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ABSTRACT
Plagiarism is a common concern for coursework in many sit-
uations, particularly where electronic solutions can be pro-
vided e.g. computer programs, and leads to unreliability of
assessment. Written exams are often used to try to deal
with this, and to increase reliability, but at the expense of
validity. One solution, outlined in this paper, is to ran-
domise the work that is set for students so that it is very
unlikely that any two students will be working on exactly
the same problem set. This also helps to address the issue
of students trying to outsource their work by paying external
people to complete their assignments for them. We exam-
ine the effectiveness of this approach and others (including
blended assessment) by analysing the spread of similarity
scores across four different introductory programming as-
signments to find the natural similarity i.e. the level of sim-
ilarity that could reasonably occur without plagiarism. The
results of the study indicate that divergent assessment (hav-
ing more than one possible solution) as opposed to conver-
gent assessment (only one solution) is the dominant factor
in natural similarity. A key area for further work is to apply
the analysis to a larger sample of programming assignments
to better understand the impact of different features of the
assignment design on natural similarity and hence the de-
tection of plagiarism.
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1. INTRODUCTION

1.1 Plagiarism
Plagiarism has long been recognised as a problem in com-

puter science education, and for programming in particu-
lar [16, 15]. In one study [8], 33% of students said they
had plagiarised and 30% said a computer program they had
written had been a source for plagiarism. Only 64% of staff
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in the same study had caught a student trying to plagiarize
and 12% of the staff had never heard of a case of plagiarism,
suggesting that a lot of plagiarism goes unnoticed. At the
heart of the problem are the issues of reliability and valid-
ity of assessment [19]. For many academics programming
coursework feels like a more valid way of assessing students
than a written exam, but according to one of the intervie-
wees in a study [22]

”We do exams because of plagiarism, there is no
other reason for doing an exam”

If students can cheat in an assessment then the assessment
is unreliable, ergo coursework is unreliable. Much effort has
therefore been spent on plagiarism detection tools for pro-
gramming such as MOSS [5] and JPlag [21]. A compari-
son of plagiarism tools in 2010 [13] identified 18 separate
projects/tools, and since then more work has been carried
out on new approaches to identifying plagiarism [9, 11].

1.2 Plagiarism Detection and Natural Similar-
ity

Typically a plagiarism detection tool will give a ranked
list of submission pairings ordered in terms of their simi-
larity with an adjustable cutoff point for inclusion in the
list. There is, however, no universal of similarity beyond
which we can say ”this work has been plagiarised” as it may
be that two programs could have been produced indepen-
dently and yet have substantial similarities. In practice,
our approach to using a plagiarism detection tool is to look
through the ranking and decide from an expert academic
standpoint whether there is evidence for plagiarism beyond
reasonable doubt. The ranked list of pairings is traversed
from high similarity to low until the similarities encoun-
tered could reasonably have occurred without plagiarism.
This defines a threshold which we define to be the natural
similarity for the assignment and is potentially affected by
many factors, including the following:

• if students are taught or required to follow particular
coding standards the natural similarity will be higher;

• if students are required to implement methods/functions
with particular names and calling conventions (e.g. im-
plementing a Java interface) the natural similarity will
be higher;

• if students have access to code examples very similar
to those required for the assignment — either directly



from the teacher, or from elsewhere (possibly if the as-
signment is similar to standard exercises) — the nat-
ural similarity will be higher;

• moving along the continuum between convergent as-
sessment (where there is only one correct answer) and
divergent assessment (no one correct answer, but rather
an overall measure of quality) [19] will reduce the nat-
ural similarity;

• the more insensitive the detection tool is to ”standard”
obfuscation techniques (e.g. renaming of variables,
adding comments) the higher the natural similarity
there will be. This may possibly counteract other de-
pendencies, e.g. coding standards and required method
names.

While natural similarity can be defined numerically for a
given assignment, it is still partly subjective, based on the
opinions of the assessor and the level of proof required to
accuse a student of plagiarism.

