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Abstract. Daligault, Rao and Thomassé conjectured that if a hereditary
class of graphs is well-quasi-ordered by the induced subgraph relation
then it has bounded clique-width. Lozin, Razgon and Zamaraev recently
showed that this conjecture is not true for infinitely defined classes. For
finitely defined classes the conjecture is still open. It is known to hold
for classes of graphs defined by a single forbidden induced subgraph H,
as such graphs are well-quasi-ordered and are of bounded clique-width if
and only if H is an induced subgraph of P4. For bigenic classes of graphs
i.e. ones defined by two forbidden induced subgraphs there are several
open cases in both classifications. We reduce the number of open cases
for well-quasi-orderability of such classes from 12 to 9. Our results agree
with the conjecture and imply that there are only two remaining cases to
verify for bigenic classes.

1 Introduction

Well-quasi-ordering is a highly desirable property and frequently discovered
concept in mathematics and theoretical computer science [16,20]. One of the
most remarkable recent results in this area is Robertson and Seymour’s proof
of Wagner’s conjecture, which states that the set of all finite graphs is well-
quasi-ordered by the minor relation [25]. One of the first steps towards this
result was the proof of the fact that graph classes of bounded treewidth are
well-quasi-ordered by the minor relation [24] (a graph parameter π is said to be
bounded for some graph class G if there exists a constant c such that π(G) ≤ c
for each G ∈ G).

The notion of clique-width generalizes that of treewidth in the sense that graph
classes of bounded treewidth have bounded clique-width, but not necessarily vice
versa. The importance of both notions is due to the fact that many algorithmic
problems that are NP-hard on general graphs become polynomial-time solvable
when restricted to graph classes of bounded treewidth or clique-width. For
treewidth this follows from the meta-theorem of Courcelle [6], combined with
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a result of Bodlaender [2]. For clique-width this follows from combining results
from several papers [8,15,18,23] with a result of Oum and Seymour [22].

In the study of graph classes of bounded treewidth, we can restrict ourselves to
minor-closed graph classes, because from the definition of treewidth it immediately
follows that the treewidth of a graph is never smaller than the treewidth of its
minor. This restriction, however, is not justified when we study graph classes
of bounded clique-width, as the clique-width of a graph can be much smaller
than the clique-width of its minor. In particular, Courcelle [7] showed that if G
is the class of graphs of clique-width 3 and G′ is the class of graphs obtainable
from graphs in G by applying one or more edge contraction operations, then G′
has unbounded clique-width. On the other hand, the clique-width of a graph
is never smaller than the clique-width of any of its induced subgraphs (see, for
example, [9]). This allows us to restrict ourselves to classes of graphs closed
under taking induced subgraphs. Such graph classes are also known as hereditary
classes.

It is well-known (and not difficult to see) that a class of graphs is hereditary
if and only if it can be characterized by a set of minimal forbidden induced
subgraphs. Due to the minimality, the set F of forbidden induced subgraphs is
always an antichain, that is, no graph in F is an induced subgraph of another
graph in F . For some hereditary classes this set is finite, in which case we say
that the class is finitely defined, whereas for other hereditary classes (such as,
for instance, bipartite graphs) the set of minimal forbidden induced subgraphs
forms an infinite antichain. The presence of these infinite antichains immediately
shows that the induced subgraph relation is not a well-quasi-order. In fact there
even exist graph classes of bounded clique-width that are not well-quasi-ordered
by the induced subgraph relation: take, for example, the class of cycles, which
all have clique-width at most 4. What about the inverse implication: does well-
quasi-ordering imply bounded clique-width? This was stated as an open problem
by Daligault, Rao and Thomassé [13] and a negative answer to this question
was recently given by Lozin, Razgon and Zamaraev [21]. However, the latter
authors disproved the conjecture by giving a hereditary class of graphs whose set
of minimal forbidden induced subgraphs is infinite. Hence, for finitely defined
classes the question remains open.

