QCSP Monsters and the Demise of the Chen Conjecture

Dmitriy Zhuk
zhuk@intsys.msu.ru
Department of Mechanics and Mathematics, Lomonosov
Moscow State University
Russia

Barnaby Martin
barnaby.d.martin@durham.ac.uk
Department of Computer Science, Durham University United Kingdom

Abstract

We give a surprising classification for the computational complexity of the Quantified Constraint Satisfaction Problem over a constraint language $\Gamma, \operatorname{QCSP}(\Gamma)$, where Γ is a finite language over 3 elements which contains all constants. In particular, such problems are either in P, NP-complete, co-NP-complete or PSpace-complete. Our classification refutes the hitherto widely-believed Chen Conjecture.

Additionally, we show that already on a 4 -element domain there exists a constraint language Γ such that $\operatorname{QCSP}(\Gamma)$ is DP-complete (from Boolean Hierarchy), and on a 10 -element domain there exists a constraint language giving the complexity class Θ_{2}^{P}.

Meanwhile, we prove the Chen Conjecture for finite conservative languages Γ. If the polymorphism clone of such Γ has the polynomially generated powers (PGP) property then QCSP (Γ) is in NP. Otherwise, the polymorphism clone of Γ has the exponentially generated powers (EGP) property and QCSP (Γ) is PSpace-complete.

CCS CONCEPTS

- Theory of computation \rightarrow Problems, reductions and completeness; Complexity theory and logic; Logic and verification.

KEYWORDS

quantified constraints, constraint satisfaction, universal algebra, computational complexity

ACM Reference Format:

Dmitriy Zhuk and Barnaby Martin. 2020. QCSP Monsters and the Demise of the Chen Conjecture. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC '20), June 22-26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3357713. 3384232

1 INTRODUCTION

The Quantified Constraint Satisfaction Problem $\operatorname{QCSP}(\Gamma)$ is the generalization of the Constraint Satisfaction Problem CSP (Г) which, given the latter in its logical form, augments its native existential quantification with universal quantification. That is, $\mathrm{QCSP}(\Gamma)$ is the problem to evaluate a sentence of the form $\forall x_{1} \exists y_{1} \ldots \forall x_{n} \exists y_{n} \Phi$, where Φ is a conjunction of relations from the constraint language Γ, all over the same finite domain D. Since the resolution of the

[^0]Feder-Vardi "Dichotomy" Conjecture, classifying the complexity of $\operatorname{CSP}(\Gamma)$, for all finite Γ, between P and NP-complete [6, 24], a desire has been building for a classification for $\operatorname{QCSP}(\Gamma)$. Indeed, since the classification of the Valued CSPs was reduced to that for CSPs [18], the QCSP remains the last of the older variants of the CSP to have been systematically studied but not classified. More recently, other interesting open classification questions have appeared such as that for Promise CSPs [5] and finitely-bounded, homogeneous infinite-domain CSPs [1].

While $\operatorname{CSP}(\Gamma)$ remains in NP for any finite $\Gamma, \operatorname{QCSP}(\Gamma)$ can be PSpace-complete, as witnessed by Quantified 3-Satisfiability or Quantified Graph 3-Colouring (see [4]). It is well-known that the complexity classification for QCSPs embeds the classification for CSPs: if $\Gamma+1$ is Γ with the addition of a new isolated element not appearing in any relations, then $\operatorname{CSP}(\Gamma)$ and $\operatorname{QCSP}(\Gamma+1)$ are polynomially equivalent. Thus, and similarly to the Valued CSPs, the CSP classification will play a part in the QCSP classification. It is now clear that $\mathrm{QCSP}(\Gamma)$ can achieve each of the complexities P , NP-complete and PSpace-complete. It has thus far been believed these were the only possibilities (see [4, 11, 12, 14, 22] and indeed all previous papers on the topic).

A key role in classifying many CSP variants has been played by Universal Algebra. We say that a k-ary operation f preserves an m ary relation R, whenever $\left(x_{1}^{1}, \ldots, x_{1}^{m}\right), \ldots,\left(x_{k}^{1}, \ldots, x_{k}^{m}\right)$ in R, then also $\left(f\left(x_{1}^{1}, \ldots, x_{k}^{1}\right), \ldots, f\left(x_{1}^{m}, \ldots, x_{k}^{m}\right)\right)$ in R. The relation R is called an invariant of f, and the operation f is called a polymorphism of R. An operation f is a polymorphism of Γ if it preserves every relation from Γ. The polymorphism clone $\operatorname{Pol}(\Gamma)$ is the set of all polymorphisms of Γ. Similarly, a relation R is an invariant of a set of functions F if it is preserved by every operation from F. By $\operatorname{Inv}(F)$ we denote the set of all invariants of F. We call an operation f idempotent if $f(x, \ldots, x)=x$, for all x. An idempotent operation f is a weak near-unanimity (WNU) operation if $f(y, x, x, \ldots, x)=$ $f(x, y, x, \ldots, x)=\cdots=f(x, x, \ldots, x, y)$. We recall the following form of the Feder-Vardi Conjecture.

Theorem 1 (CSP Dichotomy [6, 24]). Let Γ be a finite constraint language with all constants. If Γ admits some $W N U$ polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P. Otherwise, $\operatorname{CSP}(\Gamma)$ is $N P$-complete.

For the CSP one may assume, without loss of generality, that Γ contains all constants (one can imagine these appearing in various forms, one possibility being all unary relations $x=c$, for $c \in D$). This is equivalent to the assumption that all operations f of $\operatorname{Pol}(\Gamma)$ are idempotent. We can achieve this by moving to an equivalent constraint language known as the core. The situation is more complicated for the QCSP and it is not known that a similar trick may be accomplished (see [15]). However, all prior conjectures for the QCSP have been made in this safer environment where we may
assume idempotency and almost all classifications apply only to this situation. A rare exception to this is the paper [16] where the non-idempotent case is described as the terra incognita. We will henceforth assume Γ contains all constants.

For the purpose of pedagogy it is useful to look at the Π_{2} restriction of $\operatorname{QCSP}(\Gamma)$, denoted $\operatorname{QCSP}^{2}(\Gamma)$, in which the input is of the form $\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \Phi$. In order to solve this restriction of the problem it suffices to look at (the conjunction of) $|D|^{n}$ instances of $\operatorname{CSP}(\Gamma)$. It is not hard to show (see [13]) that, if D^{n} can be generated under $\operatorname{Pol}(\Gamma)$ from some subset $\Sigma \subseteq D^{n}$, then one need only consult (the conjunction over) of $|\Sigma|$ instances of $\operatorname{CSP}(\Gamma)$. Suppose there is a polynomial p such that for each n there is a subset $\Sigma \subseteq D^{n}$ of size at most $p(n)$ so that D^{n} can be generated under $\operatorname{Pol}(\Gamma)$ from Σ, then we say $\operatorname{Pol}(\Gamma)$ has the polynomially generated powers (PGP) property. Under the additional assumption that there is a polynomial algorithm that computes these Σ, we would have a reduction to $\operatorname{CSP}(\Gamma)$. It turns out that if the nature of the PGP property is sufficiently benign a similar reduction can be made for the full $\operatorname{QCSP}(\Gamma)$ to the CSP with constants $[8,13]$. Another behaviour that might arise with $\operatorname{Pol}(\Gamma)$ is that there is an exponential function f so that the smallest generating sets under $\operatorname{Pol}(\Gamma)$ for $\Sigma \subseteq D^{n}$ require size at least $f(n)$. We describe this as the the exponentially generated powers (EGP) property. The outstanding conjecture in the area of QCSPs is the merger of Conjectures 6 and 7 in [14] which we have dubbed in [9] the Chen Conjecture.
Conjecture 1 (Chen Conjecture). Let Γ be a finite constraint language with all constants. If $\operatorname{Pol}(\Gamma)$ has $P G P$, then $\mathrm{QCSP}(\Gamma)$ is in $N P$; otherwise $\mathrm{QCSP}(\Gamma)$ is PSpace-complete.
In [14], Conjecture 6 gives the NP membership and Conjecture 7 the PSpace-completeness. In light of the proofs of the FederVardi Conjecture, the Chen Conjecture implies the trichotomy of idempotent QCSP among P, NP-complete and PSpace-complete. Chen does not state that the PSpace-complete cases arise only from EGP, but this would surely have been on his mind (and he knew there was a dichotomy between PGP and EGP already for 3-element idempotent algebras [13]). Since [25], it has been known for any finite domain that only the cases PGP and EGP arise (even in the non-idempotent case), and that PGP is always witnessed in the form of switchability. It follows that we know that the PGP cases are in NP $[8,13]$.
Theorem 2 ([9]). Let Γ be a finite constraint language with all constants such that $\operatorname{Pol}(\Gamma)$ has $P G P$. Then $\operatorname{QCSP}(\Gamma)$ reduces to a polynomial number of instances of $\operatorname{CSP}(\Gamma)$ and is in $N P$.

Using the CSP classification we can then separate the PGP cases into those that are in P and those that are NP-complete.

A tantalizing characterization of idempotent $\operatorname{Pol}(\Gamma)$ that are EGP is given in [25], where it is shown that Γ must allow the primitive positive (pp) definition (of the form $\exists x_{1} \ldots \exists x_{n} \Phi$) of relations τ_{n} with the following special form.
Definition 1. Let the domain D be so that $\alpha \cup \beta=D$ yet neither of α nor β equals D. Let $S=\alpha^{3} \cup \beta^{3}$ and τ_{n} be the $3 n$-ary relation given by $\bigvee_{i \in[n]} S\left(x_{i}, y_{i}, z_{i}\right)$.

The complement to S represents the Not-All-Equal relation and the relations τ_{n} allow for the encoding of the complement of Not-All-Equal 3-Satisfiability (where $\alpha \backslash \beta$ is 0 and $\beta \backslash \alpha$ is 1). Thus, if one
has polynomially computable (in n) pp -definitions of τ_{n}, then it is clear that $\operatorname{QCSP}(\Gamma)$ is co-NP-hard [9]. In light of this observation, it seemed that only a small step remained to proving the actual Chen Conjecture, at least with co-NP-hard in place of PSpace-complete.

