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Abstract—In this paper, we investigate a range of 

strategies for combining multiple machine learning 

techniques for recognizing Arabic characters, where we 

are faced with imperfect and dimensionally variable input 

characters. Experimental results show that combined 

confidence-based backoff strategies can produce more 

accurate results than each technique produces by itself 

and even the ones exhibited by the majority voting 

combination. 
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I.  INTRODUCTION 

Systems combination is a popular way of 

improving accuracy in different tasks. This is concerned 

with combining various systems, which perform the 

same task to exploit the unique advantage of each 

system and reduce some of the random errors. Systems 

combination has been widely applied in different fields 

such as natural language processing (NLP) [1], pattern 

recognition [2], and image processing. In this paper, a 

range of strategies for combining machine learning 

techniques for Arabic character recognition is 

evaluated. Arabic characters are used in various 

languages, like Arabic, Persian, Urdu, and other; more 

than half of billion people use the Arabic characters. 

Optical character recognition (OCR) is one of the most 

successful applications of automatic pattern recognition. 

OCR is the process of translating the graphical 

document into a textual one. The objective of characters 

recognition is to recognize handwritten accurately or 

typist characters to facilitate man-machine interaction. 

The motivation behind developing characters 

recognition systems is inspired by their wide range of 

applications including archiving documents, automatic 

reading of checks, and number plate reading. Although 

a large number of researches have been done in this 

field, there is no obvious mathematical function that 

could perform this translation. Considerable attention 

has been paid to Latin and Chinese characters 

recognition, while Arabic characters recognition still 

limited in spite of the challenge due to the difficulties of 

these characters, which arises from the characteristics of 

Arabic characters and the way of these characters are 

connected and written [3]. 

In the current work, several combining strategies 

for the recognition of isolated printed Arabic characters 

are investigated. These techniques based on combining 

three machine learning classifiers (k-nearest neighbors 

(kNN), support vector machine (SVM), and 

probabilistic neural network (PNN)) and then using 

different decision-making strategies such as majority 

vote, confidence systems, and others to produce the 

final decision. Simulation results prove that the 

combination strategies always provides a higher 

recognition rate compared with the results of each 

technique in isolation. 

The rest of the paper is organized as follows: in 

Section 2 the Arabic characters are analyzed, and the 

main problems of these characters are presented. A 

brief explanation of the three recognition techniques is 

given in Section 3. Section 4 explains the combination 

strategies and the experiments performed using these 

strategies. Finally, Section 5 presents the conclusions. 

II. FEATURES OF THE ARABIC CHARACTERS 

Arabic writing and Arabic characters have many 

features that make the Arabic characters recognition 

system differs from the characters recognition systems 

for other languages such as Latin and Chinese. The 

Arabic language is written from right to left in a cursive 

script in both handwritten and typewritten. Arabic 

characters also have many characteristics that 

complicate the recognition of such characters. Some of 

these features are listed below: 

1. The Arabic alphabet consists of 29 characters. Each 

Arabic character might have up to four forms 

depending on its relative position in the word (i.e., 

begin, middle, end, and isolated) that increase the 

number of patterns from 29 to about 100 patterns. 

Table I shows the Arabic character patterns (each 

table cell contains one character with its possible 

forms). 

2. Most of the Arabic characters (around 16 of 29) 

have a character complementary that is associated 

with the body of the character. This complementary 

may be a dot, two dots, three dots, or zigzag 

(hamza). It can be above the character as in (ف), 

below as in (ب), or inside the character as in (ج). 

3. There are different groups of characters that have the 

same body, but they are distinguished by the dots 

number (ن،ت،ث), the dots position (ج،خ), or the 

shape of a character complementary whether it is a 

dot or zigzag ( ـئ ، ـن ). 



4. Both widths and heights of Arabic characters are 

variable (e.g. ا and ب). 

