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Abstract
We describe a novel approach to multi-attribute utility elicitation which is both general enough
to cover a wide range of problems, whilst at the same time simple enough to admit reasonably
straightforward calculations. We allow both utilities and probabilities to be only partially specified,
through bounding. We still assume marginal utilities to be precise. We derive necessary and suffi-
cient conditions under which our elicitation procedure is consistent. As a special case, we obtain
an imprecise generalization of the well known swing weighting method for eliciting multi-attribute
utility functions. An example from ecological risk assessment demonstrates our method.

Keywords: utility; partial preference; consistency; uniqueness; multi-attribute; elicitation; impre-
cise; robust; swing weighting.

1. Introduction

In many decision problems where outcomes feature multiple attributes, additive multi-attribute util-
ity functions are a popular choice due to their simplicity (Clemen and Reilly, 2001). They split the
joint utility function into a weighted sum of marginal utility functions. Elicitation of the joint can
then be split into two elicitation procedures: one for each of the marginals, and one for the weights.

A reoccurring issue is the precision of the attribute weights. Indeed, whilst marginal utility func-
tions on separate attributes are often quite easily elicited, the way in which these attributes should
be weighed against each other is much harder to quantify precisely. Such decision problems appear
in different applications (Yemshanov et al., 2013; Hermerén et al., 2014). So, even if an additive
form can be assumed, the weights themselves might still be subject to imprecision due to incom-
plete preferences between multi-attribute lotteries. Hermerén et al. (2014) suggest different types of
value uncertainty and conclude that more work is needed to understand the cause of this uncertainty,
in order to understand how to treat it. The only applied example we identified is Yemshanov et al.
(2013), who considered uncertainty in weights by a multidimensional efficiency frontier analysis,
which treat each attribute separately. Here we are interested in the elicitation of these weights.

Swing weighting (von Winterfeldt and Edwards, 1986) is a simple and popular method for elic-
iting the weights of an additive multi-attribute utility function. Unfortunately, the standard treatment
of swing weighting uses ‘scores’ which are not usually directly interpreted in terms of preferences
over lotteries, giving it the impression of a heuristic rather than a normative method. Moreover,
swing weighting forces completeness of preferences between multi-attribute lotteries.

In this paper, we generalise swing weighting so bounds on the weights of the joint utility func-
tion can be elicited normatively. This is an important step to further widen the applicability of utility
theory in problems where the consequences of decisions have multiple aspects that cannot be easily
weighed against each other. As an extra bonus, we also derive a normative interpretation of the
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standard swing weighting procedure. The resulting problems, when both probabilities and utilities
are allowed to be imprecise, require quadratic programming, for which standard algorithms exist.

We are of course aware that decision theory has been generalised to deal with with arbitrary
partial preferences in their full generality (Seidenfeld et al., 1995). However, such theories can be
technically difficult to work with due to the fact that they lead to non-convex sets of utilities and
probabilities. Various special cases have been studied that do allow convex analysis to be used
for elicitation, modelling, and inference (Williams, 1975, 2007; Levi, 1980; Walley, 1991). These
works do not explicitly try to deal with multiple attributes. The contribution of this paper can be seen
as a practical approach towards multi-attribute decision problems where marginal utilities are still
precise, but where we wish to be a bit more cautious about modelling preferences across attributes.
It can be seen as a simple generalisation of Walley (1991) to the multi-attribute case.

The idea of generalising swing weighting to allow for partial preferences is not new either; see
for instance Mustajoki et al. (2005); Riabacke et al. (2009); Gomes et al. (2011); Riabacke et al.
(2012); Danielson et al. (2014) and references therein. Those works generally focus on reducing
the cognitive requirements on decision makers, and propose specific models for eliciting attribute
weights, but without relating the elicitation directly to preferences between multi-attribute gambles.
Instead, in this paper, we develop a general mathematical framework for eliciting attribute weights
in a directly operational way through preferences between multi-attribute gambles. We thereby
generalise the interval swing weighting method proposed by Mustajoki et al. (2005) (at least in the
cases where the reference attribute is either the worst or the best attribute). The theory that we
develop can be adapted to a wide range of situations, and possibly could accommodate cognitive
limitations in a more flexible way, although we will not fully explore this in this paper.