Conjecture 1. If a finitely defined class of graphs G is well-quasi-ordered by the
induced subgraph relation, then G has bounded clique-width.

We emphasize that our motivation for verifying Conjecture 1 is not only math-
ematical but also algorithmic. Should Conjecture 1 be true, then for finitely
defined classes of graphs the aforementioned algorithmic consequences of having
bounded clique-width also hold for the property of being well-quasi-ordered by
the induced subgraph relation.

A class of graphs is monogenic or H-free if it is characterized by a single
forbidden induced subgraph H. For monogenic classes, the conjecture is true.
In this case, the two notions even coincide: a class of graphs defined by a
single forbidden induced subgraph H is well-quasi-ordered if and only if it



has bounded clique-width if and only if H is an induced subgraph of P4 (see,
for instance, [12,14,19]). A class of graph is bigenic or (H1, H2)-free if it is
characterized by two incomparable forbidden induced subgraphs H1 and H2. The
family of bigenic classes is more diverse than the family of monogenic classes. The
questions of well-quasi-orderability and having bounded clique-width still need
to be resolved. Recently, considerable progress has been made towards answering
the latter question for bigenic classes; see [10] for the most recent survey, which
shows that there are currently eight (non-equivalent) open cases. With respect
to well-quasi-orderability of bigenic classes, Korpelainen and Lozin [19] left all
but 14 cases open. Since then, Atminas and Lozin [1] proved that the class
of (K3, P6)-free graphs is well-quasi-ordered by the induced subgraph relation
and that the class of (2P1 + P2, P6)-free graphs is not, reducing the number
of remaining open cases to 12. All available results for bigenic classes verify
Conjecture 1. Moreover, eight of the 12 open cases have bounded clique-width
(and thus verify Conjecture 1) leaving four remaining open cases of bigenic classes
for which we still need to verify Conjecture 1.

Our Results. Our first goal is to obtain more (bigenic) classes that are well-
quasi-ordered by the induced subgraph relation and to support Conjecture 1
with further evidence. Our second goal is to increase our general knowledge on
well-quasi-ordered graph classes and the relation to the possible boundedness of
their clique-width.

Towards our first goal we prove in Section 4 that the class of (2P1 + P2,
P2 + P3)-free graphs (which has bounded clique-width [11]) is well-quasi-ordered
by the induced subgraph relation. We also determine, by giving infinite antichains,
two bigenic classes that are not, namely the class of (2P1 + P2, P2+P4)-free graphs,
which has unbounded clique-width [11], and the class of (P1 + P4, P1 + 2P2)-free
graphs, for which boundedness of the clique-width is unknown. Consequently,
there are nine classes of (H1, H2)-free graphs for which we do not know whether
they are well-quasi-ordered by the induced subgraph relation, and there are
two open cases left for the verification of Conjecture 1 for bigenic classes; see
Open Problems 1 and 2 below. See Fig. 1 for drawings of the forbidden induced
subgraphs.

Towards our second goal, we aim to develop general techniques as opposed to
tackling specific cases in an ad hoc fashion. Our starting point is a very fruitful
technique used for determining (un)boundedness of the clique-width of a graph
class G. We transform a given graph from G via a number of elementary graph
operations that do not modify the clique-width by “too much” into a graph from
a class for which we do know whether or not its clique-width is bounded.

It is a natural question to research how the above modification technique can
be used for well-quasi-orders. The permitted elementary graph operations are
vertex deletion, subgraph complementation and bipartite complementation. As we
will explain in Section 3, these three graph operations do not preserve well-quasi-
ordering. We circumvent this by checking whether these three operations preserve
boundedness of a graph parameter called uniformicity, which was introduced
by Korpelainen and Lozin [19]. In their paper they proved that boundedness of



uniformicity is preserved by vertex deletion. Here we prove this for the remaining
two graph operations. Korpelainen and Lozin [19] also showed that every graph
class G of bounded uniformicity is well-quasi-ordered by the so-called labelled
induced subgraph relation (which in turn implies that G is well-quasi-ordered
by the induced subgraph relation). As the reverse implication does not hold, we
sometimes need to rely only on the labelled induced subgraph relation. Hence,
in Section 3 we also show that the three permitted graph operations preserve
well-quasi-orderability by the labelled induced subgraph relation. We believe
that the graph modification technique will also be useful for proving well-quasi-
orderability of other graph classes. As such, we view the results in Section 3 as
our second main contribution.

