
Application of a Multivariate Process 

Control Technique for Set-Up Dominated 

Low Volume Operations 

Steven COX
a,b,1

, Scott ANDERSON
a
, Neil GRAY

a
, Oliver VOGT

b
 and Apostolos 

KOTSIALOS
b
 

a 
Rotary Power Ltd., Waldridge Way, South Shields. NE34 9PZ. UK.  

b 
School of Engineering, Durham University, Durham. DH1 3LE. UK 

Abstract.  In traditional high-volume manufacturing applications, the 

timing of control adjustments to processes is based on parametric Statistical 
Process Control (SPC) methods, such as Shewhart X & R charts. In high-value, 

high-complexity and low-volume industries, where production runs are in the 

order of tens rather than thousands, traditional SPC approaches are not easily 
applicable. A manufactured component’s complexity, with multiple critical 

features to monitor, increases the difficulty for a process operator to maintain all of 

them within their design tolerances. In response to this, this paper presents a 
framework of non-parametric SPC, called multivariate Set-Up Process Algorithm 

(mSUPA), for managing control adjustment when required. mSUPA uses a simple 

to interpret traffic light system for alerting process operators when an adjustment 

is required. mSUPA is underpinned by multivariate statistics and probability 

theory for validating a process set up. The case of mSUPA application to a real 

industry process is discussed.  
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1.  Introduction 

The development and deployment of Advanced Manufacturing Technologies 

(AMT) in high-value, high-precision manufacturing environments has led to 

production of smaller batch sizes of more complex product [1,2]. These processes are 

defined as set-up dominant [3]. They are typically stable part to part, with the major 

source of variation between batches of the same part. This is a result of the AMT being 

used for different jobs in-between batches of the same part, significantly changing the 

operating environment. This makes timely intervention to correct the AMT set-up, to 

produce parts near the design target, critical. For example, an operator setting up a 

batch on a machine tool process adjusts the machine tool’s offsets to steer the process 

on-target. 

Traditionally, in high-volume manufacturing environments statistical process 

control (SPC) techniques have become prevalent in assisting operators identify a 

statistically significant change in the process. Examples of SPC technique are mean and 

range charts, and individuals and moving range charts [4]. These SPC techniques are 
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not valid in a low-volume situation, because the production run may have finished 

before control limits have been established. In a low-volume environment defect 

prevention methods, with control limits derived from tolerances, have been shown to 

be advantageous [5]. Examples of defect prevention methods are Pre-Control [6] and 

Pre-Control variants, including 10 unit Pre-Control [7] and Set-Up Process Algorithm 

(SUPA) [5]. 

Although defect prevention methods address the issue of assisting the 

identification of an off-target process in low-volume manufacturing, they do not 

address the issue of product complexity. These defect prevention methods are 

univariate, i.e. they address one critical-to-quality (CtQ) feature at a time. It is common 

for in-excess of 30 CtQ features to be machined on the part by a single multi-axis 

Computer Numerical Control (CNC) machining centre process. This would require the 

machine tool operator to manage over 30 separate SUPA charts for a single part and 

process combination. There have been multivariate Pre-Control variants published in 

the literature [8,9] to address this. However, these techniques derive their control limits 

from statistical analysis rather than from tolerances. This means they are in fact SPC 

methods that are not suitable for a low-volume application. 

This paper aims to address the control of a low-volume, high complexity 

manufacturing process. This is achieved by outlining a multivariate SUPA (mSUPA) 

method. Then its application to real production data is demonstrated. 

2. mSUPA 

In this section the procedure for applying the mSUPA method is described. This 

provides the framework for the method to be applied to a real process in the subsequent 

section.  

The principle behind the mSUPA technique is to classify each part that is 

manufactured as either: green, yellow or red. This is in much the same way as 

univariate Pre-Control methods, the difference being that univariate approaches are 

describing the conformance of an individual CtQ whereas, mSUPA is describing the 

conformance of all CtQs attached to a part. Therefore, mSUPA is describing the overall 

conformity of a part. 