1.3 Automated Assessment
Aside from plagiarism, there is another potential problem

with coursework as opposed to written exams: the amount
of time spent marking. The development of systems for au-
tomated assessment of programming assignments has taken
place in parallel with the progress in plagiarism-checking
tools, with 17 different systems reviewed in 2010 [14]. While
the most commonly stated reason for adopting automated
assessment is the ability to give almost immediate feedback
to students, assisting them in their learning, the reduction
in the time spent by the tutor can also be a key driver. Re-
liability of assessment should also increase, because of the
objective application of assessment criteria, but this is less
often referred to in the literature.

In order to meet the needs of the assessment system, the
task needs to be very clearly specified, which some have
argued as constraining to the nature of the assessment, pos-
sibly reducing its validity. The approach that we have used
for automated assessment involves getting students to imple-
ment Java interfaces, with the submitted code then exercised
via JUnit. As discussed above, it would be expected that
this would increase the level of natural similarity between
submissions.

Why do we care about natural similarity? A high level
of natural similarity within an assignment makes it hard to
detect plagiarism because it is more likely that similarities
could have occurred by chance. Plagiarised work is still iden-
tified, but potentially so are pairs of submissions that are not
plagiarised, and which are reported as false positives. Later
in the paper (section 3) we examine how different types of
assessment affect the natural similarity in practice, through
a study of real programming assignments. First, in sec-
tion 2 we look in more detail at the use of coursework and
exams plus manual and automatic assessment and examine
the notion of blended assessment, describing an approach
we have developed which is aimed at increasing reliability of
assessment whilst maintaining or increasing validity. This
approach is evaluated alongside others in the study (sec-
tion 3), and conclusions are drawn in section 4, along with
suggestions for further work.

2. PROPOSAL: BLENDED ASSESSMENT
AND RANDOMISATION

We propose two approaches to programming assignments:
blended assessment to improve validity (section 2.1) and ran-
domisation to improve reliability (section 2.2).

2.1 Blended Assessment
To strike a balance between the reliability of formal writ-

ten exams and the validity of coursework exercises, the use
of laboratory exams has been discussed [10], where students
carry out programming exercises, rather than written ex-
ams, in more constrained exam-like conditions. We have
used this approach in the past, but concerns remain about
the validity of the assessment approach (as well as its relia-
bility, which is discussed in section 2.2). What can a novice
programmer be expected to achieve in 75-180 minutes, the
range of lengths of exam times reported in the study [10]?
Some academics also expressed concerns that if a student
gets stuck early on in the exam session then they are unable
to make progress at all, so end up with very few marks (and
a lot of stress). This situation does not reflect how they
have learnt (or how they would practice in the real world),
where other students or tutors can help point out problems.
We have probably all been in a situation where we could not
identify an obvious but simple error that was staring us in
the face. To address some of these issues, we have used an
approach that could be referred to as blended assessment.
The term blended assessment, although sounding somewhat
fashionable, has potentially multiple meanings — and two
of the meanings apply here.

The idea of blended learning has been around for quite a
while and, although the definition is not universally agreed,
most definitions include the idea of combining instructional
approaches, typically including face-to-face and computer
mediated/on-line.[4, 6]. Blended assessment, on the other
hand, is a newer term which has a wider variety of inter-
pretations. One paper [18] describes an environment in
which traditional-style written exams are blended with e-
assessment techniques for managing grading the papers, re-
porting to students and analysis of results. In another study
[20] on-line multiple-choice tests are blended with follow-on
written responses, while another looks at different ways of
integrating of on-line exams within courses [1].

2.1.1 Blending Coursework and Laboratory Exam
Our first aspect of blending is to combine in one assign-

ment the notion of a standard piece of ’take home’ course-
work with a laboratory exam. Cutts et al. [10] identified the
use of published scenarios, or even the whole exam paper,
in advance of the time-constrained exam. We published an
initial problem specification, with a Java interface to be im-
plemented, in advance of the test, explaining to the students
that they would be required to adapt their code to new re-
quirements, to a new interface, in their scheduled time slot.
The motivation here was threefold:

1. To broaden the scope of what could be expected of
students

2. To deter students from plagiarising the ’take home’
portion, as they would have to understand the code to
be able to adapt it



3. To reduce the likelihood of students getting completely
stuck in the time-constrained exam

Marking of the work is automated relatively easily using
JUnit via the prescribed interfaces.

