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ABSTRACT
We give a surprising classification for the computational complexity

of the Quantified Constraint Satisfaction Problem over a constraint

language Γ, QCSP(Γ), where Γ is a finite language over 3 elements

which contains all constants. In particular, such problems are ei-

ther in P, NP-complete, co-NP-complete or PSpace-complete. Our

classification refutes the hitherto widely-believed Chen Conjecture.

Additionally, we show that already on a 4-element domain there

exists a constraint language Γ such that QCSP(Γ) is DP-complete

(from Boolean Hierarchy), and on a 10-element domain there exists

a constraint language giving the complexity class Θ𝑃
2
.

Meanwhile, we prove the Chen Conjecture for finite conser-

vative languages Γ. If the polymorphism clone of such Γ has the

polynomially generated powers (PGP) property then QCSP(Γ) is in
NP. Otherwise, the polymorphism clone of Γ has the exponentially

generated powers (EGP) property and QCSP(Γ) is PSpace-complete.
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1 INTRODUCTION
The Quantified Constraint Satisfaction Problem QCSP(Γ) is the gen-
eralization of the Constraint Satisfaction Problem CSP(Γ) which,
given the latter in its logical form, augments its native existential

quantification with universal quantification. That is, QCSP(Γ) is the
problem to evaluate a sentence of the form ∀𝑥1∃𝑦1 . . .∀𝑥𝑛∃𝑦𝑛 Φ,
where Φ is a conjunction of relations from the constraint language

Γ, all over the same finite domain 𝐷 . Since the resolution of the
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Feder-Vardi “Dichotomy” Conjecture, classifying the complexity of

CSP(Γ), for all finite Γ, between P and NP-complete [6, 24], a desire

has been building for a classification for QCSP(Γ). Indeed, since
the classification of the Valued CSPs was reduced to that for CSPs

[18], the QCSP remains the last of the older variants of the CSP to

have been systematically studied but not classified. More recently,

other interesting open classification questions have appeared such

as that for Promise CSPs [5] and finitely-bounded, homogeneous

infinite-domain CSPs [1].

While CSP(Γ) remains in NP for any finite Γ, QCSP(Γ) can

be PSpace-complete, as witnessed by Quantified 3-Satisfiability or

Quantified Graph 3-Colouring (see [4]). It is well-known that the

complexity classification for QCSPs embeds the classification for

CSPs: if Γ + 1 is Γ with the addition of a new isolated element

not appearing in any relations, then CSP(Γ) and QCSP(Γ + 1) are
polynomially equivalent. Thus, and similarly to the Valued CSPs,

the CSP classification will play a part in the QCSP classification. It

is now clear that QCSP(Γ) can achieve each of the complexities P,

NP-complete and PSpace-complete. It has thus far been believed

these were the only possibilities (see [4, 11, 12, 14, 22] and indeed

all previous papers on the topic).

A key role in classifying many CSP variants has been played by

Universal Algebra. We say that a 𝑘-ary operation 𝑓 preserves an𝑚-

ary relation 𝑅, whenever (𝑥1
1
, . . . , 𝑥𝑚

1
), . . . , (𝑥1

𝑘
, . . . , 𝑥𝑚

𝑘
) in 𝑅, then

also (𝑓 (𝑥1
1
, . . . , 𝑥1

𝑘
), . . . , 𝑓 (𝑥𝑚

1
, . . . , 𝑥𝑚

𝑘
)) in𝑅. The relation𝑅 is called

an invariant of 𝑓 , and the operation 𝑓 is called a polymorphism

of 𝑅. An operation 𝑓 is a polymorphism of Γ if it preserves every

relation from Γ. The polymorphism clone Pol(Γ) is the set of all

polymorphisms of Γ. Similarly, a relation 𝑅 is an invariant of a

set of functions 𝐹 if it is preserved by every operation from 𝐹 . By

Inv(𝐹 ) we denote the set of all invariants of 𝐹 . We call an operation

𝑓 idempotent if 𝑓 (𝑥, . . . , 𝑥) = 𝑥 , for all 𝑥 . An idempotent operation

𝑓 is a weak near-unanimity (WNU) operation if 𝑓 (𝑦, 𝑥, 𝑥, . . . , 𝑥) =
𝑓 (𝑥,𝑦, 𝑥, . . . , 𝑥) = · · · = 𝑓 (𝑥, 𝑥, . . . , 𝑥,𝑦). We recall the following

form of the Feder-Vardi Conjecture.

Theorem 1 (CSP Dichotomy [6, 24]). Let Γ be a finite constraint

language with all constants. If Γ admits some WNU polymorphism,

then CSP(Γ) is in P. Otherwise, CSP(Γ) is NP-complete.

For the CSP one may assume, without loss of generality, that Γ
contains all constants (one can imagine these appearing in various

forms, one possibility being all unary relations 𝑥 = 𝑐 , for 𝑐 ∈ 𝐷).
This is equivalent to the assumption that all operations 𝑓 of Pol(Γ)
are idempotent. We can achieve this by moving to an equivalent

constraint language known as the core. The situation is more com-

plicated for the QCSP and it is not known that a similar trick may

be accomplished (see [15]). However, all prior conjectures for the

QCSP have been made in this safer environment where we may
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assume idempotency and almost all classifications apply only to

this situation. A rare exception to this is the paper [16] where the

non-idempotent case is described as the terra incognita. We will

henceforth assume Γ contains all constants.

For the purpose of pedagogy it is useful to look at the Π2 re-

striction of QCSP(Γ), denoted QCSP
2 (Γ), in which the input is of

the form ∀𝑥1 . . .∀𝑥𝑛∃𝑦1 . . . ∃𝑦𝑚 Φ. In order to solve this restric-

tion of the problem it suffices to look at (the conjunction of) |𝐷 |𝑛
instances of CSP(Γ). It is not hard to show (see [13]) that, if 𝐷𝑛

can be generated under Pol(Γ) from some subset Σ ⊆ 𝐷𝑛
, then

one need only consult (the conjunction over) of |Σ| instances of
CSP(Γ). Suppose there is a polynomial 𝑝 such that for each 𝑛 there

is a subset Σ ⊆ 𝐷𝑛
of size at most 𝑝 (𝑛) so that 𝐷𝑛

can be gener-

ated under Pol(Γ) from Σ, then we say Pol(Γ) has the polynomially

generated powers (PGP) property. Under the additional assumption

that there is a polynomial algorithm that computes these Σ, we
would have a reduction to CSP(Γ). It turns out that if the nature
of the PGP property is sufficiently benign a similar reduction can

be made for the full QCSP(Γ) to the CSP with constants [8, 13].

Another behaviour that might arise with Pol(Γ) is that there is an
exponential function 𝑓 so that the smallest generating sets under

Pol(Γ) for Σ ⊆ 𝐷𝑛
require size at least 𝑓 (𝑛). We describe this as the

the exponentially generated powers (EGP) property. The outstanding

conjecture in the area of QCSPs is the merger of Conjectures 6 and

7 in [14] which we have dubbed in [9] the Chen Conjecture.

Conjecture 1 (Chen Conjecture). Let Γ be a finite constraint lan-

guage with all constants. If Pol(Γ) has PGP, then QCSP(Γ) is in NP;

otherwise QCSP(Γ) is PSpace-complete.

In [14], Conjecture 6 gives the NP membership and Conjecture

7 the PSpace-completeness. In light of the proofs of the Feder-

Vardi Conjecture, the Chen Conjecture implies the trichotomy of

idempotent QCSP among P, NP-complete and PSpace-complete.

Chen does not state that the PSpace-complete cases arise only from

EGP, but this would surely have been on his mind (and he knew

there was a dichotomy between PGP and EGP already for 3-element

idempotent algebras [13]). Since [25], it has been known for any

finite domain that only the cases PGP and EGP arise (even in the

non-idempotent case), and that PGP is always witnessed in the

form of switchability. It follows that we know that the PGP cases

are in NP [8, 13].

Theorem 2 ([9]). Let Γ be a finite constraint language with all

constants such that Pol(Γ) has PGP. Then QCSP(Γ) reduces to a

polynomial number of instances of CSP(Γ) and is in NP.

Using the CSP classification we can then separate the PGP cases

into those that are in P and those that are NP-complete.

A tantalizing characterization of idempotent Pol(Γ) that are EGP
is given in [25], where it is shown that Γ must allow the primitive

positive (pp) definition (of the form ∃𝑥1 . . . ∃𝑥𝑛 Φ) of relations 𝜏𝑛
with the following special form.

Definition 1. Let the domain 𝐷 be so that 𝛼 ∪ 𝛽 = 𝐷 yet neither

of 𝛼 nor 𝛽 equals 𝐷 . Let 𝑆 = 𝛼3 ∪ 𝛽3 and 𝜏𝑛 be the 3𝑛-ary relation

given by

∨
𝑖∈[𝑛] 𝑆 (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ).

The complement to 𝑆 represents the Not-All-Equal relation and

the relations 𝜏𝑛 allow for the encoding of the complement of Not-

All-Equal 3-Satisfiability (where 𝛼 \𝛽 is 0 and 𝛽 \𝛼 is 1). Thus, if one

has polynomially computable (in 𝑛) pp-definitions of 𝜏𝑛 , then it is

clear that QCSP(Γ) is co-NP-hard [9]. In light of this observation, it

seemed that only a small step remained to proving the actual Chen

Conjecture, at least with co-NP-hard in place of PSpace-complete.

In this paper we refute the Chen Conjecture in a strong way

while giving a long-desired classification for QCSP(Γ) where Γ is a

finite 3-element constraint language with constants. Not only do we

find Γ so that QCSP(Γ) is co-NP-complete, but also we find Γ so that
Pol(Γ) has EGP yet QCSP(Γ) is in P. In these latter cases we can

further prove that all pp-definitions of 𝜏𝑛 in Γ are of size exponential
in 𝑛. Additionally, we show that on a 4-element domain there exists

a constraint language Γ such that QCSP(Γ) is DP-complete (from

the Boolean Hierarchy), and on a 10-element domain there exists

a constraint language giving the complexity class Θ𝑃
2
. Our main

result for QCSP can be given as follows.

Theorem 3. Let Γ be a finite constraint language on 3 elements

which includes all constants. ThenQCSP(Γ) is either in P, NP-complete,

co-NP-complete or PSpace-complete.

Meanwhile, we prove the Chen Conjecture is true for the class of

finite conservative languages (these are those that have available all

unary relations). One might see this as a maximal natural class on

which the Chen Conjecture holds. Another form of “conservative

QCSP”, in which relativization of the universal quantifier is permit-

ted, has been given by Bodirsky and Chen [2]. They uncovered a

dichotomy between P and PSpace-complete, whereas the QCSP for

finite conservative languages bequeaths the following trichotomy.

Theorem 4 (Conservative QCSP). Let Γ be a finite constraint lan-

guage with all unary relations. If Pol(Γ) has PGP, then QCSP(Γ) is
in NP. If Γ further admits a WNU polymorphism, then QCSP(Γ) is in
P, else it is NP-complete. Otherwise, Pol(Γ) has EGP and QCSP(Γ) is
PSpace-complete.

It is hard to exaggerate how surprising our discovery of mul-

titudinous complexities above P for the QCSP is. In Table 1 from

[21], all syntactic fragments of first-order logic built from subsets

of {∀, ∃,∧,∨,¬,=} are considered. It is now known that they all

give model-checking problems with simple, structured complexity-

theoretical classifications (the classifications are simple but not

necessarily the proofs), except the QCSP ({∀, ∃,∧}, with or without

=), and its dual ({∀, ∃,∨}, with or without ≠), whose complexity

classification is in any case a mirror of that for the QCSP. This

holds for complexity classes of P and above (the classification of

CSP complexities within P is quite rich).

1.1 Related Work
In [9], we have proved a variant of the Chen Conjecture using

infinite relational languages encoded in quantifier-free logic with

constants and equality. An algebra consists of a finite domain and

a set of operations on that domain. A polymorphism clone is an

excellent example of an algebra which additionally satisfies certain

properties of closure.

Theorem 5 (Revised Chen Conjecture [9]). LetA be an idempotent

algebra on a finite domain 𝐴 where we encode relations in Inv(A) in
quantifier-free logic with constants and equality. If A satisfies PGP,

then QCSP(Inv(A)) is in NP. Otherwise, QCSP(Inv(A)) is co-NP-
hard.
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In this theorem it was known that co-NP-hardness could not be

improved to PSpace-completeness, because QCSP(Inv(A)) is co-
NP-complete when, e.g., A = Pol({0, 1, 2}; 0, 1, 2, 𝜏1, 𝜏2, . . .}) where
𝛼 = {0, 2} and 𝛽 = {1, 2}. However, Inv(A) is not finitely related.

It was not thought possible that there could be finite Γ such that

QCSP(Γ) is co-NP-complete. If we take the tuple-listing encoding of

relations instead of quantifier-free logic with constants and equality,

Theorem 5 is known to fail [9].

The systematic complexity-theoretic study of QCSPs dates to

the early versions of [4] (the earliest is a technical report from

2002). By the time of the journal version [4], the significance of the

semilattice-without-unit 𝑠 = 𝑠𝑐 (definition at opening of Section 2.1)

had become apparent in a series of papers of Chen [10, 12, 13]. Al-

though CSP(Inv({𝑠})) is in P it is proved in [4] that QCSP(Inv({𝑠}))
is PSpace-complete (even for some finite sublanguage of Inv({𝑠})).
We were unable to use the proof from that paper to expand the

PSpace-complete classification in the 3-element case, but we have

expanded it nonetheless.

Finally, the study of which sequences of relations 𝑅𝑖 , of arity 𝑖 ,

have polynomial-sized (in 𝑖) pp-definitions in a finite constraint

language Γ, has been addressed in [19]. Of course, this question for

our relations 𝜏𝑖 plays a central role in this paper.

1.2 Structure of the paper
The paper is organized as follows. In Section 2 we formulate the

main results of the paper. We start with the classification of the

complexity of QCSP(Γ) for constraint languages Γ on a 3-element

domain containing all constants. Then we show how we can com-

bine two constraint languages in one constraint language and ex-

plain how this idea gives exotic complexity classes such as DP =

NP∧ co-NP.

In Section 3 we give necessary further definitions, then in Sec-

tion 4 prove Chen’s Conjecture for the conservative case. In Sec-

tion 5 we prove that the combination of two constraint languages

can actually give new complexity classes.

In Sections 6 to 9, we give examples of our new complexity

results on a 3-element domain. In Section 6 we give a Γ so that

QCSP(Γ) is co-NP-complete. In Section 7 we give a new Γ so that

QCSP(Γ) is PSpace-complete. Finally, in Sections 8 and 9, we give

two examples of new Γ so that QCSP(Γ) is in P yet Pol(Γ) has EGP.
Owing to space restrictions, the proof of our main result (Theo-

rem 6) is omitted. It can be found in the full version of this paper

[26].

2 MAIN RESULTS
In this section we formulate two main results of the paper: classifi-

cation of the complexity of QCSP(Γ) for all constraint languages
Γ on a 3-element domain containing all constants, and a theorem

showing how we can combine constraint languages to obtain exotic

complexity classes.

2.1 QCSP on a 3-element domain
Let 𝑎 and 𝑐 be constants of our domain {0, 1, 2}.

𝑓𝑎,𝑐 (𝑥,𝑦, 𝑧) =
{
𝑥, if 𝑥 = 𝑦 or 𝑦 = 𝑧 = 𝑎

𝑐, otherwise.

