
Improved Arabic Characters Recognition by Combining Multiple Machine

Learning Classifiers

Maytham Alabbas
Department of Computer Science

University of Basrah

Basrah, Iraq

ma@uobasrah.edu.iq

Raidah S. Khudeyer
Department of Computer Information Systems

University of Basrah

Basrah, Iraq

raidah.khudayer@uobasrah.edu.iq

Sardar Jaf
School of Engineering and

Computing Sciences

University of Durham

Durham, UK

sardar.jaf@durham.ac.uk

Abstract—In this paper, we investigate a range of

strategies for combining multiple machine learning

techniques for recognizing Arabic characters, where we

are faced with imperfect and dimensionally variable input

characters. Experimental results show that combined

confidence-based backoff strategies can produce more

accurate results than each technique produces by itself

and even the ones exhibited by the majority voting

combination.

Keywords- optical character recognition (OCR); systems

combination; kNN; SVM; PNN;

I. INTRODUCTION

Systems combination is a popular way of

improving accuracy in different tasks. This is concerned

with combining various systems, which perform the

same task to exploit the unique advantage of each

system and reduce some of the random errors. Systems

combination has been widely applied in different fields

such as natural language processing (NLP) [1], pattern

recognition [2], and image processing. In this paper, a

range of strategies for combining machine learning

techniques for Arabic character recognition is

evaluated. Arabic characters are used in various

languages, like Arabic, Persian, Urdu, and other; more

than half of billion people use the Arabic characters.

Optical character recognition (OCR) is one of the most

successful applications of automatic pattern recognition.

OCR is the process of translating the graphical

document into a textual one. The objective of characters

recognition is to recognize handwritten accurately or

typist characters to facilitate man-machine interaction.

The motivation behind developing characters

recognition systems is inspired by their wide range of

applications including archiving documents, automatic

reading of checks, and number plate reading. Although

a large number of researches have been done in this

field, there is no obvious mathematical function that

could perform this translation. Considerable attention

has been paid to Latin and Chinese characters

recognition, while Arabic characters recognition still

limited in spite of the challenge due to the difficulties of

these characters, which arises from the characteristics of

Arabic characters and the way of these characters are

connected and written [3].

In the current work, several combining strategies

for the recognition of isolated printed Arabic characters

are investigated. These techniques based on combining

three machine learning classifiers (k-nearest neighbors

(kNN), support vector machine (SVM), and

probabilistic neural network (PNN)) and then using

different decision-making strategies such as majority

vote, confidence systems, and others to produce the

final decision. Simulation results prove that the

combination strategies always provides a higher

recognition rate compared with the results of each

technique in isolation.

The rest of the paper is organized as follows: in

Section 2 the Arabic characters are analyzed, and the

main problems of these characters are presented. A

brief explanation of the three recognition techniques is

given in Section 3. Section 4 explains the combination

strategies and the experiments performed using these

strategies. Finally, Section 5 presents the conclusions.

II. FEATURES OF THE ARABIC CHARACTERS

Arabic writing and Arabic characters have many

features that make the Arabic characters recognition

system differs from the characters recognition systems

for other languages such as Latin and Chinese. The

Arabic language is written from right to left in a cursive

script in both handwritten and typewritten. Arabic

characters also have many characteristics that

complicate the recognition of such characters. Some of

these features are listed below:

1. The Arabic alphabet consists of 29 characters. Each

Arabic character might have up to four forms

depending on its relative position in the word (i.e.,

begin, middle, end, and isolated) that increase the

number of patterns from 29 to about 100 patterns.

Table I shows the Arabic character patterns (each

table cell contains one character with its possible

forms).

2. Most of the Arabic characters (around 16 of 29)

have a character complementary that is associated

with the body of the character. This complementary

may be a dot, two dots, three dots, or zigzag

(hamza). It can be above the character as in (ف),

below as in (ب), or inside the character as in (ج).

3. There are different groups of characters that have the

same body, but they are distinguished by the dots

number (ن،ت،ث), the dots position (ج،خ), or the

shape of a character complementary whether it is a

dot or zigzag (ـئ ، ـن).

4. Both widths and heights of Arabic characters are

variable (e.g. ا and ب).