2.1.2 Blending Automatic and Manual Assessment
Automated assessment is often used to give quick feedback

to students without intervention from the tutor, typically
through a web-based system e.g. Web-CAT [12]. This has
some clear pedagogical advantages, but also some problems
if the students rely on resubmission too much. [17]. Our
approach has been to get lab demonstrators to provide face-
to-face feedback in weekly lab sessions, but to use automatic
assessment for the larger summative exercises.

Students can be uncomfortable with automated assess-
ment because of its binary nature: if the code doesn’t run
exactly as required then no marks can be awarded. By test-
ing different parts of the functionality separately it is per-
fectly possible to get a finer granularity, but sometimes the
student’s work essentially fails to get off the ground, for in-
stance if it doesn’t compile. This sounds like a a situation
where it would be perfectly reasonable for the student to be
awarded zero marks, but what if the student’s work compiles
by itself, but not within the testing environment. Typical
causes for this that we have seen (within the context of Java)
are,

1. Although all of the functionality required by the inter-
face is in place, the class does not include the ”imple-
ments” declaration

2. The student has used the wrong version of the interface

3. The compiler used by the student is not compatible
with the marker (too old or too new)

4. The specified constructors have not been provided: Java
does not allow constructors to be specified within an
interface. The main alternative to constructors — fac-
tory methods — need to be static, and hence cannot
be specified in Java interfaces prior to Java 8.

There are also lots of ways that the code might compile but
fail to work for a very simple reason, for instance if a ”set”
method used by the tester does not work properly.

Some of these issues can be dealt with programmatically,
and we have used Java reflection to identify when construc-
tors are not present and to add them in by generating a
new version of the source code with the correct constructor
included (usually just a nullary constructor). In this way
partial credit can be given automatically for programs that
are very nearly correct. Sometimes though, more work is
needed to make the class compile with the tester (or even
to compile at all) which really can only be carried out by
human intervention. The two main challenges in implement-
ing this approach is to integrate the feedback provided by
the automated assessment tool with the human-produced
feedback, and how to aggregate the marks between the two.
The solution that we have used is via a web-based statement
bank tool that was developed previously for expediting the
process of manual assessment. Statement bank systems are
fairly common, but the main distinguishing features of our
system are that

• new statements can be added to the bank of statements
’on the fly’ either by adapting existing statements, or
through a web API,

• marks can be associated automatically within state-
ments by regular expression matching: including an
integer in brackets within the statement will interpret
this as a mark to be included in the total and

• the marking scheme structure of an assignment can be
represented, so that

– statements previously made within that section
can be prioritised for inclusion and

– maximum marks for a section can be checked
against marks awarded.

An initial pre-marking process is run which identifies
whether the submitted code compiles, and tries to apply
programmatic fixes. Marks are awarded simply for the code
compiling as required, and none if not – this avoids the con-
tentious issue of negative marking, and allows the human
marker to award partial scores if appropriate, reflecting the
changes that have had to be made. We claim that this in-
creases the validity of the test with a relatively small impact
on reliability. Manually adding the relevant comments (with
marks) from the statement bank, and seeing the marks as-
sociated with similar comments, certainly adds confidence
to the feeling that the human intervention in the marking is
consistent.

Comments are added from the automated assessment sys-
tem through naming of the test methods that are applied,
for example in this test

@Test

public void isValid_returns_true_if_valid_2(){

assertTrue(met.isValid());

}

Here the test is applied to the object met which has been
constructed to be valid, and depending on the result of the
test one of the following two statements are added to the
student’s feedback within the relevant section of the marks
scheme.

isValid returns true if valid [max 2] YES (2)

isValid returns true if valid [max 2] NO

In this case the mark scheme was sectioned according to the
different classes that the students were required to imple-
ment, so it is clear from the context which isValid method
is being referred to.