The paper is structured as follows. Section 2 introduces the notation and explains the assump-
tions that we make throughout the paper. Section 3 briefly describes how marginal utility functions
can be elicited, and serves as an introduction to the idea of utility elicitation. Section 4 reviews
the standard swing weighting procedure, and provides a simple normative interpretation of swing
weighting in terms of lotteries. Section 5 generalises the swing weighting procedure to allow impre-
cise weights, and section 6 identifies necessary and sufficient conditions for this elicitation proce-
dure to be consistent. Section 7 provides a fully worked example of our method, using an example
from ecological risk assessment. Section 8 concludes the paper.

2. Notation and Assumptions

Let R := A1 × · · · × An be a finite set of rewards, each reward r = (a1, . . . , an) comprising of n
attributes. A lottery ` on R is a probability mass function over R, and is interpreted as a random
reward with precisely known probabilities. The set of all lotteries overR is denoted by L(R).

Note that at this stage, we are not yet interested in modelling uncertainty. Rather, we will use
lotteries in order to elicit a subject’s attitudes towards rewards. For modelling uncertainty, one might
consider horse lotteries, which for our purpose would be mappings from some finite possibility
space Ω to L(R). This follows the traditional approach (Anscombe and Aumann, 1963; Seidenfeld
et al., 1995). In this paper, we do not consider horse lotteries, and focus purely on the utility aspect.
That said, in section 7, we will demonstrate how uncertainty can be incorporated in an example.

So, we wish to model our preferences between lotteries over our multi-attribute rewards. A
utility function onR is any function U : R → R. We lift U to L(R) in the usual way:

U(`) :=
∑

r∈R `(r)U(r). (1)
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Note that U satisfies

U(α`1 + (1− α)`2) = αU(`1) + (1− α)U(`2) (2)

for all α ∈ [0, 1]. The standard approach assumes that our preferences form a complete preorder �
on L(R) and can be represented through a utility function U , where

`1 � `2 ⇐⇒ U(`1) ≥ U(`2) (3)

for all `1 and `2 ∈ L(R). This representation can be directly motivated from some simple assump-
tions on � (Herstein and Milnor, 1953).

However, in many applications, preferences between rewards are inherently incomplete, in the
sense that there may be lotteries between which we cannot state any preference. We will assume
that our preferences form a preorder� on L(R) (so we drop completeness), and can be represented
through a set U of utility functions U : L(R)→ R:

`1 � `2 ⇐⇒ ∀U ∈ U : U(`1) ≥ U(`2) (4)

for all `1 and `2 ∈ L(R). Elicitation is then concerned with finding a procedure for identifying U .
In cases where rewards are comprised of multiple attributes, in standard utility theory, it is

customary to split the elicitation problem into two parts:
1. Elicit marginal utility functions Ui : Ai → R for each i ∈ {1, . . . , n}.
2. Assume that the joint utility function can be written as a particular function of the marginal

utility functions, and elicit the parameters of that function.
The simplest of these joint forms is the additive form:

U(a1, . . . , an) =
∑n

i=1 kiUi(ai) (5)

Again, this form can be directly motivated from some simple assumptions on� (Keeney and Raiffa,
1993). Although those assumptions are quite restrictive and are easily criticised, the simplicity of
the additive form, having only n parameters, make it one of the most commonly used models for
multi-attribute utility in practical applications.

3. Elicitation of Marginal Utility

To introduce the idea of utility elicitation, and for the sake of completeness, we mention a simple
standard method for eliciting the marginal utility functions Ui (Clemen and Reilly, 2001):

1. Identify a worst reward ai and a best reward ai in Ai.
2. For every other reward ai inAi, find α(ai) so that the subject is indifferent between (i) getting
ai with certainty and (ii) getting ai with probability 1− α(ai) or ai with probability α(ai):

ai ' (1− α(ai))ai ⊕ α(ai)ai (6)

where ⊕ denotes the combination of rewards into lotteries, so (1− α)r1 ⊕ αr2 is the lottery
` with `(r1) = 1 − α, `(r2) = α, and `(r) = 0 for all other rewards. We also denoted
indifference by ': `1 ' `2 ⇐⇒ (`1 � `2 and `2 � `1).

3. Set Ui(ai) := 0, Ui(ai) := 1, and Ui(ai) := α(ai) for every other reward ai in Ai.
Naturally, an interesting question relates to how we can relax this elicitation procedure to allow for
incomplete preferences in the marginals. As we shall see in section 5, allowing incompleteness in
both marginals and in the weights introduces non-linear constraints. So, for practical reasons, in this
paper, we only investigate incompleteness in the weights, and assume marginals to be fully precise.
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4. Swing Weighting

For eliciting the weights ki in the joint utility function of eq. (5), various methods exist, but a simple
and effective method is swing weighting (von Winterfeldt and Edwards, 1986):

1. Score the following n+ 1 rewards:

reward score
r0 := (a1, a2, . . . , an) 0
r1 := (a1, a2, . . . , an) s1
r2 := (a1, a2, . . . , an) s2

...
...

rn := (a1, a2, . . . , an) sn

where the worst score is 0 (always assigned to the worst reward), the best score is 100, and
the other scores indicate the “relative improvement” from the worst reward.