2P1 + P2 P1 + P4 P1 + 2P2 P2 + P3 P2 + P4

Fig. 1. The forbidden induced subgraphs considered in this paper.

Future Work. We identify several potential directions for future work starting
with the two remaining bigenic classes for which Conjecture 1 must still be
verified.

Open Problem 1 Is Conjecture 1 true for the class of (H1, H2)-free graphs when:
H1 = K3 and H2 = P2 + P4 or when H1 = P1 + P4 and H2 = P2 + P3?

For both classes we know neither whether they are well-quasi-ordered by the
induced subgraph relation nor whether their clique-width is bounded. Below we
list all seven classes of (H1, H2)-free graphs for which we do not know whether
they are well-quasi-ordered by the induced subgraph relation.

Open Problem 2 Is the class of (H1, H2)-free graphs well-quasi-ordered by the
induced subgraph relation when:

(i) H1 = 3P1 and H2 ∈ {P1 + 2P2, P1 + P5, P2 + P4};
(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + 2P2, P1 + P4};
(iii) H1 = P1 + P4 and H2 ∈ {P1 + P4, 2P2, P2 + P3, P5}.

In relation to this, we mention that the infinite antichain for (P1 + P4, P1 +2P2)-
free graphs was initially found by a computer search. This computer search also
showed that similar antichains do not exist for any of the remaining nine open
cases. As such, constructing antichains for these cases is likely to be a challenging
problem and this suggests that many of these cases may in fact be well-quasi-
ordered. Some of these remaining classes have been shown to have bounded



clique-width [3,4,5,10]. We believe that some of the structural characterizations
for proving these results may be useful for showing well-quasi-orderability. Indeed,
we are currently trying to prove that the class of (K3, P1 + P5)-free graphs is
well-quasi-ordered via the technique of bounding the so-called lettericity for
graphs in these classes. Again, applying complementations and vertex deletions
does not change the lettericity of a graph by “too much”.

Another potential direction for future research is investigating linear clique-
width for classes defined by two forbidden induced subgraphs. Indeed, it is not
hard to show that k-uniform graphs have bounded linear clique-width. Again, we
can use complementations and vertex deletions when dealing with this parameter.

2 Preliminaries

The disjoint union (V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G
and H is denoted by G + H and the disjoint union of r copies of a graph G
is denoted by rG. The complement of a graph G, denoted by G, has vertex
set V (G) = V (G) and an edge between two distinct vertices if and only if
these vertices are not adjacent in G. For a subset S ⊆ V (G), we let G[S]
denote the subgraph of G induced by S, which has vertex set S and edge set
{uv | u, v ∈ S, uv ∈ E(G)}. If S = {s1, . . . , sr} then, to simplify notation, we
may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We use G \ S to denote
the graph obtained from G by deleting every vertex in S, i.e. G\S = G[V (G)\S].

The graphs Cr,Kr,K1,r−1 and Pr denote the cycle, complete graph, star and
path on r vertices, respectively. For a set of graphs {H1, . . . ,Hp}, a graph G
is (H1, . . . ,Hp)-free if it has no induced subgraph isomorphic to a graph in
{H1, . . . ,Hp}; if p = 1, we may write H1-free instead of (H1)-free.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the
neighbourhood of u ∈ V . A graph is bipartite if its vertex set can be partitioned
into (at most) two independent sets. The biclique Kr,s is the bipartite graph with
sets in the partition of size r and s respectively, such that every vertex in one set
is adjacent to every vertex in the other set. Let X be a set of vertices of a graph
G = (V,E). A vertex y ∈ V \X is complete to X if it is adjacent to every vertex
of X and anti-complete to X if it is non-adjacent to every vertex of X. Similarly,
a set of vertices Y ⊆ V \X is complete (resp. anti-complete) to X if every vertex
in Y is complete (resp. anti-complete) to X. A vertex y ∈ V \X distinguishes X
if y has both a neighbour and a non-neighbour in X. The set X is a module of G
if no vertex in V \X distinguishes X. A module U is non-trivial if 1 < |U | < |V |,
otherwise it is trivial. A graph is prime if it has only trivial modules.