Consecutive parts are sampled and their measured CtQ design features are 

categorized as green, yellow or red. If a sampled part is red it signals that the process is 

out-of-tolerance. Two consecutive parts in the same yellow zone signal an off-target 

process. Five consecutive green parts demonstrate the process is capable with 98% 

confidence and is allowed to continue without further checks. A full derivation of the 

calculation of the probability of qualifying a process using a Pre-Control derived 

method can be found in San Matias et al. [10]. 

In order to perform mSUPA in a manner that maintains a nonparametric approach, 

a series of sampling rules needs to be established. Therefore, this requires that 

consecutive parts are sampled from a process after set-up. The CtQ features of these 

parts are measured and recorded as the CtQ vector, 𝑥𝑖. If a feature of the CtQ vector is 

outside its design tolerance, the part is scrapped. 

Consider the simplified case of a part with two CtQ design features, i.e. 𝑥 =
[𝑥1, 𝑥2]

𝑇 . If 𝑥1  and 𝑥2  have the same specified design tolerances of 𝑈 = 250  and 

𝐿 = 50, the tolerance boundary can be represented as a box, as in figure 1. Taking the 

philosophy of linking a red zone to design tolerance from SUPA, this box can be used 



in mSUPA as a boundary between the red and yellow zones. Let two measured parts 

𝑘 = 1  and 𝑘 = 2  be collected with CtQ design vectors of 𝑥(𝑘 = 1) = 𝑥(1) =
[200,100]𝑇  and (𝑘 = 2) = 𝑥(2) = [40,200]𝑇  . These points are plotted on figure 1, 

where it is shown there that 𝑥(1) is within and 𝑥(2) is outside the design tolerance. 

 

Figure 1. Tolerance boundary of 𝑥 and positions of CtQ design vectors 𝑥(1) and 𝑥(2). 

Although this information tells a user if a part is in or out-of-tolerance, it does not 

give any indication of how close a part is to the design target. However, to formulate a 

green zone, and therefore an mSUPA chart, a minimum acceptable capability level 

(𝐶𝑝(𝑖)) must be defined f or each CtQ feature (𝑥𝑖). This is driven by the criticality of the 

feature, i.e. a functionally critical feature may require a 𝐶𝑝 = 2.0, whereas, an aesthetic 

feature may only require a 𝐶𝑝 = 1.33. This results in a capability vector, as follows: 

𝐶𝑝 =

[
 
 
 
𝐶𝑝(1)

𝐶𝑝(2)

⋮
𝐶𝑝(𝑛)]

 
 
 

, (1) 

where, 𝑛 is the total number of 𝑖 CtQ features. If the monitored process then meets the 

required minimum capabilities defined, the probability of a green part been generated 

should be 𝑃(𝑔) = 0.94.  

For a part with 𝑛 CtQ features, the minimum variation in each 𝑥𝑖 for 𝑖 = 1,⋯ , 𝑛 

can be represented by 𝜎𝑖
2. Rearranging the formula for 𝐶𝑝 as follows: 

𝜎 =
𝑈−𝐿

6𝐶𝑝
, (2) 

where, 𝑈 and 𝐿 are the features upper and lower design tolerances. Using the values 

from (1) in (2) allows the calculation of 𝜎𝑖
2 values. This allows the definition of the 

target covariance matrix (𝑆) as: 

𝑆 =

[
 
 
 
𝜎1

2 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ 0
0 0 0 𝜎𝑛

2]
 
 
 

. (3) 



 
Figure 2. 2-dimensional mSUPA chart showing green, yellow and red zones. 

The 𝑆  matrix only contains diagonal elements. This reflects the fact that no 

assumptions are made about correlations between CtQ design features. With 𝑆, the 

multivariate chart in figure 1 is refined by using this as a scale of maximum variation 

acceptable in the process. 𝑆 is used with the measured CtQ design vector, 𝑥, and the 

process target vector (𝑇) to calculate the Mahalanobis distance [11], between 𝑥 and 𝑇 

as follows: 

(𝑥 − 𝑇)𝑇𝑆−1(𝑥 − 𝑇)𝑇 < 𝐻2, (4) 

where 𝐻2  is a pre-selected constant. This allows the definition of a 

multidimensional green zone, which is the set of those points that have a Mahalanobis 

distance less than 𝐻2 from 𝑇. The left hand side of (4) has the property of following a 

𝜒𝑛,𝜀
2  distribution, where 𝑛 is the degrees of freedom, which is equal to number of CtQ 

design features and 𝜀 is the probability of a sample from a population that is on-target 

falling outside the green zone. 