In this paper we refute the Chen Conjecture in a strong way while giving a long-desired classification for $\operatorname{QCSP}(\Gamma)$ where Γ is a finite 3 -element constraint language with constants. Not only do we find Γ so that $\operatorname{QCSP}(\Gamma)$ is co-NP-complete, but also we find Γ so that $\operatorname{Pol}(\Gamma)$ has EGP yet $\mathrm{QCSP}(\Gamma)$ is in P. In these latter cases we can further prove that all pp-definitions of τ_{n} in Γ are of size exponential in n. Additionally, we show that on a 4 -element domain there exists a constraint language Γ such that $\mathrm{QCSP}(\Gamma)$ is DP-complete (from the Boolean Hierarchy), and on a 10-element domain there exists a constraint language giving the complexity class Θ_{2}^{P}. Our main result for QCSP can be given as follows.
Theorem 3. Let Γ be a finite constraint language on 3 elements which includes all constants. Then $\mathrm{QCSP}(\Gamma)$ is either in $P, N P$-complete, co-NP-complete or PSpace-complete.

Meanwhile, we prove the Chen Conjecture is true for the class of finite conservative languages (these are those that have available all unary relations). One might see this as a maximal natural class on which the Chen Conjecture holds. Another form of "conservative QCSP", in which relativization of the universal quantifier is permitted, has been given by Bodirsky and Chen [2]. They uncovered a dichotomy between P and PSpace-complete, whereas the QCSP for finite conservative languages bequeaths the following trichotomy.
Theorem 4 (Conservative QCSP). Let Γ be a finite constraint language with all unary relations. If $\operatorname{Pol}(\Gamma)$ has $P G P$, then $\operatorname{QCSP}(\Gamma)$ is in NP. If Γ further admits a WNU polymorphism, then QCSP (Γ) is in P, else it is NP-complete. Otherwise, $\operatorname{Pol}(\Gamma)$ has $E G P$ and $\mathrm{QCSP}(\Gamma)$ is PSpace-complete.

It is hard to exaggerate how surprising our discovery of multitudinous complexities above P for the QCSP is. In Table 1 from [21], all syntactic fragments of first-order logic built from subsets of $\{\forall, \exists, \wedge, \vee, \neg,=\}$ are considered. It is now known that they all give model-checking problems with simple, structured complexitytheoretical classifications (the classifications are simple but not necessarily the proofs), except the $\operatorname{QCSP}(\{\forall, \exists, \wedge\}$, with or without $=$), and its dual $(\{\forall, \exists, \vee\}$, with or without $\neq)$, whose complexity classification is in any case a mirror of that for the QCSP. This holds for complexity classes of P and above (the classification of CSP complexities within P is quite rich).

1.1 Related Work

In [9], we have proved a variant of the Chen Conjecture using infinite relational languages encoded in quantifier-free logic with constants and equality. An algebra consists of a finite domain and a set of operations on that domain. A polymorphism clone is an excellent example of an algebra which additionally satisfies certain properties of closure.
Theorem 5 (Revised Chen Conjecture [9]). Let \mathbb{A} be an idempotent algebra on a finite domain A where we encode relations in $\operatorname{Inv}(\mathbb{A})$ in quantifier-free logic with constants and equality. If \mathbb{A} satisfies PGP, then $\operatorname{QCSP}(\operatorname{Inv}(\mathbb{A}))$ is in $N P$. Otherwise, $\operatorname{QCSP}(\operatorname{Inv}(\mathbb{A}))$ is co-NPhard.

In this theorem it was known that co-NP-hardness could not be improved to PSpace-completeness, because $\operatorname{QCSP}(\operatorname{Inv}(\mathbb{A}))$ is coNP -complete when, e.g., $\left.\mathbb{A}=\operatorname{Pol}\left(\{0,1,2\} ; 0,1,2, \tau_{1}, \tau_{2}, \ldots\right\}\right)$ where $\alpha=\{0,2\}$ and $\beta=\{1,2\}$. However, $\operatorname{Inv}(\mathbb{A})$ is not finitely related. It was not thought possible that there could be finite Γ such that QCSP (Γ) is co-NP-complete. If we take the tuple-listing encoding of relations instead of quantifier-free logic with constants and equality, Theorem 5 is known to fail [9].

The systematic complexity-theoretic study of QCSPs dates to the early versions of [4] (the earliest is a technical report from 2002). By the time of the journal version [4], the significance of the semilattice-without-unit $s=s_{c}$ (definition at opening of Section 2.1) had become apparent in a series of papers of Chen [10, 12, 13]. Although $\operatorname{CSP}(\operatorname{Inv}(\{s\}))$ is in P it is proved in $[4]$ that $\mathrm{QCSP}(\operatorname{Inv}(\{s\}))$ is PSpace-complete (even for some finite sublanguage of $\operatorname{Inv}(\{s\}))$. We were unable to use the proof from that paper to expand the PSpace-complete classification in the 3-element case, but we have expanded it nonetheless.

Finally, the study of which sequences of relations R_{i}, of arity i, have polynomial-sized (in i) pp-definitions in a finite constraint language Γ, has been addressed in [19]. Of course, this question for our relations τ_{i} plays a central role in this paper.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we formulate the main results of the paper. We start with the classification of the complexity of QCSP ($Г$) for constraint languages Γ on a 3-element domain containing all constants. Then we show how we can combine two constraint languages in one constraint language and explain how this idea gives exotic complexity classes such as $\mathrm{DP}=$ $\mathrm{NP} \wedge$ co-NP.

In Section 3 we give necessary further definitions, then in Section 4 prove Chen's Conjecture for the conservative case. In Section 5 we prove that the combination of two constraint languages can actually give new complexity classes.

In Sections 6 to 9, we give examples of our new complexity results on a 3 -element domain. In Section 6 we give a Γ so that $\operatorname{QCSP}(\Gamma)$ is co-NP-complete. In Section 7 we give a new Γ so that QCSP (Γ) is PSpace-complete. Finally, in Sections 8 and 9, we give two examples of new Γ so that $\operatorname{QCSP}(\Gamma)$ is in P yet $\operatorname{Pol}(\Gamma)$ has EGP.

Owing to space restrictions, the proof of our main result (Theorem 6) is omitted. It can be found in the full version of this paper [26].

2 MAIN RESULTS

In this section we formulate two main results of the paper: classification of the complexity of $\operatorname{QCSP}(\Gamma)$ for all constraint languages Γ on a 3 -element domain containing all constants, and a theorem showing how we can combine constraint languages to obtain exotic complexity classes.

2.1 QCSP on a 3-element domain

Let a and c be constants of our domain $\{0,1,2\}$.

$$
f_{a, c}(x, y, z)= \begin{cases}x, & \text { if } x=y \text { or } y=z=a \\ c, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& s_{a, c}(x, y)= \begin{cases}x, & \text { if } x=y \text { or } y=a \\
c, & \text { otherwise } .\end{cases} \\
& g_{a, c}(x, y)= \begin{cases}x, & \text { if } x=a \text { or } y \neq c \\
c, & \text { otherwise }\end{cases} \\
& s_{c}(x, y)= \begin{cases}x, & \text { if } x=y \\
c, & \text { otherwise }\end{cases}
\end{aligned}
$$

We get the following characterization of the complexity of QCSP (Γ) on a 3 -element domain.

Theorem 6. Suppose Γ is a finite constraint language on $\{0,1,2\}$ with constants. Then $\operatorname{QCSP}(\Gamma)$ is
(1) in P, if $\mathrm{Pol}(\Gamma)$ has the $P G P$ property and has a WNU operation.
(2) NP-complete, if $\operatorname{Pol}(\Gamma)$ has the PGP property and has no a $W N U$ operation.
(3) PSpace-complete, if $\operatorname{Pol}(\Gamma)$ has the EGP property and has no a WNU operation.
(4) PSpace-complete, if $\mathrm{Pol}(\Gamma)$ has the EGP property and $\mathrm{Pol}(\Gamma)$ does not contain f such that $f(x, a)=x$ and $f(x, c)=c$, where $a, c \in\{0,1,2\}$.
(5) in P, if $\mathrm{Pol}(\Gamma)$ contains $s_{a, c}$ and $g_{a, c}$ for some $a, c \in\{0,1,2\}$, $a \neq c$.
(6) in P, if $\operatorname{Pol}(\Gamma)$ contains $f_{a, c}$ for some $a, c \in\{0,1,2\}, a \neq c$.
(7) co-NP-complete otherwise.

Note that the semilattice s_{c} can be derived from each of the operations $f_{a, c}, s_{a, c}$. As we know from [4], the problem $\operatorname{QCSP}\left(\operatorname{Inv}\left(s_{2}\right)\right)$ is PSpace-complete. Figure 1 demonstrates how adding new operations makes the constraint language weaker and the corresponding QCSP easier. Note that all the constraint languages on Figure 1 have the EGP property.

Let us give examples in each of the classes above. For (1) we can build a constraint language Γ with a single ternary relation $x-y+z=1$. For (2) we can take a single ternary relation

$$
\{(1,0,0),(0,1,0),(0,0,1)\}
$$

that doesn't involve 2. For (3) we can take the closely related single ternary relation

$$
\{(x, 0,0),(0, x, 0),(0,0, x): x \in\{1,2\}\}
$$

For (4) see Section 7. For (5) see Section 8. For (6) see Section 9. Finally, for (7) see Section 6.

2.2 QCSP Monsters

The following theorem shows how we can combine constraint languages to obtain QCSPs with different complexities.