As well as simple tests like this, structural properties of
the code can be tested through reflection and assessed auto-
matically. For instance, one fairly common mistake that stu-
dents make is to declare variables as fields which should re-
ally be local variables within methods, and this can be tested
for with assertions about the number and types of fields
within a class. Because automatically generated statements
can be included alongside statements written/assigned by
humans, it is easy to have parts of the assessment done by
hand e.g. quality of user interface, and because this is all
done through the web different parts of the assignment can
be completed by different human and automatic markers, al-
lowing for blending of a wide variety of assessment methods
within the assignment.



2.2 Randomisation
In laboratory exams, as well as the usual the usual fac-

tors associated with exams such as the length of the exam,
whether is it seen/unseen, open/closed book, one of the main
issues identified by Cutts et al. [10] was to deal with classes
where it is infeasible to have all of the students sit the lab-
oratory exam at the same time, due to timetabling or re-
source constraints (availability of labs). Having students
sit the same laboratory exam at different times risks affect-
ing reliability through possible plagiarism, whilst having the
students sit different exams risks reliability through testing
different things. Different solutions were adopted, but the
most usual was to set slightly different versions of the exam
to different students, sometimes based around a common
scenario. In some approaches each sitting had its own ver-
sion, but another approach was to have different versions
randomly scattered across the students, to avoid the risk of
copying ’over the shoulder’ within the exam itself.

Our approach, which is novel as far as we know, is to
have a more fine-grained randomisation of the assignment
by having a range of choice points within the work (e.g. a
choice of methods to implement) and have each choice made
randomly. With only a few choice points the combinations
mount up, so that it is unlikely that any two students have
the same piece of work to complete. In the context of pla-
giarism, this has two advantages:

• for a student to copy a full solution they would need
access to a wide range of other solutions, which would
need to be adapted to work together;

• if an anonymous contract cheating request is found it
is possible to identify nearly uniquely which student
has made the request.

Clearly there are reliability issues with giving different stu-
dents different pieces of work to complete, but that is traded
off against the expected gain in reliability due to reduction
in the possibility of plagiarism. Another difficulty with this
approach is in automatic assessment: with randomly gen-
erated problems, what test cases should be applied? Our
solution to this is to seed the psuedo-random number gener-
ator with the hash code of the student username, concate-
nated with a string describing the choice being made. The
student downloads a generated Java interface which speci-
fies their particular version of the task. Test cases are then
prepared for each of the adaptations, and are selected at
assessment time using the same seeded pseudo-random se-
quences. This idea is used in procedural content generation
(PCG) in games [23], notably in the influential and innova-
tive 1984 game ’Elite’ [2, p113]. Because the individualised
work has to be downloaded, this can be time-restricted and
password-protected to ensure that downloads can only take
place at the right time and place i.e. in the laboratory exam
setting.

A very simple example is as follows, for a class to rep-
resent a position on a map specified through and interface
PositionInterface. We released an initial specification via
a Java interface, to be implemented in the students’ own
time, which required get and set methods, a toString()

method and a method

boolean northOf(PositionInterface p);

The revised (personalised) version of the interface, which
was to be implemented by the students in the laboratory
exam setting, was a psuedo-randomly assigned choice be-
tween two methods eastOf and westOf. The detail of the
requirement was included with the javadoc comments within
the interface e.g.

/** Compare the longitude with another position

* @param p The position to be compared with

* @return true if and only if this object is

* east of (i.e. has higher longitude than) the

* parameter object

*/

boolean eastOf(PositionInterface p);

More complex examples were used, including getting stu-
dents to validate different characteristics of an input, or find-
ing different statistical summaries (e.g. average/ minimum/
maximum) of different properties (e.g. hours of sunshine/
days of frost/ mm of precipitation) selected by different char-
acteristics (e.g. in frost-free months). A balance has to be
struck between improving reliability by reducing the possi-
bility of plagiarism, versus reducing reliability by assessing
the students on different problems.