2. Set
ki := si∑n

i=1 si
. (7)

Note that this formula hinges on the assumption that all marginal utility functions are renormalized
to the [0, 1] interval—this is the case if we use the marginal method as described earlier.

Although we find swing weighting a straightforward and mathematically elegant method for
eliciting the weights, what is missing is an interpretation directly in terms of preferences over lot-
teries. In fact, this is very easy to do, but much to our surprise it is not mentioned anywhere in the
literature as far as we could find:

1. Consider again the rewards r0, . . . , rn as constructed above. Clearly r0 is the worst reward.
2. Identify the best of these rewards. Without loss of generality, we may assume that this is rn

(we can always permute the order of the attributes if need be).
3. For all i ∈ {1, . . . , n}, find αi such that

ri ' (1− αi)r0 ⊕ αirn. (8)

(Note that αn = 1.)
4. Set

ki := αi∑n
i=1 αi

(9)

It is easy to see that this choice of ki is the only choice that is compatible with eq. (8). So, we
can interpret the swing weighting scores directly in terms of probabilities, which we find more
appealing. This also puts the method on a firm normative basis.

5. Imprecise Swing Weighting

A common criticism against the swing weighting method (and, in fact, also against the marginal
method that we presented) is that all lotteries considered in the elicitation involve extremes only.
We therefore adapt the swing weighting method to allow for more flexible comparisons, not just
focusing on extremes.

Remember that we are dropping the completeness assumption, and therefore that we are inter-
ested in identifying a set U of utility functions, rather than a single utility function. To do so, we
will view all weights ki as parameters (so we have n parameters), and we will represent U through
a collection of constraints on these parameters:
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1. Consider any joint rewards r0, . . . , rn such that for all j ∈ {1, . . . , n− 1} we have that

r0 � rj � rn (10)

2. For all j ∈ {1, . . . , n− 1}, find the largest αj and smallest αj such that

(1− αj)r0 ⊕ αjrn � rj � (1− αj)r0 ⊕ αjrn (11)

3. Let uj denote the vector of marginal utilities for rj , i.e. if rj = (a1, . . . , an) then uj =
(U1(a1), . . . , Un(an)). Let k denote the vector (k1, . . . , kn). With this notation, impose

∀j ∈ {1, . . . , n− 1} : (uj − (1− αj)u0 − αjun) · k ≥ 0 (12a)

∀j ∈ {1, . . . , n− 1} : (uj − (1− αj)u0 − αjun) · k ≤ 0 (12b)

1 · k = 1 (12c)

The last constraint is simply another way of writing
∑n

i=1 ki = 1, and fixes the multiplicative
scaling of the joint utility function.

To see that the other two constraints indeed represent the elicited preferences, note that eq. (11)
is equivalent to

(1− αj)U(r0) + αjU(rn) ≤ U(rj) ≤ (1− αj)U(r0) + αjU(rn) (13)

and note that U(rj) = uj · k.
These inequalities are quadratic in the marginal utilities and in the weights. However, if the

marginal utilities are precise, then we have a simple set of linear constraints on the weights kj .
Naturally, we also recover swing weighting as a special case. In the imprecise case however it

is important to realise that we cannot always take the rewards as in the standard swing weighting
method. We already argued that this might be a bad idea due to the focus on extremes, however it
may also cause a problem because the method requires that there is a single best attribute—we may
not have such best attribute if we allow for incompleteness.

6. Consistency and Uniqueness

The procedure that we described works for any choice of rewards rj . Naturally, a good choice
of rewards rj should ensure that the constraints obtained admit a solution for all possible choices
of 0 ≤ αj ≤ αj ≤ 1. In fact, we also would like this solution to be unique in the precise case
(i.e. when αj = αj for all j), so that we can at least in principle allow a complete elicitation of
preferences if possible. Both of these desirata are satisfied if:

(i) u0 ≤ un, and
(ii) the system

∀j ∈ {1, . . . , n− 1} : (uj − (1− αj)u0 − αjun) · k = 0 (14a)

1 · k = 1 (14b)

has a unique solution, regardless our choice of α1, . . . , αn−1 ∈ [0, 1].
Note that u0 ≤ un guarantees that (uj − (1− αj)u0 − αjun) is a decreasing function of αj , so in
this case it is ensured that, say, if we solve eqs. (12b) and (12c) with equalities everywhere, then the
inequality in eq. (12a) is automatically satisfied; in other words, eq. (12) is consistent.