A quasi order ≤ on a set X is a reflexive, transitive binary relation. Two
elements x, y ∈ X in this quasi-order are comparable if x ≤ y or y ≤ x, otherwise
they are incomparable. A set of elements in a quasi-order is a chain if every
pair of elements is comparable and it is an antichain if every pair of elements is
incomparable. The quasi-order ≤ is a well-quasi-order if any infinite sequence
of elements x1, x2, x3, . . . in X contains a pair (xi, xj) with xi ≤ xj and i < j.
Equivalently, a quasi-order is a well-quasi-order if and only if it has no infinite



strictly decreasing sequence x1  x2  x3  · · · and no infinite antichain.
For an arbitrary set M , let M∗ denote the set of finite sequences of elements
of M . Any quasi-order ≤ on M defines a quasi-order ≤∗ on M∗ as follows:
(a1, . . . , am) ≤∗ (b1, . . . , bn) if and only if there is a sequence of integers i1, . . . , im
with 1 ≤ i1 < · · · < im ≤ n such that aj ≤ bij for j ∈ {1, . . . ,m}. We call ≤∗ the
subsequence relation.

Lemma 1 (Higman’s Lemma [17]). If (M,≤) is a well-quasi-order then
(M∗,≤∗) is a well-quasi-order.

Labelled Induced Subgraphs and Uniformicity. To define the notion of
labelled induced subgraphs, let us consider an arbitrary quasi-order (W,≤). We
say that G is a labelled graph if each vertex v of G is equipped with an element
lG(v) ∈W (the label of v). Given two labelled graphs G and H, we say that G is
a labelled induced subgraph of H if G is isomorphic to an induced subgraph of H
and there is an isomorphism that maps each vertex v of G to a vertex w of H with
lG(v) ≤ lH(w). Clearly, if (W,≤) is a well-quasi-order then a class of graphs X
cannot contain an infinite sequence of labelled graphs that is strictly-decreasing
with respect to the labelled induced subgraph relation. We therefore say that a
class of graphs X is well-quasi-ordered by the labelled induced subgraph relation
if it contains no infinite antichains of labelled graphs whenever (W,≤) is a well-
quasi-order. Such a class is readily seen to be well-quasi-ordered by the induced
subgraph relation as well. We will use the following three results.

Lemma 2 ([1]). The class of P6-free bipartite graphs is well-quasi-ordered by
the labelled induced subgraph relation.

Lemma 3 ([1]). Let k, `,m be positive integers. Then the class of (Pk,K`,Km,m)-
free graphs is well-quasi-ordered by the labelled induced subgraph relation.

Lemma 4 ([1]). Let X be a hereditary class of graphs. Then X is well-quasi-
ordered by the labelled induced subgraph relation if and only if the set of prime
graphs in X is. In particular, X is well-quasi-ordered by the labelled induced
subgraph relation if and only if the set of connected graphs in X is.

Let k be a natural number, let K be a symmetric square 0, 1 matrix of order k,
and let Fk be a graph on the vertex set {1, 2, . . . , k}. Let H be the disjoint union
of infinitely many copies of Fk, and for i = 1, . . . , k, let Vi be the subset of V (H)
containing vertex i from each copy of Fk. Now we construct from H an infinite
graph H(K) on the same vertex set by applying a subgraph complementation
to Vi if and only if K(i, i) = 1 and by applying bipartite complementation to
a pair Vi, Vj if and only if K(i, j) = 1. In other words, two vertices u ∈ Vi
and v ∈ Vj are adjacent in H(K) if and only if uv ∈ E(H) and K(i, j) = 0
or uv /∈ E(H) and K(i, j) = 1. Finally, let P(K,Fk) be the hereditary class
consisting of all the finite induced subgraphs of H(K).