TABLE I.  ARABIC CHARACTER PATTERNS 

 

Meem Ayn Seen HHa Hamza 

م ـمـ ـممـ  س ـسـ ـسسـ  عـ  ـعـ ـع  ع  ح ـحـ ـححـ     ء  ئ  ئـ 

Noon Ghayn Sheen Khaa Alif 

ن ـنـ ـننـ  ش ـشـ ـششـ  غـ ـغـ  ـغ  غ  خ ـخـ ـخخـ    ا ـا 

Ha Faa Saad Daal Baa 

ف ـفـ ـففـ  هـ  ـهـ  ـه  ه ص ـصـ ـصصـ   ـد د  ب ـبـ ـب بـ    

Waaw Qaaf Dhad Dhaa Taa 

ـو و ق ـقـ ـققـ   ض ـضـ ـضضـ   ـذ ذ  ت ـتـ ـتتـ    

Yaa Kaaf Taa Raa Thaa 

ـيـ ـي ييـ   ك ـكـ ـككـ   ـط ط  ـر ر  ث ـثـ ـث ثـ   

 Laam Dhaa Zaay Jeem 

ل ـلـ ـللـ   ـظ ظ  ـز ز  ج ـجـ ـججـ    

 

III. RECOGNITION METHODOLOGIES 

Three machine learning techniques were chosen to 

classify printed Arabic characters that are shown in 

Table I. In the following subsections, a functional 

description of these methods is introduced [4]. 

A. k-Nearest Neighbors 

K-nearest neighbors (kNN) is a simplest machine 
learning algorithm, which is used for classifying objects 
based on the nearest training sets in the feature space. 
An object is classified by a majority vote of its 
neighbors, with the object being assigned to the class 
most common amongst its k nearest neighbor, where k is 
a small positive integer. 

B. Support Vector Machine 

The support vector machine (SVM) is based on 

statistical learning theory. The standard SVM takes a 

set of input data and predicts, for each given input, 

which possible classes from the input. The process of 

rearranging the objects is known as mapping. After 

learning by quadratic programming, the samples of non-

zero weights are called support vectors (SVs). 

 

C. Probabilistic Neural Network 

Probabilistic neural network (PNN) is an 
implementation of a statistical algorithm called kernel 
discriminant analysis. The PNN architecture is 
composed of many interconnected processing units, or 
neurons, organized in four successive layers: input layer, 
pattern layer, summation layer, and output layer. The 
input layer does not perform any computation and 
simply distributes the input to the neurons in the pattern 
layer.  The pattern layer contains one neuron for each 
case in the training data set. It stores the values of the 
predictor variables for the case along with the target 
value. The summation layer performs an average 
operation of the outputs from the pattern layer for each 
class. The output layer performs a weighted vote, 
selecting the largest value and uses the most significant 
vote to predict the target category. 

 

IV. EXPERIMENT RESULTS 

As we mentioned before, the aim of the current work 
is to investigate the evaluation of a range of strategies to 
combining three most popular and efficient machine 
learning techniques for Arabic characters recognition 
system, where the input characters are imperfect and 
dimensionally variable, and compared their results with 
each method in isolation. 

Each recognition system, here, is conducted through 
three main modules. The first module is responsible for 
preparing the input images by acquisition and digitizing 
of the image, remove noise, binarized and thinning. The 
second module extracts the main features of the 
preprocessed images. The third module processes the 
main features to recognize the input characters. Several 
systems are used in this module; isolated systems such 
as kNN, SVM, PNN and combination among them. A 
brief description of each module is in the following 
lines.  

 

A. Preprocessing 

The preprocessing attempts to eliminate some 

variability related to the writing process, such as the 

variability due to the writing environment, writing style, 

acquisition and digitizing of the image. The main steps 

of preprocessing module are as below:  
 

1) Noise reduction 

Images usually still contain noise. One approach is 

applying adaptive median filter [5] to achieve noise 

reduction. The advantage of the median filter is to keep 

the edges of the image as well as to eliminate some of 

the noise. 
 

2) Binarizing 

This part is responsible for converting the input image 

to a binary image by replacing all pixels in the input 

image with luminance greater than a particular level 

with the value 1 (White); otherwise with the value 0 

(Black). 
 

3) Thinning 

Thinning is done to make the characters around one 

pixel wide. 