TABLE I. ARABIC CHARACTER PATTERNS

Meem Ayn Seen HHa Hamza

م ـمـ ـممـ س ـسـ ـسسـ عـ ـعـ ـع ع ح ـحـ ـححـ ء ئ ئـ

Noon Ghayn Sheen Khaa Alif

ن ـنـ ـننـ ش ـشـ ـششـ غـ ـغـ ـغ غ خ ـخـ ـخخـ ا ـا

Ha Faa Saad Daal Baa

ف ـفـ ـففـ هـ ـهـ ـه ه ص ـصـ ـصصـ ـد د ب ـبـ ـب بـ

Waaw Qaaf Dhad Dhaa Taa

ـو و ق ـقـ ـققـ ض ـضـ ـضضـ ـذ ذ ت ـتـ ـتتـ

Yaa Kaaf Taa Raa Thaa

ـيـ ـي ييـ ك ـكـ ـككـ ـط ط ـر ر ث ـثـ ـث ثـ

 Laam Dhaa Zaay Jeem

ل ـلـ ـللـ ـظ ظ ـز ز ج ـجـ ـججـ

III. RECOGNITION METHODOLOGIES

Three machine learning techniques were chosen to

classify printed Arabic characters that are shown in

Table I. In the following subsections, a functional

description of these methods is introduced [4].

A. k-Nearest Neighbors

K-nearest neighbors (kNN) is a simplest machine
learning algorithm, which is used for classifying objects
based on the nearest training sets in the feature space.
An object is classified by a majority vote of its
neighbors, with the object being assigned to the class
most common amongst its k nearest neighbor, where k is
a small positive integer.

B. Support Vector Machine

The support vector machine (SVM) is based on

statistical learning theory. The standard SVM takes a

set of input data and predicts, for each given input,

which possible classes from the input. The process of

rearranging the objects is known as mapping. After

learning by quadratic programming, the samples of non-

zero weights are called support vectors (SVs).

C. Probabilistic Neural Network

Probabilistic neural network (PNN) is an
implementation of a statistical algorithm called kernel
discriminant analysis. The PNN architecture is
composed of many interconnected processing units, or
neurons, organized in four successive layers: input layer,
pattern layer, summation layer, and output layer. The
input layer does not perform any computation and
simply distributes the input to the neurons in the pattern
layer. The pattern layer contains one neuron for each
case in the training data set. It stores the values of the
predictor variables for the case along with the target
value. The summation layer performs an average
operation of the outputs from the pattern layer for each
class. The output layer performs a weighted vote,
selecting the largest value and uses the most significant
vote to predict the target category.

IV. EXPERIMENT RESULTS

As we mentioned before, the aim of the current work
is to investigate the evaluation of a range of strategies to
combining three most popular and efficient machine
learning techniques for Arabic characters recognition
system, where the input characters are imperfect and
dimensionally variable, and compared their results with
each method in isolation.

Each recognition system, here, is conducted through
three main modules. The first module is responsible for
preparing the input images by acquisition and digitizing
of the image, remove noise, binarized and thinning. The
second module extracts the main features of the
preprocessed images. The third module processes the
main features to recognize the input characters. Several
systems are used in this module; isolated systems such
as kNN, SVM, PNN and combination among them. A
brief description of each module is in the following
lines.

A. Preprocessing

The preprocessing attempts to eliminate some

variability related to the writing process, such as the

variability due to the writing environment, writing style,

acquisition and digitizing of the image. The main steps

of preprocessing module are as below:

1) Noise reduction

Images usually still contain noise. One approach is

applying adaptive median filter [5] to achieve noise

reduction. The advantage of the median filter is to keep

the edges of the image as well as to eliminate some of

the noise.

2) Binarizing

This part is responsible for converting the input image

to a binary image by replacing all pixels in the input

image with luminance greater than a particular level

with the value 1 (White); otherwise with the value 0

(Black).

3) Thinning

Thinning is done to make the characters around one

pixel wide.

B. Feature Extraction

The extracted characters from the input image have
different dimensions (e.g., the width of the Arabic
character ب is distinct from the width of the Arabic
character ا, and the same for the height). To deal with
this challenge, the discrete cosine transform (DCT) is
adopted to extract the features of the characters. DCT is
a technique to convert the image data into its elementary
frequency components where high-value coefficients are
clustered in the upper left corner and low-value
coefficients in the bottom right of the resulted matrix. To
improve the performance and efficiency of the
recognition systems, three various feature extractors
have been investigated, e.g., 10 coefficients, 20
coefficients, and 64 coefficients. Indeed, each extractor
kind range is different from those of the other extractor

kinds. Each feature extractor, therefore, extracts vector
which is not uniform with the other vectors extracted
from others. We do not have enough space to include all
the details and the results of these feature extractors.
Instead, for simplicity, we focus here on the one that has
been the most useful in practice, which is 64 DCT
coefficients feature extractor: apply the DCT on a
character and selecting the first 64 higher value DCT
coefficients, which are extracted in a zigzag fashion as a
feature vector for recognizing this character.

C. Recognition technique

Different systems have been investigated here, as
follows:
 System1: this system uses the kNN in isolation with

the number of nearest neighbors (k=1). The output
is an integer number that represents a character,
e.g., 1=all patterns of Alif, …, 28=all patterns of
Yaa.

