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ABSTRACT 

Earthquakes can cause significant disruption and devastation to populations of communities. Thus, in the event 

of an earthquake, it is necessary to have the right number of disaster shelters, with the appropriate capacity, in 

the right location in order to accommodate local communities. Mathematical models, allied with suitable 

optimization algorithms, have been used to determine the locations at which to construct disaster shelters and 

allocate the population to them. This paper compares the use of two optimization algorithms, namely a genetic 

algorithm and a modified particle swarm optimization, both of which have advantages and disadvantages when 

solving the disaster shelter location-allocation problem.  
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INTRODUCTION 

Natural disasters, such as floods, earthquakes and hurricanes, can result in significant losses in human life, along 

with serious injuries to people, as well as damage and disruption accounting for significant economic losses 

(EM-DAT, 2016). Natural disasters caused 23880 deaths in 2015 and 6860 deaths in 2016 (EM-DAT,2016). 

According to EM-DAT (2016), from 2000-2016, there has been 714654 deaths caused by earthquakes, 92191 

deaths by floods, and 192748 deaths by storms, which indicates that natural disasters, in particular earthquakes, 

have a significant cost in terms of loss of life. In monetary terms, natural catastrophes caused economic losses of 

USD 74 billion in 2015 (Swiss Re, 2015) and USD 68 billion in the first half of 2016 (Swiss Re, 2016). In 

relation to the Nepal earthquake in 2015, more than 9,000 people lost their lives and an economic loss of more 

than USD 6 billion was estimated (Swiss, 2015). Other earthquake events, such as those that occurred in China 

in 2008 (Yuan, 2008; Zhang et al. 2010), Japan in 2011 (Norio et al., 2011) and Haiti in 2010 (Bilham, 2011), 

have led to loss of life and seriously affected the lives of others. 

To reduce the damage caused by earthquakes, many engineering techniques have been proposed to enhance the 

resilience of buildings (Chen and Scawthorn, 2002). However, in cases where buildings cannot protect people, 

there is a need to ensure there are a sufficient number of disaster shelters, with adequate capacity, situated in 

locations that people can reach quickly. Constructing disaster shelters to be used in emergency situations is one 

of the most effective methods to help ensure people’s safety. For example, approximately 250,000 people were 

housed in emergency shelters after the 2011 earthquake and tsunami in Japan (BBC, 2011), which assisted the 

government in rescuing people quickly.  

Selecting shelter locations, and establishing how a population can be allocated to these shelters, can provide 

assistance to government decision makers. Operations research offers a variety of methods and algorithms that 

can be used to solve the earthquake disaster shelter location-allocation problem. The purpose of this paper is to 

develop and compare the usage of a genetic algorithm (GA) and modified particle swarm optimiszation (MPSO) 

in solving the disaster shelter location and population allocation problem. Thus, the research reported can 
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provide evidence and guidance in terms of how future work may be directed in developing a hybrid method, i.e. 

one which intelligently uses a GA and MPSO in combination to determine better solutions than is possible if 

each method were used independently. 

The remainder of this paper is organised as follows. An overview of related work is presented followed by the 

mathematical model of the disaster shelter location and population allocation problem allied with two solution 

methods, namely a GA and MPSO. To aid the description of the solution methods, an overview of the case 

study used in this research is given. Next, some preliminary results using the GA and MPSO are presented, 

along with a comparison of their differences, based on real communities and candidate shelters data. Finally, the 

paper is concluded and an indication of the direction of future work is given.  