Figure 1 shows how the processing of setting and marking
a student assignment is carried out.

3. STUDY

3.1 Definition of Research Question
We have adopted blended assessment and randomisation

as described above primarily as a means to increase reliabil-
ity, firstly by reducing the inclination to plagiarise because

• building on plagiarised take-home work during the lab-
oratory exam would be difficult without good under-
standing and

• carrying out contract-based plagiarism on personalised
specification increases the likelihood of discovery.

However, analysing students’ inclination to plagiarise on a
particular piece of work is challenging as there are clearly
serious risks to the students in answering accurately. Whilst
anonymisation is possible and has been used elsewhere [8],
dealing with a particular assignment rather than a general
propensity to plagiarise raises further issues. This is outside
the scope of the paper, but is suggested as an area for further
work.

A more easily measurable outcome, which is still very
pertinent, is the level of natural similarity (see section 1).
The higher the natural similarity in an assignment the more
plagiarism (in terms of similarity measure) can be carried
out without detection, or at least accusation, because of the
likelihood of false positives. If we assume that a relatively
small proportion of the student population plagiarises for a
particular assignment, which is not unreasonable if the re-
ported 33% of students that have ever plagiarised [8] applies,
then the distribution of the similarities across all submissions
gives a good indication of what the natural similarity would
be, so we examine this as a proxy for natural similarity.

3.1.1 Research Question
What is the variation in the distribution of similarities

across different introductory programming assignments, based
on the following parameters:



Figure 1: Sequence diagram for setting and marking process with blending and randomisation



1. the size of the group;

2. whether the assignment is constrained (i.e. a labora-
tory exam), unconstrained (i.e. take-home work) or
blended (see section 2.1.1);

3. whether the assignment content was randomised per
student, per session, or not at all;

4. whether the assignment is convergent or divergent [19];

5. whether the structure of the code is specified precisely
(e.g. via a Java interface)?

3.2 Background
Two different introductory programming modules were in-

vestigated: one was for first year undergraduates (UG) from
a range of disciplines, including computer science; the other
was for a group of conversion MSc postgraduate students
(PG) i.e. those with a degree, but not from a computer
science background. Both modules were taught in Java by
the same lecturer, using similar materials but over different
timescales. The UG module was taught over a whole aca-
demic year alongside other modules, whilst the PG module
was taught intensively over five weeks. Both modules were
continuously assessed with no exams, although a written
closed-book test formed part of each module. Students sub-
mitted work electronically and no resubmission was allowed.
Both modules had a related set of exercises to complete
which were largely formative, although the UG class had a
small summative weighting on these exercises to encourage
them to attend weekly practicals. The modules were taught
in Java as an introduction to object-oriented programming
using an objects-first approach [3]. Automated assessment
was used for all of the UG assignments but not for the PG
assignment, and only to return the summative marks, not
for formative feedback. Two years’ worth of data were col-
lected for the UG module, but just one year of PG data.
The UG assignments are labelled here by the week in which
they were taken (e.g. UGw22) but this does not imply a
chronological ordering because the assignments were taken
across academic years.

3.3 Method
Programming assignment submissions for the modules were

each compared with JPlag [21] using the -vl flag to save
all of the comparison data. This data was then fed into R
to plot histograms for the percentage similarity scores ob-
tained. The assignments were categorised according to the
parameters specified in the research question as follows.

3.3.1 PG
This postgraduate assignment, completed by 22 students,

was based on historical weather station observations from
the UK MetOffice. It was entirely a take-home exercise,
so was unconstrained and was not randomised. A fair
amount of the assignment was convergent, asking students
to find average temperatures, wettest months etc but also
included a requirement to develop a loosely specified text-
based user interface which was more divergent, so the as-
signment was overall classified as partly divergent. Be-
cause of the relatively small group size the investment in
automated assessment was not felt worthwhile and no Java
interfaces were specified, although an informal list of the

Table 1: Variation in mean and submission similarity distri-
bution between sessions within UGw18

Session Mean Standard Deviation
1 35.4 11.4
2 42.9 10.5
3 41.9 10.4
4 42.1 9.3
5 42.5 9.8

required functionality was given. This was the final summa-
tive assessment for the module.