 

B. Feature Extraction 

The extracted characters from the input image have 
different dimensions (e.g., the width of the Arabic 
character ب is distinct from the width of the Arabic 
character ا, and the same for the height). To deal with 
this challenge, the discrete cosine transform (DCT) is 
adopted to extract the features of the characters. DCT is 
a technique to convert the image data into its elementary 
frequency components where high-value coefficients are 
clustered in the upper left corner and low-value 
coefficients in the bottom right of the resulted matrix. To 
improve the performance and efficiency of the 
recognition systems, three various feature extractors 
have been investigated, e.g., 10 coefficients, 20 
coefficients, and 64 coefficients. Indeed, each extractor 
kind range is different from those of the other extractor 



kinds. Each feature extractor, therefore, extracts vector 
which is not uniform with the other vectors extracted 
from others. We do not have enough space to include all 
the details and the results of these feature extractors. 
Instead, for simplicity, we focus here on the one that has 
been the most useful in practice, which is 64 DCT 
coefficients feature extractor: apply the DCT on a 
character and selecting the first 64 higher value DCT 
coefficients, which are extracted in a zigzag fashion as a 
feature vector for recognizing this character. 
 

C. Recognition technique 

Different systems have been investigated here, as 
follows: 
 System1: this system uses the kNN in isolation with 

the number of nearest neighbors (k=1). The output 
is an integer number that represents a character, 
e.g., 1=all patterns of Alif, …, 28=all patterns of 
Yaa. 

 System2: this system uses the SVM in isolation, 
which relies on multi-class SVM (28 SVMs, one-
rest method) with the order of polynomial kernel 
equal to 2. 

 System3: this system uses the PNN in isolation with 
the spread of radial basis functions equal to 0.2. The 
output is an integer number that represents a 
character, e.g., 1=all patterns of Alif, …, 28=all 
patterns of Yaa. 

 System4: this system accepts the result of System1 
and System2 if they agree and backoff to System3 if 
they do not (whether or not the backoff system 
agrees with either of the chosen pair). 

 System5: this system accepts the result of System1 
and System3 if they agree and backoff to System2 if 
they do not (whether or not the backoff system 
agrees with either of the chosen pair). 

 System6: this system accepts the result of System2 
and System3 if they agree and backoff to System1 if 
they do not (whether or not the backoff system 
agrees with either of the chosen pair). 

 System7: this system accepts the result of System1 
and System2 if they agree and backoff to a most 
confident system (1 or 2) if they do not. 

 System8: this system accepts the result of System1 
and System3 if they agree and backoff to a most 
confident system (1 or 3) if they do not. 

 System9: this system accepts the result of System2 
and System3 if they agree and backoff to a most 
confident system (2 or 3) if they do not. 

 System10: this system accepts the result of at least 
two systems if they agree and backoff to a most 
confident system (1-3) if they do not. 

 System11: this system accepts the result of System1, 
System2, and System3 if they agree and backoff to a 
most confident system (1-3) if they do not. 

 System12: this system accepts the result of a most 
confident system only. 
 

In the systems (7-12), we used a technique that 
depends on using the system which is known to be most 
reliable for each Arabic character. After testing the 
individual systems on the testing set with different levels 
of noise, we found the most reliable system for each 

Arabic character and then used these confidence levels 
to decide how much each system should be trusted for 
each character.  We find that, for instance, System1 
should be trusted when the character is ‘ر’, whereas 
System2 should be trusted when the character is ‘ا’. 
Consider the three systems are entirely disagreed to 
recognize a character. For example, System1 decides the 
character is ‘ر’ with confidence level for classifying this 
character equal to 90%, System2 decides the character is 
 with confidence level for classifying this character ’د‘
equal to 80%, and System3 decides the character is ‘ذ’ 
with confidence level for classifying this character equal 
to 75%. In this case, the final decision will be the 
character ‘ر’ because the System1 has high confidence 
level for classifying such character. 

 

 Results 

We carried out experiments using the isolated 
systems (1-3) above by training them on the training set, 
which is all Arabic characters in Table I (except Hamza) 
with Arial 14-point font. To make our experiments more 
realistic, all systems are tested on the testing set, which 
is the same training characters set after corrupted by 
three levels of “Salt & Pepper” noise (i.e. 10%, 30%, 
and 50%). 

The results of these experiments, regarding the 

recognition rate, are illustrated in Table II. As it can be 

seen in the table below, System1 obtains the best result. 
 

TABLE II.  ISOLATED SYSTEMS RECOGNITION RATES. 

System 
Recognition rate for the noise level 

10% 30% 50% 

System1 96% 92% 64% 

System2 90% 82% 69% 

System3 94% 86% 48% 

 
If you have multiple classifier systems, and they all 

suggest a particular character, then the only thing you 
can do is to accept that suggestion. The key issue is what 
to do when they disagree, but before investigating this, it 
is worth looking at what happens when they do agree. 