RELATED WORK 

In relation to construction schemes of disaster shelters, there are different approaches that can be used to select 

sites such as spatial analysis of geographical information systems (Gall, 2004; Yamada et al., 2004; Sanyal et al., 

2009) and mathematical models. According to the particular optimization objectives of shelter site selection, 

mathematical models can be divided into single-objective models (Sherali et al., 1991; Berman et al., 2002; 

Dalal et al., 2007; Gama et al., 2013; Bayram et al., 2015; Kılcı et al., 2015), hierarchical models (Chang et al., 

2007; Liu et al., 2009; Li et al., 2012 Li et al., 2011;), and multi-objective models (Huang et al., 2006; Doerner 

et al., 2009; Alçada Almeida et al., 2009; Saadatseresht et al., 2009; Barzinpour et al., 2014; Rodríguez-

Espíndola et al., 2015). Optimization methods, such as GAs, PSO, and simulation annealing (SA), can be used 

to solve these mathematical models as most of them are NP-hard problems (Leeuwen et al., 1998) that cannot be 

solved using traditional methods such as linear programming (Schrijver, 1998). GAs have been used 

successfully to solve the shelter location selection problem. For example, Kongsomsaksakul et al. (2005) 

applied a GA to the flood shelter location selection problem with transportation problem, which is a hierarchical 

model. Also, Doener et al. (2009) and Hu et al. (2014) proposed their GAs to solve multi-objective models of 

hurricane and disaster shelter site selection problems respectively. As one of the most popular algorithms, PSO 

is viewed as being simpler than other algorithms as it has fewer parameters and has a simulation process that is 

easier to understand leading to its application in many fields (Jin et al., 2007; Shen et al., 2007; Yin et al., 2007; 

Ai et al., 2009). Furthermore, PSO has attracted the attention of researchers in using it to solve the shelter site 

selection problem (Hu et al., 2012). While research has been carried out using different optimization techniques 

and investigating how these perform, there remains a need to analyse and compare the performance of different 

algorithms in order to establish their advantages and disadvantages and how they can be combined as a hybrid 

algorithm capable of determining improved solutions to the disaster shelter location and population allocation 

problem.  

MATHEMATICAL MODEL AND OPTIMIZATION METHODS 

In this section, a mathematical model for the earthquake shelter location-allocation problem is developed. 

Furthermore, two optimization heuristic algorithms, used to solve the aforementioned problem, are described. 

To aid the description of the optimization heuristic algorithms, an overview of the case study considered in this 

research is presented.  

Mathematical model 

Many types of models have been proposed to solve the shelter site selection problems, such as the P-median 

model (Bayram et al., 2015; Gama et al., 2015), the P-center model (Kılcı et al., 2015), the covering model 

(Dala et al. 2007; Gama, 2013), the hierarchical model (Widener, 2009; Widener, 2011) and the multi-objective 

model(Rodríguez-Espíndola and Gaytán, 2015). In the preliminary study reported in this paper, a multi-

objective model has been selected; the same as proposed by Zhao et al. (2015). The two objectives are 

minimising total shelter area (TSA) (see equation (1)) and minimising total weighted evacuation time (TWET) 

(see equation (2)) subject to a capacity constraint (CC) (see equation (3)) and a time constraint (see equation 

(4)). Equation (5) expresses that a community can be allocated to only one shelter.  
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where N is the total number of candidate shelters, Yk indicates if candidate shelter k is allocated as a shelter (1 if 

allocated, 0 if not allocated), Sk is the area of candidate shelter k, M is the total number of communities, djk is the 

length of the shortest path between community j and candidate shelter k, and vj is the evacuation speed of the 

people in community j calculated as: 

 (2 ( ) )j c c a c a o ov p v p p v p v           (6)  

where vc, va and vo represent the speed of a community’s children, adults and elderly people as defined by Gates 

(2006), and pc, pa, and po are the proportions of the different categories of people respectively, and ρ is an 

adjustment parameter of the evacuation speed relative to the ordinary speed (set to 1 in this study). Furthermore, 

Pj is the number of people to be evacuated in community j, Wjk is the mean width of the evacuation path from 

community j to candidate shelter k, Bjk indicates if candidate shelter k is allocated to community j (1 if allocated, 

0 if not allocated; note that all people within a particular community are allocated to the same shelter), L is the 

smallest refuge area per capita (1 m2/person (Beijing Municipal Institute of City Planning & Design, 2007)), and 

Dj is the maximum evacuation distance for the people in community j, which is equal to the product of Tmaxj 

and vj, with Tmaxj being the maximum evacuation time for community j. 