3.3.2 UGw18
Written as a laboratory exam, this time-constrained

two hour test was open-book and networked, but the 140 stu-
dents were not allowed to communicate with each other. Be-
cause the test ran inside one of the regular practical timetable
slots, five sessions were run in one week. The same scenario,
a hire shop, was used for all of the the sessions, but different
questions included for each session, so that it was essentially
randomised per session. Assessment was largely conver-
gent and automated, with Java interfaces specified.

3.3.3 UGw22
This was the final UG summative assignment for the year,

using the game of Oware as its basis. All 140 students had
to develop a board, implement the rules and write an ’intelli-
gent’ computer player plus text-based user interface in what-
ever way they wanted. As such, the assessment was largely
divergent, and unconstrained with no randomisation.
Automated assessment was used and Java interfaces were
specified which allowed different computer players to play
against each other, which was used during automated mark-
ing. The quality of the user interface was assessed manually,
so that the feedback was blended between automated and
manual.

3.3.4 UGw12
166 UG students took this assignment, which was based

around the historical weather station data also used in the
PG assignment, but was more limited in scope and fairly
convergent. The assessment was blended, with inter-
faces specified in advance of a laboratory exam, in which
new interfaces were randomly generated for each stu-
dent in line with the process outlined in section 2.2 .

3.4 Results
Histograms of the similarities for the different assignments

are given in figures 2.
All of the distributions individually pass the Shapiro-Wilk

normality test, and the mean and standard deviations as
shown on the figures are a reasonable summary of the data.
Looking in more detail at assignment UGw18, which was
replicated with variation over five different sessions, it is
interesting to note the means and standard deviations as
the sessions progress, see table 1

It should be noted that, due to the similarity of the prob-
lem set for PG and UGw12, there is the possibility of some
similarity due to plagiarism between the two groups. How-
ever, the groups were very distinct and had little to do with
each other, and the two pieces of work were completed within
a short time of each other.
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Figure 2: Similarity histograms for different programming assignments, with mean similarity

3.5 Discussion
Each of the parameters of the research question are ad-

dressed in turn. While it would be possible to draw scatter
plots and carry out regression analyses, given the small sam-
ple size (four assignments) that would seem to be expecting
too much of the data.

3.5.1 Group Size
There is no evidence that the size of the group affects

the distribution of similarities. The smallest group size by
far (PG) does not have the largest or smallest average and
the other group sizes are broadly similar but with markedly
different similarity averages.

3.5.2 Constrained vs Unconstrained vs Blended
The two unconstrained assignments have the lowest simi-

larity averages, and the constrained exercise has the highest
similarity average, with the blended assignment in the mid-
dle. This seems to suggest that the more constrained the
assessment is, the more similar the submissions. This is
counterintuitive: we would expect a higher similarity from
an unconstrained exercise because the opportunity to copy
should be much higher in a take-home assignment, or one
which includes a take-home component. From this we de-
duce that the effect on the average similarity of the level of
constraint of the assessment is small compared with other
factors.

It is worth noting, however, that the constrained labora-
tory exam was based on five separate sessions, with a shared
scenario but different questions in each session. It could be
argued that this is not really as constrained as we might
hope, as there is a possibility that students in later ses-
sions could benefit from knowing the scenario and/or type
of questions that were asked. Table 1 does show a significant
difference between session one and the other sessions, which
took place later in the same week. This can either be put
down to variation in the students within the group, variation
within the questions asked, or the fact that it was the first
session. It is very tempting to suggest that the later students
knew what was going to happen, so could prepare more, so
had higher average similarities, reducing the desired impact
of having a laboratory exam rather than a take-home exer-
cise, particularly given how similar the other sessions were to
each other. The difference of the first session is statistically
significant if we treat the similarities as separate observed

events, which is questionable. However, the second session
took place immediately after the first session, which seems
to put this conclusion into question as there would have
been so little time for students to benefit from knowing the
contents of the first test. One thing can be said though,
even the first session had a much higher average similarity
(35.4) than the unconstrained assignments (14.6 and 7.0),
so we can still reasonably deduce that the level of constraint
is not a significant factor because this runs counter to the
effect we might expect.