Theorem 7. Suppose Γ_{1}, Γ_{2}, and Γ_{3} are finite constraint languages on sets A_{1}, A_{2}, and A_{3} respectively, Γ_{1} contains a constant relation $(x=a)$. Then there exist constraint languages $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$, on the domains of size $\left|A_{1}\right|+1,\left|A_{2}\right| \cdot\left|A_{3}\right|+\left|A_{2}\right|+\left|A_{3}\right|, 2 \cdot\left|A_{2}\right|+\left|A_{3}\right|+2$, and $\left|A_{2}\right| \cdot\left|A_{3}\right|+\left|A_{2}\right|+\left|A_{3}\right|+2$, respectively, such that $\operatorname{QCSP}\left(\Delta_{i}\right)$ is polynomially equivalent to the following problem:
$\mathrm{i}=1$ Given an instance of $\mathrm{QCSP}\left(\Gamma_{1}\right)$ and instance of an NP-complete problem; decide whether both of them hold, i.e. $\operatorname{QCSP}\left(\Gamma_{1}\right) \wedge N P$.
$\mathrm{i}=2$ Given an instance of $\mathrm{QCSP}\left(\Gamma_{2}\right)$ and an instance of $\operatorname{QCSP}\left(\Gamma_{3}\right)$; decide whether both of them hold, i.e. $\operatorname{QCSP}\left(\Gamma_{2}\right) \wedge \operatorname{QCSP}\left(\Gamma_{3}\right)$.

Figure 1: Constraint languages defined as invariants of sets of operations and their complexity.
$\mathrm{i}=3$ Given $n>0$, instances I_{1}, \ldots, I_{n} of $\mathrm{QCSP}\left(\Gamma_{2}\right)$, and instances J_{1}, \ldots, J_{n} of $\operatorname{CSP}\left(\Gamma_{3}\right)$; decide whether $\left(I_{1} \vee J_{1}\right) \wedge \cdots \wedge\left(I_{n} \vee J_{n}\right)$ holds, i.e. $\left(\operatorname{QCSP}\left(\Gamma_{2}\right) \vee \operatorname{CSP}\left(\Gamma_{3}\right)\right) \wedge \cdots \wedge\left(\operatorname{QCSP}\left(\Gamma_{2}\right) \vee \operatorname{CSP}\left(\Gamma_{3}\right)\right)$.
$\mathrm{i}=4$ Given $n>0$, instances I_{1}, \ldots, I_{n} of $\operatorname{QCSP}\left(\Gamma_{2}\right)$, and instances J_{1}, \ldots, J_{n} of $\operatorname{QCSP}\left(\Gamma_{3}\right)$; decide whether $\left(I_{1} \vee J_{1}\right) \wedge \cdots \wedge\left(I_{n} \vee\right.$ $\left.J_{n}\right)$ holds, i.e. $\left(\operatorname{QCSP}\left(\Gamma_{2}\right) \vee \operatorname{QCSP}\left(\Gamma_{3}\right)\right) \wedge \cdots \wedge\left(\operatorname{QCSP}\left(\Gamma_{2}\right) \vee\right.$ QCSP ($\left.\Gamma_{3}\right)$).

Proof. The proof for $i=1, i=2, i=3$, and $i=4$ follows from Lemmas $13,16,15$, and 14 , respectively.

Corollary 8. There exists a finite constraint language Γ on a 4element domain such that $\mathrm{QCSP}(\Gamma)$ is DP-complete (where $D P=$ $N P \wedge$ co-NP from Boolean hierarchy).

Proof. By Theorem 6, there exists a constraint language Γ_{1} on a 3-element domain with constants such that $\mathrm{QCSP}\left(\Gamma_{1}\right)$ is co-NPcomplete. Applying Theorem 7 with $i=1$ to Γ_{1} we obtain a constraint language Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is polynomially equivalent to DP.

The complexity class Θ_{2}^{P} (see [20] and references therein) admits various definitions, one of which is that it allows a Turing machine polynomial time with a logarithmic number of calls to an NP oracle. A condition proved equivalent to this, through Theorems 4 and 7 of [7], is as follows. In this theorem $i \leqslant p(|x|)$ indicates i is a positive integer smaller than $p(|x|)$, where x is a string of length $|x|$.
Theorem 9 ([7]). Every predicate in Θ_{2}^{P} can be defined by a formula of the form $\exists i \leqslant p(|x|) A(i, x) \wedge \neg B(i, x)$ as well as by a formula of the form $\forall i \leqslant p^{\prime}(|x|) A^{\prime}(i, x) \vee \neg B^{\prime}(i, x)$ where $A, B, A^{\prime}, B^{\prime}$ are NP-predicates and p, p^{\prime} are polynomials.

The second (universal) characterization will play the key role in the following observation.

Corollary 10. There exists a finite constraint language Γ on a 10element domain such that $\mathrm{QCSP}(\Gamma)$ is Θ_{2}^{P}-complete.

Proof. By Theorem 6, there exists a constraint language Γ_{1} on a 3-element domain with constants such that $\operatorname{QCSP}\left(\Gamma_{1}\right)$ is co-NPcomplete. Choose a constraint language Γ_{2} on a 2-element domain such that $\operatorname{CSP}\left(\Gamma_{2}\right)$ is NP-complete. Using item 3 of Theorem 7, we construct a constraint language Γ so that $\mathrm{QCSP}(\Gamma)$ is equivalent to the truth of $\left(I_{1} \vee J_{1}\right) \wedge \cdots \wedge\left(I_{n} \vee J_{n}\right)$, where I_{1}, \ldots, I_{n} are instances of $\operatorname{QCSP}\left(\Gamma_{1}\right)$ and J_{1}, \ldots, J_{n} are instances of $\operatorname{CSP}\left(\Gamma_{2}\right)$.

To prove membership of $\operatorname{QCSP}(\Gamma)$ in Θ_{2}^{P}, we use the second characterization of Theorem 9 together with $A^{\prime}(i, x)$ indicating that J_{i} is a yes-instance of $\operatorname{CSP}\left(\Gamma_{2}\right)$ and $\neg B^{\prime}(i, x)$ indicating that I_{i} is a yes-instance (or $B^{\prime}(i, x)$ indicating I_{i} is a no-instance) of $\operatorname{QCSP}\left(\Gamma_{1}\right)$. Thus, we want i to range over numbers from 1 to n, so in the predicates $A^{\prime}(i, x)$ and $\neg B^{\prime}(i, x)$ we should in particular set these to be true if i is not a number from 1 to n.

To prove that $\operatorname{QCSP}(\Gamma)$ is Θ_{2}^{P}-complete, we use again the second formulation of characterization of Theorem 9, but this time break the universal quantification into a conjunction of length $p^{\prime}(|x|) . \quad \square$

3 PRELIMINARIES

Let $[n]=\{1, \ldots, n\}$. We identify a constraint language Γ with a set of relations over a fixed finite domain D. We may also think of this as a first-order relational structure. If Φ is a first-order formula including x_{1}, \ldots, x_{n} among its free variables and not containing y_{1}, \ldots, y_{n} in any capacity, then $\Phi_{y_{1}, \ldots, y_{n}}^{x_{1}, \ldots, x_{n}}$ is the result of substituting the free occurrences of x_{1}, \ldots, x_{n} by y_{1}, \ldots, y_{n}, respectively. If I is an instance of $\operatorname{QCSP}(\Gamma)$, then $\operatorname{Var}(I)$ refers to the variables mentioned in I. If Q is a quantifier from $\{\exists, \forall\}$ then \bar{Q} is its de Morgan dual, that is the unique quantifier from $\{\exists, \forall\} \backslash\{Q\}$.

We always may assume that an instance of $\operatorname{QCSP}(\Gamma)$ is of the prenex form $\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots \forall x_{n} \exists y_{n} \Phi$, since if it is not it may readily be brought into such a form in polynomial time. Then a solution is a sequence of (Skolem) functions f_{1}, \ldots, f_{n} such that

$$
\left(x_{1}, f\left(x_{1}\right), x_{2}, f_{2}\left(x_{1}, x_{2}\right), \ldots, x_{n}, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

is a solution of Φ for all x_{1}, \ldots, x_{n} (i.e. $y_{i}=f_{i}\left(x_{1}, \ldots, x_{i}\right)$). This belies a (Hintikka) game semantics for the truth of a QCSP instance
in which a player called Universal plays the universal variables and a player called Existential plays the existential variables, one after another, from the outside in. The Skolem functions above give a strategy for Existential. In our proofs we may occasionally revert to a game-theoretical parlance.

An algebra \mathbb{A} consists of domain and a set of operations defined on that domain. The most important type of algebra in this paper is a clone. Let $\operatorname{Clo}(G)$ be the clone generated by the set of operations G, that is the closure of G under the addition of projections and composition, where the composition of a k-ary operation f and m-ary operations g_{1}, \ldots, g_{k} is the m-ary operation defined by $f\left(g_{1}, \ldots, g_{k}\right)$.

In general with our operators, if the argument is a singleton set, we omit the curly brackets. A subalgebra of \mathbb{A} consists of a subset D of the domain of \mathbb{A}, that is preserved by all the operations of G, together with all the operations of \mathbb{A} restricted to D. A congruence on an algebra \mathbb{A} is an equivalence relation \sim on its domain so that, for each k-ary operation f in $\mathbb{A}, f\left(x_{1}, \ldots, x_{k}\right) \sim f\left(y_{1}, \ldots, y_{k}\right)$ whenever $x_{1} \sim y_{1}, \ldots, x_{k} \sim y_{k}$. We can quotient \mathbb{A} by \sim in the obvious way to obtain a new algebra that we describe as a homomorphic image of \mathbb{A}. A factor of \mathbb{A} is a subalgebra of a homomorphic image of \mathbb{A}.

A formula of the form $\exists y_{1} \ldots \exists y_{n} \Phi$, where Φ is a conjunction of relations from Γ is called a positive primitive formula (pp-formula) over Γ. If $R\left(x_{1}, \ldots, x_{n}\right)=\exists y_{1} \ldots \exists y_{n} \Phi$, then we say that R is $p p$ defined by $\exists y_{1} \ldots \exists y_{n} \Phi$, and $\exists y_{1} \ldots \exists y_{n} \Phi$ is called a pp-definition. Note that if a relation R is pp -definable over Γ then it is preserved by any operation $f \in \operatorname{Pol}(\Gamma)[3,17]$.