Case study 

Figure 1 indicates the location of the geographical area considered in the study presented in this paper, namely 

Jinzhan, Chaoyang, Beijing, China. More specifically, Figure 1(a) shows the location of Beijing in China and 

Figure 1(b) shows the location of Jinzhan within Chaoyang in Beijing. 

 

Figure 1. Location of Jinzhan, Chaoyang, Beijing, China 

Figure 2(a) presents a map of communities, shelters and evacuation path network, which was provided by the 

Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal 

University. Furthermore, Figure 2(a) indicates the locations of 10 candidate shelters and 15 communities that 

need to be allocated to the selected shelters. The locations of candidate shelters were determined in 

consideration of the requirement that these should be at least a distance of 500m from the earthquake faults (Hu 

et al., 2014). In the model presented in this paper, it is assumed that sheltering assets are able to be delivered to 

those shelters selected when solving the location-allocation problem. Figure 2(b) shows population data which 

was provided by the Beijing Bureau of Civil Affairs. Table 1 indicates the area of each of the 10 candidate 

shelters, the number of people in each of the 15 communities and the distance between communities and 

shelters.  
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Figure 2. Location of communities, shelters, evacuation paths and distribution of population 

 

Table 1. Area of candidate shelters, population of community and distance between communities and candidate 

shelters 

   Candidate shelter index 

   1 2 3 4 5 6 7 8 9 10 

  

      Area(m2) 

 

Population 

803385 502342 203617 1114636 232884 236840 741967 157105 357538 112152 
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1 3848 10575.4 2920.6 4410.4 3397.1 1565.1 2351.1 3687.6 3691.3 8080.5 1981.5 

2 1650 1411.0 8488.5 7679.4 9096.8 9489.1 10647.4 11320.5 6626.0 4438.1 11370.7 

3 956 1392.9 9112.8 8303.7 8965.4 9885.3 11075.8 11944.8 7250.3 2703.3 11799.1 

4 5874 3492.6 7451.5 6642.4 8149.5 8452.1 9610.4 10283.4 5589.0 5841.1 10333.7 

5 2157 5600.8 3583.2 2774.1 4455.3 4583.8 5742.1 6415.2 1540.3 5142.3 6465.4 

6 10937 6170.0 5173.8 5733.4 4966.2 5886.1 7076.7 8004.3 3676.7 3147.5 7800.0 

7 4251 8158.2 3875.9 4672.0 1576.7 2821.8 4012.3 5271.3 2565.4 5135.7 4735.6 

8 12858 5375.1 8509.0 8690.2 8082.5 9002.4 10193.0 11339.5 7011.9 2575.6 10916.3 

9 868 7501.7 1771.6 2125.1 3275.6 2772.2 3930.5 4603.5 360.6 5389.5 4653.8 

10 2716 9820.4 1167.3 3151.2 3341.2 2074.2 1989.5 2270.7 2936.2 7491.3 2773.2 

11 1276 8902.9 1329.4 2814.2 2856.1 1589.1 2539.8 3053.7 2018.7 6573.8 3264.3 

12 3452 8376.2 627.4 1929.2 3598.1 2664.4 3168.2 3459.3 1492.1 6169.6 3945.5 

13 455 1949.2 7778.8 6969.6 8476.7 8779.4 9937.7 10610.7 5916.2 4976.3 10661.0 

14 2084 10581.3 2235.9 4246.3 3435.2 1753.1 1552.8 2918.4 3697.2 8118.6 2104.7 

15 4618 4801.5 6798.6 6851.1 6540.3 7460.2 8650.8 9629.1 5231.5 736.5 9374.1 

Optimization heuristics 

Different approaches can be taken to solve optimization problems involving multiple objectives such as that 

considered in this paper, i.e. minimising total shelter area (TSA) and minimising total weighted evacuation time 

(TWET). One approach is to convert the multi-objective problem into a single objective problem. This can be 

achieved by summing the weighted values of each of the multiple objectives to give a single value. However, 

the weight assigned to each objective can be difficult to set due to the lack of prior information on the relative 

importance of each one. Thus, this approach can involve performing a sensitivity analysis in which the weights 

assigned to each of the multiple objectives are varied. An alternative approach, referred to as Pareto-based 