3.5.3 Randomisation
In our study randomisation only occurred within a labo-

ratory exam setting which, as we have already seen, seems
to have high average similarities (whether because of the
constraint or some other factor). The per-student randomi-
sation assignment UGw12 has an mean similarity of 34.0
which is lower than the overall average of the the per-session
randomisation of UGw18. UGw12 is remarkably similar in
distribution to session one of UGw18 (mean = 35.4) which
might point towards per-student randomisation overcoming
the effect of ’leakage’ between sessions, but the two assign-
ments are different enough for this to be explained away as
coincidence.

3.5.4 Convergent vs Divergent
This parameter seems to have the strongest effect on the

average similarity. The largely divergent UGw22 (mean =
7.0) has lower average similarity than the partly divergent
PG (mean = 14.6) which in turn has lower average similar-
ity than the convergent UGw12 (mean = 34.0) and UGw12
(mean = 41.2). This is in line with intuition, in that the
more similar the solutions are expected to be (convergent)
the more similar they display. The only surprising thing
about this result is the extent to which it dominates other
potential effects.

3.5.5 Interfaces
We would expect assignments that were tightly specified

via interfaces to have higher similarity, but this is not borne
out by the data. UGw22 has the lowest mean similarity, de-
spite having specified interfaces. Again, it may be that there
is an effect that is dominated by convergence vs divergence,
so cannot be distinguished through such a small sample size.
This may also be a facet of the plagiarism detection tool in
use, which is designed to be insensitive to renaming of meth-



ods and variables. Specifying, via an interface, exactly what
the methods should be called should have no effect, leaving
only the similarity due to parameter and return types liable
to impact on reported similarity.

4. CONCLUSIONS
All of these conclusions need to be tempered with the

fact that the sample size of assignments is small, so further
investigation is required. However, there are enough useful
indicators to warrant such further investigation and the mea-
sures of similarity that we have been using do seem to point
to real differences between assignments. Looking at the sim-
ilarity distributions of the assignments studied shows large
variation, not always in ways that are expected. We think
this shows that is is a useful measure, although it is based
on assumptions that the total amount of plagiarism is rela-
tively small, so does not skew the distribution too much, and
that the similarity measure produced by the plagiarism tool
is a good indicator of plagiarism. Fundamentally, the more
similarity shown by non-plagiarised solutions, the more pla-
giarism might go unnoticed and unprosecuted. Whilst the
possibility of plagiarism tends to reduce the reliability of
assessment, this is often held in tension with the need for
valid assessment, which many believe cannot be achieved
only through time-constrained written exams.

4.1 Variations in Natural Similarity of Assign-
ments

We defined the natural similarity of an assignment to
be the threshold for submission similarity score for non-
plagiarised assignments. This is not to say that plagiarised
assignments would necessarily have a higher similarity score
than this, or that all scores higher than this are plagiarised,
but that any similarity score under the similarity thresh-
old could reasonably have been achieved without plagiarism.
Assuming that the observed distribution of the the cohort is
a good basis for the natural similarity Key indications from
our analysis of similarity distrubutions are

• Divergent/convergent assessment [19] is the most im-
portant factor in the similarity distributions of the as-
signments, with divergent assessment leading to lower
levels of similarity. It could be argued that divergent
assessments are also more valid as they can examine
higher level skills, so overall this indicates strongly that
divergent assessment is better with respect to reliabil-
ity and validity.