𝑠𝑎,𝑐 (𝑥,𝑦) =
{
𝑥, if 𝑥 = 𝑦 or 𝑦 = 𝑎

𝑐, otherwise.

𝑔𝑎,𝑐 (𝑥,𝑦) =
{
𝑥, if 𝑥 = 𝑎 or 𝑦 ≠ 𝑐

𝑐, otherwise.

𝑠𝑐 (𝑥,𝑦) =
{
𝑥, if 𝑥 = 𝑦

𝑐, otherwise.

We get the following characterization of the complexity of QCSP(Γ)
on a 3-element domain.

Theorem 6. Suppose Γ is a finite constraint language on {0, 1, 2}
with constants. Then QCSP(Γ) is

(1) in P, if Pol(Γ) has the PGP property and has a WNU operation.

(2) NP-complete, if Pol(Γ) has the PGP property and has no a

WNU operation.

(3) PSpace-complete, if Pol(Γ) has the EGP property and has no a

WNU operation.

(4) PSpace-complete, if Pol(Γ) has the EGP property and Pol(Γ)
does not contain 𝑓 such that 𝑓 (𝑥, 𝑎) = 𝑥 and 𝑓 (𝑥, 𝑐) = 𝑐 , where
𝑎, 𝑐 ∈ {0, 1, 2}.

(5) in P, if Pol(Γ) contains 𝑠𝑎,𝑐 and 𝑔𝑎,𝑐 for some 𝑎, 𝑐 ∈ {0, 1, 2},
𝑎 ≠ 𝑐 .

(6) in P, if Pol(Γ) contains 𝑓𝑎,𝑐 for some 𝑎, 𝑐 ∈ {0, 1, 2}, 𝑎 ≠ 𝑐 .

(7) co-NP-complete otherwise.

Note that the semilattice 𝑠𝑐 can be derived from each of the opera-

tions 𝑓𝑎,𝑐 , 𝑠𝑎,𝑐 . As we know from [4], the problem QCSP(Inv(𝑠2))
is PSpace-complete. Figure 1 demonstrates how adding new opera-

tions makes the constraint language weaker and the corresponding

QCSP easier. Note that all the constraint languages on Figure 1 have

the EGP property.

Let us give examples in each of the classes above. For (1) we

can build a constraint language Γ with a single ternary relation

𝑥 − 𝑦 + 𝑧 = 1. For (2) we can take a single ternary relation

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

that doesn’t involve 2. For (3) we can take the closely related single

ternary relation

{(𝑥, 0, 0), (0, 𝑥, 0), (0, 0, 𝑥) : 𝑥 ∈ {1, 2}}.

For (4) see Section 7. For (5) see Section 8. For (6) see Section 9.

Finally, for (7) see Section 6.

2.2 QCSP Monsters
The following theorem shows how we can combine constraint

languages to obtain QCSPs with different complexities.

Theorem 7. Suppose Γ1, Γ2, and Γ3 are finite constraint languages
on sets 𝐴1, 𝐴2, and 𝐴3 respectively, Γ1 contains a constant relation

(𝑥 = 𝑎). Then there exist constraint languages Δ1, Δ2, Δ3, Δ4, on the

domains of size |𝐴1 | + 1, |𝐴2 | · |𝐴3 | + |𝐴2 | + |𝐴3 |, 2 · |𝐴2 | + |𝐴3 | + 2,

and |𝐴2 | · |𝐴3 | + |𝐴2 | + |𝐴3 | + 2, respectively, such that QCSP(Δ𝑖 ) is
polynomially equivalent to the following problem:

i=1 Given an instance ofQCSP(Γ1) and instance of an NP-complete

problem; decide whether both of them hold, i.e.QCSP(Γ1)∧NP.
i=2 Given an instance of QCSP(Γ2) and an instance of QCSP(Γ3);

decide whether both of them hold, i.e. QCSP(Γ2) ∧ QCSP(Γ3).
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{𝑠2}

{𝑠0,2} {𝑔0,2, 𝑠2}

{𝑓0,2} {𝑔0,2, 𝑠0,2}

{𝑔1,2, 𝑠2} {𝑠1,2}

{𝑔1,2, 𝑠1,2} {𝑓1,2}

PSpace

co-NP

P P P P

Figure 1: Constraint languages defined as invariants of sets of operations and their complexity.

i=3 Given 𝑛 > 0, instances 𝐼1, . . . , 𝐼𝑛 of QCSP(Γ2), and instances
𝐽1, . . . , 𝐽𝑛 of CSP(Γ3); decide whether (𝐼1∨ 𝐽1) ∧ · · ·∧ (𝐼𝑛∨ 𝐽𝑛)
holds, i.e. (QCSP(Γ2)∨CSP(Γ3))∧· · ·∧(QCSP(Γ2)∨CSP(Γ3)).

i=4 Given 𝑛 > 0, instances 𝐼1, . . . , 𝐼𝑛 of QCSP(Γ2), and instances
𝐽1, . . . , 𝐽𝑛 of QCSP(Γ3); decide whether (𝐼1 ∨ 𝐽1) ∧ · · · ∧ (𝐼𝑛 ∨
𝐽𝑛) holds, i.e. (QCSP(Γ2) ∨ QCSP(Γ3)) ∧ · · · ∧ (QCSP(Γ2) ∨
QCSP(Γ3)).

Proof. The proof for 𝑖 = 1, 𝑖 = 2, 𝑖 = 3, and 𝑖 = 4 follows from

Lemmas 13, 16, 15, and 14, respectively. □

Corollary 8. There exists a finite constraint language Γ on a 4-

element domain such that QCSP(Γ) is DP-complete (where DP =

NP ∧ co-NP from Boolean hierarchy).

Proof. By Theorem 6, there exists a constraint language Γ1 on
a 3-element domain with constants such that QCSP(Γ1) is co-NP-
complete. Applying Theorem 7 with 𝑖 = 1 to Γ1 we obtain a con-

straint language Γ on a 4-element domain such that QCSP(Γ) is
polynomially equivalent to DP. □

The complexity class ΘP

2
(see [20] and references therein) admits

various definitions, one of which is that it allows a Turing machine

polynomial time with a logarithmic number of calls to an NP oracle.

A condition proved equivalent to this, through Theorems 4 and 7 of

[7], is as follows. In this theorem 𝑖 ⩽ 𝑝 ( |𝑥 |) indicates 𝑖 is a positive
integer smaller than 𝑝 ( |𝑥 |), where 𝑥 is a string of length |𝑥 |.

Theorem 9 ([7]). Every predicate in ΘP

2
can be defined by a formula

of the form ∃𝑖 ⩽ 𝑝 ( |𝑥 |) 𝐴(𝑖, 𝑥) ∧ ¬𝐵(𝑖, 𝑥) as well as by a formula

of the form ∀𝑖 ⩽ 𝑝 ′( |𝑥 |) 𝐴′(𝑖, 𝑥) ∨ ¬𝐵′(𝑖, 𝑥) where 𝐴, 𝐵,𝐴′, 𝐵′ are
NP-predicates and 𝑝, 𝑝 ′ are polynomials.

The second (universal) characterization will play the key role in

the following observation.

Corollary 10. There exists a finite constraint language Γ on a 10-

element domain such that QCSP(Γ) is ΘP

2
-complete.

Proof. By Theorem 6, there exists a constraint language Γ1 on
a 3-element domain with constants such that QCSP(Γ1) is co-NP-
complete. Choose a constraint language Γ2 on a 2-element domain

such that CSP(Γ2) is NP-complete. Using item 3 of Theorem 7, we

construct a constraint language Γ so that QCSP(Γ) is equivalent to
the truth of (𝐼1 ∨ 𝐽1) ∧ · · · ∧ (𝐼𝑛 ∨ 𝐽𝑛), where 𝐼1, . . . , 𝐼𝑛 are instances

of QCSP(Γ1) and 𝐽1, . . . , 𝐽𝑛 are instances of CSP(Γ2).
To prove membership of QCSP(Γ) in ΘP

2
, we use the second

characterization of Theorem 9 together with 𝐴′(𝑖, 𝑥) indicating
that 𝐽𝑖 is a yes-instance of CSP(Γ2) and ¬𝐵′(𝑖, 𝑥) indicating that

𝐼𝑖 is a yes-instance (or 𝐵′(𝑖, 𝑥) indicating 𝐼𝑖 is a no-instance) of

QCSP(Γ1). Thus, we want 𝑖 to range over numbers from 1 to 𝑛, so

in the predicates 𝐴′(𝑖, 𝑥) and ¬𝐵′(𝑖, 𝑥) we should in particular set

these to be true if 𝑖 is not a number from 1 to 𝑛.

To prove that QCSP(Γ) is ΘP

2
-complete, we use again the second

formulation of characterization of Theorem 9, but this time break

the universal quantification into a conjunction of length 𝑝 ′( |𝑥 |). □

3 PRELIMINARIES
Let [𝑛] = {1, . . . , 𝑛}. We identify a constraint language Γ with a

set of relations over a fixed finite domain 𝐷 . We may also think of

this as a first-order relational structure. If Φ is a first-order formula

including 𝑥1, . . . , 𝑥𝑛 among its free variables and not containing

𝑦1, . . . , 𝑦𝑛 in any capacity, then Φ𝑥1,...,𝑥𝑛𝑦1,...,𝑦𝑛 is the result of substituting

the free occurrences of 𝑥1, . . . , 𝑥𝑛 by 𝑦1, . . . , 𝑦𝑛 , respectively. If 𝐼 is

an instance of QCSP(Γ), then Var(𝐼 ) refers to the variables men-

tioned in 𝐼 . If 𝑄 is a quantifier from {∃,∀} then 𝑄 is its de Morgan

dual, that is the unique quantifier from {∃,∀} \ {𝑄}.
We always may assume that an instance of QCSP(Γ) is of the

prenex form ∀𝑥1∃𝑦1∀𝑥2∃𝑦2 . . .∀𝑥𝑛∃𝑦𝑛Φ, since if it is not it may

readily be brought into such a form in polynomial time. Then a

solution is a sequence of (Skolem) functions 𝑓1, . . . , 𝑓𝑛 such that

(𝑥1, 𝑓 (𝑥1), 𝑥2, 𝑓2 (𝑥1, 𝑥2), . . . , 𝑥𝑛, 𝑓𝑛 (𝑥1, . . . , 𝑥𝑛))
is a solution of Φ for all 𝑥1, . . . , 𝑥𝑛 (i.e. 𝑦𝑖 = 𝑓𝑖 (𝑥1, . . . , 𝑥𝑖 )). This
belies a (Hintikka) game semantics for the truth of a QCSP instance
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in which a player called Universal plays the universal variables and

a player called Existential plays the existential variables, one after

another, from the outside in. The Skolem functions above give a

strategy for Existential. In our proofs we may occasionally revert

to a game-theoretical parlance.

An algebra A consists of domain and a set of operations defined

on that domain. The most important type of algebra in this paper

is a clone. Let Clo(𝐺) be the clone generated by the set of opera-

tions 𝐺 , that is the closure of 𝐺 under the addition of projections

and composition, where the composition of a 𝑘-ary operation 𝑓

and𝑚-ary operations 𝑔1, . . . , 𝑔𝑘 is the𝑚-ary operation defined by

𝑓 (𝑔1, . . . , 𝑔𝑘 ).
In general with our operators, if the argument is a singleton set,

we omit the curly brackets. A subalgebra of A consists of a subset 𝐷

of the domain of A, that is preserved by all the operations of 𝐺 , to-

gether with all the operations of A restricted to 𝐷 . A congruence on

an algebra A is an equivalence relation ∼ on its domain so that, for

each 𝑘-ary operation 𝑓 in A, 𝑓 (𝑥1, . . . , 𝑥𝑘 ) ∼ 𝑓 (𝑦1, . . . , 𝑦𝑘 ) when-
ever 𝑥1 ∼ 𝑦1, . . . , 𝑥𝑘 ∼ 𝑦𝑘 . We can quotient A by ∼ in the obvious

way to obtain a new algebra that we describe as a homomorphic

image of A. A factor of A is a subalgebra of a homomorphic image

of A.
A formula of the form ∃𝑦1 . . . ∃𝑦𝑛Φ, where Φ is a conjunction of

relations from Γ is called a positive primitive formula (pp-formula)

over Γ. If 𝑅(𝑥1, . . . , 𝑥𝑛) = ∃𝑦1 . . . ∃𝑦𝑛Φ, then we say that 𝑅 is pp-

defined by ∃𝑦1 . . . ∃𝑦𝑛Φ, and ∃𝑦1 . . . ∃𝑦𝑛Φ is called a pp-definition.

Note that if a relation 𝑅 is pp-definable over Γ then it is preserved

by any operation 𝑓 ∈ Pol(Γ) [3, 17].
In a pp-formula we allow always, except for Section 5, the use

of constants from the domain. Note that using constants is equiva-

lent to having all unary relations 𝑥 = 𝑐 in our constraint language

On the algebraic side, this corresponds to assuming all polymor-

phism operations are idempotent. For a conjunctive formula Φ by

Φ(𝑥1, . . . , 𝑥𝑛) we denote the 𝑛-ary relation defined by a pp-formula

where all variables except 𝑥1, . . . , 𝑥𝑛 are existentially quantified.

Equivalently, Φ(𝑥1, . . . , 𝑥𝑛) is the set of all tuples (𝑎1, . . . , 𝑎𝑛) such
that Φ has a solution with (𝑥1, . . . , 𝑥𝑛) = (𝑎1, . . . , 𝑎𝑛).

For a 𝑘-ary relation 𝑅 and a set of coordinates 𝐵 ⊂ [𝑘], define
pr𝐵 (𝑅) to be the |𝐵 |-ary relation obtained from 𝑅 by projecting onto

𝐵, or equivalently, existentially quantifying variables at positions

[𝑘] \ 𝐵.
For a tuple 𝛼 by 𝛼 (𝑛) we denote the 𝑛-th element of 𝛼 . We define

relations by matrices where the columns list the tuples.

Let 𝛼 and 𝛽 be strict subsets of 𝐷 so that 𝛼 ∪ 𝛽 = 𝐷 . The most

interesting cases arise when 𝛼 ∩𝛽 = ∅ but we will not insist on this

at this point. An 𝑛-ary operation 𝑓 is 𝛼𝛽-projective if there exists

𝑖 ∈ [𝑛] so that 𝑓 (𝑥1, . . . , 𝑥𝑛) ∈ 𝛼 , if 𝑥𝑖 ∈ 𝛼 , and 𝑓 (𝑥1, . . . , 𝑥𝑛) ∈ 𝛽 , if
𝑥𝑖 ∈ 𝛽 . In this case, we may say that 𝑓 is 𝛼𝛽-projective to coordinate

𝑖 . It is now known that an idempotent algebra A over domain 𝐷 has

EGP iff there exists 𝛼 and 𝛽 , strict subsets of𝐷 , so that all operations

of A are 𝛼𝛽-projective [25].

4 THE CONSERVATIVE CASE
In this section we prove Theorem 4 describing the complexity of

QCSP(Γ) for conservative constraint languages Γ, i.e. languages

containing all unary relations. As it was mentioned in the introduc-

tion, if Pol(Γ) has the PGP property then we can reduce QCSP(Γ)
to several copies of CSP. Thus, the only open question was the

complexity for the EGP case. Here we will use the following fact

from [9].