In the case of univariate SUPA the green zone is defined so that a part produced by 

an on-target process has a minimum probability of falling in the green zone of 𝑃(𝑔) =
0.94. Hence, extending this to the multivariate case results in 𝜀 = 0.06. This results in 

the sphere shown in figure 2. Using this chart, a decision about whether a process is 

off-target or not, is still made by following the SUPA rules described. 

 

Figure 3. Hydraulic piston machined in a single operation with 20 features. 



3. Case Study 

This section demonstrates the application of the mSUPA technique to real process 

data. The data used in this study was collected from a machine tool operation at Rotary 

Power that produced pistons for hydraulic motors from a stock bar. An example of the 

piston is shown in figure 3. This operation produces 20 features on the piston. The 

application of the mSUPA method in this case focuses on four CtQ features. 

The four features monitored had an upper tolerance, 

𝑈 = [13.90,46.35,45.13,5.13]𝑇, lower tolerance, 𝐿 = [13.60,46.30,44.87,4.87]𝑇, and 

minimum 𝐶𝑝 = [1.33,1.33,1.33,1.33]𝑇 . By using these values in (2) results in the 

following target 𝑆 matrix: 

𝑆 = [

0.00140 0 0 0
0 0.00004 0 0
0 0 0.00106 0
0 0 0 0.00106

]. (5) 

Consecutive units were then sampled from production. The results of these 

sampled units are shown in figure 4. The first unit sampled, 

𝑥(1) = [13.76,46.30,44.95,5.08]𝑇  and the second unit sampled, 

𝑥(2) = [13.75,46.30,44.95,5.10]𝑇, fell in the yellow zone. This zone is determined by 

comparing the Mahalanobis distane 𝑥(1) and 𝑥(2) using (4) against 𝜒4,0.06
2 = 9.044. 

 
Figure 4. mSUPA plot of 4 CtQ features in the piston manufacture process. 



Both 𝑥(1) and 𝑥(2) have Mahalanobis distances greater than 𝜒4,0.06
2 = 9.044 and do 

not fall in the green zone. However, both 𝑥(1) and 𝑥(2)  are within 𝑥(1) and 𝑥(2) 

which indicates a yellow zone. These two units were not scrapped, but they indicated a 

change to the process offsets was required.  

After a process change the third sample, 𝑥(3) = [14.00,46.33,44.98,5.17]𝑇, fell 

in a red zone. Although this sample was closer to target in 𝑥2(3) and 𝑥3(3), it was 

scrapped as it was out of tolerance in features 𝑥1(3) and 𝑥4(3). This highlights the 

difficulty in accurately adjusting process offsets were one offset can effect multiple 

features. This red result led to a further process change. 

From samples 𝑥(4)  onwards, CtQ features 𝑥1 , 𝑥3  and 𝑥4  all fall within their 

individual green zones but fall in a global yellow zone due to feature 𝑥2. The operator 

allowed this process to run in this state as it produced in-tolerance components with the 

greatest number of CtQ features in their individual green zone.  

4. Conclusion 

In this paper, a new nonparametric process control tool was introduced known as 

multivariate Set-Up Process Algorithm (mSUPA). mSUPA was designed to monitor 

multivariate set-up dominant processes; in order, to identify when the process mean is 

not on the global design target. This extends the univariate SUPA method into the 

multivariate case. By doing this, an easy to digestive traffic-light system is maintained 

that is linked to tolerance boundaries. Unlike using Pre-Control, the mSUPA charts can 

be adjusted to suit a range of required process capabilities. Although, the presentation 

of results through a simple global traffic-light to inform the operator that the process is 

on- or off-target is easy to digestive, it requires more complex calculations to decide 

which zone a part falls into. Therefore, it is recommended that this approach is 

implemented through an online software interface to perform the required calculations. 
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