• Constraining assignments i.e. moving towards labora-
tory exams from take-home exercises or blended as-
sessment does not appear to reduce natural similar-
ity. Given that less constrained assessments tend to be
thought of as more valid, this weakens the case for lab-
oratory exams in programming. Also, given that the
nature of laboratory exams is such that they may have
to be run over several sessions, the reliability gained
may not be as much as might be hoped — our results
do indicate that later sessions of the same laboratory
exam have higher similarities. However, given the ap-
parently strong effect of divergent assessment, and the
likelihood of constrained exams being less convergent,
it is hard to separate the two effects with a small num-
ber of assignments.

• There is some evidence, although not strong, that ran-
domisation between individual students reduces simi-
larity, possibly reducing overall similarity over multi-
ple laboratory exam sessions to the same level as that
found in the first session of a laboratory exam with
randomisation between sessions. Possibly a bigger ad-
vantage of this approach is the possibility of deducing
which student is behind an anonymous request for con-
tract cheating, as opposed to in-cohort plagiarism.

• Specifying Java interfaces doesn’t appear to have much
impact on natural similarity. Given the utility of inter-
faces in automated testing/assessment, this is a posi-
tive result in favour of interfaces.

4.2 Implications for Assessment and Feedback
While the blending of assessment between constrained and

unconstrained work appears to offer more validity with the
possibility of better reliability, the other type of blended as-
sessment that we have discussed, i.e. blending of automated
and manual assessment, appears to work against reliability
with a possible improvement in validity. However, there are
other factors to consider in assessment, particularly the qual-
ity of the feedback given to students as to how their work
could be improved. We have discussed ways of automating
not only the process of assigning a mark to a piece of work,
but also relevant comments.

Automated assessment is often used to give immediate
feedback to students on whether they have got the (or a)
correct answer without intervention from the teacher. Our
experience has been that, unless multiple submissions are al-
lowed, this leads to problems with validity because a student
may have got everything right except perhaps one construc-
tor. If that constructor is used in the automated assessment
then nothing works and the student gets zero marks and
fairly unhelpful feedback comments. This kind of assess-
ment also contributes to the bimodal distributions that are
often encountered in the distribution of marks in program-
ming exercises [7]. By identifying the problem cases and
allowing the assessor to make modifications to submissions
(with appropriate commentary and allocation of marks), a
more valid assessment can be built, at the cost of students
having to wait longer for feedback. For instance, about one
third of all submissions to the UGw12 assignment described
above had some corrections applied to the code, whether
automatically or manually.

4.3 Further work
We can identify many areas for further work based on the

proposals and study that we have carried out.

• Work with a larger set of assignments to compare sim-
ilarity scores, to deal with variation between institu-
tions, and to allow the use of more sophisticated sta-
tistical tools to validate our conclusion that divergence
vs convergence of assessment is the dominant factor.

• Use a larger data set to examine and unpick the appar-
ently less significant effects due to blending and ran-
domisation.

• Integrate more measures into the analysis, e.g. pre-
scription of coding standards, and investigate the im-
pact on similarity.



• Apply and compare other plagiarism detection tools
to see what effect they have on similarity measures, if
any.

• Examine the effect on similarity of different types of
cohort i.e. novices vs more experienced programmers,
undergraduate vs postgraduate.

• Look at assignments in other programming languages
to how how similarity varies and how techniques for au-
tomated assessment carry across e.g. use of reflection
for correcting code and/or identifying correct program
structure; Java interfaces vs python abstract base classes.

• Seek student opinions about fairness of automatic and
randomised assessment, and whether they understand
the feedback.

• Investigate the effect of anti-plagiarism measures (e.g.
constraining, randomisation, similarity tools) on stu-
dents’ inclination to plagiarise.

Although there are many areas for the work to be devel-
oped, the analysis of similarity measures appears to be a
useful comparison to make, and reveals that randomisation
and blended assessment may have positive impacts on the re-
liability of assessment, but divergent assessment is the most
important factor that affects natural similarity, and hence
the ease of detecting plagiarism, within an assignment.
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