In a pp-formula we allow always, except for Section 5, the use of constants from the domain. Note that using constants is equivalent to having all unary relations $x=c$ in our constraint language On the algebraic side, this corresponds to assuming all polymorphism operations are idempotent. For a conjunctive formula Φ by $\Phi\left(x_{1}, \ldots, x_{n}\right)$ we denote the n-ary relation defined by a pp-formula where all variables except x_{1}, \ldots, x_{n} are existentially quantified. Equivalently, $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is the set of all tuples $\left(a_{1}, \ldots, a_{n}\right)$ such that Φ has a solution with $\left(x_{1}, \ldots, x_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$.

For a k-ary relation R and a set of coordinates $B \subset[k]$, define $\operatorname{pr}_{B}(R)$ to be the $|B|$-ary relation obtained from R by projecting onto B, or equivalently, existentially quantifying variables at positions $[k] \backslash B$.

For a tuple α by $\alpha(n)$ we denote the n-th element of α. We define relations by matrices where the columns list the tuples.

Let α and β be strict subsets of D so that $\alpha \cup \beta=D$. The most interesting cases arise when $\alpha \cap \beta=\varnothing$ but we will not insist on this at this point. An n-ary operation f is $\alpha \beta$-projective if there exists $i \in[n]$ so that $f\left(x_{1}, \ldots, x_{n}\right) \in \alpha$, if $x_{i} \in \alpha$, and $f\left(x_{1}, \ldots, x_{n}\right) \in \beta$, if $x_{i} \in \beta$. In this case, we may say that f is $\alpha \beta$-projective to coordinate i. It is now known that an idempotent algebra \mathbb{A} over domain D has EGP iff there exists α and β, strict subsets of D, so that all operations of \mathbb{A} are $\alpha \beta$-projective [25].

4 THE CONSERVATIVE CASE

In this section we prove Theorem 4 describing the complexity of $\operatorname{QCSP}(\Gamma)$ for conservative constraint languages Γ, i.e. languages
containing all unary relations. As it was mentioned in the introduction, if $\operatorname{Pol}(\Gamma)$ has the PGP property then we can reduce $\operatorname{QCSP}(\Gamma)$ to several copies of CSP. Thus, the only open question was the complexity for the EGP case. Here we will use the following fact from [9].
Lemma 11 ([9]). Suppose Γ is a constraint language on domain D with constants, $\operatorname{Pol}(\Gamma)$ has the EGP property. Then there exist $\alpha, \beta \subsetneq D$ such that $\alpha \cup \beta=D$ and τ_{n} (as in Definition 1) is $p p$-definable from Γ for every $n \geqslant 1$.
It turns out that if Γ contains all unary relations then two copies of τ_{k} can be composed to define the relation $\tau_{2(k-1)}$ as follows. Choose $0 \in \alpha \backslash \beta$ and $1 \in \beta \backslash \alpha$, then

$$
\begin{aligned}
& \tau_{2(k-1)}\left(x_{1}, y_{1}, z_{1} \ldots, x_{2(k-1)}, y_{2(k-1)}, z_{2(k-1)}\right)= \\
& \quad \exists w \tau_{k}\left(x_{1}, y_{1}, z_{1} \ldots, x_{k-1}, y_{k-1}, z_{k-1}, 0,0, w\right) \wedge \\
& \quad \tau_{k}\left(x_{k}, y_{k}, z_{k}, \ldots, x_{2(k-1)}, y_{2(k-1)}, z_{2(k-1)}, 1,1, w\right) \wedge w \in\{0,1\}
\end{aligned}
$$

Identifying variables in τ_{k} we can derive τ_{k-1}, therefore τ_{k} is ppdefinable from τ_{j} and unary relations whenever $k \geqslant j \geqslant 3$.

Lemma 12. There is a polynomially (in k) computable pp-definition of τ_{k} from τ_{3} and unary relations.

Proof. As above we can define $\tau_{2(k-1)}$ in a recursive fashion using two copies of τ_{k} plus a single new existential quantifier whose variable is restricted to being on domain $\{0,1\}$. Note that in the recursive pp-definition of τ_{k} over τ_{3} every variable that is not quantified appears just once, each quantified variable appears three times, and most variables are not quantified. Therefore, our recursive scheme gives a polynomially computable pp-definition of τ_{k}.

We are now in a position to prove Theorem 4, whose statement we recall.

Theorem 4. Let Γ be a finite constraint language with all unary relations. If $\mathrm{Pol}(\Gamma)$ has $P G P$, then $\operatorname{QCSP}(\Gamma)$ is in $N P$. If Γ further admits a WNU polymorphism, then QCSP (Γ) is in P, else it is NP-complete. Otherwise, $\operatorname{Pol}(\Gamma)$ has EGP and $\mathrm{QCSP}(\Gamma)$ is PSpace-complete.

Proof. Assume Γ is a finite constraint language with all unary relations. Suppose $\operatorname{Pol}(\Gamma)$ has PGP. Then we know from Theorem 2 that $\operatorname{QCSP}(\Gamma)$ reduces to a polynomial number of instances of $\operatorname{CSP}(\Gamma)$. It follows from Theorem 1 that if Γ admits a WNU then $\operatorname{QCSP}(\Gamma)$ is in P , otherwise $\mathrm{QCSP}(\Gamma)$ is NP-complete.

Suppose now $\operatorname{Pol}(\Gamma)$ has EGP. By Lemma 11 there exist α, β as in Definition 1 such that τ_{3} is pp -definable from Γ. Combining this with Lemma 12 we conclude that there are polynomially (in k) computable pp-definitions of τ_{k} in Γ. We will reduce from the complement of Quantified Not-All-Equal 3-Satisfiability (QNAE3SAT) which is known to be PSpace-complete (see, e.g., [23]). From an instance $\phi:=\neg \forall x_{1} \exists y_{1} \ldots \forall x_{n} \exists y_{n} \Phi$ of co-QNAE3SAT, where $\Phi:=$ $\operatorname{NAE}_{3}\left(z_{1}^{1}, z_{1}^{2}, z_{1}^{3}\right) \wedge \ldots \wedge \operatorname{NAE}_{3}\left(z_{k}^{1}, z_{k}^{2}, z_{k}^{3}\right)$ and $z_{1}^{1}, z_{1}^{2}, z_{1}^{3}, \ldots, z_{k}^{1}, z_{k}^{2}, z_{k}^{3} \in$ $\left\{x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right\}$, we build an instance ϕ^{\prime} of $\operatorname{QCSP}(\Gamma)$ as follows. Consider ϕ to be $\exists x_{1} \forall y_{1} \ldots \exists x_{n} \forall y_{n} \neg \Phi$ and set

$$
\begin{aligned}
\phi^{\prime}:=\exists & x_{1} \forall y_{1} \ldots \exists x_{n} \forall y_{n} \\
& x_{1}, \ldots, x_{n} \in(\alpha \backslash \beta \cup \beta \backslash \alpha) \wedge \tau_{k}\left(z_{1}^{1}, z_{1}^{2}, z_{1}^{3}, \ldots, z_{k}^{1}, z_{k}^{2}, z_{k}^{3}\right) .
\end{aligned}
$$

The idea is that the set $\alpha \backslash \beta$ plays the role of 0 and $\beta \backslash \alpha$ plays the role of 1 .
($\phi \in$ co-QNAE3SAT implies $\phi^{\prime} \in \operatorname{QCSP}(\Gamma)$.) Let the universal variables be evaluated in ϕ^{\prime} and match them in ϕ according to $\alpha \backslash \beta$ being 0 and $\beta \backslash \alpha$ being 1 . If a universal variable in ϕ^{\prime} is evaluated in $\alpha \cap \beta$, then we can match it in ϕ w.l.o.g. to 0 . Now, read a valuation of the existential variables of ϕ^{\prime} from those in ϕ according to 0 becoming any fixed $d_{0} \in \alpha \backslash \beta$ and 1 becoming any fixed $d_{1} \in \beta \backslash \alpha$. By construction we have $\phi^{\prime} \in \operatorname{QCSP}(\Gamma)$.
($\phi^{\prime} \in \operatorname{QCSP}(\Gamma)$ implies $\phi \in$ co-QNAE3SAT.) Suppose $\phi^{\prime} \in$ $\operatorname{QCSP}(\Gamma)$. We will prove $\phi \in$ co-QNAE3SAT again using the form of ϕ being $\exists x_{1} \forall y_{1} \ldots \exists x_{n} \forall y_{n} \neg \Phi$. Let the universal variables be evaluated in ϕ and match them in ϕ^{\prime} according to 0 becoming any fixed $d_{0} \in \alpha \backslash \beta$ and 1 becoming any fixed $d_{1} \in \beta \backslash \alpha$. Now, read a valuation of the existential variables of ϕ from ϕ^{\prime} according to $\alpha \backslash \beta$ being 0 and $\beta \backslash \alpha$ being 1. By construction we have $\phi \in$ co-QNAE3SAT.

5 QCSP MONSTERS

This section explains the building of monsters with greater than a 3 -element domain. It has no bearing on the 3 -element classification.

Lemma 13. Suppose Γ is a finite constraint language on a set A containing $x=a$. Then there exists a constraint language Γ^{\prime} on a domain of size $|A|+1$ such that $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is polynomially equivalent to $\operatorname{QCSP}(\Gamma) \wedge N P$, that is the following decision problem: given an instance of $\mathrm{QCSP}(\Gamma)$ and an instance of some NP-complete problem; decide whether both of them hold.

Proof. Choose an element $a \in A$ and an element $a^{\prime} \notin A$. Put $A^{\prime}=A \cup\left\{a^{\prime}\right\}$.

Put $\phi(x)=\left\{\begin{array}{ll}x, & \text { if } x \in A \\ a, & \text { if } x=a^{\prime}\end{array}\right.$. We assign a relation R^{\prime} on the set A^{\prime} to every $R \in \Gamma$ as follows: $R^{\prime}=\left\{\left(a_{1}, \ldots, a_{h}\right) \mid\left(\phi\left(a_{1}\right), \ldots, \phi\left(a_{h}\right)\right) \in\right.$ $R\}$. Let $\mathrm{NAE}_{3} \subseteq\left\{a, a^{\prime}\right\}^{3}$ be the ternary relation containing all tuples on $\left\{a, a^{\prime}\right\}$ except for $(a, a, a),\left(a^{\prime}, a^{\prime}, a^{\prime}\right)$. Let $\Gamma^{\prime}=\left\{R^{\prime} \mid R \in\right.$ $\Gamma\} \cup\left\{\mathrm{NAE}_{3}\right\}$.

