJp(z) (16)

where wp a weighting parameter, which depends on the
problem size; here, wp = 5.0.

By iteratively substituting (9) into (8) the optimization
problem can be expressed as

min
z
J(z) (17)

subject to

zmin ≤ z ≤ zmax (18)

where the dependence on y(k) has been dropped because
these are measurements that don’t change. Gradient based
iterative methods for solving this problem require the
calculation of ∂J/∂z at each iteration. From (16)

∂J

∂z
=
∂Jv(z)

∂z
+
∂Jp(z)

∂z
. (19)

∂Jp(z)/∂z can be calculated analytically from (15) since
it consists of quadratic penalty terms and therefore

∂Jp(z)

∂zγ
= 2

N̂∑
`=1, 6̀=Zγ

wv,ρ,α (zγ − z`) , γ = 1, . . . ,Γ (20)

where Zγ is the fundamental diagram index decision
variable zγ refers to and wv,ρ,α is given from

wv,ρ,α =


wv if zγ corresponds to a free speed
wρ if zγ corresponds to a critical density
wα if zγ corresponds to an exponent
0 otherwise.

(21)

From the chain rule

∂Jv(z)

∂z
=
∂x(z)

∂z

T
∂Jv(z)

∂x(z)
. (22)

In view of (6) vector ∂Jv(z)/∂x(z) has the form

∂Jv(z)

∂x(z)
=

[
∂Jv(z)

∂x1(k)

T

. . .
∂Jv(z)

∂xM1
(k)

T
]T

, k = 1, . . . ,K (23)

where

∂Jv(z)

∂xm(k)

T

=

[
∂Jv(z)

∂ρm,1(k)

∂Jv(z)

∂vm,1(k)
. . .

∂Jv(z)

∂ρm,Nm (k)

∂Jv(z)

∂vm,Nm (k)

]T
m = 1, . . . ,M1 (24)

Because of the quadratic error terms (13) and the fact
that Jv in (14) does not explicitly depend on the densities

∂Jv(z)

∂ρm,i(k)
= 0 and (25)

∂Jv(z)

∂vm,i(k)
=

2

KM5
[vm,i(k)− yj,v(k)] Im,i (26)

∀m = 1, . . .M1, i = 1, . . . , Nm, k = 1, . . . ,K

with Im,i a binary indicator function showing if there is
a measurement for segment (m, i) used in the error calcu-
lation and j is the corresponding measurement station in
(12).

Equations (23)–(26) allow for the analytical calculation of
one factor of the right hand side of eqn. (22); in order to
complete this calculation and determine its left hand side,
the Jacobian matrix

∂x(z)

∂z
=


∂x(1)

∂z1

T

. . .
∂x(1)

∂zΓ

T

. . . . . . . . .

∂x(K)

∂z1

T

. . .
∂x(K)

∂zΓ

T

 (27)

needs to be calculated, where

∂x(k)

∂zγ

T

=

[
∂ρ1,1(k)

∂zγ

∂v1,1(k)

∂zγ
. . .

∂ρ1,N1
(k)

∂zγ

∂v1,N1
(k)

∂zγ
. . .

∂ρM1,NM1
(k)

∂zγ

∂vM1,NM1
(k)

∂zγ

]T
(28)

and because of (25) only the ∂vm,i(k)/∂zγ for every
segment i of link m at time instant k with respect to every
model parameter zγ need to be calculated. It is exactly this
quantity that the ADOL-C AD library calculates at every
simulation time step. Hence, in order to obtain ∂J(z)/∂z,
∂Jp/∂z and ∂Jv/∂x are calculated analytically from (20)
and (25)–(26), respectively, and ∂x/∂z is calculated by
ADOL-C during a simulation run with METANET con-
figured with z. Having obtained this way ∂J(z)/∂z, a



(a) Site sketch.

(b) METANET site representation.

Fig. 1. Sheffield site model (not on scale).

multistart version of the RPROP iterative optimisation
algorithm is used in the way described in Kotsialos (2013,
2014) based on Riedmiller and Braun (1993).