Let k be a natural number. A graph G is k-uniform if there is a matrix K and
a graph Fk such that G ∈ P(K,Fk). The minimum k such that G is k-uniform
is the uniformicity of G.



The following result was proved by Korpelainen and Lozin. The class of
disjoint unions of cliques is a counterexample for the reverse implication.

Theorem 1 ([19]). Any class of graphs of bounded uniformicity is well-quasi-
ordered by the labelled induced subgraph relation.

3 Permitted Graph Operations

It is not difficult to see that if G is an induced subgraph ofH, then G is an induced
subgraph of H. Therefore, a graph class X is well-quasi-ordered by the induced
subgraph relation if and only if the set of complements of graphs in X is. In this
section, we strengthen this observation in several ways. Subgraph complementation
in a graph G is the operation of complementing a subgraph of G induced by a
subset of its vertices. Applied to the entire vertex set of G, this operation coincides
with the usual complementation of G. However, applied to a pair of vertices,
it changes the adjacency of these vertices only. Clearly, repeated applications
of this operation can transform G into any other graph on the same vertex set.
Therefore, unrestricted applications of subgraph complementation may transform
a well-quasi-ordered class X into a class containing infinite antichains. However, if
we bound the number of applications of this operation by a constant, we preserve
many nice properties of X, including well-quasi-orderability with respect to the
labelled induced subgraph relation. Next, we introduce the following operations.
Bipartite complementation in a graph G is the operation of complementing the
edges between two disjoint subsets X,Y ⊆ V (G). Note that applying a bipartite
complementation between X and Y has the same effect as applying a sequence of
three complementations: with respect to X, Y and X ∪ Y . Finally, we define the
following operation: Vertex deletion in a graph G is the operation of removing a
single vertex v from a graph, together with any edges incident to v.

Let k ≥ 0 be a constant and let γ be a graph operation. A graph class G′
is (k, γ)-obtained from a graph class G if (i) every graph in G′ is obtained from
a graph in G by performing γ at most k times, and (ii) for every G ∈ G there
exists at least one graph in G′ obtained from G by performing γ at most k times.
We say that γ preserves well-quasi-orderability by the labelled induced subgraph
relation if for any finite constant k and any graph class G, any graph class G′ that
is (k, γ)-obtained from G is well-quasi-ordered by this relation if and only if G is.

Lemma 5. The following operations preserve well-quasi-orderability by the la-
belled induced subgraph relation:

(i) Subgraph complementation,
(ii) Bipartite complementation and
(iii) Vertex deletion.

Proof. We start by proving the lemma for subgraph complementations. Let X
be a class of graphs and Y be a set of graphs obtained from X by applying a
subgraph complementation to each graph in X. More precisely, for each graph



G ∈ X we choose a set ZG of vertices in G; we let G′ be the graph obtained
from G by applying a complementation with respect to the subgraph induced
by ZG and we let Y be the set of graphs G′ obtained in this way. Clearly it is
sufficient to show that X is well-quasi-ordered by the labelled induced subgraph
relation if and only if Y is.

Suppose that X is not well-quasi-ordered under the labelled induced subgraph
relation. Then there must be a well-quasi-order (L,≤) and an infinite sequence
of graphs G1, G2, . . . in X with vertices labelled with elements of L, such that
these graphs form an infinite antichain under the labelled induced subgraph
relation. Let (L′,≤′) be the quasi-order with L′ = {(k, l) : k ∈ {0, 1}, l ∈ L}
and (k, l) ≤′ (k′, l′) if and only if k = k′ and l ≤ l′ (so L′ is the disjoint union
of two copies of L, where elements of one copy are incomparable with elements
in the other copy). Note that (L′,≤′) is a well-quasi-order since (L,≤) is a
well-quasi-order.