Suppose I is an instance of $\operatorname{QCSP}(\Gamma)$ and J is an instance of $\operatorname{CSP}\left(\left\{\mathrm{NAE}_{3}\right\}\right)$, which is an NP-complete problem. If we replace every relation R from Γ by the corresponding relation R^{\prime}, we get an instance I^{\prime} that is equivalent to I. Then the instance $I^{\prime} \wedge J$ can be viewed as an instance of $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ that is equivalent to $I \wedge J$.

Suppose I^{\prime} is an instance of $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$. W.l.o.g. we will assume that no variable appearing in an NAE_{3} relation is universally quantified, else this is a no-instance of $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ and can be reduced to a fixed no-instance (e.g.) J of $\operatorname{CSP}\left(\left\{\mathrm{NAE}_{3}\right\}\right)$. Now, we define an instance I of $\operatorname{QCSP}(\Gamma)$ and an instance J of $\operatorname{CSP}\left(\left\{\mathrm{NAE}_{3}\right\}\right)$ as follows. I is obtained from I^{\prime} by replacement of all relations R^{\prime} by the corresponding R and NAE_{3} by $\{(a, a, a)\}$. Since Γ contains $x=a, I$ is an instance of $\operatorname{QCSP}(\Gamma)$. The instance J consists of the NAE_{3}-part of I^{\prime} which is a CSP as we already assumed it contains no universal variables. Now, to see $I^{\prime} \in \operatorname{QCSP}\left(\Gamma^{\prime}\right)$ iff $I \in \operatorname{QCSP}(\Gamma)$ and $J \in \operatorname{CSP}\left(\left\{\mathrm{NAE}_{3}\right\}\right)$ it is enough to observe that $\operatorname{QCSP}(\Gamma)$ and $\operatorname{QCSP}\left(\Gamma^{\prime} \backslash\left\{\mathrm{NAE}_{3}\right\}\right)$ are equivalent on all instances.

Lemma 14. Suppose Γ_{1} and Γ_{2} are finite constraint languages on sets A_{1} and A_{2} respectively. Then there exists a constraint language Γ on a
domain of size $\left|A_{1}\right| \cdot\left|A_{2}\right|+\left|A_{1}\right|+\left|A_{2}\right|+2$ such that $\mathrm{QCSP}(\Gamma)$ is polynomially equivalent to $\left(\operatorname{QCSP}\left(\Gamma_{1}\right) \vee \operatorname{QCSP}\left(\Gamma_{2}\right)\right) \wedge \cdots \wedge\left(\operatorname{QCSP}\left(\Gamma_{1}\right) \vee\right.$ $\operatorname{QCSP}\left(\Gamma_{2}\right)$), i.e. the following decision problem: given n, instances I_{1}, \ldots, I_{n} of $\mathrm{QCSP}\left(\Gamma_{1}\right)$, and instances J_{1}, \ldots, J_{n} of $\operatorname{QCSP}\left(\Gamma_{2}\right)$; decide whether $\left(I_{1} \vee J_{1}\right) \wedge \cdots \wedge\left(I_{n} \vee J_{n}\right)$ holds.

$$
\begin{aligned}
& \text { Proof. Assume that } A_{1} \cap A_{2}=\varnothing, a_{1}, a_{2} \notin A_{1} \cup A_{2} \text {. Let } \\
& A=\left(A_{1} \times A_{2}\right) \cup A_{1} \cup A_{2} \cup\left\{a_{1}, a_{2}\right\}, \\
& \sigma=\left(A_{1} \times\left\{a_{1}\right\}\right) \cup\left(\left\{a_{2}\right\} \times A_{2}\right), \\
& \sigma_{1}=\left\{(a,(a, b)) \mid a \in A_{1}, b \in A_{2}\right\} \cup \\
& \left(\left\{a_{2}\right\} \times A\right) \cup\left(A_{1} \times\left(A_{1} \cup A_{2} \cup\left\{a_{1}, a_{2}\right\}\right)\right), \\
& \sigma_{2}=\left\{(b,(a, b)) \mid a \in A_{1}, b \in A_{2}\right\} \cup \\
& \left(\left\{a_{1}\right\} \times A\right) \cup\left(A_{2} \times\left(A_{1} \cup A_{2} \cup\left\{a_{1}, a_{2}\right\}\right)\right), \\
& \Gamma=\left\{R \cup\left\{\left(a_{2}, \ldots, a_{2}\right)\right\} \mid R \in \Gamma_{1}\right\} \cup \\
& \left\{R \cup\left\{\left(a_{1}, \ldots, a_{1}\right)\right\} \mid R \in \Gamma_{2}\right\} \cup\left\{\sigma_{1}, \sigma_{2}, \sigma\right\} .
\end{aligned}
$$

Suppose we have an instance I_{1} of $\operatorname{QCSP}\left(\Gamma_{1}\right)$ and an instance I_{2} of $\operatorname{QCSP}\left(\Gamma_{2}\right)$. W.l.o.g. we will assume that neither I_{1} nor I_{2} is empty. We will explain how to build an instance J of $\operatorname{QCSP}(\Gamma)$. Let x_{1}, \ldots, x_{n} be all universally quantified variables of I_{1}.

We replace every atomic relation R of I_{1} by $R \cup\left\{\left(a_{2}, \ldots, a_{2}\right)\right\}$ and add relational constraints $\sigma_{1}\left(x_{i}, y_{i}\right)$ for every $i \in\{1, \ldots, n\}$. Also we replace $\forall x_{i}$ by $\forall y_{i} \exists x_{i}$ for every $i \in\{1, \ldots, n\}$. The result we denote by I_{1}^{\prime}. Similarly, but with a_{1} instead of a_{2} and σ_{2} instead of σ_{1} we define I_{2}^{\prime}. We claim that the sentence J defined by

$$
I_{1}^{\prime} \wedge I_{2}^{\prime} \wedge \bigwedge_{u \in \operatorname{Var}\left(I_{1}\right), v \in \operatorname{Var}\left(I_{2}\right)} \sigma(u, v)
$$

(we move all the quantifiers to the left part after joining) holds if and only if I_{1} holds or I_{2} holds. W.l.o.g. we will henceforth assume the first variable in J is existential (if necessary we could enforce this by a dummy existential variable at the beginning of I_{1}).
$\left(I_{1} \in \operatorname{QCSP}\left(\Gamma_{1}\right) \vee I_{2} \in \operatorname{QCSP}\left(\Gamma_{2}\right)\right.$ implies $J \in \operatorname{QCSP}(\Gamma)$.) W.l.o.g. $I_{1} \in \operatorname{QCSP}\left(\Gamma_{1}\right)$. Evaluate all variables of relations coming from Γ_{2} as a_{1}. Evaluate all first variables in relations σ_{2} as a_{1}. Evaluate all other variables of J according to the witnesses for I_{1}.
$\left(J \in \operatorname{QCSP}(\Gamma)\right.$ implies $I_{1} \in \operatorname{QCSP}\left(\Gamma_{1}\right) \vee I_{2} \in \operatorname{QCSP}\left(\Gamma_{2}\right)$.) Consider the witnessing of $J \in \operatorname{QCSP}(\Gamma)$ where universal variables are played only on elements of the form (a, b) where $a \in A_{1}, b \in A_{2}$. The first variable x of J is existential and indeed is associated with I_{1}. This must be evaluated in A_{1} or as a_{2}. If x is evaluated in A_{1} then the σ constraints force all variables associated with I_{2} to now be a_{1} and thus all variables associated with I_{1} to be in A_{1}. We can now witness $I_{1} \in \operatorname{QCSP}\left(\Gamma_{1}\right)$ where the universal (a, b) corresponds to a. If x is evaluated to a_{2}, then the σ constraints force all variables associated with I_{2} to now be in A_{2} and thus all variables associated with I_{1} to be in a_{2}. We can now witness $I_{2} \in \operatorname{QCSP}\left(\Gamma_{2}\right)$ where the universal (a, b) corresponds to b.

We can reduce a more complicated set of instances I_{1}, \ldots, I_{n} of $\operatorname{QCSP}\left(\Gamma_{1}\right)$ and J_{1}, \ldots, J_{n} of $\operatorname{QCSP}\left(\Gamma_{2}\right)$ to K in $\operatorname{QCsP}(\Gamma)$, in such a way that $K \in \operatorname{QCSP}(\Gamma)$ iff $\left(I_{1} \in \operatorname{QCsP}\left(\Gamma_{1}\right) \vee J_{1} \in \operatorname{QCSP}\left(\Gamma_{2}\right)\right) \wedge$ $\ldots \wedge\left(I_{n} \in \operatorname{QCSP}\left(\Gamma_{1}\right) \vee J_{n} \in \operatorname{QCSP}\left(\Gamma_{2}\right)\right)$ by taking the conjunction of our given reduction over each pair I_{i} and J_{i}.

Now, let us prove that any problem of $\mathrm{QCSP}(\Gamma)$ can be reduced to some conjunction of instances of $\operatorname{QCSP}\left(\Gamma_{1}\right) \vee \operatorname{QCSP}\left(\Gamma_{2}\right)$. Call an instance K of $\operatorname{QCSP}(\Gamma)$ connected if the Gaifman graph of the
existential variables of K is connected. The relations that play a role in this graph are just those coming from Γ. The number of connected components of K will give the number of conjuncts $\operatorname{QCSP}\left(\Gamma_{1}\right) \vee \operatorname{QCSP}\left(\Gamma_{2}\right)$, and we will assume now w.l.og. that K is connected.