Lemma 11 ([9]). Suppose Γ is a constraint language on domain 𝐷

with constants, Pol(Γ) has the EGP property. Then there exist𝛼, 𝛽 ⊊ 𝐷

such that 𝛼 ∪ 𝛽 = 𝐷 and 𝜏𝑛 (as in Definition 1) is pp-definable from

Γ for every 𝑛 ⩾ 1.

It turns out that if Γ contains all unary relations then two copies

of 𝜏𝑘 can be composed to define the relation 𝜏
2(𝑘−1) as follows.

Choose 0 ∈ 𝛼 \ 𝛽 and 1 ∈ 𝛽 \ 𝛼 , then
𝜏
2(𝑘−1) (𝑥1, 𝑦1, 𝑧1 . . . , 𝑥2(𝑘−1) , 𝑦2(𝑘−1) , 𝑧2(𝑘−1) ) =
∃𝑤 𝜏𝑘 (𝑥1, 𝑦1, 𝑧1 . . . , 𝑥𝑘−1,𝑦𝑘−1, 𝑧𝑘−1, 0, 0,𝑤)∧
𝜏𝑘 (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 , . . . , 𝑥2(𝑘−1) , 𝑦2(𝑘−1) , 𝑧2(𝑘−1) , 1, 1,𝑤) ∧𝑤 ∈ {0, 1}.

Identifying variables in 𝜏𝑘 we can derive 𝜏𝑘−1, therefore 𝜏𝑘 is pp-

definable from 𝜏 𝑗 and unary relations whenever 𝑘 ⩾ 𝑗 ⩾ 3.

Lemma 12. There is a polynomially (in 𝑘) computable pp-definition

of 𝜏𝑘 from 𝜏3 and unary relations.

Proof. As above we can define 𝜏
2(𝑘−1) in a recursive fashion

using two copies of 𝜏𝑘 plus a single new existential quantifier whose

variable is restricted to being on domain {0, 1}. Note that in the

recursive pp-definition of 𝜏𝑘 over 𝜏3 every variable that is not quan-

tified appears just once, each quantified variable appears three

times, and most variables are not quantified. Therefore, our re-

cursive scheme gives a polynomially computable pp-definition of

𝜏𝑘 . □

We are now in a position to prove Theorem 4, whose statement we

recall.

Theorem 4. Let Γ be a finite constraint language with all unary re-
lations. If Pol(Γ) has PGP, then QCSP(Γ) is in NP. If Γ further admits

a WNU polymorphism, then QCSP(Γ) is in P, else it is NP-complete.

Otherwise, Pol(Γ) has EGP and QCSP(Γ) is PSpace-complete.

Proof. Assume Γ is a finite constraint language with all unary

relations. Suppose Pol(Γ) has PGP. Then we know from Theorem

2 that QCSP(Γ) reduces to a polynomial number of instances of

CSP(Γ). It follows from Theorem 1 that if Γ admits a WNU then

QCSP(Γ) is in P, otherwise QCSP(Γ) is NP-complete.

Suppose now Pol(Γ) has EGP. By Lemma 11 there exist 𝛼, 𝛽 as

in Definition 1 such that 𝜏3 is pp-definable from Γ. Combining this

with Lemma 12 we conclude that there are polynomially (in 𝑘)

computable pp-definitions of 𝜏𝑘 in Γ. We will reduce from the com-

plement of Quantified Not-All-Equal 3-Satisfiability (QNAE3SAT)

which is known to be PSpace-complete (see, e.g., [23]). From an

instance 𝜙 := ¬∀𝑥1∃𝑦1 . . .∀𝑥𝑛∃𝑦𝑛 Φ of co-QNAE3SAT, where Φ :=

NAE3 (𝑧1
1
, 𝑧2

1
, 𝑧3

1
)∧. . .∧NAE3 (𝑧1𝑘 , 𝑧

2

𝑘
, 𝑧3
𝑘
) and 𝑧1

1
, 𝑧2

1
, 𝑧3

1
, . . . , 𝑧1

𝑘
, 𝑧2
𝑘
, 𝑧3
𝑘
∈

{𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛}, we build an instance 𝜙 ′ of QCSP(Γ) as follows.
Consider 𝜙 to be ∃𝑥1∀𝑦1 . . . ∃𝑥𝑛∀𝑦𝑛 ¬Φ and set

𝜙 ′ := ∃𝑥1∀𝑦1 . . . ∃𝑥𝑛∀𝑦𝑛
𝑥1, . . . , 𝑥𝑛 ∈ (𝛼\𝛽 ∪ 𝛽 \ 𝛼) ∧ 𝜏𝑘 (𝑧11, 𝑧

2

1
, 𝑧3

1
, . . . , 𝑧1

𝑘
, 𝑧2
𝑘
, 𝑧3
𝑘
) .
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The idea is that the set 𝛼 \ 𝛽 plays the role of 0 and 𝛽 \ 𝛼 plays the

role of 1.

(𝜙 ∈ co-QNAE3SAT implies 𝜙 ′ ∈ QCSP(Γ).) Let the universal
variables be evaluated in 𝜙 ′ and match them in 𝜙 according to 𝛼 \ 𝛽
being 0 and 𝛽 \𝛼 being 1. If a universal variable in 𝜙 ′ is evaluated in
𝛼 ∩ 𝛽 , then we can match it in 𝜙 w.l.o.g. to 0. Now, read a valuation

of the existential variables of 𝜙 ′ from those in 𝜙 according to 0

becoming any fixed 𝑑0 ∈ 𝛼 \ 𝛽 and 1 becoming any fixed 𝑑1 ∈ 𝛽 \𝛼 .
By construction we have 𝜙 ′ ∈ QCSP(Γ).

(𝜙 ′ ∈ QCSP(Γ) implies 𝜙 ∈ co-QNAE3SAT.) Suppose 𝜙 ′ ∈
QCSP(Γ). We will prove 𝜙 ∈ co-QNAE3SAT again using the form

of 𝜙 being ∃𝑥1∀𝑦1 . . . ∃𝑥𝑛∀𝑦𝑛 ¬Φ. Let the universal variables be

evaluated in 𝜙 and match them in 𝜙 ′ according to 0 becoming

any fixed 𝑑0 ∈ 𝛼 \ 𝛽 and 1 becoming any fixed 𝑑1 ∈ 𝛽 \ 𝛼 . Now,
read a valuation of the existential variables of 𝜙 from 𝜙 ′ accord-
ing to 𝛼 \ 𝛽 being 0 and 𝛽 \ 𝛼 being 1. By construction we have

𝜙 ∈ co-QNAE3SAT. □

5 QCSP MONSTERS
This section explains the building of monsters with greater than a

3-element domain. It has no bearing on the 3-element classification.

Lemma 13. Suppose Γ is a finite constraint language on a set 𝐴

containing 𝑥 = 𝑎. Then there exists a constraint language Γ′ on a

domain of size |𝐴| +1 such that QCSP(Γ′) is polynomially equivalent

to QCSP(Γ) ∧ NP, that is the following decision problem: given an

instance of QCSP(Γ) and an instance of some NP-complete problem;

decide whether both of them hold.

Proof. Choose an element 𝑎 ∈ 𝐴 and an element 𝑎′ ∉ 𝐴. Put
𝐴′ = 𝐴 ∪ {𝑎′}.

Put 𝜙 (𝑥) =
{
𝑥, if 𝑥 ∈ 𝐴
𝑎, if 𝑥 = 𝑎′

.We assign a relation 𝑅′ on the set𝐴′

to every 𝑅 ∈ Γ as follows: 𝑅′ = {(𝑎1, . . . , 𝑎ℎ) | (𝜙 (𝑎1), . . . , 𝜙 (𝑎ℎ)) ∈
𝑅}. Let NAE3 ⊆ {𝑎, 𝑎′}3 be the ternary relation containing all

tuples on {𝑎, 𝑎′} except for (𝑎, 𝑎, 𝑎), (𝑎′, 𝑎′, 𝑎′). Let Γ′ = {𝑅′ | 𝑅 ∈
Γ} ∪ {NAE3}.

Suppose 𝐼 is an instance of QCSP(Γ) and 𝐽 is an instance of

CSP({NAE3}), which is an NP-complete problem. If we replace

every relation 𝑅 from Γ by the corresponding relation 𝑅′, we get
an instance 𝐼 ′ that is equivalent to 𝐼 . Then the instance 𝐼 ′ ∧ 𝐽 can

be viewed as an instance of QCSP(Γ′) that is equivalent to 𝐼 ∧ 𝐽 .

Suppose 𝐼 ′ is an instance of QCSP(Γ′). W.l.o.g. we will assume

that no variable appearing in an NAE3 relation is universally quan-

tified, else this is a no-instance of QCSP(Γ′) and can be reduced

to a fixed no-instance (e.g.) 𝐽 of CSP({NAE3}). Now, we define

an instance 𝐼 of QCSP(Γ) and an instance 𝐽 of CSP({NAE3}) as
follows. 𝐼 is obtained from 𝐼 ′ by replacement of all relations 𝑅′

by the corresponding 𝑅 and NAE3 by {(𝑎, 𝑎, 𝑎)}. Since Γ contains

𝑥 = 𝑎, 𝐼 is an instance of QCSP(Γ). The instance 𝐽 consists of the
NAE3-part of 𝐼

′
which is a CSP as we already assumed it contains

no universal variables. Now, to see 𝐼 ′ ∈ QCSP(Γ′) iff 𝐼 ∈ QCSP(Γ)
and 𝐽 ∈ CSP({NAE3}) it is enough to observe that QCSP(Γ) and
QCSP(Γ′ \ {NAE3}) are equivalent on all instances. □

Lemma 14. Suppose Γ1 and Γ2 are finite constraint languages on sets
𝐴1 and𝐴2 respectively. Then there exists a constraint language Γ on a

domain of size |𝐴1 | · |𝐴2 | + |𝐴1 | + |𝐴2 | + 2 such that QCSP(Γ) is poly-
nomially equivalent to (QCSP(Γ1) ∨QCSP(Γ2)) ∧ · · ·∧ (QCSP(Γ1) ∨
QCSP(Γ2)), i.e. the following decision problem: given 𝑛, instances

𝐼1, . . . , 𝐼𝑛 of QCSP(Γ1), and instances 𝐽1, . . . , 𝐽𝑛 of QCSP(Γ2); decide
whether (𝐼1 ∨ 𝐽1) ∧ · · · ∧ (𝐼𝑛 ∨ 𝐽𝑛) holds.

Proof. Assume that 𝐴1 ∩𝐴2 = ∅, 𝑎1, 𝑎2 ∉ 𝐴1 ∪𝐴2. Let

𝐴 =(𝐴1 ×𝐴2) ∪𝐴1 ∪𝐴2 ∪ {𝑎1, 𝑎2},
𝜎 =(𝐴1 × {𝑎1}) ∪ ({𝑎2} ×𝐴2),
𝜎1 ={(𝑎, (𝑎, 𝑏)) | 𝑎 ∈ 𝐴1, 𝑏 ∈ 𝐴2}∪

({𝑎2} ×𝐴) ∪ (𝐴1 × (𝐴1 ∪𝐴2 ∪ {𝑎1, 𝑎2})),
𝜎2 ={(𝑏, (𝑎, 𝑏)) | 𝑎 ∈ 𝐴1, 𝑏 ∈ 𝐴2}∪

({𝑎1} ×𝐴) ∪ (𝐴2 × (𝐴1 ∪𝐴2 ∪ {𝑎1, 𝑎2})),
Γ ={𝑅 ∪ {(𝑎2, . . . , 𝑎2)} | 𝑅 ∈ Γ1}∪

{𝑅 ∪ {(𝑎1, . . . , 𝑎1)} | 𝑅 ∈ Γ2} ∪ {𝜎1, 𝜎2, 𝜎}.
Suppose we have an instance 𝐼1 of QCSP(Γ1) and an instance

𝐼2 of QCSP(Γ2). W.l.o.g. we will assume that neither 𝐼1 nor 𝐼2 is

empty. We will explain how to build an instance 𝐽 of QCSP(Γ). Let
𝑥1, . . . , 𝑥𝑛 be all universally quantified variables of 𝐼1.

We replace every atomic relation 𝑅 of 𝐼1 by 𝑅 ∪ {(𝑎2, . . . , 𝑎2)}
and add relational constraints 𝜎1 (𝑥𝑖 , 𝑦𝑖 ) for every 𝑖 ∈ {1, . . . , 𝑛}.
Also we replace ∀𝑥𝑖 by ∀𝑦𝑖∃𝑥𝑖 for every 𝑖 ∈ {1, . . . , 𝑛}. The result
we denote by 𝐼 ′

1
. Similarly, but with 𝑎1 instead of 𝑎2 and 𝜎2 instead

of 𝜎1 we define 𝐼
′
2
. We claim that the sentence 𝐽 defined by

𝐼 ′
1
∧ 𝐼 ′

2
∧

∧
𝑢∈Var(𝐼1),𝑣∈Var(𝐼2)

𝜎 (𝑢, 𝑣)

(we move all the quantifiers to the left part after joining) holds if

and only if 𝐼1 holds or 𝐼2 holds. W.l.o.g. we will henceforth assume

the first variable in 𝐽 is existential (if necessary we could enforce

this by a dummy existential variable at the beginning of 𝐼1).

(𝐼1 ∈ QCSP(Γ1) ∨ 𝐼2 ∈ QCSP(Γ2) implies 𝐽 ∈ QCSP(Γ).) W.l.o.g.

𝐼1 ∈ QCSP(Γ1). Evaluate all variables of relations coming from Γ2
as 𝑎1. Evaluate all first variables in relations 𝜎2 as 𝑎1. Evaluate all

other variables of 𝐽 according to the witnesses for 𝐼1.

(𝐽 ∈ QCSP(Γ) implies 𝐼1 ∈ QCSP(Γ1)∨𝐼2 ∈ QCSP(Γ2).) Consider
thewitnessing of 𝐽 ∈ QCSP(Γ) where universal variables are played
only on elements of the form (𝑎, 𝑏) where 𝑎 ∈ 𝐴1, 𝑏 ∈ 𝐴2. The first

variable 𝑥 of 𝐽 is existential and indeed is associated with 𝐼1. This

must be evaluated in 𝐴1 or as 𝑎2. If 𝑥 is evaluated in 𝐴1 then the

𝜎 constraints force all variables associated with 𝐼2 to now be 𝑎1
and thus all variables associated with 𝐼1 to be in 𝐴1. We can now

witness 𝐼1 ∈ QCSP(Γ1) where the universal (𝑎, 𝑏) corresponds to
𝑎. If 𝑥 is evaluated to 𝑎2, then the 𝜎 constraints force all variables

associated with 𝐼2 to now be in 𝐴2 and thus all variables associated

with 𝐼1 to be in 𝑎2. We can now witness 𝐼2 ∈ QCSP(Γ2) where the
universal (𝑎, 𝑏) corresponds to 𝑏.

We can reduce a more complicated set of instances 𝐼1, . . . , 𝐼𝑛 of

QCSP(Γ1) and 𝐽1, . . . , 𝐽𝑛 of QCSP(Γ2) to 𝐾 in QCSP(Γ), in such a

way that 𝐾 ∈ QCSP(Γ) iff (𝐼1 ∈ QCSP(Γ1) ∨ 𝐽1 ∈ QCSP(Γ2)) ∧
. . . ∧ (𝐼𝑛 ∈ QCSP(Γ1) ∨ 𝐽𝑛 ∈ QCSP(Γ2)) by taking the conjunction

of our given reduction over each pair 𝐼𝑖 and 𝐽𝑖 .