For each graph Gi in this sequence, with labelling li, we construct the graph G′i
(recall that G′i is obtained from Gi by applying a complementation on the vertex
set ZGi

). We label the vertices of V (G′i) with a labelling l′i as follows: set
l′i(v) = (1, li(v)) if v ∈ ZGi

and set l′i(v) = (0, li(v)) otherwise.
We claim that when G′1, G′2, . . . are labelled in this way they form an infinite

antichain with respect to the labelled induced subgraph relation. Indeed, suppose
for contradiction that G′i is a labelled induced subgraph of G′j for some i 6= j. This
means that there is a injective map f : V (G′i)→ V (G′j) such that l′i(v) ≤′ l′j(f(v))
for all v ∈ V (G′i) and v, w ∈ V (G′i) are adjacent in G′i if and only if f(v) and f(w)
are adjacent in G′j . Now since l′i(v) ≤′ l′j(f(v)) for all v ∈ V (G′i), by the definition
of ≤′ we conclude the following: li(v) ≤ lj(f(v)) for all v ∈ V (G′i) and v ∈ ZGi if
and only if f(v) ∈ ZGj .

Suppose v, w ∈ V (Gi) with w /∈ ZGi
(v may or may not belong to ZGi

) and
note that this implies f(w) /∈ ZGj

. Then v and w are adjacent in Gi if and only
if v and w are adjacent in G′i if and only if f(v) and f(w) are adjacent in G′j if
and only if f(v) and f(w) are adjacent in Gj .

Next suppose v, w ∈ ZGi , in which case f(v), f(w) ∈ ZGj . Then v and w are
adjacent in Gi if and only if v and w are non-adjacent in G′i if and only if f(v)
and f(w) are non-adjacent in G′j if and only if f(v) and f(w) are adjacent in Gj .

It follows that f is an injective map f : V (Gi) → V (Gj) such that li(v) ≤
lj(f(v)) for all v ∈ V (Gi) and v, w ∈ V (Gi) are adjacent in Gi if and only if f(v)
and f(w) are adjacent in Gj . In other words Gi is a labelled induced subgraph
of Gj . This contradiction means that if G1, G2, . . . is an infinite antichain then
G′1, G

′
2, . . . must also be an infinite antichain.

Therefore, if the class X is not well-quasi-ordered by the labelled induced
subgraph relation then neither is Y . Repeating the argument with the roles
of G1, G2, . . . and G′1, G′2, . . . reversed shows that if Y is not well-quasi-ordered
under the labelled induced subgraph relation then neither is X. This completes
the proof for subgraph complementations.

Since a bipartite complementation is equivalent to doing three subgraph
complementations one after another, the result for bipartite complementations



follows. Hence it remains to prove the result for vertex deletions. Let X be a
class of graphs and let Y be a set of graphs obtained from X by deleting exactly
one vertex zG from each graph G in X. We denote the obtained graph by G− zG.
Clearly it is sufficient to show that X is well-quasi-ordered by the labelled induced
subgraph relation if and only if Y is.

Suppose that Y is well-quasi-ordered by the labelled induced subgraph relation.
We will show that X is also a well-quasi-order by this relation. For each graph G ∈
X, let G′ be the graph obtained from G by applying a bipartite complementation
between {zG} and N(zG), so zG is an isolated vertex in G′. Let Z be the set
of graphs obtained in this way. By Lemma 5.(ii), Z is a well-quasi-order by
the labelled induced subgraph relation if and only if X is. Suppose G1, G2 are
graphs in Z with vertices labelled from some well-quasi-order (L,≤). Then for
i ∈ {1, 2} the vertex zGi

has a label from L and the graph Gi − zGi
belongs

to Y . Furthermore if G1 − zG1
is a labelled induced subgraph of G2 − zG2

and
lG1

(zG1
) ≤ lG2

(zG2
) then G1 is a labelled induced subgraph of G2. Now by

Lemma 1 it follows that Z is well-quasi-ordered by the labelled induced subgraph
relation. Therefore X is also well-quasi-ordered by this relation.