Notice that all variables in K are typed, in that any variable in a relation from Γ either takes on values ranging across: $A_{1} \cup\left\{a_{2}\right\}$; or $A_{2} \cup\left\{a_{1}\right\}$; or A. If a variable appears with more than one type but the types are consistent (i.e. one type is A and the other is one from $A_{1} \cup\left\{a_{2}\right\}$ or $\left.A_{2} \cup\left\{a_{1}\right\}\right)$ then this is because the variable appears in some σ_{i} in the second position. But now we could remove this σ_{i} constraint because the other existing type restriction to one of $A_{1} \cup\left\{a_{2}\right\}$ or $A_{2} \cup\left\{a_{1}\right\}$ means σ_{i} will always be satisfied. Furthermore, if some variable has inconsistent types or a fixed element constant appears in a position where it is forbidden due to type, then we know the instance is false. This would also be the case if a universal variable appears in any type other than A. We will now assume none of these situations occurs and we term such an input reduced.

We would like now to assume that K has no existential variables x in the second position in a σ_{i}. First we must argue that if K is reduced then Existential can witness the truth of K while never playing outside of $A_{1} \cup A_{2} \cup\left\{a_{1}, a_{2}\right\}$. Suppose Existential ever played outside of this set, then any element in the set could be chosen as a legitimate alternative. Indeed, Existential could only win by playing an element of the form (a, b) in the second position of some σ_{i} and in this circumstance the atom would be equally satisfied by any choice from $A_{1} \cup A_{2} \cup\left\{a_{1}, a_{2}\right\}$. Now we can make the assumption that K has no existential variables x in the second position in a σ_{i} because any choice among $A_{1} \cup\left\{a_{2}\right\}$ or $A_{2} \cup\left\{a_{1}\right\}$ satisfies this.

Suppose we have in K some $\sigma_{1}\left(x_{1}, y\right) \wedge \sigma_{1}\left(x_{2}, y\right)$, and y is universally quantified before x_{1} and x_{2}, then adding the constraint $x_{1}=x_{2}$ doesn't change the result. Let us do this and propagate out the innermost of x_{1} and x_{2}.

Suppose we have $\forall y \exists x_{1} \exists x_{2} \sigma_{1}\left(x_{1}, y\right) \wedge \sigma_{2}\left(x_{2}, y\right)$, then this is equivalent to $\forall y_{1} \forall y_{2} \exists x_{1} \exists x_{2} \sigma_{1}\left(x_{1}, y_{1}\right) \wedge \sigma_{2}\left(x_{2}, y_{2}\right)$, and we will assume this latter form appears.

Finally, if $\sigma_{1}(x, y)$ appears in the instance K with x is quantified before y then it is equivalent to the substitution $x=a_{2}$. Similarly, for $\sigma_{2}(x, y)$ with x is quantified before y then it is equivalent to the substitution $x=a_{1}$.

We are now in a position to build an instance $K_{1} \vee K_{2}$ of $\mathrm{QCSP}\left(\Gamma_{1}\right) \vee$ $\operatorname{QCSP}\left(\Gamma_{2}\right)$. We can now split K into K_{1} and K_{2} based on the types of the existential variables using the following additional rule. If y is quantified before x (recall it must be universally quantified) then we may consider this enforces in K_{1} universal quantification of x but restricted to A_{1}. Similarly, with $\sigma_{2}(x, y)$, and K_{2} and A_{2}.

We claim $K \in \operatorname{QCSP}(\Gamma)$ iff $K_{1} \in \operatorname{QCSP}\left(\Gamma_{1}\right)$ or $K_{2} \in \operatorname{QCSP}\left(\Gamma_{2}\right)$.
(Forward.) Assume the converse, then there exist winning strategies for Universal players for K_{1} and K_{2}. We need to build a winning strategy for K. To do this we apply both strategies (choose different strategies for different variables) until the moment when the first existential variable (let it be x) is evaluated. Recall we assume existential variable x is either of type $A_{1} \cup\left\{a_{2}\right\}$ or of type $A_{2} \cup\left\{a_{1}\right\}$. W.l.o.g. let it be the former. If x is evaluated in A_{1} then the Universal player of K uses the strategy of K_{1}, if it is evaluated as a_{2} then we
use the strategy for K_{2}. Since K is connected, if x is evaluated in A_{1} then all variables of type $A_{1} \cup\left\{a_{2}\right\}$ must be evaluated in A_{1}, while if x is evaluated as a_{2} then all variables of type $A_{2} \cup\left\{a_{1}\right\}$ must be evaluated from A_{2} (because a_{1} can not appear). Thus the strategy we built is a winning strategy for the Universal player in K.
(Backwards.) W.l.o.g. assume $K_{1} \in \operatorname{QCSP}\left(\Gamma_{1}\right)$. Evaluate all variables in K of type $A_{2} \cup\left\{a_{1}\right\}$ to a_{1}. Evaluate all variables in K of type $A_{1} \cup\left\{a_{2}\right\}$ in A_{1} according to the winning strategy for $K_{1} \in \operatorname{QCSP}\left(\Gamma_{1}\right)$.

Similarly we can prove the following two lemmas.
Lemma 15. Suppose Γ_{1} and Γ_{2} are finite constraint languages on sets A_{1} and A_{2} respectively. Then there exists a constraint language Γ on a domain of size $2 \cdot\left|A_{1}\right|+\left|A_{2}\right|+2$ such that $\operatorname{QCSP}(\Gamma)$ is polynomially equivalent to $\left(\operatorname{QCSP}\left(\Gamma_{1}\right) \vee \operatorname{CSP}\left(\Gamma_{2}\right)\right) \wedge \cdots \wedge\left(\operatorname{QCSP}\left(\Gamma_{1}\right) \vee \operatorname{CSP}\left(\Gamma_{2}\right)\right)$, i.e. the following decision problem: given n, instances I_{1}, \ldots, I_{n} of $\operatorname{QCSP}\left(\Gamma_{1}\right)$, and instances J_{1}, \ldots, J_{n} of $\operatorname{CSP}\left(\Gamma_{2}\right)$; decide whether $\left(I_{1} \vee\right.$ $\left.J_{1}\right) \wedge \cdots \wedge\left(I_{n} \vee J_{n}\right)$ holds.

Proof. It is sufficient to define a new language as follows. Let A_{1}^{\prime} be a copy of A_{1}. For any $a \in A_{1}$ by a^{\prime} we denote the corresponding element of A_{1}^{\prime}. Let

$$
\begin{aligned}
A & =A_{1}^{\prime} \cup A_{1} \cup A_{2} \cup\left\{a_{1}, a_{2}\right\}, \\
\sigma= & \left(A_{1} \times\left\{a_{1}\right\}\right) \cup\left(\left\{a_{2}\right\} \times A_{2}\right), \\
\sigma_{1} & =\left\{\left(a, a^{\prime}\right) \mid a \in A_{1}\right\} \cup\left(\left\{a_{2}\right\} \times A\right) \cup\left(A_{1} \times\left(A_{1} \cup A_{2} \cup\left\{a_{1}, a_{2}\right\}\right)\right), \\
\Gamma & =\left\{R \cup\left\{\left(a_{2}, \ldots, a_{2}\right)\right\} \mid R \in \Gamma_{1}\right\} \cup \\
& \left\{R \cup\left\{\left(a_{1}, \ldots, a_{1}\right)\right\} \mid R \in \Gamma_{2}\right\} \cup\left\{\sigma_{1}, \sigma\right\} .
\end{aligned}
$$

Lemma 16. Suppose Γ_{1} and Γ_{2} are finite constraint languages on sets A_{1} and A_{2} respectively. Then there exists a constraint language Γ on a domain of size $\left|A_{2}\right| \cdot\left|A_{3}\right|+\left|A_{2}\right|+\left|A_{3}\right|$ such that $\operatorname{QCSP}(\Gamma)$ is polynomially equivalent to $\left(\operatorname{QCSP}\left(\Gamma_{1}\right) \wedge \operatorname{QCSP}\left(\Gamma_{2}\right)\right)$, i.e. the following decision problem: given an instance I of $\operatorname{QCSP}\left(\Gamma_{1}\right)$ and an instance J of $\mathrm{QCSP}\left(\Gamma_{2}\right)$); decide whether $I \wedge J$ holds.

Proof. It is sufficient to define a new language as follows. Let

$$
\begin{gathered}
A=\left(A_{1} \times A_{2}\right) \cup A_{1} \cup A_{2}, \\
\sigma_{1}=\left\{(a,(a, b)) \mid a \in A_{1}, b \in A_{2}\right\} \cup\left(A_{1} \times\left(A_{1} \cup A_{2}\right)\right), \\
\sigma_{2}=\left\{(b,(a, b)) \mid a \in A_{1}, b \in A_{2}\right\} \cup\left(A_{2} \times\left(A_{1} \cup A_{2}\right)\right), \\
\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup\left\{\sigma_{1}, \sigma_{2}\right\},
\end{gathered}
$$

where we consider any relation from $\Gamma_{1} \cup \Gamma_{2}$ as a relation on A.

6 CO-NP-COMPLETE LANGUAGE

In this section we define a constraint language Γ_{0} on $A=\{0,1,2\}$ such that $\mathrm{QCSP}\left(\Gamma_{0}\right)$ is co-NP-complete. Let

$$
R_{a n d, 2}=\left(\begin{array}{cccccc}
0 & 0 & 1 & 1 & 2 & . \\
0 & 1 & 0 & 1 & . & 2 \\
0 & 0 & 0 & 1 & . & \cdot
\end{array}\right), R_{o r, 2}=\left(\begin{array}{cccccc}
0 & 0 & 1 & 1 & 2 & \cdot \\
0 & 1 & 0 & 1 & \cdot & 2 \\
0 & 1 & 1 & 1 & . & \cdot
\end{array}\right)
$$

where by • we mean any element from $\{0,1,2\}$. Thus, these relations contain all the tuples starting with 2 , all the tuples whose second
element is 2 , and their restriction to the set $\{0,1\}$ gives row-wise the truth tables of AND and OR. Let $\Gamma_{0}=\left\{R_{\text {and,2 }}, R_{\text {or }, 2}\right\}$.

Lemma 17. $\mathrm{QCSP}\left(\Gamma_{0}\right)$ is co-NP-hard.