A simple multistart initialisation scheme with points sam-
pled from a Latin hypercube is sufficient.

4. SITE DESCRIPTION AND DATA USED

The test site is the Northbound M1 motorway as it enters
Sheffield and can be seen in Fig. 1. It extends over 21.9 km
and the METANET model consists of 20 links. Recurrent
congestion has the form of a shock wave originating at the
centre. Usually it occurs at the end of the link 6 where
the off-ramp of Junction 33 is short and unable to cope
with the demand of exiting flow. Data collected by the

MIDAS system from Monday the 1st, 8th and 15th of June
2009 were used. They consist of flow, speed, and occupancy
measurements per lane averaged over one minute intervals.

It is well known that vm,i in eqn. (2) is the space mean
speed, which for a small area centred around a loop detec-
tor is estimated by the harmonic mean of individual vehicle
speeds passing over the detector. The loop detectors pro-
vide arithmetic mean speeds, but assuming homogeneous
traffic conditions along each lane, the harmonic and the
arithmetic lane mean speeds are the same. The cross lane
mean speed is estimated as the harmonic mean of the lane
speed measurements,. accounting this way for the lateral
speed variance but not the longitudinal.

5. RESULTS

5.1 Calibration

For the calibration optimisation problem solved, the upper
and lower bounds (10) are given by Table 1. For each day of
data the optimisation algorithm was repeated three times.
Table 2 gives the values of total fitness function J and the

Table 1. Traffic flow model parameters upper
and lower limits.

Variable τ κ ν vmin ρmax

Max. 60 90 90 8 190

Min. 1 5 1 5 160

Variable δ φ αm vf,m ρcr,m
Max. 4 3.0 5.00 130 40.0

Min. 0.001 0.00005 0.40 80 18.0

Table 2. Fitness function for three runs.

J Jv wpJp

1st

repeat 1 48.50 39.66 8.84
repeat 2 49.21 36.96 12.25
repeat 3 51.37 40.47 10.90

8th

repeat 1 43.27 36.96 6.31
repeat 2 42.91 36.55 6.36
repeat 3 43.36 36.53 6.83

15th

repeat 1 52.17 33.73 18.44
repeat 2 52.37 32.13 20.24
repeat 3 62.21 38.92 23.29

Table 3. Optimal network-wide parameter sets

τ κ ν vmin ρmax δ φ

1st 22.67 22.40 56.68 6.18 182.75 0.08 0.00005

8th 11.39 29.17 41.96 8.00 173.30 0.00008 0.00005

15th 18.57 24.71 40.34 8.00 177.83 0.093 0.00005

Fig. 2. Optimal FD parameters and spatial assignment.

corresponding error component Jv and weighted penalty
wpJp.

Table 2 shows that the RPROP algorithm performs con-
sistently for the three days and is able to find parameter
sets that result to an absolute average error on the order
of 6% to 7% of the speed for each detector station. Table
3 shows the network wide part of z from the best repeat
of the three days, whereas Figure 2 depicts each link’s FD
parameters over space.

Figure 3 is a heatmap distance-time diagram of the speed
based on data of the 15th. On the left the speed mea-



Fig. 3. Speed distance-time diagram for calibration results
based on the data of the 15th.

Fig. 4. Distance-time of the speed with respect to the speed
equation parameters for the data of the 15th.

surements used are shown and on the right the calibrated
model’s output. The model is able to represent traffic
dynamics and predict the congestion’s spatio-temporal
extension.

One of the additional benefits of calculating ∂J/∂z is the
calculation of the Jacobian matrix ∂x/∂z. This provides
the sensitivity of the speed at every instant and at every
segment with respect to the model parameters. Figure
4 shows this sensitivity, ∂vm,i(k)/∂zγ , γ the appropriate
index for z, for the speed equation parameters distributed
over space and time for the data of the 15th. Figure 5
displays the sensitivity of the whole network’s speed over
space and time with respect to the FD parameters of links
L1 at the start of the site, L6 at the middle, and L10 at
the end.