 System2: this system uses the SVM in isolation,
which relies on multi-class SVM (28 SVMs, one-
rest method) with the order of polynomial kernel
equal to 2.

 System3: this system uses the PNN in isolation with
the spread of radial basis functions equal to 0.2. The
output is an integer number that represents a
character, e.g., 1=all patterns of Alif, …, 28=all
patterns of Yaa.

 System4: this system accepts the result of System1
and System2 if they agree and backoff to System3 if
they do not (whether or not the backoff system
agrees with either of the chosen pair).

 System5: this system accepts the result of System1
and System3 if they agree and backoff to System2 if
they do not (whether or not the backoff system
agrees with either of the chosen pair).

 System6: this system accepts the result of System2
and System3 if they agree and backoff to System1 if
they do not (whether or not the backoff system
agrees with either of the chosen pair).

 System7: this system accepts the result of System1
and System2 if they agree and backoff to a most
confident system (1 or 2) if they do not.

 System8: this system accepts the result of System1
and System3 if they agree and backoff to a most
confident system (1 or 3) if they do not.

 System9: this system accepts the result of System2
and System3 if they agree and backoff to a most
confident system (2 or 3) if they do not.

 System10: this system accepts the result of at least
two systems if they agree and backoff to a most
confident system (1-3) if they do not.

 System11: this system accepts the result of System1,
System2, and System3 if they agree and backoff to a
most confident system (1-3) if they do not.

 System12: this system accepts the result of a most
confident system only.

In the systems (7-12), we used a technique that
depends on using the system which is known to be most
reliable for each Arabic character. After testing the
individual systems on the testing set with different levels
of noise, we found the most reliable system for each

Arabic character and then used these confidence levels
to decide how much each system should be trusted for
each character. We find that, for instance, System1
should be trusted when the character is ‘ر’, whereas
System2 should be trusted when the character is ‘ا’.
Consider the three systems are entirely disagreed to
recognize a character. For example, System1 decides the
character is ‘ر’ with confidence level for classifying this
character equal to 90%, System2 decides the character is
 with confidence level for classifying this character ’د‘
equal to 80%, and System3 decides the character is ‘ذ’
with confidence level for classifying this character equal
to 75%. In this case, the final decision will be the
character ‘ر’ because the System1 has high confidence
level for classifying such character.

 Results

We carried out experiments using the isolated
systems (1-3) above by training them on the training set,
which is all Arabic characters in Table I (except Hamza)
with Arial 14-point font. To make our experiments more
realistic, all systems are tested on the testing set, which
is the same training characters set after corrupted by
three levels of “Salt & Pepper” noise (i.e. 10%, 30%,
and 50%).

The results of these experiments, regarding the

recognition rate, are illustrated in Table II. As it can be

seen in the table below, System1 obtains the best result.

TABLE II. ISOLATED SYSTEMS RECOGNITION RATES.

System
Recognition rate for the noise level

10% 30% 50%

System1 96% 92% 64%

System2 90% 82% 69%

System3 94% 86% 48%

If you have multiple classifier systems, and they all

suggest a particular character, then the only thing you
can do is to accept that suggestion. The key issue is what
to do when they disagree, but before investigating this, it
is worth looking at what happens when they do agree.

We, therefore, looked at the precision (P), recall (R)
and F-score (F) for various combinations of systems on
cases where they agreed. Table III shows the precision,
recall, and F-score for the merger of the systems output
where they agree, either pairwise or unanimously.

TABLE III. PRECISION (P), RECALL (R) AND F-SCORE (F) FOR

AGREEMENT OUTPUT FOR TWO SYSTEMS

Systems
Noise Level (10%) Noise Level (30%) Noise Level (50%)

P% R% F P% R% F P% R% F

System1+

System2
100 86 0.93 97.4 76 0.85 85 51 0.64

System1+
System3

96.9 93 0.95 94.4 85 0.90 71.8 51 0.60

System2+

System3
98.8 85 0.91 97.3 73 0.83 65.5 36 0.47

Three
systems

agree
100 84 0.93 98.6 72 0.83 97.2 35 0.52

At least
two

systems

agree

97 96 0.97 94.7 90 0.92 73.5 61 0.67

Unsurprisingly, the precision on combining systems
is considerably higher than the accuracy of any
individual system. More importantly, when we combine
only two systems, we find that the combination of
System2 with either of System1 and System3 gives
mostly better precision and lower recall than combining
System1 and System2. This is slightly surprising:
System2 uses a different technique from the systems (1
and 3), and hence when it agrees with one of them it is
likely that they have arrived at the same conclusion by
different routes, and hence that this conclusion has good
supporting evidence.