Proof. We can compose relations $R_{\text {and }, 2}$ and $R_{o r, 2}$ in the same way as we do with operations AND and OR. Thus, we can define n-ary AND and OR in the following way. For $n=2,3,4, \ldots$ put

$$
\begin{aligned}
& R_{a n d, n+1}\left(x_{1}, \ldots, x_{n}, x_{n+1}, y\right)= \\
& \exists z R_{a n d, n}\left(x_{1}, \ldots, x_{n}, z\right) \wedge R_{a n d, 2}\left(x_{n+1}, z, y\right) \\
& \begin{aligned}
& R_{o r, n+1}\left(x_{1}, \ldots, x_{n},\right.\left.x_{n+1}, y\right)= \\
& \exists z R_{o r, n}\left(x_{1}, \ldots, x_{n}, z\right)
\end{aligned} \\
& \qquad R_{o r, 2}\left(x_{n+1}, z, y\right)
\end{aligned}
$$

Let us define a relation ξ_{n} for every n by

$$
\begin{aligned}
\xi_{n}\left(x_{1}, y_{1}, z_{1}, \ldots, x_{n}, y_{n}, z_{n}\right) & =\exists u \exists u_{1} \ldots \exists u_{n} \exists v \exists v_{1} \ldots \exists v_{n} \\
R_{a n d, 3}\left(x_{1}, y_{1}, z_{1}, u_{1}\right) & \wedge \cdots \wedge R_{a n d, 3}\left(x_{n}, y_{n}, z_{n}, u_{n}\right) \wedge \\
R_{o r, 3}\left(x_{1}, y_{1}, z_{1}, v_{1}\right) & \wedge \cdots \wedge R_{o r, 3}\left(x_{n}, y_{n}, z_{n}, v_{n}\right) \wedge \\
R_{a n d, n}\left(v_{1}, \ldots, v_{n}, v\right) & \wedge R_{o r, n}\left(u_{1}, \ldots, u_{n}, u\right) \wedge R_{a n d, 2}(u, v, v)
\end{aligned}
$$

It follows from the definition that ξ_{n} contains all tuples with 2, and $\xi_{n} \cap\{0,1\}^{3 n}$ is defined by $\operatorname{AE}_{3}\left(x_{1}, y_{1}, z_{1}\right) \vee \operatorname{AE}_{3}\left(x_{2}, y_{2}, z_{2}\right) \vee$ $\cdots \vee \mathrm{AE}_{3}\left(x_{n}, y_{n}, z_{n}\right)$, where $\mathrm{AE}_{3}=\{(0,0,0),(1,1,1)\}$. Now we may encode the complement of Not-All-Equal 3-Satisfiability using Γ. This complement can be expressed by a formula of the following form:

$$
\forall y_{1} \ldots \forall y_{t} \operatorname{AE}_{3}\left(y_{i_{1}}, y_{i_{2}}, y_{i_{3}}\right) \vee \cdots \vee \operatorname{AE}_{3}\left(y_{i_{3 n-2}}, y_{i_{3 n-1}}, y_{i_{3 n}}\right)
$$

where $i_{1}, \ldots, i_{3 n} \in\{1,2, \ldots, t\}$, which is equivalent to

$$
\forall y_{1} \ldots \forall y_{t} \xi_{n}\left(y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{3 n}}\right)
$$

Thus, we reduced a co-NP-complete problem to $\operatorname{QCSP}\left(\Gamma_{0}\right)$, which completes the proof.

It remains to show that $\operatorname{QCSP}\left(\Gamma_{0}\right)$ is in co-NP. To do this we will prove that $\operatorname{QCSP}\left(\Gamma_{0}\right)$ can be reduced to a Π_{2} instance of $\operatorname{QCSP}\left(\Gamma_{0}\right)$, which is a problem from the complexity class co-NP. Such restricted decision problem will be denoted by $\operatorname{QCSP}^{2}(\Gamma)$, that is, $\operatorname{QCSP}^{2}(\Gamma)$ is the decision problem where the input in a $\operatorname{QCSP}(\Gamma)$ is a Π_{2} formula, that is a formula of the form $\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{s} \Phi$.

We will show that such reduction is possible whenever a constraint language Γ is preserved by a 0 -stable operation, where an operation f is called 0 -stable if $f(x, 0)=x$ and $f(x, 2)=2$. Recall that s_{2} is the semilattice operation such that $s_{2}(a, b)=2$ whenever $a \neq b$.

Lemma 18. Suppose a constraint language Γ is preserved by s_{2} and a 0 -stable operation h_{0}. Then an instance

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots \forall x_{n} \exists y_{n} \Phi
$$

of $\operatorname{QCSP}(\Gamma)$ is equivalent to

$$
\forall x_{1} \forall x_{2} \ldots \forall x_{n} \exists \exists\left(\left(\exists^{\prime} \exists^{\prime} \Phi_{1}\right) \wedge\left(\exists^{\prime} \exists^{\prime} \Phi_{2}\right) \wedge \cdots \wedge\left(\exists^{\prime} \exists^{\prime} \Phi_{n}\right)\right)
$$

where

$$
\Phi_{i}=\Phi_{x_{i+1}^{\prime}, \ldots, x_{n}^{\prime}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}}^{x_{i+1}^{\prime}, \ldots, x_{n}, y_{i+1}, \ldots, y_{n}} \wedge x_{i+1}^{\prime}=0 \wedge \cdots \wedge x_{n}^{\prime}=0
$$

(note that $\Phi_{n}=\Phi$) and by $\exists \exists$ and $\exists^{\prime} \exists^{\prime}$ we mean that we add all necessary existential quantifiers for variables without primes and with primes, respectively.

Proof. (Forwards/ downwards.) If we have a solution $\left(f_{1}, \ldots, f_{n}\right)$ of the original instance then it is also a solution of the new instance with the additional assignments $y_{j}^{\prime}=f_{j}\left(x_{1}, \ldots, x_{i}, 0, \ldots, 0\right)$ and $x_{j}^{\prime}=0$ in the definition of Φ_{i} for every j.
(Backwards/ upwards.) Consider solutions of the new instance such that $y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)$ for every i. Let N be the minimal number such that f_{N} depends on x_{j} for some $j>N$. In fact, we would like that there is some solution such that this number does not exist as then this is also a solution of the original instance. But for now assume for contradiction that such an N does exist and we choose it to be minimal among all the solutions. Since $\left(f_{1}, \ldots, f_{n}\right)$ is also a solution of Φ_{N}, the following tuple is a solution of Φ

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{N}, 0, \ldots, 0, f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{N}\left(x_{1}, \ldots, x_{n}\right)\right. \text {, } \\
& \left.h_{N+1}\left(x_{1}, \ldots, x_{n}\right), \ldots, h_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

for every x_{1}, \ldots, x_{n} and some functions h_{N+1}, \ldots, h_{n}. Note that we could see this tuple (with an additional term written and another omitted) rather as

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{N}, 0, \ldots, 0, f_{1}\left(x_{1}\right), \ldots, f_{N-1}\left(x_{1}, \ldots, x_{N-1}\right)\right. \\
& \\
& \left.\qquad f_{N}\left(x_{1}, \ldots, x_{n}\right), h_{N+1}\left(x_{1}, \ldots, x_{n}\right), \ldots\right)
\end{aligned}
$$

as we assume f_{i} depends only on x_{1}, \ldots, x_{i} for $i<N$. Consider all the evaluations of the variables x_{N+1}, \ldots, x_{n} to obtain 3^{n-N} solutions of Φ, then apply the semilattice operation to them to obtain one solution $\alpha\left(x_{1}, \ldots, x_{N}\right)$ of the form

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{N}, 0, \ldots, 0, f_{1}\left(x_{1}, \ldots,\right.\right. & \left.x_{n}\right), \ldots, f_{N-1}\left(x_{1}, \ldots, x_{n}\right) \\
& \left.e_{N}\left(x_{1}, \ldots, x_{N}\right), \ldots, e_{n}\left(x_{1}, \ldots, x_{N}\right)\right)
\end{aligned}
$$

Note that $e_{N}\left(x_{1}, \ldots, x_{N}\right)$ equals c if

$$
f_{N}\left(x_{1}, \ldots, x_{N}, a_{N+1}, \ldots, a_{n}\right)=c
$$

for every a_{N+1}, \ldots, a_{n}, and $e_{N}\left(x_{1}, \ldots, x_{N}\right)$ equals 2 otherwise. It remains to apply h_{0} to the tuples

$$
\left(x_{1}, \ldots, x_{n}, f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

and $\alpha\left(x_{1}, \ldots, x_{N}\right)$ to obtain a solution of the instance such that f_{N} doesn't depend on x_{N+1}, \ldots, x_{n}, which gives us a contradiction to the minimality of N over all solutions.

The next lemma follows from Lemma 18 and the fact that if Γ is preserved by a semilattice then $\operatorname{CSP}(\Gamma)$ can be solved in polynomial time. Nevertheless, to explain how a 0-stable operation can be used in an algorithm we give an alternative proof.

Lemma 19. Suppose a constraint language Γ is preserved by s_{2} and a 0 -stable operation h_{0}. Then $\operatorname{QCSP}(\Gamma)$ is in co-NP.

Proof. Suppose we have an instance $\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots \forall x_{n} \exists y_{n} \Phi$. We can use an oracle to choose an appropriate value for x_{1} (let this value be a_{1}). Then we need to find an appropriate value for y_{1}, such that we can use an oracle for x_{2} and continue. We want to be sure that if the instance holds then it holds after fixing y_{1}.