(Pareto, 1896), involves a set of optimal solutions in which, for each solution, no increase can be achieved in 

any of the objectives without resulting in a simultaneous decrease in at least one of the remaining objectives. 
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In the preliminary work reported in this paper, both approaches have been used and compared. For the weight-

based approach, the objective function, to be minimised, is defined as the sum of the weighted objective value of 

TSA and TWET, 

    TWETTSAf    (7) 

where  and  are the weight of TSA and TWET respectively. These weights represent the relative importance 

of each objective and, thus, each varies between 0 and 1 and they sum to unity. 

For the Pareto-based approach, any feasible solution which is non-dominated in terms of the two objectives, i.e. 

TSA and TWET, is defined as a solution in the Pareto optimal set. 

In this paper, MPSO, which is assisted by a SA algorithm during the search for local optima, and a GA have 

been used to solve the earthquake shelter location-allocation problem. Flowcharts of the MPSO and GA are 

shown in Figure 3(a) and 3(b) respectively. 

 

Figure 3. Flowcharts of (a) MPSO and (b) GA 

Although the MPSO and GA are different in many aspects, both need to generate an initial population, which 

traditionally is done randomly. In order to investigate the effect of the initial population on the final ‘optimized’ 

solutions obtained, three different methods have been used to account for the indexing of the ten shelters to 

which the fifteen communities must be allocated. All three methods involve allocating each community, in turn, 

to one of the ten candidate shelters providing each allocation does not violate the capacity constraint or time 

constraint referred to in relation to equations (3) and (4) respectively. That is, not all communities can be 

allocated to every shelter. The number of shelters to which a community can be allocated is summarized in the 
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vector {8, 2, 2, 2, 8, 5, 9, 2, 9, 8, 8, 8, 2, 8, 3}, where, for example, community 1 can be allocated to only 8 of 

the 10 shelters, community 2 can be allocated to only 2 shelters and so on. Method 1 assigns indices to 

candidate shelters, to which a community can be allocated, according to those indicated in Figure 2, then as 

communities are allocated to shelters these indices are reset from 1 to the number of remaining potential shelters 

to which a community can be allocated. Method 2 assigns indices to candidate shelters according to the time for 

a community to reach the possible candidate shelters such that the nearest shelter to the community is given an 

index of 1, the next nearest shelter to the community is given an index of 2 and so on. As each community is 

allocated to a candidate shelter, indices are reset from 1 to the number of remaining potential shelters to which a 

community can be allocated. Method 3 assigns indices to candidate shelters according to the area of each 

possible candidate shelter to which a community can be allocated such that the candidate shelter with the 

smallest area capable of housing the community is assigned an index 1 and so on. Again, as each community is 

allocated to a candidate shelter, indices are reset from 1 to the number of remaining potential shelters to which a 

community can be allocated. As an example, taking community 1 which can be allocated to only 8 of the 10 

shelters, namely {2, 3, 4, 5, 6, 7, 8, 10}, the indices set according to the three methods are shown in Table 2. 

Table 2. Community 1’s candidate shelter indices set according to the three methods 

 Candidate shelter indices 

Original 2 3 4 5 6 7 8 10 

Method 1 1 2 3 4 5 6 7 8 

Method 2 6 7 5 3 2 8 1 4 

Method 3 6 3 8 4 5 7 2 1 

 

The MPSO algorithm used has been described as detailed in the work of Zhao et al. (2015). In the GA that has 

been developed, each solution’s chromosome, which corresponds to a location and allocation plan, consists of 

fifteen genes, one per community, {g1, g2, g3,…, g15} with each gene represented as a binary number with four 

digits. For example, a chromosome could be represented as follows by using Method 1, 

{0011, 0001, 0010, 0001, 1000, 0100, 0010, 0001, 0100, 1000, 0001, 0011, 0001, 0111, 0010}. 