A system, however, is required to give a complete
recognition result, so we have to recommend a backoff
strategy for cases where the systems do not all agree.
Here, we briefly consider two promising strategies for
dealing with this challenge–taking the output if all three
systems agree (highest precision in Table III) and taking
the output if any pair agrees (highest F-score in Table
III)–and investigate a range of backoff strategies.

These strategies are divided into two groups: (i)
voting-based backoff group which is a set of voting
strategies; and (ii) confidence-based backoff group
which is a set of techniques based on identifying which
system is best at dealing with particular kinds of
characters.

The latter group has proved highly effective for
combining POS taggers [6] and parsers [7], and it
seemed prima facie plausible that it would also work for
characters recognition.

Table IV shows the results obtained from applying
the combining systems for different noise levels of the
testing set.

TABLE IV. RECOGNITION RATES FOR COMBINING SYSTEMS,
DEFERENT NOISE LEVELS.

System
Recognition rate for the noise level

10% 30% 50%

System4 96% 90% 61%

System5 96% 90% 61%

System6 96% 90% 61%

System7 100% 98% 81%

System8 97% 93% 64%

System9 99% 95% 78%

System10 96% 90% 61%

System11 100% 98% 81%

System12 100% 98% 81%

As noted above, we find that the confidence-based

backoff systems (7-12) outperform each of the
individual systems (1-3), and they also achieve better
recognition rates than the simple voting-based backoff
systems (4-6).

V. CONCLUSIONS AND FUTURE WORK

If you have multiple systems that perform the same
task, it seems sensible to suppose that you can obtain
better performance by using some judicious combination
of them than can be achieved by any of them alone. A
lot of combining strategies have been proposed, with
majority voting being particularly popular. We have
investigated here a range of strategies for combining
machine learning techniques for Arabic characters

recognition: the best strategy we have found for
recognizing involves asking each of the systems how
confident it is, and accepting the answer given by the
most confident one. We hypothesize that the reason for
the effectiveness of this strategy for characters
recognition arises from the fact that the individual
systems work in essentially different ways (e.g.,
different underlying algorithms), and hence if they make
systematic errors, these will tend to be different. This
means, in turn, that the places where they do not make
mistakes will be different.

Based on the encouraging findings in the current
work, two further research tasks have been identified.
First, to improve the recognition efficiency and
generality of the presented systems, these systems will
be evaluated on multi-font and multi-size training and
testing sets. Second, the current systems will be
extended to deals with Arabic text rather than isolated
characters by adding segmentation module to split an
input text into words and then into characters.

REFERENCES

[1] M. Alabbas and A. Ramsay, "Combining strategies for

tagging and parsing Arabic," in Proceedings of the

EMNLP 2014 Workshop on Arabic Natural Langauge

Processing (ANLP), Doha, Qatar, 2014, pp. 73–77.

[2] G. Giacinto, F. Roli, and G. Fumera, "Selection of

Classifiers Based on Multiple Classifier Behaviour," in

Advances in Pattern Recognition: Joint IAPR

International Workshops SSPR 2000 and SPR 2000

Alicante, Spain, August 30 – September 1, 2000

Proceedings, F. J. Ferri, J. M. Iñesta, A. Amin, and P.

Pudil, Eds., ed Berlin, Heidelberg: Springer Berlin

Heidelberg, 2000, pp. 87-93.

[3] I. Supriana and A. Nasution, "Arabic Character

Recognition System Development," Procedia

Technology, vol. 11, pp. 334-341, 2013.

[4] W. Martinez and A. Martinez, Computational Statistics

Handbook with MATLAB, 3rd ed.: Chapman and

Hall/CRC, 2015.

[5] Y. Zhao, D. Li, and Z. Li, "Performance enhancement

and analysis of an adaptive median filter," in

International Conference on Communications and

Networking (CHINACOM '07), China, Shanghai, 2007,

pp. 651-653.

[6] M. Alabbas and A. Ramsay, "Improved POS-Tagging for

Arabic by Combining Diverse Taggers," in Artificial

Intelligence Applications and Innovations: 8th IFIP WG

12.5 International Conference, AIAI 2012, Halkidiki,

Greece, September 27-30, 2012, Proceedings, Part I, L.

Iliadis, I. Maglogiannis, and H. Papadopoulos, Eds., ed

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,

pp. 107-116.

[7] M. Alabbas and A. Ramsay, "Improved Parsing for

Arabic by Combining Diverse Dependency Parsers," in

Human Language Technology Challenges for Computer

Science and Linguistics: 5th Language and Technology

Conference, LTC 2011, Poznań, Poland, Revised

Selected Papers, Z. Vetulani and J. Mariani, Eds., ed

Cham: Springer International Publishing, 2014, pp. 43-

54.