Now, let us prove that any problem of QCSP(Γ) can be reduced

to some conjunction of instances of QCSP(Γ1) ∨ QCSP(Γ2). Call
an instance 𝐾 of QCSP(Γ) connected if the Gaifman graph of the
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existential variables of 𝐾 is connected. The relations that play a

role in this graph are just those coming from Γ. The number of

connected components of 𝐾 will give the number of conjuncts

QCSP(Γ1) ∨ QCSP(Γ2), and we will assume now w.l.og. that 𝐾 is

connected.

Notice that all variables in 𝐾 are typed, in that any variable in a

relation from Γ either takes on values ranging across: 𝐴1 ∪ {𝑎2};
or 𝐴2 ∪ {𝑎1}; or 𝐴. If a variable appears with more than one type

but the types are consistent (i.e. one type is 𝐴 and the other is

one from 𝐴1 ∪ {𝑎2} or 𝐴2 ∪ {𝑎1}) then this is because the variable

appears in some𝜎𝑖 in the second position. But nowwe could remove

this 𝜎𝑖 constraint because the other existing type restriction to

one of 𝐴1 ∪ {𝑎2} or 𝐴2 ∪ {𝑎1} means 𝜎𝑖 will always be satisfied.

Furthermore, if some variable has inconsistent types or a fixed

element constant appears in a position where it is forbidden due

to type, then we know the instance is false. This would also be the

case if a universal variable appears in any type other than 𝐴. We

will now assume none of these situations occurs and we term such

an input reduced.

We would like now to assume that 𝐾 has no existential variables

𝑥 in the second position in a 𝜎𝑖 . First we must argue that if 𝐾 is

reduced then Existential can witness the truth of 𝐾 while never

playing outside of 𝐴1 ∪ 𝐴2 ∪ {𝑎1, 𝑎2}. Suppose Existential ever

played outside of this set, then any element in the set could be

chosen as a legitimate alternative. Indeed, Existential could only

win by playing an element of the form (𝑎, 𝑏) in the second position

of some 𝜎𝑖 and in this circumstance the atom would be equally

satisfied by any choice from 𝐴1 ∪𝐴2 ∪ {𝑎1, 𝑎2}. Now we can make

the assumption that 𝐾 has no existential variables 𝑥 in the second

position in a 𝜎𝑖 because any choice among 𝐴1 ∪ {𝑎2} or 𝐴2 ∪ {𝑎1}
satisfies this.

Suppose we have in 𝐾 some 𝜎1 (𝑥1, 𝑦) ∧ 𝜎1 (𝑥2, 𝑦), and 𝑦 is uni-

versally quantified before 𝑥1 and 𝑥2, then adding the constraint

𝑥1 = 𝑥2 doesn’t change the result. Let us do this and propagate out

the innermost of 𝑥1 and 𝑥2.

Suppose we have ∀𝑦∃𝑥1∃𝑥2 𝜎1 (𝑥1, 𝑦) ∧ 𝜎2 (𝑥2, 𝑦), then this is

equivalent to ∀𝑦1∀𝑦2∃𝑥1∃𝑥2 𝜎1 (𝑥1, 𝑦1) ∧ 𝜎2 (𝑥2, 𝑦2), and we will

assume this latter form appears.

Finally, if 𝜎1 (𝑥,𝑦) appears in the instance 𝐾 with 𝑥 is quantified

before 𝑦 then it is equivalent to the substitution 𝑥 = 𝑎2. Similarly,

for 𝜎2 (𝑥,𝑦) with 𝑥 is quantified before 𝑦 then it is equivalent to the

substitution 𝑥 = 𝑎1.

We are now in a position to build an instance𝐾1∨𝐾2 of QCSP(Γ1)∨
QCSP(Γ2). We can now split 𝐾 into 𝐾1 and 𝐾2 based on the types

of the existential variables using the following additional rule. If 𝑦

is quantified before 𝑥 (recall it must be universally quantified) then

we may consider this enforces in 𝐾1 universal quantification of 𝑥

but restricted to 𝐴1. Similarly, with 𝜎2 (𝑥,𝑦), and 𝐾2 and 𝐴2.

We claim 𝐾 ∈ QCSP(Γ) iff 𝐾1 ∈ QCSP(Γ1) or 𝐾2 ∈ QCSP(Γ2).
(Forward.) Assume the converse, then there exist winning strate-

gies for Universal players for𝐾1 and𝐾2. We need to build a winning

strategy for 𝐾 . To do this we apply both strategies (choose different

strategies for different variables) until the moment when the first

existential variable (let it be 𝑥 ) is evaluated. Recall we assume exis-

tential variable 𝑥 is either of type 𝐴1 ∪ {𝑎2} or of type 𝐴2 ∪ {𝑎1}.
W.l.o.g. let it be the former. If 𝑥 is evaluated in𝐴1 then the Universal

player of 𝐾 uses the strategy of 𝐾1, if it is evaluated as 𝑎2 then we

use the strategy for 𝐾2. Since 𝐾 is connected, if 𝑥 is evaluated in 𝐴1

then all variables of type 𝐴1 ∪ {𝑎2} must be evaluated in 𝐴1, while

if 𝑥 is evaluated as 𝑎2 then all variables of type 𝐴2 ∪ {𝑎1} must be

evaluated from 𝐴2 (because 𝑎1 can not appear). Thus the strategy

we built is a winning strategy for the Universal player in 𝐾 .

(Backwards.) W.l.o.g. assume 𝐾1 ∈ QCSP(Γ1). Evaluate all vari-
ables in 𝐾 of type 𝐴2 ∪ {𝑎1} to 𝑎1. Evaluate all variables in 𝐾

of type 𝐴1 ∪ {𝑎2} in 𝐴1 according to the winning strategy for

𝐾1 ∈ QCSP(Γ1).
□

Similarly we can prove the following two lemmas.

Lemma 15. Suppose Γ1 and Γ2 are finite constraint languages on sets
𝐴1 and 𝐴2 respectively. Then there exists a constraint language Γ on

a domain of size 2 · |𝐴1 | + |𝐴2 | +2 such that QCSP(Γ) is polynomially

equivalent to (QCSP(Γ1) ∨CSP(Γ2)) ∧ · · · ∧ (QCSP(Γ1) ∨CSP(Γ2)),
i.e. the following decision problem: given 𝑛, instances 𝐼1, . . . , 𝐼𝑛 of

QCSP(Γ1), and instances 𝐽1, . . . , 𝐽𝑛 of CSP(Γ2); decide whether (𝐼1 ∨
𝐽1) ∧ · · · ∧ (𝐼𝑛 ∨ 𝐽𝑛) holds.

Proof. It is sufficient to define a new language as follows. Let𝐴′
1

be a copy of 𝐴1. For any 𝑎 ∈ 𝐴1 by 𝑎
′
we denote the corresponding

element of 𝐴′
1
. Let

𝐴 =𝐴′
1
∪𝐴1 ∪𝐴2 ∪ {𝑎1, 𝑎2},

𝜎 =(𝐴1 × {𝑎1}) ∪ ({𝑎2} ×𝐴2),
𝜎1 ={(𝑎, 𝑎′) | 𝑎 ∈ 𝐴1} ∪ ({𝑎2} ×𝐴) ∪ (𝐴1 × (𝐴1 ∪𝐴2 ∪ {𝑎1, 𝑎2})),
Γ ={𝑅 ∪ {(𝑎2, . . . , 𝑎2)} | 𝑅 ∈ Γ1}∪

{𝑅 ∪ {(𝑎1, . . . , 𝑎1)} | 𝑅 ∈ Γ2} ∪ {𝜎1, 𝜎}.
□

Lemma 16. Suppose Γ1 and Γ2 are finite constraint languages on
sets 𝐴1 and 𝐴2 respectively. Then there exists a constraint language

Γ on a domain of size |𝐴2 | · |𝐴3 | + |𝐴2 | + |𝐴3 | such that QCSP(Γ) is
polynomially equivalent to (QCSP(Γ1)∧QCSP(Γ2)), i.e. the following
decision problem: given an instance 𝐼 of QCSP(Γ1) and an instance 𝐽

of QCSP(Γ2)); decide whether 𝐼 ∧ 𝐽 holds.

Proof. It is sufficient to define a new language as follows. Let

𝐴 = (𝐴1 ×𝐴2) ∪𝐴1 ∪𝐴2,

𝜎1 = {(𝑎, (𝑎, 𝑏)) | 𝑎 ∈ 𝐴1, 𝑏 ∈ 𝐴2} ∪ (𝐴1 × (𝐴1 ∪𝐴2)),
𝜎2 = {(𝑏, (𝑎, 𝑏)) | 𝑎 ∈ 𝐴1, 𝑏 ∈ 𝐴2} ∪ (𝐴2 × (𝐴1 ∪𝐴2)),

Γ = Γ1 ∪ Γ2 ∪ {𝜎1, 𝜎2},
where we consider any relation from Γ1 ∪ Γ2 as a relation on 𝐴.

□

6 CO-NP-COMPLETE LANGUAGE
In this section we define a constraint language Γ0 on 𝐴 = {0, 1, 2}
such that QCSP(Γ0) is co-NP-complete. Let

𝑅𝑎𝑛𝑑,2 =
©­«
0 0 1 1 2 ·
0 1 0 1 · 2

0 0 0 1 · ·

ª®¬ , 𝑅𝑜𝑟,2 = ©­«
0 0 1 1 2 ·
0 1 0 1 · 2

0 1 1 1 · ·

ª®¬ ,
where by ·wemean any element from {0, 1, 2}. Thus, these relations
contain all the tuples starting with 2, all the tuples whose second
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element is 2, and their restriction to the set {0, 1} gives row-wise
the truth tables of AND and OR. Let Γ0 = {𝑅𝑎𝑛𝑑,2, 𝑅𝑜𝑟,2}.

Lemma 17. QCSP(Γ0) is co-NP-hard.

Proof. We can compose relations 𝑅𝑎𝑛𝑑,2 and 𝑅𝑜𝑟,2 in the same

way as we do with operations AND and OR. Thus, we can define

𝑛-ary AND and OR in the following way. For 𝑛 = 2, 3, 4, . . . put

𝑅𝑎𝑛𝑑,𝑛+1 (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, 𝑦) =
∃𝑧 𝑅𝑎𝑛𝑑,𝑛 (𝑥1, . . . , 𝑥𝑛, 𝑧) ∧ 𝑅𝑎𝑛𝑑,2 (𝑥𝑛+1, 𝑧,𝑦),

𝑅𝑜𝑟,𝑛+1 (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, 𝑦) =
∃𝑧 𝑅𝑜𝑟,𝑛 (𝑥1, . . . , 𝑥𝑛, 𝑧) ∧ 𝑅𝑜𝑟,2 (𝑥𝑛+1, 𝑧,𝑦).

Let us define a relation 𝜉𝑛 for every 𝑛 by

𝜉𝑛 (𝑥1, 𝑦1, 𝑧1, . . . , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛) = ∃𝑢∃𝑢1 . . . ∃𝑢𝑛∃𝑣∃𝑣1 . . . ∃𝑣𝑛
𝑅𝑎𝑛𝑑,3 (𝑥1, 𝑦1, 𝑧1, 𝑢1) ∧ · · · ∧ 𝑅𝑎𝑛𝑑,3 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑢𝑛)∧
𝑅𝑜𝑟,3 (𝑥1, 𝑦1, 𝑧1, 𝑣1) ∧ · · · ∧ 𝑅𝑜𝑟,3 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑣𝑛)∧
𝑅𝑎𝑛𝑑,𝑛 (𝑣1, . . . , 𝑣𝑛, 𝑣) ∧ 𝑅𝑜𝑟,𝑛 (𝑢1, . . . , 𝑢𝑛, 𝑢) ∧ 𝑅𝑎𝑛𝑑,2 (𝑢, 𝑣, 𝑣) .

It follows from the definition that 𝜉𝑛 contains all tuples with 2,

and 𝜉𝑛 ∩ {0, 1}3𝑛 is defined by AE3 (𝑥1, 𝑦1, 𝑧1) ∨ AE3 (𝑥2, 𝑦2, 𝑧2) ∨
· · ·∨AE3 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), where AE3 = {(0, 0, 0), (1, 1, 1)}. Now we may

encode the complement of Not-All-Equal 3-Satisfiability using Γ.
This complement can be expressed by a formula of the following

form:

∀𝑦1 . . .∀𝑦𝑡 AE3 (𝑦𝑖1 , 𝑦𝑖2 , 𝑦𝑖3 ) ∨ · · · ∨ AE3 (𝑦𝑖3𝑛−2 , 𝑦𝑖3𝑛−1 , 𝑦𝑖3𝑛 ),
where 𝑖1, . . . , 𝑖3𝑛 ∈ {1, 2, . . . , 𝑡}, which is equivalent to

∀𝑦1 . . .∀𝑦𝑡 𝜉𝑛 (𝑦𝑖1 , 𝑦𝑖2 , . . . , 𝑦𝑖3𝑛 ) .
Thus, we reduced a co-NP-complete problem to QCSP(Γ0), which
completes the proof. □

It remains to show that QCSP(Γ0) is in co-NP. To do this we will

prove that QCSP(Γ0) can be reduced to a Π2 instance of QCSP(Γ0),
which is a problem from the complexity class co-NP. Such restricted

decision problemwill be denoted by QCSP
2 (Γ), that is, QCSP2 (Γ) is

the decision problem where the input in a QCSP(Γ) is a Π2 formula,

that is a formula of the form ∀𝑥1 . . .∀𝑥𝑛∃𝑦1 . . . ∃𝑦𝑠Φ.
We will show that such reduction is possible whenever a con-

straint language Γ is preserved by a 0-stable operation, where an

operation 𝑓 is called 0-stable if 𝑓 (𝑥, 0) = 𝑥 and 𝑓 (𝑥, 2) = 2. Recall

that 𝑠2 is the semilattice operation such that 𝑠2 (𝑎, 𝑏) = 2 whenever

𝑎 ≠ 𝑏.

Lemma 18. Suppose a constraint language Γ is preserved by 𝑠2 and

a 0-stable operation ℎ0. Then an instance

∀𝑥1∃𝑦1∀𝑥2∃𝑦2 . . .∀𝑥𝑛∃𝑦𝑛Φ
of QCSP(Γ) is equivalent to

∀𝑥1∀𝑥2 . . .∀𝑥𝑛∃∃((∃′∃′Φ1) ∧ (∃′∃′Φ2) ∧ · · · ∧ (∃′∃′Φ𝑛)),
where

Φ𝑖 = Φ
𝑥𝑖+1,...,𝑥𝑛,𝑦𝑖+1,...,𝑦𝑛
𝑥 ′
𝑖+1,...,𝑥

′
𝑛,𝑦

′
𝑖+1,...,𝑦

′
𝑛
∧ 𝑥 ′𝑖+1 = 0 ∧ · · · ∧ 𝑥 ′𝑛 = 0,

(note that Φ𝑛 = Φ) and by ∃∃ and ∃′∃′ we mean that we add all

necessary existential quantifiers for variables without primes and

with primes, respectively.

Proof. (Forwards/ downwards.) If we have a solution (𝑓1, . . . , 𝑓𝑛)
of the original instance then it is also a solution of the new instance

with the additional assignments 𝑦′
𝑗
= 𝑓𝑗 (𝑥1, . . . , 𝑥𝑖 , 0, . . . , 0) and

𝑥 ′
𝑗
= 0 in the definition of Φ𝑖 for every 𝑗 .