In this example, the indices of candidate shelters selected to allocate each community are {3, 1, 2, 1, 8, 4, 2, 1, 4, 

8, 1, 3, 1, 7, 2}. Thus, the original indices can be obtained using Table 2, which indicates that community 1 is 

allocated to candidate shelter 4, community 2 is allocated to candidate shelter 1, and so on. 

At each generation, for each solution’s chromosome, the TSA and TWET objective values are calculated. For 

example, consider the five solutions’ chromosomes, C1 to C5, generated, say, using Method 1, 

C1 = {0111, 0001, 0001, 0010, 0110, 0100, 0111, 0001, 0100, 1000, 0101, 0111, 0001, 0101, 0010} 

C2 = {0111, 0010, 0010, 0010, 0001, 0101, 0101, 0010, 0111, 0111, 0010, 0100, 0010, 1000, 0011} 

C3 = {0101, 0001, 0001, 0010, 0111, 0100, 1000, 0001, 0101, 0101, 0111, 0110, 0001, 0110, 0011} 

C4 = {0100, 0010, 0001, 0001, 0111, 0101, 1001, 0010, 0001, 0101, 1000, 0101, 0010, 0001, 0011} 

C5 = {0101, 0010, 0001, 0010, 0010, 0100, 0111, 0010, 0010, 0101, 0100, 0010, 0010, 0101, 0001} 

In C1, community 1 is allocated to candidate shelter 8 (using the mapping given in Table 2), communities 2 and 

3 are both allocated to candidate shelter 1 since it is capable of housing both communities (using a mapping not 

given in this paper), and so on. For the five solutions’ chromosomes shown, the TSA and TWET objective 

values are (1542368, 10688895.5), (2103524, 8954749.6), (2296837, 10443330.5), (2402250, 9527582.7) and 

(2493715, 9921918.0) respectively. These values of TSA and TWET are obtained using equation 1 and 2 

respectively, along with the data presented in Table 1. Based on these values, each solution is ranked according 

to how many other solutions in the population dominate it. That is, if a solution is non-dominated, i.e. no other 

solution has ‘better’ (lower) values for both TSA and TWET objectives, then it is ranked 1 as it is Pareto-

optimal. From the five example chromosomes shown, it can be seen that C1 and C2 are non-dominated so have 

rank R = 1, C3 and C4 are dominated by C2 so have rank R = 2, and C5 is dominated by C2 and C4 so has rank R 

= 3. Based on these ranks, the fitness of each solution is calculated according to a fitness function 

  ii RnF  1  (8) 

where n is the number of solutions in a population and  is a coefficient set to unity in this work. Again 

referring to the five example chromosomes shown, the fitness values are 5, 5, 4, 4 and 3 respectively. Based on 

fitness values, the next generation is obtained via a roulette wheel approach in which fitter solutions are more 

likely to be selected. Also, within the GA, crossover and mutation are used. In relation to the crossover 

55



Zhao et al. Earthquake shelter location-allocation optimization 
 

WiPe Paper – Analytical Modeling and Simulation 

Proceedings of the 14th ISCRAM Conference – Albi, France, May 2017 

Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds. 

operation, based on chromosomes being selected according to a crossover probability, single point crossover has 

been selected for use after it was shown, in the problem domain considered in this paper, to outperform two-

point crossover and bitwise crossover. The mutation operation, using a mutation probability, involves 

probabilistically selecting chromosomes for mutation then randomly selecting genes in which the four digit 

binary number is altered. A sensitivity analysis revealed that for the earthquake shelter location-allocation 

problem under consideration, better optimized solutions were obtained using a crossover and mutation 

probability of 0.84 and 0.009 respectively. 

PRELIMINARY RESULTS AND DISCUSSION 

This section presents comparisons of the performance of MPSO and GA, using the three methods to set the 

indices of candidate shelters to which the fifteen communities must be allocated. Furthermore, these 

comparisons are considered using a Pareto-based approach and then the weight-based approach (converting the 

multi-objective problem into a single objective problem) as described in the previous section. In all runs of the 

MPSO and GA, the population size and number of generations were both set to 100. 