Now suppose that Y is not well-quasi-ordered by the labelled induced subgraph
relation. Then Y contains an infinite antichain G1, G2, . . . with the vertices of Gi

labelled by functions li which takes values in some well-quasi-order (L,≤). For
each Gi, let G′i be a corresponding graph in X, so Gi = G′i − zG′

i
. Then in G′i

we label zG′
i
with a new label ∗ and label all other vertices v ∈ V (G′i) with the

same label as that used in Gi. We make this new label ∗ incomparable to all the
other labels in L and note that the obtained quasi order (L ∪ {∗},≤) is also a
well-quasi-order. It follows that G′1, G′2, . . . is an antichain in X when labelled
in this way. Therefore, if Y is not well-quasi-ordered by the labelled induced
subgraph relation then X is not either. This completes the proof. ut

The above lemmas only apply to well-quasi-ordering with respect to the
labelled induced subgraph relation. Indeed, if we take a cycle and delete a vertex,
complement the subgraph induced by an edge or apply a bipartite complementa-
tion to two adjacent vertices, we obtain a path. However, while the set of cycles
is an infinite antichain with respect to the induced subgraph relation, the set of
paths is not.

We now show that our graph operations do not change uniformicity by “too
much” either. The result for vertex deletion this was proved by Korpelainen and
Lozin. We omit the proof of the remaining two operations.

Lemma 6. Let G be a graph of uniformicity k. Let G′, G′′ and G′′′ be graphs
obtained from G by applying one vertex deletion, subgraph complementation or
bipartite complementation, respectively. Let `′, `′′ and `′′′ be the uniformicities of
G, G′ and G′′, respectively. Then the following three statements hold:

(i) `′ < k < 2`′ + 1 [19];
(ii) k

2 ≤ `
′′ ≤ 2k;

(iii) k
3 ≤ `

′′′ ≤ 3k.



4 One New WQO Class and Two New Non-WQO Classes

In this section we show that (2P1 + P2, P2 + P3)-free graphs are well-quasi-
ordered by the labelled induced subgraph relation. We divide the proof into
several sections, depending on whether or not the graphs under consideration
contain certain induced subgraphs or not. We follow the general scheme that
Dabrowski, Huang and Paulusma [11] used to prove that this class has bounded
clique-width, but we will also need a number of new arguments. We first consider
graphs containing a K5 and state the following lemma (proof omitted).

Lemma 7. The class of (2P1 + P2, P2 + P3)-free graphs that contain a K5 is
well-quasi-ordered by the labelled induced subgraph relation.

By Lemma 7, we may restrict ourselves to looking at K5-free graphs in our class.
We now consider the case where these graphs have an induced C5 (proof omitted).

Lemma 8. The class of (2P1 + P2, P2 + P3,K5)-free graphs that contain an
induced C5 has bounded uniformicity.

By Lemmas 7 and 8, we may restrict ourselves to looking at (K5, C5)-free
graphs in our class. We need the following structural result (proof omitted).

Lemma 9. Let G be a (2P1 + P2, P2 + P3,K5, C5)-free graph containing an
induced C4. Then by deleting at most 17 vertices and applying at most two
bipartite complementations, we can modify G into the disjoint union of a P2+P3-
free bipartite graph and a 3-uniform graph.

Since P2 +P3 is an induced subgraph of P6, it follows that every P2 +P3-free
graph is P6-free. Combining Lemma 9 with Theorem 1 and Lemmas 2, 4, 5.(ii)
and 5.(iii) we therefore obtain the following corollary.

Corollary 1. The class of connected (2P1 + P2, P2+P3,K5, C5)-free graphs with
an induced C4 is well-quasi-ordered by the labelled induced subgraph relation.