(Backwards/ upwards.) Consider solutions of the new instance

such that 𝑦𝑖 = 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) for every 𝑖 . Let 𝑁 be the minimal

number such that 𝑓𝑁 depends on 𝑥 𝑗 for some 𝑗 > 𝑁 . In fact, we

would like that there is some solution such that this number does

not exist as then this is also a solution of the original instance. But

for now assume for contradiction that such an 𝑁 does exist and we

choose it to be minimal among all the solutions. Since (𝑓1, . . . , 𝑓𝑛)
is also a solution of Φ𝑁 , the following tuple is a solution of Φ

(𝑥1, . . . , 𝑥𝑁 , 0, . . . , 0, 𝑓1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛),
ℎ𝑁+1 (𝑥1, . . . , 𝑥𝑛), . . . , ℎ𝑛 (𝑥1, . . . , 𝑥𝑛))

for every 𝑥1, . . . , 𝑥𝑛 and some functions ℎ𝑁+1, . . . , ℎ𝑛 . Note that we
could see this tuple (with an additional term written and another

omitted) rather as

(𝑥1, . . . , 𝑥𝑁 , 0, . . . , 0, 𝑓1 (𝑥1), . . . , 𝑓𝑁−1 (𝑥1, . . . , 𝑥𝑁−1),
𝑓𝑁 (𝑥1, . . . , 𝑥𝑛), ℎ𝑁+1 (𝑥1, . . . , 𝑥𝑛), . . .)

as we assume 𝑓𝑖 depends only on 𝑥1, . . . , 𝑥𝑖 for 𝑖 < 𝑁 . Consider

all the evaluations of the variables 𝑥𝑁+1, . . . , 𝑥𝑛 to obtain 3
𝑛−𝑁

solutions of Φ, then apply the semilattice operation to them to

obtain one solution 𝛼 (𝑥1, . . . , 𝑥𝑁 ) of the form
(𝑥1, . . . , 𝑥𝑁 , 0, . . . , 0, 𝑓1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁−1 (𝑥1, . . . , 𝑥𝑛),

𝑒𝑁 (𝑥1, . . . , 𝑥𝑁 ), . . . , 𝑒𝑛 (𝑥1, . . . , 𝑥𝑁 )) .
Note that 𝑒𝑁 (𝑥1, . . . , 𝑥𝑁 ) equals 𝑐 if

𝑓𝑁 (𝑥1, . . . , 𝑥𝑁 , 𝑎𝑁+1, . . . , 𝑎𝑛) = 𝑐
for every 𝑎𝑁+1, . . . , 𝑎𝑛 , and 𝑒𝑁 (𝑥1, . . . , 𝑥𝑁 ) equals 2 otherwise.

It remains to apply ℎ0 to the tuples

(𝑥1, . . . , 𝑥𝑛, 𝑓1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑛 (𝑥1, . . . , 𝑥𝑛))
and 𝛼 (𝑥1, . . . , 𝑥𝑁 ) to obtain a solution of the instance such that 𝑓𝑁
doesn’t depend on 𝑥𝑁+1, . . . , 𝑥𝑛 , which gives us a contradiction to

the minimality of 𝑁 over all solutions. □

The next lemma follows from Lemma 18 and the fact that if Γ is

preserved by a semilattice then CSP(Γ) can be solved in polynomial

time. Nevertheless, to explain how a 0-stable operation can be used

in an algorithm we give an alternative proof.

Lemma 19. Suppose a constraint language Γ is preserved by 𝑠2 and

a 0-stable operation ℎ0. Then QCSP(Γ) is in co-NP.

Proof. Supposewe have an instance∀𝑥1∃𝑦1∀𝑥2∃𝑦2 . . .∀𝑥𝑛∃𝑦𝑛Φ.
We can use an oracle to choose an appropriate value for 𝑥1 (let this

value be 𝑎1). Then we need to find an appropriate value for 𝑦1, such

that we can use an oracle for 𝑥2 and continue. We want to be sure

that if the instance holds then it holds after fixing 𝑦1.

To find out how to fix 𝑦1 we solve the instance

∃𝑦1∃𝑥2∃𝑦2 . . . ∃𝑥𝑛∃𝑦𝑛Φ ∧ 𝑥1 = 𝑎1 ∧ 𝑥2 = 𝑥3 = · · · = 𝑥𝑛 = 0.

This is a CSP instance, which can be solved in polynomial time

because the semilattice preserves Γ. We check whether we have a

solution with 𝑦1 = 0, 𝑦1 = 1, 𝑦1 = 2 (we solve three instances).

Let 𝑌 be the set of possible values for 𝑦1. If |𝑌 | = 1, then we
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fix 𝑦1 with the only value in 𝑌 . Obviously, the fixing of 𝑦1 can-

not transform the QCSP instance that holds into the instance that

does not hold. If |𝑌 | > 1 then 2 ∈ 𝑌 due to the semilattice poly-

morphism. Let the solution of the CSP instance with 𝑦1 = 2 be

(𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛, 𝑦𝑛) = (𝑎1, 2, 0, 𝑐2, . . . , 0, 𝑐𝑛). Assume that the

QCSP instance has a solution

(𝑎1, 𝑓1 (𝑎1), 𝑥2, 𝑓2 (𝑥1, 𝑥2), . . . , 𝑥𝑛, 𝑓𝑛 (𝑥1, . . . , 𝑥𝑛)) .
Then by applying the operation ℎ0 to this solution and the solution

(𝑎1, 2, 0, 𝑐2, . . . , 0, 𝑐𝑛), we get a (partial) solution of the QCSP(Γ)
with 𝑦1 = 2.

We proceed this way through the quantifier prefix, using an

oracle to choose values for 𝑥2, . . . , 𝑥𝑛 , while we solve CSP instances

to choose appropriate values for 𝑦2, 𝑦3, . . . , 𝑦𝑛 . □

Lemma 20. QCSP(Γ0) is co-NP-complete.

Proof. By Lemma 17, QCSP(Γ0) is co-NP-hard. Since Γ0 is pre-

served by a 0-stable operation 𝑔(𝑥,𝑦) =
{
𝑥, if 𝑦 ∈ {0, 1}
2, otherwise.

and the

semilattice 𝑠2, Lemma 19 implies that QCSP(Γ0) is in co-NP. □

7 PSPACE-COMPLETE LANGUAGE
In this section we define a constraint language Γ such that the

QCSP(Γ) is PSpace-hard, Γ has a WNU polymorphism, Pol(Γ) has
the EGP property, and Pol(Γ) is {0, 2}{1, 2}-projective. This con-
straint language is interesting because it is very simple but the

proof of PSpace-hardness for this concrete language reveals the

main idea of the proof for any PSpace-hard constraint language on

a 3-element domain.

Let 𝜏 be a ternary relation on {0, 1, 2} consisting of all tuples

(𝑎, 𝑏, 𝑐) such that {𝑎, 𝑏, 𝑐} ≠ {0, 1}. Then the complement to 𝜏 is

equal to NAE3, where NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Put
𝜎 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2) = (𝑦1, 𝑦2 ∈ {0, 2}) ∧ (𝜏 (𝑥1, 𝑥2, 𝑥3) ∨ (𝑦1 = 𝑦2)).
Let Γ = {𝜎, 𝑥 = 0, 𝑥 = 1, 𝑥 = 2}.

The semilattice-without-unit 𝑠2, which is a WNU, preserves Γ.

Lemma 21. Pol(Γ) is {0, 1}{0, 2}-projective.

Proof. The relation 𝜎𝑛 (𝑥1, 𝑥 ′
1
, 𝑥2, 𝑥

′
2
, . . . , 𝑥𝑛, 𝑥

′
𝑛) is defined by

∃𝑦0∃𝑦1 . . . ∃𝑦𝑛

(
𝑛∧
𝑖=1

𝜎 (𝑥𝑖 , 𝑥𝑖 , 𝑥 ′𝑖 , 𝑦𝑖−1, 𝑦𝑖 ) ∧ 𝑦0 = 0 ∧ 𝑦𝑛 = 2

)
.

Then, by Lemma 14 from [25], Pol(Γ) is {0, 1}{0, 2}-projective. □

Hence, by Theorem 3 from [25], Pol(Γ) has the EGP property.

Lemma 22. The problem QCSP(Γ) is PSpace-hard.

Proof. The reduction will be from the complement of (mono-

tone)Quantified Not-All-Equal 3-Satisfiability (co-QNAE3SAT)which

is co-PSpace-hard (see [23]) and consequently also PSpace-hard

(as PSpace is closed under complement). Consider an instance of

co-QNAE3SAT

¬𝑄1𝑥1𝑄2𝑥2 . . . 𝑄𝑛𝑥𝑛 (NAE3 (𝑧11, 𝑧
2

1
, 𝑧3

1
) ∧ . . . ∧ NAE3 (𝑧1𝑘 , 𝑧

2

𝑘
, 𝑧3
𝑘
))

where 𝑧1
1
, 𝑧2

1
, 𝑧3

1
, . . . , 𝑧1

𝑘
, 𝑧2
𝑘
, 𝑧3
𝑘
∈ {𝑥1, . . . , 𝑥𝑛}, which is equivalent to

𝑄
1
𝑥1𝑄2

𝑥2 . . . 𝑄𝑛𝑥𝑛

(
AE3 (𝑧11, 𝑧

2

1
, 𝑧3

1
) ∨ . . . ∨ AE3 (𝑧1𝑘 , 𝑧

2

𝑘
, 𝑧3
𝑘
)
)
.

By Φ𝑛 we denote the inner part of the above sentence without

quantifiers. By Φ𝑠 , where 𝑠 ∈ {0, 1, . . . , 𝑛}, we denote the formula

𝑄𝑠+1𝑥𝑠+1 . . . 𝑄𝑛𝑥𝑛Φ𝑛 . We will define a recursive procedure giving

a formula Ω𝑠 over Γ satisfying the following properties:

(1) the only free variables of Ω𝑠 are 𝑥1, . . . , 𝑥𝑠 , 𝑦ℓ , 𝑦𝑚 , where

ℓ < 𝑚 (ℓ and𝑚 are different for different 𝑠);

(2) Ω𝑠 holds if 𝑦ℓ = 𝑦𝑚 ∈ {0, 2}, and holds if 𝑥𝑖 = 2 for some

𝑖 ∈ [𝑠] and 𝑥𝑖 appears in Φ𝑛 ;
(3) Ω𝑠 is equivalent to Φ𝑠 if (𝑥1, . . . , 𝑥𝑠 ) ∈ {0, 1}𝑠 and 𝑦ℓ ≠ 𝑦𝑚 .

PutΩ𝑛 := ∃𝑦1 . . . ∃𝑦𝑘−1
∧𝑘

𝑖=1 𝜎 (𝑧1𝑖 , 𝑧
2

𝑖
, 𝑧3
𝑖
, 𝑦𝑖−1, 𝑦𝑖 ) . If we put𝑦0 =

0 and 𝑦𝑘 = 2, then to satisfy the above formula we need some tuple

(𝑧1
𝑖
, 𝑧2
𝑖
, 𝑧3
𝑖
) to be from 𝜏 , which implies on {0, 1} that this tuple is

from AE3. Hence Ω𝑛 and Φ𝑛 satisfy the above properties (1)-(3).

Let us show how to build Ω𝑠−1 from Ω𝑠 . Let ℓ and 𝑚 be the

minimal and maximal indices appearing in the 𝑦 variables of Ω𝑠 ,

respectively. Note that ℓ ⩽ 0 and 𝑚 > 0, and that typically ℓ

decreases and𝑚 increases during our construction.

• If 𝑄𝑠 is the universal quantifier then put Ω𝑠−1 = ∀𝑥𝑠Ω𝑠

• If 𝑄𝑠 is the existential quantifier then put

Ω𝑠−1 = ∃𝑦ℓ∀𝑥𝑠∃𝑦𝑚Ω𝑠 ∧ 𝜎 (𝑥𝑠 , 0, 0, 𝑦ℓ−1, 𝑦𝑚) ∧ 𝜎 (𝑥𝑠 , 1, 1, 𝑦𝑚+1, 𝑦𝑚)

Let us show by induction that Ω𝑠−1 satisfies the properties (1)-(3)
starting with 𝑠 = 𝑛. Assume that 𝑄𝑠 is the universal quantifier. The

properties (1) and (2) follow from the inductive assumption and the

construction. The Property (3) follows from the fact that Ω𝑠 holds

on all tuples with 𝑥𝑠 = 2 or 𝑥𝑠 does not appear in Φ𝑛 .

Assume that 𝑄𝑠 is the existential quantifier. The property (1)

follows from the construction. Let us show the property (2). Suppose

𝑥𝑖 = 2 for some 𝑖 ∈ [𝑠 − 1] and 𝑥𝑖 appears in Φ𝑛 . By the inductive

assumption Ω𝑠 holds. To satisfy Ω𝑠−1 we put any value to 𝑦ℓ , put

𝑦𝑚 = 𝑦ℓ−1 if 𝑥𝑠 = 1, and put 𝑦𝑚 = 𝑦𝑚+1 if 𝑥𝑠 ≠ 1. Suppose

𝑦ℓ−1 = 𝑦𝑚+1, then to satisfy Ω𝑠−1 we put 𝑦ℓ = 𝑦𝑚 = 𝑦ℓ−1.
Let us show the property (3) for Ω𝑠−1. Consider 𝑦ℓ−1 ≠ 𝑦𝑚+1

and a tuple (𝑥1, . . . , 𝑥𝑠−1) ∈ {0, 1}𝑠−1.
(Φ𝑠−1 implies Ω𝑠−1). Let Existential choose 𝑥𝑠 = 0 in Φ𝑠−1. Then

Existential in Ω𝑠−1 puts 𝑦ℓ = 𝑦ℓ−1. If Universal chooses 𝑥𝑠 = 0,

then Existential plays 𝑦𝑚 = 𝑦𝑚+1. Since Φ𝑠 holds on 𝑥𝑠 = 0, Ω𝑠

holds. Since 𝑥𝑠 = 0, 𝜎 (𝑥𝑠 , 0, 0, 𝑦ℓ−1, 𝑦𝑚) holds. Since 𝑦𝑚 = 𝑦𝑚+1,
𝜎 (𝑥𝑠 , 1, 1, 𝑦𝑚+1, 𝑦𝑚) holds. Thus, Ω𝑠−1 holds. If Universal chooses
𝑥𝑠 ∈ {1, 2}, then Existential plays 𝑦𝑚 = 𝑦ℓ−1. Since 𝑦𝑚 = 𝑦ℓ , Ω𝑠

holds. Since 𝑦ℓ−1 = 𝑦𝑚 , 𝜎 (𝑥𝑠 , 0, 0, 𝑦ℓ−1, 𝑦𝑚) holds. Since 𝑥𝑠 ∈ {1, 2},
𝜎 (𝑥𝑠 , 1, 1, 𝑦𝑚+1, 𝑦𝑚) holds. Hence, Ω𝑠−1 holds.