We, therefore, looked at the precision (P), recall (R) 
and F-score (F) for various combinations of systems on 
cases where they agreed. Table III shows the precision, 
recall, and F-score for the merger of the systems output 
where they agree, either pairwise or unanimously. 

TABLE III.  PRECISION (P), RECALL (R) AND F-SCORE (F) FOR 

AGREEMENT OUTPUT FOR TWO SYSTEMS 

Systems 
Noise Level (10%) Noise Level (30%) Noise Level (50%) 

P% R% F P% R% F P% R% F 

System1+ 

System2 
100 86 0.93 97.4 76 0.85 85 51 0.64 

System1+ 
System3 

96.9 93 0.95 94.4 85 0.90 71.8 51 0.60 

System2+ 

System3 
98.8 85 0.91 97.3 73 0.83 65.5 36 0.47 

Three 
systems 

agree 
100 84 0.93 98.6 72 0.83 97.2 35 0.52 

At least 
two 

systems 

agree 

97 96 0.97 94.7 90 0.92 73.5 61 0.67 



Unsurprisingly, the precision on combining systems 
is considerably higher than the accuracy of any 
individual system. More importantly, when we combine 
only two systems, we find that the combination of 
System2 with either of System1 and System3 gives 
mostly better precision and lower recall than combining 
System1 and System2. This is slightly surprising: 
System2 uses a different technique from the systems (1 
and 3), and hence when it agrees with one of them it is 
likely that they have arrived at the same conclusion by 
different routes, and hence that this conclusion has good 
supporting evidence. 

A system, however, is required to give a complete 
recognition result, so we have to recommend a backoff 
strategy for cases where the systems do not all agree. 
Here, we briefly consider two promising strategies for 
dealing with this challenge–taking the output if all three 
systems agree (highest precision in Table III) and taking 
the output if any pair agrees (highest F-score in Table 
III)–and investigate a range of backoff strategies. 

These strategies are divided into two groups: (i) 
voting-based backoff group which is a set of voting 
strategies; and (ii) confidence-based backoff group 
which is a set of techniques based on identifying which 
system is best at dealing with particular kinds of 
characters. 

The latter group has proved highly effective for 
combining POS taggers [6] and parsers [7], and it 
seemed prima facie plausible that it would also work for 
characters recognition. 

Table IV shows the results obtained from applying 
the combining systems for different noise levels of the 
testing set. 

TABLE IV.  RECOGNITION RATES FOR COMBINING SYSTEMS, 
DEFERENT NOISE LEVELS. 

System 
Recognition rate for the noise level 

10% 30% 50% 

System4 96% 90% 61% 

System5 96% 90% 61% 

System6 96% 90% 61% 

System7 100% 98% 81% 

System8 97% 93% 64% 

System9 99% 95% 78% 

System10 96% 90% 61% 

System11 100% 98% 81% 

System12 100% 98% 81% 

 
As noted above, we find that the confidence-based 

backoff systems (7-12) outperform each of the 
individual systems (1-3), and they also achieve better 
recognition rates than the simple voting-based backoff 
systems (4-6).  

 

V. CONCLUSIONS AND FUTURE WORK 

If you have multiple systems that perform the same 
task, it seems sensible to suppose that you can obtain 
better performance by using some judicious combination 
of them than can be achieved by any of them alone. A 
lot of combining strategies have been proposed, with 
majority voting being particularly popular. We have 
investigated here a range of strategies for combining 
machine learning techniques for Arabic characters 

recognition: the best strategy we have found for 
recognizing involves asking each of the systems how 
confident it is, and accepting the answer given by the 
most confident one. We hypothesize that the reason for 
the effectiveness of this strategy for characters 
recognition arises from the fact that the individual 
systems work in essentially different ways (e.g., 
different underlying algorithms), and hence if they make 
systematic errors, these will tend to be different. This 
means, in turn, that the places where they do not make 
mistakes will be different. 

Based on the encouraging findings in the current 
work, two further research tasks have been identified. 
First, to improve the recognition efficiency and 
generality of the presented systems, these systems will 
be evaluated on multi-font and multi-size training and 
testing sets. Second, the current systems will be 
extended to deals with Arabic text rather than isolated 
characters by adding segmentation module to split an 
input text into words and then into characters.  
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