Theorem 2. The class of (2P1 + P2, P2 + P3)-free graphs is well-quasi-ordered
by the labelled induced subgraph relation.

Proof. Graphs in the class under consideration containing an induced subgraph
isomorphic to K5, C5 or C4 are well-quasi-ordered by the labelled induced
subgraph relation by Lemmas 7 and 8 and Corollary 1, respectively. The re-
maining graphs form a subclass of (P6,K5,K2,2)-free graphs, since C4 = K2,2

and P2 + P3 is an induced subgraph of P6. By Lemma 3, this class of graphs is
well-quasi-ordered by the labelled induced subgraph relation. Therefore, the class
of (2P1 + P2, P2 + P3)-free graphs is well-quasi-ordered by the labelled induced
subgraph relation. ut
Our final two results show that the classes of (2P1 + P2, P2 +P4)-free graphs and
(P1 + P4, P1+2P2)-free graphs are not well-quasi-ordered by the induced subgraph
relation. The antichain used to prove the first of these cases was previously used
by Atminas and Lozin to show that the class of (2P1 + P2, P6)-free graphs is not
well-quasi-ordered with respect to the induced subgraph relation. Because of this,
we can show show a stronger result for the first case (proof omitted).



Theorem 3. The class of (2P1 + P2, P2 + P4, P6)-free graphs is not well-quasi-
ordered by the induced subgraph relation.

Theorem 4. The class of (P1 + P4, P1 + 2P2)-free graphs is not well-quasi-
ordered by the induced subgraph relation.

Proof. Let n ≥ 3 be an integer. Consider a cycle C4n, say x1−x2−· · ·−x4n−x1.
We partition the vertices of C4n into the set X = {xi | i ≡ 0 or 1 mod 4} and
Y = {xi | i ≡ 2 or 3 mod 4}. Next we apply a complementation to each of X
and Y , so that in the resulting graph X and Y each induce a clique on 2n vertices
with a perfect matching removed. Let G4n be the resulting graph.

Suppose, for contradiction that G4n contains an induced P1 + 2P2. Without
loss of generality, the set X must contain three of the vertices v1, v2, v3 of the
P1 + 2P2. Since every component of P1 + 2P2 contains at most two vertices,
without loss of generality we may assume v1 is non-adjacent to both v2 and v3.
However, every every vertex of G4n[X] has exactly one non-neighbour in X. This
contradiction shows that G4n is indeed (P1 + 2P2)-free.

Every vertex in X has exactly one neighbour in Y and vice versa. This means
that anyK3 in G4n must lie entirely in G4n[X] or G4n[Y ]. Since G4n[X] or G4n[Y ]
are both complements of perfect matchings and every vertex of P1 + P4 lies in
one of three induced K3’s, which are pairwise non-disjoint, it follows that G4n is
P1 + P4-free.

It remains to show that the graphs G4n form an infinite antichain with respect
to the induced subgraph relation. Since n ≥ 3, every vertex in X (resp. Y ) has
at least two neighbours in X (resp. Y ) that are pairwise adjacent. Therefore,
given x1, we can determine which vertices lie in X and which lie in Y . Every
vertex in X (resp. Y ) has a unique neighbour in Y (resp. X) and a unique
non-neighbour in X (resp. Y ). Therefore, by specifying which vertex in G4n is x1,
we uniquely determine x2, . . . , x4n. Suppose G4n is an induced subgraph of G4m

for some m ≥ 3. Then n ≤ m due to the number of vertices. By symmetry, we
may assume that the induced copy of G4n in G4m has vertex x1 of G4n in the
position of vertex x1 in G4m. Then the induced copy of G4n must have vertices
x2, . . . , x4n in the same position as x2, . . . , x4n in G4m, respectively. Now x1
and x4n are non-adjacent in G4n. If n < m then x1 and x4n are adjacent in G4m,
a contradiction. We conclude that if G4n is an induced subgraph of G4m then
n = m. In other words {G4n | n ≥ 3} is an infinite antichain with respect to the
induced subgraph relation. ut
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