We will henceforth assume that u0 ≤ un, and focus on the uniqueness of the solution of eq. (14).
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Theorem 1 Consider any α1, . . . , αn−1 ∈ [0, 1]. If the matrix
u1 − (1− α1)u0 − α1un
u2 − (1− α2)u0 − α2un

...
un−1 − (1− αn−1)u0 − αn−1un

1

 (15)

has full rank, then eq. (14) has a unique solution.

The following theorem provides much quicker check for uniqueness, in case u0 is constant (note
that u0 being constant is a standard feature of the usual swing weighting procedure).

Theorem 2 Consider any α1, . . . , αn−1 ∈ [0, 1]. Assume that u0 is constant, and that the vectors
(u1, . . . , un−1, 1) are linearly independent. Let λj be the coefficients that decompose un as a linear
combination of (u1, . . . , un−1, 1), i.e.

un = λn +
∑n−1

j=1 λjuj (16)

Then eq. (14) has a unique solution if and only if∑n−1
j=1 αjλj 6= 1 (17)

In particular, when λ1 ≤ 0, . . . , λn−1 ≤ 0, then eq. (14) has a unique solution, regardless our
choice of α1, . . . , αn−1 ∈ [0, 1].

Proof We need to show that the matrix
u1 − (1− α1)u0 − α1un
u2 − (1− α2)u0 − α2un

...
un−1 − (1− αn−1)u0 − αn−1un

1

 (18)

has full rank. Because u0 is constant, and so is the final row, this matrix has full rank if and only if
u1 − α1un
u2 − α2un

...
un−1 − αn−1un

1

 (19)

has full rank.
Because the (u1, . . . , un−1, 1) are linearly independent, we can write un as a linear combination

of these vectors:

un = λn +
∑n−1

j=1 λjuj (20)
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So, our matrix can be written as


u1 − α1un
u2 − α2un

...
un−1 − αn−1un

1

 =



u1 − α1

(
λn +

∑n−1
j=1 λjuj

)
u2 − α2

(
λn +

∑n−1
j=1 λjuj

)
...

un−1 − αn−1
(
λn +

∑n−1
j=1 λjuj

)
1


(21)

=


1− α1λ1 −α1λ2 . . . −α1λn−1 −α1λn
−α2λ1 1− α2λ2 . . . −α2λn−1 −α2λn

...
...

. . .
...

...
−αn−1λ1 −αn−1λ2 . . . 1− αn−1λn−1 −αn−1λn

0 0 . . . 0 1




u1
u2
...

un−1
1


(22)

which has full rank if both matrices on the right hand side have full rank. The second matrix has
full rank by assumption. The first matrix has full rank if and only if

1− α1λ1 −α1λ2 . . . −α1λn−1
−α2λ1 1− α2λ2 . . . −α2λn−1

...
...

. . .
...

−αn−1λ1 −αn−1λ2 . . . 1− αn−1λn−1

 (23)

has full rank. This matrix can be written as

I − αλT (24)

where α = (α1, . . . , αn−1) and λ = (λ1, . . . , λn−1). This has full rank if and only if its determinant
is non-zero. We now use Sylvester’s determinant identity:

det(I − αλT ) = det(1− λTα) = 1−
∑n−1

j=1 αjλj (25)

We arrive at the desired result.

This theorem applies for instance if we use the joint rewards as in standard swing weighting:

reward uj
r0 := (a1, a2, . . . , an) (0, 0, . . . , 0)
r1 := (a1, a2, . . . , an) (1, 0, . . . , 0)
r2 := (a1, a2, . . . , an) (0, 1, . . . , 0)

...
...

rn := (a1, a2, . . . , an) (0, 0, . . . , 1)

Note that u0 ≤ un, as required. Also, u0 is constant (zero), and (u1, . . . , un−1, 1) are linearly
independent: the theorem applies. Because

un = 1−
∑n−1

j=1 uj , (26)
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it follows that λj = −1 for all j ∈ {1, . . . , n− 1}. The condition for uniqueness is satisfied.
We can also consider the case where un is constant:

Theorem 3 Consider any α1, . . . , αn−1 ∈ [0, 1]. Assume that un is constant, and that the vectors
(u1, . . . , un−1, 1) are linearly independent. Let λj be the coefficients that decompose u0 as a linear
combination of (u1, . . . , un−1, 1), i.e.

u0 = λn +
∑n−1

j=1 λjuj (27)

Then eq. (14) has a unique solution if and only if∑n−1
j=1 (1− αj)λj 6= 1 (28)

In particular, when λ1 ≤ 0, . . . , λn−1 ≤ 0, then eq. (14) has a unique solution, regardless our
choice of α1, . . . , αn−1 ∈ [0, 1].

The proof is almost identical to the proof of the previous theorem, and hence is left as an exercise
to the reader. We will use this variant in the example below.

7. Example

We now provide a fully worked example to see the theory at work. In addition to imprecise utilities,
we will also admit imprecise probabilities.

Following Bohman and Edsman (2013), we are interested in an ecological management deci-
sion, namely the eradication of an invasive species that has been observed in a water system. The
following management decisions were identified:

I Do nothing.
II Mechanical removal.

III Drain the system on water and remove of individuals by hand.
IV Drain the system of water, dredge and sieve the masses to identify and remove individuals.
V Use a decomposable biocide in combination with drainage to increase the biocide concentra-

tion.
VI Increase pH in combination with drainage and removal by hand.

The decision comprises several attributes. Each decision was scored according to attributes
identified as relevant by a group of experts. For each of these attributes, a discrete scale ranging
from 1 to 4 was constructed, where 1 corresponds to the worst outcome, and 4 corresponds to the
best outcome. We will interpret these scores as marginal utility functions.

Besides the attributes, the experts also bounded the probability that the method is successful
in eradication. Note that we are using hypothetical values here, these values are not actual expert
judgements, and only serve to demonstrate the methodology. Note also that in the actual problem,
there is considerable uncertainty about whether the invasive species is present at all. For simplicity,
in this example, we assume that the alien species is present with certainty.

The following table lists all attributes considered, as well as the interpretation of the scores for
each attribute and for each management decision, and the expert assessments for the attribute scores,
in case of success:
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Worst Best Decision d
Attribute (score 1) (score 4) I II III IV V VI
Biotic impact High Low 4 4 3 3 2 1
Longevity of impacts Long Short 4 4 3 3 1 2
Experience Little High 4 3 1 4 1 1
Feasibility Difficult Easy 4 4 2 3 1 2
Cost High Low 4 4 3 1 2 3

In case of failure to eradicate the invasive species, the scores for biotic impact and longevity of
impacts drop to their worst values:

Worst Best Decision d
Attribute (score 1) (score 4) I II III IV V VI
Biotic impact High Low 1 1 1 1 1 1
Longevity of impacts Long Short 1 1 1 1 1 1
Experience Little High 4 3 1 4 1 1
Feasibility Difficult Easy 4 4 2 3 1 2
Cost High Low 4 4 3 1 2 3

Bounds on the probability of successful eradication of the species under the different management
decisions are:

Decision d
Probability I II III IV V VI
p
d

0 0.05 0.3 0.4 1.0 0.7
pd 0 0.25 0.5 0.7 1.0 0.8

The joint expected utility of decision d can be written as:∑n
j=1 kj (θU1j(ajd) + (1− θ)U2j(ajd)) (29)

where U1j are the marginal utilities as listed in the first table, and U2j are the marginal utilities as
listed in the second table (both after rescaling to 0–1).

Because the decision affects the probability of successful management (i.e. we have act-state
dependence), we will treat the problem using interval dominance.

For eliciting the weights kj of the joint utility function, we will use a variant of swing weighting,
and we will consider the following joint rewards (directly expressed in terms of marginal utilities,
rescaled to 0–1):

rewards
u0 := (2/3, 1, 1, 1, 1)
u1 := (1, 2/3, 1, 1, 1)
u2 := (1, 1, 2/3, 1, 1)
u3 := (1, 1, 1, 2/3, 1)
u4 := (1, 1, 1, 1, 2/3)
u5 := (1, 1, 1, 1, 1)

These rewards are more natural from an ecological risk perspective compared to the rewards consid-
ered by the original swing weighting method: they consider only small changes from a normal state,
instead of extremes, and are thus easier to compare (regardless of any imprecision in preferences).
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Note that u0 ≤ u5 as required for consistency. Also note that u5 is constant, so we can apply
theorem 3. We see that

u0 = 14/3−
∑4

j=1 uj . (30)