Let Existential choose 𝑥𝑠 = 1 in Φ𝑠−1. Then Existential in Ω𝑠−1
puts 𝑦ℓ = 𝑦𝑚+1. If Universal chooses 𝑥𝑠 ∈ {0, 2}, then Existential

plays 𝑦𝑚 = 𝑦𝑚+1. Since 𝑦𝑚 = 𝑦ℓ , Ω𝑠 holds. Since 𝑥𝑠 ∈ {0, 2}, the
constraint 𝜎 (𝑥𝑠 , 0, 0, 𝑦ℓ−1, 𝑦𝑚) holds. Since 𝑦𝑚 = 𝑦𝑚+1, the con-

straint 𝜎 (𝑥𝑠 , 1, 1, 𝑦𝑚+1, 𝑦𝑚) holds. Thus, Ω𝑠−1 holds. If Universal

chooses 𝑥𝑠 = 1, then Existential plays 𝑦𝑚 = 𝑦ℓ−1. Since Φ𝑠 holds
on 𝑥𝑠 = 1, Ω𝑠 holds. Since 𝑦ℓ−1 = 𝑦𝑚 , 𝜎 (𝑥𝑠 , 0, 0, 𝑦ℓ−1, 𝑦𝑚) holds.
Since 𝑥𝑠 = 1, the constraint 𝜎 (𝑥𝑠 , 1, 1, 𝑦𝑚+1, 𝑦𝑚) holds. Hence, Ω𝑠−1
holds.

(Ω𝑠−1 implies Φ𝑠−1). Assume that Existential chooses 𝑦ℓ = 𝑦ℓ−1.
Let Universal choose 𝑥𝑠 = 0. To satisfy 𝜎 (𝑥𝑠 , 1, 1, 𝑦𝑚+1, 𝑦𝑚) Exis-
tential has to choose 𝑦𝑚 = 𝑦𝑚+1. Then for 𝑦ℓ−1 ≠ 𝑦𝑚+1 we have
𝑦ℓ ≠ 𝑦𝑚 , which by the property (3) for Ω𝑠 implies that Φ𝑠 holds on
𝑥𝑠 = 0.
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Assume that Existential chooses𝑦ℓ = 𝑦𝑚+1. Let Universal choose
𝑥𝑠 = 1. To satisfy 𝜎 (𝑥𝑠 , 0, 0, 𝑦ℓ−1, 𝑦𝑚) Existential has to choose

𝑦𝑚 = 𝑦ℓ−1. Then for 𝑦ℓ−1 ≠ 𝑦𝑚+1 we have 𝑦ℓ ≠ 𝑦𝑚 , which by the

property (3) for Ω𝑠 implies that Φ𝑠 holds on 𝑥𝑠 = 1.

Noting that 𝑦ℓ−1 ≠ 𝑦𝑚+1, and 𝑦ℓ , 𝑦ℓ−1, 𝑦𝑚+1 ∈ {0, 2}, we ex-

hausted all possibilities for 𝑦ℓ and in both cases found an appropri-

ate evaluation of 𝑥𝑠 , which completes the proof of the property (3)

for Ω𝑠−1. Since Ω0 is an instance of QCSP(Γ), the property (3) for

Ω0 implies that Ω0 and Φ0 are equivalent, and Φ0 is the original

instance of co-QNAE3SAT. □

8 NEW TRACTABLE LANGUAGE 1
In this section wewill define a constraint language Γ on𝐴 = {0, 1, 2}
consisting of just 2 relations and constants such that Pol(Γ) has
the EGP property but every pp-definition of 𝜏𝑛 (see Definition 1)

has at least 2
𝑛
existential quantifiers. Moreover, we will show that

QCSP(Γ) can be solved in polynomial time.

Let 𝑅𝑎𝑛𝑑,2 =
©­«
0 0 1 1 2 ·
0 1 0 1 · 2

0 0 0 1 · ·

ª®¬ , 𝛿 =

(
· 1 2

0 2 2

)
, where by ·

wemean any element from {0, 1, 2}. Let Γ = {𝑅𝑎𝑛𝑑,2, 𝛿, {0}, {1}, {2}}.
Recall that here 𝜏𝑛 is the 3𝑛-ary relation defined by

{(𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, . . . , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛) | ∃𝑖 : {0, 1} ⊈ {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 }}.

By 𝜎𝑛 we denote the 2𝑛-ary relation defined by

{(𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛, 𝑦𝑛) | ∃𝑖 : {𝑥𝑖 , 𝑦𝑖 } ≠ {0, 1}}.

Note 𝜏𝑛 can be pp-defined from 𝜎𝑛 but the obvious definition is

of size exponential in 𝑛 (see [9]). At the same time, 𝜎𝑛 can be pp-

defined from 𝜏𝑛 by identification of variables.

The relation 𝜌 of arity 2𝑛 omitting just one tuple 1
𝑛
0
𝑛
can be

pp-defined over Γ as follows. First, as usual, we define an 𝑛-ary

”and“ by the following recursive formula

𝑅𝑎𝑛𝑑,𝑛+1 (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, 𝑦) =
∃𝑧 𝑅𝑎𝑛𝑑,𝑛 (𝑥1, . . . , 𝑥𝑛, 𝑧) ∧ 𝑅𝑎𝑛𝑑,2 (𝑥𝑛+1, 𝑧,𝑦) .

Then 𝜌 can be defined by

𝜌 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) = ∃𝑦′
1
. . . ∃𝑦′𝑛∃𝑧∃𝑡 𝑅𝑎𝑛𝑑,𝑛 (𝑥1, . . . , 𝑥𝑛, 𝑧)∧

𝛿 (𝑦1, 𝑦′1) ∧ · · · ∧ 𝛿 (𝑦𝑛, 𝑦′𝑛) ∧ 𝑅𝑎𝑛𝑑,𝑛 (𝑦′1, . . . , 𝑦
′
𝑛, 𝑡) ∧ 𝑅𝑎𝑛𝑑,2 (𝑧, 𝑧, 𝑡).

As a conjunction of such relations with permuted variables we

can define the relation 𝜎𝑛 but this definition will be of exponential

size. Then, we know from [25] that Pol(Γ) has the EGP property,

and from [9] that 𝜏𝑛 can be pp-defined from Γ. Below we will prove

that any pp-definition of 𝜎𝑛 and 𝜏𝑛 is of exponential size, as well

as the fact that QCSP(Γ) can be solved in polynomial time. In the

following < is the lexicographical order on {0, 1}𝑛 built from 0 < 1.

Lemma 23. Suppose 𝑅 = Φ(𝑥1, . . . , 𝑥𝑛), where Φ is a conjunctive

formula over Γ, 𝛼 ∈ {0, 1}𝑛 \𝑅, there exists 𝛽 ∈ {0, 1}𝑛 ∩𝑅 such that

𝛽 < 𝛼 and there exists 𝛽 ∈ {0, 1}𝑛 ∩ 𝑅 such that 𝛽 > 𝛼 . Then there

exists a variable 𝑦 in Φ, such that for 𝑅′ = Φ(𝑥1, . . . , 𝑥𝑛, 𝑦) we have
the following property

𝛽 ∈ {0, 1}𝑛 ∧ (𝛽 < 𝛼) ∧ 𝛽𝑑 ∈ 𝑅′ ⇒ 𝑑 = 0,

𝛽 ∈ {0, 1}𝑛 ∧ (𝛽 > 𝛼) ∧ 𝛽𝑑 ∈ 𝑅′ ⇒ 𝑑 = 1.

Informally speaking, this lemma says that whenever we have a tuple

outside of a relation there should be a variable in its pp-definition

distinguishing between smaller and greater tuples of the relation.

Proof. For every variable 𝑦 of Φ let𝐶𝑦 be the set of all elements

𝑑 such that there exists 𝛽 ∈ {0, 1}𝑛 ∩ 𝑅, 𝛽 < 𝛼 and Φ has a solution

with 𝑦 = 𝑑 and (𝑥1, . . . , 𝑥𝑛) = 𝛽 . Similarly, let 𝐷𝑦 be the set of all

elements 𝑑 such that there exists 𝛽 ∈ {0, 1}𝑛 ∩ 𝑅, 𝛽 > 𝛼 and Φ has

a solution with 𝑦 = 𝑑 and (𝑥1, . . . , 𝑥𝑛) = 𝛽 .
Then we assign a value 𝑣 (𝑦) to every variable 𝑦 in the following

way: if 𝐶𝑦 = {0} then put 𝑣 (𝑦) := 0; otherwise, if 𝐶𝑦 ⊆ {0, 1} and
𝐷𝑦 = {1} then put 𝑣 (𝑦) := 1; otherwise put 𝑣 (𝑦) := 2.

If 𝛼 (𝑖) = 0 then 𝐶𝑥𝑖 = {0} and 𝑣 (𝑥𝑖 ) = 0. If 𝛼 (𝑖) = 1 then

𝐶𝑥𝑖 ⊆ {0, 1} and 𝐷𝑥𝑖 = {1}, therefore 𝑣 (𝑥𝑖 ) = 1. Since 𝛼 ∉ 𝑅, 𝑣

cannot be a solution of Φ, therefore 𝑣 breaks at least one of the

relations in Φ. We consider several cases:

(1) The corresponding relation is 𝑦 = 𝑎 for some 𝑎. If 𝑎 = 0 then

𝐶𝑦 = {0} and 𝑣 (𝑦) = 0, if 𝑎 = 1 then 𝐶𝑦 = 𝐷𝑦 = {1} and
𝑣 (𝑦) = 1, if 𝑎 = 2 then 𝐶𝑦 = {2} and 𝑣 (𝑦) = 2. Thus, the

evaluation 𝑣 cannot break the relation 𝑦 = 𝑎.

(2) The corresponding relation is 𝑅𝑎𝑛𝑑,2 (𝑦1, 𝑦2, 𝑦3). Assume that

𝑣 (𝑦1) = 0 and 𝑣 (𝑦2) ∈ {0, 1}. Then 𝐶𝑦1 = {0} and 𝐶𝑦2 ⊆
{0, 1}, which means that on all tuples 𝛽 < 𝛼 the value of

𝑦3 should be equal to 0. Hence 𝐶𝑦3 = {0} and 𝑣 (𝑦3) = 0. If

𝑣 (𝑦1) = 2 or 𝑣 (𝑦2) = 2, then we cannot break the relation

𝑅𝑎𝑛𝑑,2. The only remaining case is when 𝑣 (𝑦1) = 𝑣 (𝑦2) = 1,

which means that 𝐶𝑦1 ,𝐶𝑦2 ⊆ {0, 1} and 𝐷𝑦1 = 𝐷𝑦2 = {1}.
This implies that 𝐶𝑦3 ⊆ {0, 1} and 𝐷𝑦3 = {1}. If 𝐶𝑦3 = {0},
then 𝑦3 is the variable we were looking for. Otherwise, the

evaluation of 𝑦3 is 1, which agrees with the definition of

𝑅𝑎𝑛𝑑,2.

(3) The corresponding relation is 𝛿 (𝑦1, 𝑦2). If 𝑣 (𝑦1) = 0 then

𝐶𝑦1 = {0}, and by the definition of 𝛿 we have 𝐶𝑦2 = {0},
which means that 𝑣 (𝑦2) = 0. If 𝑣 (𝑦1) ≠ 0, it follows from the

fact that 𝑣 (𝑦2) cannot be outside of {0, 2}.
□

Note that 𝑠2, 𝑠0,2, and 𝑔0,2 preserve Γ (see Section 2.1 for the

definition). Put ℎ0,2 (𝑥,𝑦, 𝑧) = 𝑔0,2 (𝑠0,2 (𝑥1, 𝑥3), 𝑠2 (𝑥2, 𝑥3)), then

ℎ0,2 (𝑥,𝑦, 𝑧) =


𝑥, if 𝑥 = 𝑧 = 0

𝑥, if 𝑥 = 1, 𝑦 = 𝑧

2, otherwise.

.

The following lemma and corollary do not play a role in our

main result but we include them for their intrinsic intriguingness

as well as by way of a sanity check

Lemma 24. Any pp-definition of 𝜎𝑛 over Γ, where 𝑛 ⩾ 3, has at

least 2
𝑛
variables.

Proof. Let the pp-definition be given by a conjunctive formula

Φ such that 𝜎𝑛 = Φ(𝑥1, . . . , 𝑥2𝑛). By Lemma 23 for any 𝛼 ∈ {0, 1}2𝑛\
𝜎𝑛 there should be a variable 𝑦 such that if we define the relation

𝑅′ = Φ(𝑥1, . . . , 𝑥2𝑛, 𝑦), then for every 𝛽 < 𝛼 (we consider only

tuples from {0, 1}2𝑛) we have 𝛽𝑑 ∈ 𝑅′ ⇒ 𝑑 = 0 and for every 𝛽 > 𝛼

we have 𝛽𝑑 ∈ 𝑅′ ⇒ 𝑑 = 1.

Assume that one variable 𝑦 can be used for two different tuples

𝛼1, 𝛼2 ∈ {0, 1}2𝑛 \ 𝜎𝑛 . We consider two cases.
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Case 1. Assume that there is 𝑖 such that 𝛼1 (𝑖) = 𝛼2 (𝑖). Without

loss of generality we assume that 𝛼1 (1) = 𝛼2 (1) and 𝛼1 (2𝑛) ≠

𝛼2 (2𝑛). Let us define tuples 𝛽1, 𝛽2, 𝛽3 ∈ 𝜎𝑛 .

Put 𝛽1 (𝑖) =
{
1, if 𝑖 ∈ {1, 2}
𝛼1 (𝑖), otherwise

, 𝛽2 (𝑖) =
{
1, if 𝑖 ∈ {3, 4}
𝛼2 (𝑖), otherwise

,

𝛽3 (𝑖) =
{
𝛼1 (𝑖), if 𝛼1 (𝑖) = 𝛼2 (𝑖) or 𝑖 ⩽ 4.

0, otherwise

.

Let us show that ℎ0,2 (𝛽1, 𝛽2, 𝛽3) = 𝛽1. In fact, for the first two

rows, reading down through the 2𝑛 rows of ℎ0,2 (𝛽1, 𝛽2, 𝛽3), we
have ℎ0,2 (1, 0, 0) = ℎ0,2 (1, 1, 1) = 1. For the next two rows we have

ℎ0,2 (0, 1, 0) = 0 and ℎ0,2 (1, 1, 1) = 1. For the remaining rows we

either use ℎ0,2 (0, 0, 0) = 0 and ℎ0,2 (1, 1, 1) = 1, or ℎ0,2 (0, 1, 0) = 0

and ℎ0,2 (1, 0, 0) = 1.

Since 𝛽1 > 𝛼1, 𝛽2 > 𝛼2, 𝛽3 < 𝛼1, by Lemma 23,𝑦 should be equal

to 1 in any solution of Φ such that (𝑥1, . . . , 𝑥2𝑛) ∈ {𝛽1, 𝛽2}, and it

should be equal to 0 in any solution ofΦ such that (𝑥1, . . . , 𝑥2𝑛) = 𝛽3.
Since ℎ0,2 (𝛽1, 𝛽2, 𝛽3) = 𝛽1 and ℎ0,2 (1, 1, 0) = 2, we get a contradic-

tion.

Case 2. Assume that 𝛼1 (𝑖) ≠ 𝛼2 (𝑖) for every 𝑖 . Put

𝛽1 (𝑖) =
{
1, if 𝑖 ∈ {1, 2}
𝛼1 (𝑖), otherwise

, 𝛽2 (𝑖) =
{
1, if 𝑖 ∈ {1, 2}
𝛼2 (𝑖), otherwise

,

𝛽3 (𝑖) =
{
1, if 𝑖 ∈ {1, 2}
0, otherwise

, 𝛽4 (𝑖) =
{
1, if 𝑖 ∈ {3, 4}
𝛼1 (𝑖), otherwise

,

𝛽5 (𝑖) =
{
𝛼1 (𝑖), if 𝑖 ∈ {1, 2}
0, otherwise

.