Pareto-based approach 

Figure 4 shows the Pareto solutions obtained by the GA (Figure 4(a)) and MPSO (Figure 4(b)) using the three 

methods to set the indices of candidate shelters. In Figure 4(a), using the GA, it can be observed that the three 

methods result in noticeably different sets of Pareto solutions. Furthermore, the majority of the non-dominated 

solutions were obtained using Method 2; however one non-dominated solution, with lower TSA, stems from 

Method 3. As shown in Figure 4(b), for MPSO, the spread of Pareto solutions is similar using Methods 2 and 3, 

although it is observed that all non-dominated solutions were obtained via Method 2. 

 

Figure 4. Pareto solutions obtained via the methods for setting candidate shelter indices using (a) GA and (b) MPSO 

Figure 5 presents a direct comparison between the results obtained using the GA and MPSO with each of the 

three methods to set the indices of candidate shelters. In Figure 5(a), using Method 1, it can be seen that MPSO 

and the GA perform better than each other in different regions of the search space. In contrast, MPSO performs 

better than the GA using Methods 2 and 3 as shown in Figures 5(b) and 5(c) respectively. 

 

Figure 5. Pareto solutions obtained by the GA and MPSO using (a) Method 1, (b) Method 2 and (c) Method 3 

Based on multiple runs using all three methods, Figure 6(a) presents the ‘best’ Pareto solutions obtained from 

the GA and MPSO in solving the specific location-allocation problem considered in this paper. In this figure it is 

apparent that the Pareto solutions generated by MPSO are better than those generated by the GA. Taking the 
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solutions at various locations on the Pareto front marked ‘A’, ‘B’, and ‘C’ in Figure 6(a) as examples, Figure 

6(b), (c) and (d) show the location of the candidate shelters selected and an indications of how the fifteen 

communities are allocated to them. It is noted that for the three Pareto solutions highlighted, different numbers 

of shelters are selected for the fifteen communities to be allocated. Specifically, Pareto solutions ‘A’, ‘B’ and 

‘C’ utilize five (numbered 1, 2, 6, 8, 9), three (numbered 1, 8, 9) and two (numbered 8, 9) candidate shelters 

respectively. It is observed that for all three Pareto solutions highlighted, candidate shelters 8 and 9 are always 

utilized. Indeed, for Pareto solution ‘C’, which corresponds with a low value of TSA and high value of TWET, 

only candidate shelters 8 and 9 are utilized. However, for Pareto solution ‘B’, with a greater value of TSA and 

lower value of TWET, candidate shelter 1 is also utilized. Also, for Pareto solution ‘A’, with a high value of 

TSA and low value of TWET, candidate shelters 2 and 6 are utilized in addition to 1, 8 and 9. Another 

observation for all three Pareto solutions highlighted is that communities 1, 5, 6, 7, 9 and 11 are always 

allocated to candidate shelter 8 while communities 8 and 15 are always allocated to candidate shelter 9. 

 

Figure 6. (a) ‘Best’ Pareto solutions obtained using the GA and MPSO and (b) (c) and (d) illustrate the Pareto 

‘location-allocation’ solutions corresponding to point A, B and C respectively 

The utilized and non-utilized shelter areas associated with the Pareto solutions obtained are presented in Figure 

7(a) and (b) for the GA and Figure 7(c) and (d) for MPSO. It can be seen that utilized areas of the selected 

shelters are significantly less than the non-utilized areas. Thus, each selected shelter has sufficient room to 

house relief workers and volunteers, along with relief assets, and for the evacuees to move around.  
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Figure 7. Utilized and non-utilized shelter areas associated with the Pareto solutions for the GA (see (a) and (b)) and 

MPSO (see (c) and (d)) 

Weight-based approach 

In converting the multi-objective problem to a single objective problem, weights of 0.5 were assigned to  and . 

Thus, equation (7) to evaluate the objective function, to be minimized, can be written as 

    TWETTSAf  5.05.0  (9) 

Figure 8 presents the convergence of the objective function using the GA (Figure 8(a)) and PSO (Figure 8(b)) 

with the three methods to set the indices of candidate shelters. In Figure 8(a), for the GA, it can be observed that 

using Method 1 results in better solution being found than the other two methods. In addition, convergence 

using Methods 1 and 2 is similar, both being quicker than Method 3. For MPSO, Figure 8(b) shows that Method 

2 leads to better solution than the other two methods. Also, Methods 2 and 3 show similar convergence, both 

doing so more quickly than Method 1.  