Consequently all λj = −1 in theorem 3, and so the condition for uniqueness is always satisfied.
We consider biotic impact to be the most important attribute, so clearly we have that r0 � rj �

r5 for all j ∈ {0, . . . , 5}. We also assess that

0.8r0 ⊕ 0.2r5 �r1 � 0.7r0 ⊕ 0.3r5 (31)

0.5r0 ⊕ 0.5r5 �r2 � 0.4r0 ⊕ 0.6r5 (32)

0.3r0 ⊕ 0.7r5 �r3 � 0.1r0 ⊕ 0.9r5 (33)

0.2r0 ⊕ 0.8r5 �r4 � 0.1r0 ⊕ 0.9r5 (34)

With these assessments, eq. (12) becomes

((1, 2/3, 1, 1, 1)− 0.8(2/3, 1, 1, 1, 1)− 0.2) · k ≥ 0 (35a)

((1, 1, 2/3, 1, 1)− 0.5(2/3, 1, 1, 1, 1)− 0.5) · k ≥ 0 (35b)

((1, 1, 1, 2/3, 1)− 0.3(2/3, 1, 1, 1, 1)− 0.7) · k ≥ 0 (35c)

((1, 1, 1, 1, 2/3)− 0.2(2/3, 1, 1, 1, 1)− 0.8) · k ≥ 0 (35d)

((1, 2/3, 1, 1, 1)− 0.7(2/3, 1, 1, 1, 1)− 0.3) · k ≤ 0 (35e)

((1, 1, 2/3, 1, 1)− 0.4(2/3, 1, 1, 1, 1)− 0.6) · k ≤ 0 (35f)

((1, 1, 1, 2/3, 1)− 0.1(2/3, 1, 1, 1, 1)− 0.9) · k ≤ 0 (35g)

((1, 1, 1, 1, 2/3)− 0.1(2/3, 1, 1, 1, 1)− 0.9) · k ≤ 0 (35h)

1 · k = 1 (35i)

So, for each decision, we need to minimize and maximize the joint utility expressed in eq. (29),
subject to the above constraints and subject to p

d
≤ θ ≤ pd. The constraints are all linear, and the

objective function is quadratic, hence this is a quadratic programming problem. Because θ itself
only appears linearly and is constrained separately, it suffices to consider only the extreme values
for θ. Consequently, for each decision, we must merely solve two linear programs: one for θ = p

d
and one for θ = pd.

Using scipy (Jones et al., 2001–), we find the following bounds:

Decision Lower Utility Upper Utility
I 0.25 0.37
II 0.23 0.47
III 0.18 0.31
IV 0.38 0.57
V 0.14 0.17
VI 0.11 0.17

Options I, III, V, and VI are dominated by option IV so should not be considered. Either option II
(mechanical removal) or IV (drain the system of water, dredge and sieve), could be considered.

For the sake of completeness, we also present the bounds on the attribute weights, resulting
from eq. (35):
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Attribute Lower Weight Upper Weight
Biotic impact 0.36 0.43
Longevity of impacts 0.26 0.33
Experience 0.15 0.21
Feasibility 0.04 0.12
Cost 0.04 0.08

8. Conclusions

In this paper, we provided an imprecise generalisation of the swing weighting method for elicit-
ing multi-attribute utility functions. The proposed method enables us to cover a wider range of
problems where preference can only be partially specified, whilst at the same time still admitting
straightforward calculations. We studied the consistency of the elicitation procedure, and found sim-
ple conditions under which consistency is always guaranteed. We demonstrated our method using a
real example concerning the management of an invasive species featuring substantial uncertainty in
the management outcomes and ambiguity in the preferences over different impacts. In this example,
we allowed both utilities and probabilities to be only partially specified, through bounding.

We do note that our approach is still limited in that we will assume that all marginal utility
functions are precise. Relaxing this is possible but leads to fully non-linear optimisation, and more
work is needed to identify whether such treatment can be feasible in practice. Naturally, another
limitation is that we only discussed additive multi-attribute utility functions.

Another open end is that we have assumed that our preferences over horse lotteries are repre-
sentable by a convex set of weights along with a convex set of probability mass functions. Whilst
such representation is appealing mathematically (inference becomes a quadratic programming prob-
lem), it would be interesting to have an axiomatic treatment from first principles (as in Seidenfeld
et al. (1995)) identifying the conditions under which such treatment is feasible.
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