Since ℎ0,2 (1, 1, 1) = ℎ0,2 (1, 0, 0) = 1, ℎ0,2 (0, 1, 0) = 0, we have

ℎ0,2 (𝛽1, 𝛽2, 𝛽3) = 𝛽1. Since 𝛽1 > 𝛼1 and 𝛽2 > 𝛼2, by Lemma 23, 𝑦

should be equal to 1 in any solution of Φ such that (𝑥1, . . . , 𝑥2𝑛) ∈
{𝛽1, 𝛽2}. Since ℎ0,2 (1, 1, 𝑎) = 1 only if 𝑎 = 1, 𝑦 should be equal to

1 on 𝛽3 (in any solution of Φ such that (𝑥1, . . . , 𝑥2𝑛) = 𝛽3). Since

ℎ0,2 (𝛽3, 𝛽4, 𝛽5) = 𝛽3, and 𝑦 should be equal to 1 on 𝛽4 and equal to

0 on 𝛽5, we obtain ℎ0,2 (1, 1, 0) = 1, which contradicts the definition

of ℎ0,2.

Thus, for every tuple 𝛼 ∈ {0, 1}2𝑛 \ 𝜎𝑛 there exists a unique

variable 𝑦, which completes the proof. □

Since 𝜎𝑛 can be obtained from 𝜏𝑛 by identification of variables,

we have the following corollary.

Corollary 25. Any pp-definition of 𝜏𝑛 over Γ has at least 2
𝑛
vari-

ables.

Below we present an algorithm that solves QCSP
2 (Γ) in poly-

nomial time (see the pseudocode). By ℎ we denote the operation

defined on subsets of 𝐴 by ℎ(𝐵) =
{
0, if 𝐵 = {1}
1, otherwise

. By SolveCSP

we denote a polynomial algorithm, solving constraint satisfaction

problem for a constraint language preserved by the semilattice

operation 𝑠2: it returns true if it has a solution, it returns false

otherwise.

Lemma 26. Function Solve1 solves QCSP
2 (Γ) in polynomial time.

Proof. First, let us show that the algorithm actually solves the

problem. If the answer is false, then we found an evaluation of

1: function Solve1(Θ)
2: Input: QCSP2 (Γ) instance Θ = ∀𝑥1 . . .∀𝑥𝑛∃𝑦1 . . . ∃𝑦𝑠Φ.
3: if ¬SolveCSP(x = (0, . . . , 0) ∧ Φ) then return false

⊲ Here x = (𝑥1, . . . , 𝑥𝑛)
4: if ¬SolveCSP(x = (1, . . . , 1) ∧ Φ) then return false

5: for 𝑗 := 1, . . . , 𝑠 do
6: for 𝑖 := 1, . . . , 𝑛 do
7: 𝐷𝑖 := ∅
8: c := (1, . . . , 1︸  ︷︷  ︸

𝑖−1

, 0, 1, . . . , 1)

9: for 𝑎 ∈ 𝐴 do
10: if SolveCSP(x = c ∧ 𝑦 𝑗 = 𝑎 ∧ Φ) then
11: 𝐷𝑖 := 𝐷𝑖 ∪ {𝑎}
12: if 𝐷𝑖 = ∅ then return false

13: if ¬SolveCSP(x = (ℎ(𝐷1), . . . , ℎ(𝐷𝑛)) ∧ Φ) then
14: return false

15: return true

(𝑥1, . . . , 𝑥𝑛) such that the corresponding CSP has no solutions,

which means that the answer is correct.

Assume that the answer is true. Let 𝑅(𝑥1, . . . , 𝑥𝑛) be defined by

the formula ∃𝑦1 . . . ∃𝑦𝑠Φ. We need to prove that 𝑅 is a full relation.

Assume the converse. Using the semilattice operation 𝑠2 we can

generate 𝐴𝑛 from {0, 1}𝑛 , hence {0, 1}𝑛 ⊈ 𝑅. Then let 𝛼 be a mini-

mal tuple from {0, 1}𝑛 \ 𝑅. Without loss of generality we assume

that 𝛼 = 1
𝑘
0
𝑛−𝑘

. For every 𝑖 we put 𝛼𝑖 = 1
𝑖−1

01
𝑛−𝑖

. Since 𝛼 is

minimal, all the tuples smaller than 𝛼 should be in 𝑅 (note that

(0, 0, . . . , 0) ∈ 𝑅). Then by Lemma 23 there should be a variable

𝑦 such that for any 𝛽 < 𝛼 we have 𝛽𝑑 ∈ 𝑅′ ⇒ 𝑑 = 0, for any

𝛽 > 𝛼 we have 𝛽𝑑 ∈ 𝑅′ ⇒ 𝑑 = 1, where 𝑅′ = Φ(𝑥1, . . . , 𝑥𝑛, 𝑦).
Since 𝐷𝑖 ≠ ∅, 𝛼𝑖 ∈ 𝑅 for every 𝑖 , and for every 𝑖 > 𝑘 we have

𝛼𝑖𝑑 ∈ 𝑅′ ⇒ 𝑑 = 1.

Let 𝛽 = 01
𝑘−1

0
𝑛−𝑘

. Note that 𝛽 < 𝛼 and therefore, 𝛽 ∈ 𝑅. Assume

that 𝐷1 calculated for the variable 𝑦 is equal to {1}, then 𝛼1𝑑 ∈
𝑅′ ⇒ 𝑑 = 1. Put 𝛾0 = 𝑠0,2 (𝛽, 𝛼1) = 01

𝑘−1
2
𝑛−𝑘

. Since 𝑠0,2 preserves

𝑅′ and 𝑠0,2 (0, 1) = 2, we have 𝛾02 ∈ 𝑅′. Put 𝛾𝑖 = 𝑔0,2 (𝛼𝑘+𝑖 , 𝛾𝑖−1) for
𝑖 = 1, 2, . . . , 𝑛 − 𝑘 . Since 𝑔0,2 (1, 2) = 2, we have 𝛾𝑖2 ∈ 𝑅′ for every 𝑖 .
Note that𝛾𝑛−𝑘 = 𝛼𝑛 ∈ {0, 1}𝑛 . We can check that𝑔0,2 (𝛼11, 𝛾𝑛−𝑘2) =
𝛼12, which contradicts the fact that 𝐷1 = {1}. In this way we can

show that 𝐷1, . . . , 𝐷𝑘 calculated for 𝑦 are not equal to {1}. We also

know that the corresponding 𝐷𝑘+1, . . . , 𝐷𝑛 are equal to {1}. Hence,
the tuple (ℎ(𝐷1), . . . , ℎ(𝐷𝑛)) = 𝛼 was checked in the algorithm,

which contradicts the fact that 𝛼 ∉ 𝑅.

It remains to show that the algorithm works in polynomial time.

It follows from the fact that in the algorithm we just solve 3 · 𝑠 · 𝑛 +
𝑠 + 2 CSP instances over a language preserved by the semilattice

operation 𝑠2. □

Corollary 27. QCSP(Γ) is in P.

Proof. Since 𝑠0,2 is a 0-stable operation preserving Γ, Lemma 18

implies that QCSP(Γ) can be polynomially reduced to QCSP
2 (Γ),

and QCSP
2 (Γ) can be solved by the function Solve1. □
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9 NEW TRACTABLE LANGUAGE 2
In this section we define another constraint language Γ′ on 𝐴 =

{0, 1, 2} such that Pol(Γ′) has the EGP property but every pp-

definition of 𝜏𝑛 (see Definition 1) has at least 2
𝑛
existential quan-

tifiers. Moreover, we will show that QCSP(Γ′) can be solved in

polynomial time.

Let 𝑅′
𝑎𝑛𝑑,2

=
©­«
0 · 1 1 2 2

· 0 1 2 1 2

0 0 1 · · ·

ª®¬ , 𝛿 =

(
0 1 2

1 · ·

)
, where by

· we denote any element from {0, 1, 2}.
Let Γ′ = {𝑅′

𝑎𝑛𝑑,2
, 𝛿, {0}, {1}, {2}}.

Again, recall that here 𝜏𝑛 the 3𝑛-ary relation defined by

{(𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, . . . , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛) | ∃𝑖 : {0, 1} ⊈ {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 }}.
By 𝜎𝑛 we denote the 2𝑛-ary relation defined by

{(𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛, 𝑦𝑛) | ∃𝑖 : {𝑥𝑖 , 𝑦𝑖 } ≠ {0, 1}}.
Note 𝜏𝑛 can be pp-defined from 𝜎𝑛 but the obvious definition is

of size exponential in 𝑛 (see [9]). At the same time, 𝜎𝑛 can be pp-

defined from 𝜏𝑛 by identification of variables. It follows from the

following lemma that Pol(Γ′) has the EGP property.

Lemma 28. 𝜎𝑛 can be pp-defined over Γ′.

Proof. Recursively we define

𝑅′
𝑎𝑛𝑑,𝑛+1 (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, 𝑦) =

∃𝑧 𝑅′
𝑎𝑛𝑑,𝑛

(𝑥1, . . . , 𝑥𝑛, 𝑧) ∧ 𝑅′𝑎𝑛𝑑,2 (𝑥𝑛+1, 𝑧,𝑦),

𝜔𝑛 (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛, 𝑦𝑛) =
∃𝑢1 . . . ∃𝑢𝑛∃𝑧𝑅′𝑎𝑛𝑑,2𝑛 (𝑥1, . . . , 𝑥𝑛, 𝑢1, . . . , 𝑢𝑛, 𝑧)∧

𝛿 ′(𝑦1, 𝑢1) ∧ · · · ∧ 𝛿 ′(𝑦𝑛, 𝑢𝑛) ∧ 𝑧 = 0.

The relation 𝜔𝑛 contains all the tuples but (1, 0, 1, 0, . . . , 1, 0). Then
the relation 𝜎𝑛 can be represented as a conjunction of 2

𝑛
relations

such that each of them is obtained from 𝜔𝑛 by a permutation of

variables. □

We can check that Γ′ is preserved by 𝑓0,2 (see Section 2.1 for

the definition). Below we will show that QCSP(Γ) is solvable in
polynomial time for any constraint language Γ ⊆ Inv(𝑓0,2). Note
that 𝑠0,2 (𝑥,𝑦) = 𝑓0,2 (𝑥,𝑦,𝑦) and 𝑠2 (𝑥,𝑦) = 𝑠0,2 (𝑥, 𝑠0,2 (𝑦, 𝑥)).

Suppose 𝑅 = Φ(𝑥1, . . . , 𝑥𝑛), where Φ is a conjunctive formula

over a constraint language Γ ⊆ Inv(𝑓0,2). For a variable 𝑦 of Φ
we define a partial operation 𝐹𝑦 (𝑥1, . . . , 𝑥𝑛) on {0, 1} as follows.
If 𝛼 ∈ 𝑅 and every solution of Φ with (𝑥1, . . . , 𝑥𝑛) = 𝛼 has 𝑦 = 𝑐 ,

where 𝑐 ∈ {0, 1}, then 𝐹𝑦 (𝛼) = 𝑐 . Otherwise we say that 𝐹𝑦 (𝛼) is
not defined. We say that 𝛼 ∈ 𝑅 ∩ {0, 1}𝑛 is a minimal 1-set for a

variable 𝑦 if 𝐹𝑦 (𝛼) = 1, and 𝐹𝑦 (𝛽) = 0 for every 𝛽 < 𝛼 (every time

we use < we mean that both tuples are on {0, 1}).
The following lemma proves that 𝐹𝑦 is monotonic.

Lemma 29. Suppose 𝛼 ⩽ 𝛽 , 𝐹𝑦 (𝛼) and 𝐹𝑦 (𝛽) are defined. Then
𝐹𝑦 (𝛼) ⩽ 𝐹𝑦 (𝛽).

Proof. Assume the contrary, then 𝐹𝑦 (𝛼) = 1 and 𝐹𝑦 (𝛽) = 0. We

have 𝑠0,2 (𝛽0, 𝛼1) = 𝛽2, which means that there exists a solution

of Φ with (𝑥1, . . . , 𝑥𝑛) = 𝛽 and 𝑦 = 2, hence 𝐹𝑦 (𝛽) is not defined.
Contradiction. □

Lemma 30. There is at most one minimal 1-set for every variable 𝑦.

Proof. Assume the contrary. Let 𝛼1 and 𝛼2 be two minimal 1-

sets for 𝑦. It follows from the definition that 𝛼1 and 𝛼2 should be

incomparable. Let 𝛼 = 𝛼1 ∧ 𝛼2 (by ∧ we denote the conjunction

on {0, 1}). Then 𝑓0,2 (𝛼11, 𝛼0, 𝛼21) = 𝛼12, which contradicts the fact

that 𝐹𝑦 is defined on 𝛼1. □

Lemma 31. Suppose 𝛼 ∈ {0, 1}𝑛 \ 𝑅, 𝛼 contains at least two 1s, and

𝛽 ∈ 𝑅 for every 𝛽 < 𝛼 . Then there exists a constraint 𝜌 (𝑧1, . . . , 𝑧𝑙 ) in
Φ and 𝐵 ⊆ {1, . . . , 𝑙} such that 𝛼 =

∨
𝑖∈𝐵 𝛼𝑖 , where 𝛼𝑖 is the minimal

1-set for the variable 𝑧𝑖 (by ∨ we denote the disjunction on {0, 1}).

Proof. First, to every variable 𝑦 of Φ we assign a value 𝑣 (𝑦)
in the following way. If 𝐹𝑦 (𝛽) = 0 for every 𝛽 < 𝛼 then we put

𝑣 (𝑦) := 0. Otherwise, if 𝐹𝑦 (𝛽) ∈ {0, 1} for every 𝛽 < 𝛼 then we put

𝑣 (𝑦) := 1. Otherwise, put 𝑣 (𝑦) := 2.

If 𝛼 (𝑖) = 0 then 𝐹𝑥𝑖 (𝛽) = 0 for every 𝛽 < 𝛼 , which means that

𝑣 (𝑥𝑖 ) = 0. If 𝛼 (𝑖) = 1 then 𝐹𝑥𝑖 (𝛽) ∈ {0, 1} for every 𝛽 < 𝛼 . Since

𝛼 has at least two 1, for some 𝛽 < 𝛼 we have 𝐹𝑥𝑖 (𝛽) = 1, which

means that 𝑣 (𝑥𝑖 ) = 1. Thus we assigned the tuple 𝛼 to (𝑥1, . . . , 𝑥𝑛).
Since𝛼 ∉ 𝑅 the evaluation 𝑣 cannot be a solution ofΦ, therefore it

breaks at least one constraint from Φ. Let us add to Φ all projections

of all constraints we have in Φ. Thus, for every constraint 𝐶 =

𝜌 (𝑧1, . . . , 𝑧𝑙 ) we add pr𝑆 𝐶 , where 𝑆 ⊆ {𝑧1, . . . , 𝑧𝑙 }. Obviously, when
we do this, we do not change the solution set of Φ and stay in

Inv(𝑓0,2).
Choose a constraint of the minimal arity 𝜌 (𝑧1, . . . , 𝑧𝑙 ) that does

not hold in the evaluation 𝑣 , that is, (𝑣 (𝑧1), . . . , 𝑣 (𝑧𝑙 )) ∉ 𝜌 . Let

(𝑎1, . . . , 𝑎𝑙 ) = (𝑣 (𝑧1), . . . , 𝑣 (𝑧𝑙 )). Since 𝜌 is a constraint of the min-

imal arity, the evaluation 𝑣 holds for every proper projection of

𝜌 (𝑧1, . . . , 𝑧𝑙 ), which means that for every 𝑖 there exists 𝑏𝑖 such that

(𝑎1, . . . , 𝑎𝑖−1, 𝑏𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑙 ) ∈ 𝜌 .
Assume that (𝑎1, . . . , 𝑎𝑙 ) has two 2, that is 𝑎𝑖 = 𝑎 𝑗 = 2 for 𝑖 ≠ 𝑗 .