 

Figure 8. Convergence of objective function obtained via the methods for setting candidate shelter indices using (a) 
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GA and (b) MPSO 

Figure 9 presents a direct comparison of the results obtained using MPSO and GA with each of the three 

methods to set the indices of candidate shelters. In Figure 9(a) it can be seen that using Method 1, the GA 

outperforms MPSO for the majoity of generations (approximately 70). However, beyond approximately 70 

generations, the MPSO yields better solutions than the GA. Similar observations can be made using Methods 2 

and 3 as shown in Figures 9(b) and 9(c) respectively. The best solution generated by the GA and MPSO, in 

terms of the location of the candidate shelters selected and how the fifteen communities are allocated to them, 

are shown as Figure 10(a) and Figure 10(b) respectively. 

 

Figure 9. Convergence of objective function with the GA and MPSO using method 1 (a), 2 (b) and 3 (c) 

 

 

Figure 10. Best ‘allocation-location’ solutions generated using the (a) GA and (b) MPSO 

Comparison of approaches 

The Pareto-based and weight-based approaches offer two different ways of solving the multi-objective problem 

described in this paper. The Pareto-based approach yields a set of ‘best’ (non-dominated) solutions, whereas the 

weight-based approach produces a single ‘best’ solution which depends on the weights assigned to each of the 

multiple objectives. Consequently, it is not possible to compare the ‘best’ solutions obtained using the two 

approaches. However, it is possible to consider an example Pareto solution and compare this with the ‘best’ 

solution produced via the weight-based approach (with both weights set at 0.5). For example, compare the 

Pareto solution marked ‘B’ in Figure 6(a), which is also illustrated in terms of the location of the candidate 

shelters selected and how the communities are allocated to them in Figure 6(c), and the MPSO’s weight-based 

solution shown in Figure 10(b). The Pareto solution utilized candidate shelters 1, 8 and 9 with a TSA of 

1318028 m2 (determined from Table 1) and TWET of 8035780 seconds. In contrast, the ‘best’ solution via the 

weight-based approach utilized candidate shelters 5, 8, 9 and 10 with a TSA of 859679 m2 and TWET of 

8287234 seconds. As such, the ‘best’ solution via the weight-based approach is not dominated by the Pareto 

solution. 
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CONCLUSION 

The aim of this paper was to present preliminary work in evaluating the performance of two optimization 

heuristics, namely a GA and MPSO, in solving the earthquake disaster shelter location-allocation problem 

considered. This preliminary work will support the direction of future work regarding how a hybrid optimization 

algorithm, using a GA and MPSO in combination, can be developed to improve solutions to the earthquake 

shelter location and allocation problem, which will inform disaster management strategies. 

In this paper, a comparison has been undertaken of the performance of a GA and MPSO, using three different 

methods to determine the initial population, according to a Pareto-based approach and a weight-based approach. 

It was found that all three methods mentioned have advantages and disadvantages and thus it is proposed that an 

appropriate direction of the next stage of our research is to combine their use. However, when the weighted 

method is used, the convergence process is clear, which highlights that MPSO is better in the early and final 

stages of the optimization process; in contrast the GA performs better than MPSO over the majority of 

generations between the early and final stages of the optimization process. Although a GA and MPSO have been 

compared and the results give some information regarding how to combine them to obtain better optimized 

solutions more quickly, the simple GA developed to date requires further work to include aspects such as 

niching and elitism. Also, in terms of further work, a number of improvements will be made to the mathematical 

model. For example, damage to the shelters and evacuation roads caused by an earthquake will be considered. In 

addition, the possibility of evacuees belonging to the same community being divided and allocated to multiple 

shelters will be considered. Finally, results generated from this research will be presented to practitioners 

involved in managing earthquake disasters, which is viewed as an important aspect of this work. 
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