Forwards and backwards waves are observed indicating
the dominant factors affecting speed at particular point in
time and space. These provide extra information regarding
the flow dynamics which can be used for examining the
influence of control measures or help target the most
influential areas where improvements need to take place.
Part of the future work is finding ways of exploiting

(a)

(b)

(c)

Fig. 5. Speed sensitivity over space and time with respect
to the FD parameters of links (a) L1 (b) L6 (c) L10.

Table 4. Validation Jv for the solution yielding
the best calibrated Jv on Table 2.

Data from the:

Optimal parameter 1st 8th 15th 8th

set from the: (incident)

1st 36.96 141.00 106.65 55.66

8th 338.26 36.53 327.48 103.38

15th 83.22 140.47 32.13 61.65

this information for the benefit of planning systematic
interventions to the traffic flow system.

5.2 Validation

The quality of the best solution obtained by the calibra-
tion process when data of a particular day were used is
tested using the data of the other two days. The optimal
parameter set of that day is given to METANET but
the initial and boundary conditions are from the data of
the other two. The model’s output is then compared with
the corresponding measurements from the site and Jv is
calculated.

Table 4 provides the values of Jv when METANET uses
the optimal parameter set z∗day (Table 3 and Figure 2)

that yields the best calibrated Jv in Table 2 (in bold).
Notice that this is not always the solution with the best
total fitness function value J . The diagonal elements are
the calibration results and they are always smaller than
the other elements of the matrix, as expected. It can be
seen that z∗15th generalises better on the data of the 1st
compared to z∗1st on the data of the 15th. Hence, from
these two days z∗15th is preferred.



(a) data from the 1st

(b) data from the 8th with incident

Fig. 6. METANET simulation using z∗15th .

z∗8th does not generalise well on the data of the 1st
and 15th. A closer inspection of the measured speed
trajectories, lead to the conclusion that on that particular
day there was a sustained spill-back of congestion from
destination D33. Spillbacks are particularly difficult to be
captured by a macroscopic traffic flow model and distort
the calibration results. However, the optimal parameter
sets should remain valid even in the presence of their
effects. In order to verify this, an incident was introduced
for the duration of the spillback as indicated by the data
at link L6, just upstream of the exit to D33. The last
column of Table 4 shows the impact of introducing it. Jv
for both z∗1st and z∗15th has dramatically improved. Hence,
the calibrated models of the 1st and 15th remain valid for
the data of the 8th. This is visualised from the distance-
time diagrams shown in Figure 6. The results shown were
obtained by using z∗15th for the data of the 1st and 8th
with incident.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented the combination of three sepa-
rate methods for modelling road networks (METANET),
automatic differentiation (ADOL-C) and numerical op-
timisation (RPROP) for developing a system of traffic
flow model parameter estimation. The additional require-
ment of automatically selecting each FD’s location and
extension is not satisfied to the highest degree possible
but is implicitly considered in the optimisation problem
formulation. The resulting system is capable of delivering
model parameter sets that remain valid under different
conditions. The developed system makes use of the gradi-
ent which is calculated using the ADOL-C library. In the
process of this calculation, the model’s speed sensitivities
with respect to the model parameters are determined.
This calculation yields additional information that can be
exploited for improving interventions to the traffic system.
The RPROP algorithm has showed that it is capable of

solving this highly complicated and demanding problem.
Its simplicity of implementation has allowed the integra-
tion of the three different source codes into a single system.

A first line of research following this work will be concerned
with model validation of other second order macroscopic
traffic flow models that do not suffer from the isotropic
assumption. Further work will also focus on improving
the software implementation and RPROP’s speed of con-
vergence. Implementing integer programming methods for
the problem formulation where a maximum number of
used FD constraint is imposed is another important area
of work. A more systematic investigation on how to use
the information contained in the sensitivity distance-time
diagrams for control purposes will need to be considered
carefully. More detailed experiments need to be conducted
in order to associate the correlation between the capacity
as calculated by the calibration and the measured traffic
composition.
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