Then the semilattice 𝑠2 applied to (𝑎1, . . . , 𝑎𝑖−1, 𝑏𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑙 ) and
(𝑎1, . . . , 𝑎 𝑗−1, 𝑏 𝑗 , 𝑎 𝑗+1, . . . , 𝑎𝑙 ) gives (𝑎1, . . . , 𝑎𝑙 ), which contradicts

the fact that 𝑠2 preserves 𝜌 .

Assume that 𝑎𝑖 = 2 for some 𝑖 . W.l.o.g. we assume that 𝑎𝑙 = 2. By

the definition, there should be a tuple 𝛽 < 𝛼 such that 𝐹𝑧𝑙 (𝛽) is not
defined. Put 𝑐𝑖 = 𝐹𝑧𝑖 (𝛽) for every 𝑖 < 𝑙 , and 𝑐𝑙 = 2. By the definition

of 𝐹𝑧𝑙 (𝛽), there should be a solution of Φ with (𝑥1, . . . , 𝑥𝑛) = 𝛽 and

𝑧𝑙 = 2, or two solutions of Φ with (𝑥1, . . . , 𝑥𝑛) = 𝛽 and 𝑧𝑙 = 0, 1.

Since 𝑠2 preserves Γ, in both cases we have a solution of Φ with

(𝑥1, . . . , 𝑥𝑛) = 𝛽 and 𝑧𝑙 = 2. Note that (𝑧1, . . . , 𝑧𝑙 ) = (𝑐1, . . . , 𝑐𝑙 ) in
this solution, therefore (𝑐1, . . . , 𝑐𝑙 ) ∈ 𝜌 . By the definition, 𝑐𝑖 ⩽ 𝑎𝑖
for every 𝑖 < 𝑙 . We apply 𝑠0,2 to the tuples (𝑎1, . . . , 𝑎𝑙−1, 𝑏𝑙 ) and
(𝑐1, . . . , 𝑐𝑙 ) to obtain the tuple (𝑎1, . . . , 𝑎𝑙 ), which is not from 𝜌 . This

contradicts the fact that 𝑠0,2 preserves 𝜌 .

Assume that 𝑎𝑖 ≠ 2 for every 𝑖 . W.l.o.g. we assume that 𝑎1 = · · · =
𝑎𝑘 = 1 and 𝑎𝑘+1 = · · · = 𝑎𝑙 = 0. If𝑘 = 0 and (𝑎1, . . . , 𝑎𝑙 ) = (0, . . . , 0),
then we consider a solution of Φ corresponding to (𝑥1, . . . , 𝑥𝑛) =
(0, . . . , 0). By the definition of 𝐹𝑧𝑖 we have (𝑧1, . . . , 𝑧𝑙 ) = (0, . . . , 0)
in this solution. Hence, (0, . . . , 0) ∈ 𝜌 , which contradicts our as-

sumption. Assume that 𝑘 ⩾ 1. For each 𝑖 ∈ [𝑘] we define a tuple 𝛼𝑖
as follows. Since 𝐹𝑧𝑖 is defined on any tuple 𝛽 < 𝛼 and 𝐹𝑧𝑖 (𝛽) = 1

for some 𝛽 < 𝛼 , there exists a minimal 1-set 𝛼𝑖 ⩽ 𝛽 for 𝑧𝑖 . As-

sume that 𝛼 ′ := 𝛼1 ∨ · · · ∨ 𝛼𝑘 < 𝛼 . Consider a solution of Φ
with (𝑥1, . . . , 𝑥𝑛) = 𝛼 ′. Since 𝐹𝑧𝑖 (𝛼 ′) is defined, 𝐹𝑧𝑖 (𝛼𝑖 ) = 1 and
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𝐹𝑧𝑖 is monotonic, we have 𝐹𝑧𝑖 (𝛼 ′) = 1 for every 𝑖 ∈ [𝑘]. There-
fore, (𝑧1, . . . , 𝑧𝑙 ) = (𝑎1, . . . , 𝑎𝑙 ) in this solution, which means that

(𝑎1, . . . , 𝑎𝑙 ) ∈ 𝜌 and contradicts the assumption.

Thus, 𝛼 ′ ≮ 𝛼 . Since 𝛼𝑖 ⩽ 𝛼 for every 𝑖 , we obtain 𝛼 ′ ⩽ 𝛼 , and

therefore 𝛼 ′ = 𝛼 , which completes the proof. □

Lemma 32. Suppose 𝛼 is a minimal 1-set for𝑦, 𝑖 ∈ {1, 2, . . . , 𝑛}, and
2
𝑖−1

02
𝑛−𝑖 ∈ 𝑅. Then 𝛼 (𝑖) = 1 if and only if 𝐹𝑦 (2𝑖−102𝑛−𝑖 ) = 0.

Proof. Assume that 𝛼 (𝑖) = 0 and 𝐹𝑦 (2𝑖−102𝑛−𝑖 ) = 0. We have

𝑠2 (2𝑖−102𝑛−𝑖0, 𝛼1) = 2
𝑖−1

02
𝑛−𝑖

2, which means that Φ has a solution

with (𝑥1, . . . , 𝑥𝑛) = 2
𝑖−1

02
𝑛−𝑖

and 𝑦 = 2. This contradicts the fact

that 𝐹𝑦 (2𝑖−102𝑛−𝑖 ) = 0.

Assume that 𝛼 (𝑖) = 1 and 𝐹𝑦 (2𝑖−102𝑛−𝑖 ) is not defined or equal

to 1. Then Φ has a solution with (𝑥1, . . . , 𝑥𝑛) = 2
𝑖−1

02
𝑛−𝑖

and 𝑦 = 𝑐 ,

where 𝑐 ≠ 0. Let 𝛽 < 𝛼 be the tuple that differs from 𝛼 only in the

𝑖-th coordinate. Since 𝑓0,2 (𝛼, 𝛽, 2𝑖−102𝑛−𝑖 ) = 𝛼 and 𝑓0,2 (1, 0, 𝑐) = 2,

Φ should have a solution with (𝑥1, . . . , 𝑥𝑛) = 𝛼 and 𝑦 = 2, which

contradicts the definition of a minimal 1-set. □

The following lemma and corollary do not play a role in our

main result, but we present them for further curiosity and another

sanity check.

Lemma 33. Suppose Γ ⊆ Inv(𝑓0,2), all relations in Γ are of arity at

most 𝑘 . Then any pp-definition of 𝜎𝑛 over Γ, where 𝑛 ⩾ 2, has at least

2
𝑛/2𝑘 constraints.

Proof. Suppose 𝜎𝑛 = Φ(𝑥1, . . . , 𝑥𝑛), where Φ is a conjunctive

formula over Γ. There exist 2𝑛 tuples from 𝐴2𝑛 \ 𝜎𝑛 and each of

them has at least two 1s. By Lemma 31, for each 𝛼 ∈ 𝐴2𝑛 \ 𝜎𝑛 there

should be a constraint 𝜌 (𝑧1, . . . , 𝑧𝑙 ) such that 𝛼 =
∨

𝑖∈𝐵 𝛼𝑖 for some

𝐵 ⊆ {1, 2, . . . , 𝑙}. Since every constraint of Φ is of arity at most k,

there are at most 2
𝑘
options to choose 𝐵. Therefore, one constraint

of Φ can cover at most 2
𝑘
tuples from 𝐴2𝑛 \ 𝜎𝑛 . Thus, Φ has at least

2
𝑛/2𝑘 constraints. □

Thus, for a fixed (finite) Γ we need exponentially many constraints

to define 𝜎𝑛 . Since 𝜎𝑛 can be obtained from 𝜏𝑛 by identification of

variables, we have the following corollary.

Corollary 34. Suppose Γ ⊆ Inv(𝑓0,2), all relations in Γ are of arity

at most 𝑘 . Then any pp-definition of 𝜏𝑛 over Γ, where 𝑛 ⩾ 2, has at

least 2
𝑛/2𝑘 constraints.

Below we present an algorithm that solves QCSP
2 (Γ) in poly-

nomial time for Γ ⊆ Inv(𝑓0,2) (see the pseudocode of the function
Solve2). Again, by SolveCSP we denote a polynomial algorithm,

solving constraint satisfaction problem for a constraint language

preserved by a semilattice operation: it returns true if it has a solu-

tion, it returns false otherwise.

Lemma 35. Function Solve2 solves QCSP
2 (Γ) in polynomial time

for a finite constraint language Γ ⊆ Inv(𝑓0,2).

Proof. First, let us show that the algorithm actually solves the

problem. If the answer is false, then we found an evaluation of

(𝑥1, . . . , 𝑥𝑛) such that the corresponding CSP has no solutions,

which means that the answer is correct.

Assume that the answer is true. Let 𝑅(𝑥1, . . . , 𝑥𝑛) be defined by

the formula ∃𝑦1 . . . ∃𝑦𝑠Φ. We need to prove that 𝑅 is a full relation.

1: function Solve2(Θ)
2: Input: QCSP2 (Γ) instance Θ = ∀𝑥1 . . .∀𝑥𝑛∃𝑦1 . . . ∃𝑦𝑠Φ.
3: if ¬SolveCSP(x = (0, . . . , 0) ∧ Φ) then return false

⊲ Here x = (𝑥1, . . . , 𝑥𝑛)
4: for 𝑖 := 1, . . . , 𝑛 do ⊲ Check all tuples with just one 1

5: c := (0, . . . , 0︸  ︷︷  ︸
𝑖−1

, 1, 0, . . . , 0)

6: if ¬SolveCSP(x = c ∧ Φ) then return false

7: for 𝑗 := 1, . . . , 𝑠 do
⊲ Calculate the minimal 1-set for every 𝑦 𝑗

8: 𝛼 𝑗 := (0, . . . , 0)
9: for 𝑖 := 1, . . . , 𝑛 do
10: 𝐷𝑖 := ∅
11: c := (2, . . . , 2︸  ︷︷  ︸

𝑖−1

, 0, 2, . . . , 2)

12: for 𝑎 ∈ 𝐴 do
13: if SolveCSP(x = c ∧ 𝑦 𝑗 = 𝑎 ∧ Φ) then
14: 𝐷𝑖 := 𝐷𝑖 ∪ {𝑎}
15: if 𝐷𝑖 = ∅ then return false

16: if 𝐷𝑖 = {0} then
17: 𝛼 𝑗 := 𝛼 𝑗 ∨ (0, . . . , 0︸  ︷︷  ︸

𝑖−1

, 1, 0, . . . , 0)

18: for a constraint 𝜌 (𝑧1, . . . , 𝑧𝑙 ) of Φ do
⊲ Check all constraints

19: for 𝑉 ⊆ {1, 2, . . . , 𝑙} do
⊲ Check all subsets of variables

20: 𝛽 := (0, . . . , 0)
21: for 𝑗 ∈ 𝑉 do
22: if 𝑧 𝑗 = 𝑥𝑖 for some 𝑖 then
23: 𝛽 := 𝛽 ∨ (0, . . . , 0︸  ︷︷  ︸

𝑖−1

, 1, 0, . . . , 0)

⊲ Add the minimal 1-set for 𝑥𝑖

24: if 𝑧 𝑗 = 𝑦𝑖 for some 𝑖 then
25: 𝛽 := 𝛽 ∨ 𝛼𝑖

⊲ Add the minimal 1-set for 𝑦𝑖

26: if ¬SolveCSP(x = 𝛽 ∧ Φ) then return false

27: return true

Assume the converse. Using the semilattice operation 𝑠2 we can

generate 𝐴𝑛 from {0, 1}𝑛 , hence {0, 1}𝑛 ⊈ 𝑅. Then let 𝛼 be a mini-

mal tuple from {0, 1}𝑛 \𝑅. Since we checked that (0, 0, . . . , 0) and all
tuples having just one 1 are from 𝑅, 𝛼 contains at least two 1. Then,

by Lemma 31, there should be a constraint 𝜌 (𝑧1, . . . , 𝑧𝑙 ) of Φ and a

subset 𝑉 ⊆ {1, 2, . . . , 𝑙} such that 𝛼 is a disjunction of the minimal

1-sets of 𝑧𝑖 for 𝑖 ∈ 𝑉 . Thus, it is sufficient to find the minimal 1-set

corresponding to each variable and check all the disjunctions.

By Lemma 32, if 𝛼 𝑗 is a minimal 1-set for a variable 𝑦 𝑗 then it

was correctly found in lines 7-17 of the algorithm. Note that if 𝑦 𝑗
does not have a minimal 1-set then we do not care what we found.

Then, in lines 18-25 we check all constraints of Φ, check all subsets

of variables 𝑉 , and calculate the corresponding disjunction. In line

26 we check whether Φ has a solution with (𝑥1, . . . , 𝑥𝑛) = 𝛼 . Thus,
Lemma 31 guarantees that {0, 1}𝑛 ⊆ 𝑅, and therefore 𝐴𝑛 ⊆ 𝑅.
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It remains to show that the algorithm works in polynomial time.

In the algorithm we just solve at most 1 + 𝑛 + 𝑠 · 𝑛 · 3 +𝑚 · 2𝑟 CSP
instances over a language preserved by the semilattice operation

𝑠2, where𝑚 is the number of constraints in Φ and 𝑟 is the maximal

arity of constraints in Φ. Since Γ is finite, 𝑟 is a constant, hence the

algorithm is polynomial. □

Corollary 36. QCSP(Γ) is in P for every finite Γ ⊆ Inv(𝑓0,2).

Proof. Since 𝑠0,2 is a 0-stable operation preserving Γ, Lemma 18

implies that QCSP(Γ) can be polynomially reduced to QCSP
2 (Γ),

and QCSP
2 (Γ) can be solved by the function Solve2. □

10 CONCLUSION
Our demonstration of QCSP monsters suggests that a complete

complexity classification of QCSP(Γ) under polynomial reductions

is likely to be exceedingly challenging. Indeed, suppose P ≠ NP,

how many equivalence classes of problems QCSP(Γ) are there up
to polynomial equivalence? In this paper we showed that there are

at least six of them. Are there any more? Are there infinitely many?

We don’t know the answer.

Meanwhile, the most sensible approach to complexity classifi-

cation for QCSP(Γ) might be to try to find those that are in P, in

contradistinction to those that are NP-hard under polynomial Tur-

ing reductions (which would thus capture also the co-NP-hardness).

Similarly, someone could ask about a general criteria for the QCSP

to be PSpace-hard or to be a member of a concrete complexity class,

which is also a very intriguing question.

As the next step, it seems very natural to work on a classifica-

tion for constraint languages on a three-element domain without

constants, where the reduction to CSP doesn’t work and brand new

ideas are required.
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