To find out how to fix y_{1} we solve the instance

$$
\exists y_{1} \exists x_{2} \exists y_{2} \ldots \exists x_{n} \exists y_{n} \Phi \wedge x_{1}=a_{1} \wedge x_{2}=x_{3}=\cdots=x_{n}=0
$$

This is a CSP instance, which can be solved in polynomial time because the semilattice preserves Γ. We check whether we have a solution with $y_{1}=0, y_{1}=1, y_{1}=2$ (we solve three instances). Let Y be the set of possible values for y_{1}. If $|Y|=1$, then we
fix y_{1} with the only value in Y. Obviously, the fixing of y_{1} cannot transform the QCSP instance that holds into the instance that does not hold. If $|Y|>1$ then $2 \in Y$ due to the semilattice polymorphism. Let the solution of the CSP instance with $y_{1}=2$ be $\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)=\left(a_{1}, 2,0, c_{2}, \ldots, 0, c_{n}\right)$. Assume that the QCSP instance has a solution

$$
\left(a_{1}, f_{1}\left(a_{1}\right), x_{2}, f_{2}\left(x_{1}, x_{2}\right), \ldots, x_{n}, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Then by applying the operation h_{0} to this solution and the solution $\left(a_{1}, 2,0, c_{2}, \ldots, 0, c_{n}\right)$, we get a (partial) solution of the $\operatorname{QCSP}(\Gamma)$ with $y_{1}=2$.

We proceed this way through the quantifier prefix, using an oracle to choose values for x_{2}, \ldots, x_{n}, while we solve CSP instances to choose appropriate values for $y_{2}, y_{3}, \ldots, y_{n}$.
Lemma 20. $\operatorname{QCSP}\left(\Gamma_{0}\right)$ is co-NP-complete.
Proof. By Lemma 17, $\operatorname{QCSP}\left(\Gamma_{0}\right)$ is co-NP-hard. Since Γ_{0} is preserved by a 0 -stable operation $g(x, y)=\left\{\begin{array}{ll}x, & \text { if } y \in\{0,1\} \\ 2, & \text { otherwise. }\end{array}\right.$ and the semilattice s_{2}, Lemma 19 implies that $\operatorname{QCSP}\left(\Gamma_{0}\right)$ is in co-NP.

7 PSPACE-COMPLETE LANGUAGE

In this section we define a constraint language Γ such that the QCSP (Γ) is PSpace-hard, Γ has a WNU polymorphism, $\operatorname{Pol}(\Gamma)$ has the EGP property, and $\operatorname{Pol}(\Gamma)$ is $\{0,2\}\{1,2\}$-projective. This constraint language is interesting because it is very simple but the proof of PSpace-hardness for this concrete language reveals the main idea of the proof for any PSpace-hard constraint language on a 3-element domain.

Let τ be a ternary relation on $\{0,1,2\}$ consisting of all tuples (a, b, c) such that $\{a, b, c\} \neq\{0,1\}$. Then the complement to τ is equal to NAE_{3}, where $\mathrm{NAE}_{3}=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$. Put
$\sigma\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right)=\left(y_{1}, y_{2} \in\{0,2\}\right) \wedge\left(\tau\left(x_{1}, x_{2}, x_{3}\right) \vee\left(y_{1}=y_{2}\right)\right)$. Let $\Gamma=\{\sigma, x=0, x=1, x=2\}$.

The semilattice-without-unit s_{2}, which is a WNU, preserves Γ.
Lemma 21. $\operatorname{Pol}(\Gamma)$ is $\{0,1\}\{0,2\}$-projective.
Proof. The relation $\sigma_{n}\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots, x_{n}, x_{n}^{\prime}\right)$ is defined by

$$
\exists y_{0} \exists y_{1} \ldots \exists y_{n}\left(\bigwedge_{i=1}^{n} \sigma\left(x_{i}, x_{i}, x_{i}^{\prime}, y_{i-1}, y_{i}\right) \wedge y_{0}=0 \wedge y_{n}=2\right)
$$

Then, by Lemma 14 from [25], $\operatorname{Pol}(\Gamma)$ is $\{0,1\}\{0,2\}$-projective.
Hence, by Theorem 3 from [25], $\operatorname{Pol}(\Gamma)$ has the EGP property.
Lemma 22. The problem $\mathrm{QCSP}(\Gamma)$ is PSpace-hard.
Proof. The reduction will be from the complement of (monotone) Quantified Not-All-Equal 3-Satisfiability (co-QNAE3SAT) which is co-PSpace-hard (see [23]) and consequently also PSpace-hard (as PSpace is closed under complement). Consider an instance of co-QNAE3SAT

$$
\neg Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n}\left(\operatorname{NAE}_{3}\left(z_{1}^{1}, z_{1}^{2}, z_{1}^{3}\right) \wedge \ldots \wedge \operatorname{NAE}_{3}\left(z_{k}^{1}, z_{k}^{2}, z_{k}^{3}\right)\right)
$$

where $z_{1}^{1}, z_{1}^{2}, z_{1}^{3}, \ldots, z_{k}^{1}, z_{k}^{2}, z_{k}^{3} \in\left\{x_{1}, \ldots, x_{n}\right\}$, which is equivalent to

$$
\bar{Q}_{1} x_{1} \bar{Q}_{2} x_{2} \ldots \bar{Q}_{n} x_{n}\left(\mathrm{AE}_{3}\left(z_{1}^{1}, z_{1}^{2}, z_{1}^{3}\right) \vee \ldots \vee \mathrm{AE}_{3}\left(z_{k}^{1}, z_{k}^{2}, z_{k}^{3}\right)\right) .
$$

By Φ_{n} we denote the inner part of the above sentence without quantifiers. By Φ_{s}, where $s \in\{0,1, \ldots, n\}$, we denote the formula $\bar{Q}_{s+1} x_{s+1} \ldots \bar{Q}_{n} x_{n} \Phi_{n}$. We will define a recursive procedure giving a formula Ω_{s} over Γ satisfying the following properties:
(1) the only free variables of Ω_{s} are $x_{1}, \ldots, x_{s}, y_{\ell}, y_{m}$, where $\ell<m$ (ℓ and m are different for different s);
(2) Ω_{s} holds if $y_{\ell}=y_{m} \in\{0,2\}$, and holds if $x_{i}=2$ for some $i \in[s]$ and x_{i} appears in Φ_{n};
(3) Ω_{s} is equivalent to Φ_{s} if $\left(x_{1}, \ldots, x_{s}\right) \in\{0,1\}^{s}$ and $y_{\ell} \neq y_{m}$.

Put $\Omega_{n}:=\exists y_{1} \ldots \exists y_{k-1} \wedge_{i=1}^{k} \sigma\left(z_{i}^{1}, z_{i}^{2}, z_{i}^{3}, y_{i-1}, y_{i}\right)$. If we put $y_{0}=$ 0 and $y_{k}=2$, then to satisfy the above formula we need some tuple $\left(z_{i}^{1}, z_{i}^{2}, z_{i}^{3}\right)$ to be from τ, which implies on $\{0,1\}$ that this tuple is from AE_{3}. Hence Ω_{n} and Φ_{n} satisfy the above properties (1)-(3).

Let us show how to build Ω_{s-1} from Ω_{s}. Let ℓ and m be the minimal and maximal indices appearing in the y variables of Ω_{s}, respectively. Note that $\ell \leqslant 0$ and $m>0$, and that typically ℓ decreases and m increases during our construction.

- If \bar{Q}_{s} is the universal quantifier then put $\Omega_{s-1}=\forall x_{s} \Omega_{s}$
- If \bar{Q}_{s} is the existential quantifier then put
$\Omega_{s-1}=\exists y_{\ell} \forall x_{s} \exists y_{m} \Omega_{s} \wedge \sigma\left(x_{s}, 0,0, y_{\ell-1}, y_{m}\right) \wedge \sigma\left(x_{s}, 1,1, y_{m+1}, y_{m}\right)$
Let us show by induction that Ω_{s-1} satisfies the properties (1)-(3) starting with $s=n$. Assume that \bar{Q}_{s} is the universal quantifier. The properties (1) and (2) follow from the inductive assumption and the construction. The Property (3) follows from the fact that Ω_{s} holds on all tuples with $x_{s}=2$ or x_{s} does not appear in Φ_{n}.

Assume that \bar{Q}_{s} is the existential quantifier. The property (1) follows from the construction. Let us show the property (2). Suppose $x_{i}=2$ for some $i \in[s-1]$ and x_{i} appears in Φ_{n}. By the inductive assumption Ω_{s} holds. To satisfy Ω_{s-1} we put any value to y_{ℓ}, put $y_{m}=y_{\ell-1}$ if $x_{s}=1$, and put $y_{m}=y_{m+1}$ if $x_{s} \neq 1$. Suppose $y_{\ell-1}=y_{m+1}$, then to satisfy Ω_{s-1} we put $y_{\ell}=y_{m}=y_{\ell-1}$.

Let us show the property (3) for Ω_{s-1}. Consider $y_{\ell-1} \neq y_{m+1}$ and a tuple $\left(x_{1}, \ldots, x_{s-1}\right) \in\{0,1\}^{s-1}$.
(Φ_{s-1} implies Ω_{s-1}). Let Existential choose $x_{s}=0$ in Φ_{s-1}. Then Existential in Ω_{s-1} puts $y_{\ell}=y_{\ell-1}$. If Universal chooses $x_{s}=0$, then Existential plays $y_{m}=y_{m+1}$. Since Φ_{s} holds on $x_{s}=0, \Omega_{s}$ holds. Since $x_{s}=0, \sigma\left(x_{s}, 0,0, y_{\ell-1}, y_{m}\right)$ holds. Since $y_{m}=y_{m+1}$, $\sigma\left(x_{s}, 1,1, y_{m+1}, y_{m}\right)$ holds. Thus, Ω_{s-1} holds. If Universal chooses $x_{s} \in\{1,2\}$, then Existential plays $y_{m}=y_{\ell-1}$. Since $y_{m}=y_{\ell}, \Omega_{s}$ holds. Since $y_{\ell-1}=y_{m}, \sigma\left(x_{s}, 0,0, y_{\ell-1}, y_{m}\right)$ holds. Since $x_{s} \in\{1,2\}$, $\sigma\left(x_{s}, 1,1, y_{m+1}, y_{m}\right)$ holds. Hence, Ω_{s-1} holds.

Let Existential choose $x_{s}=1$ in Φ_{s-1}. Then Existential in Ω_{s-1} puts $y_{\ell}=y_{m+1}$. If Universal chooses $x_{s} \in\{0,2\}$, then Existential plays $y_{m}=y_{m+1}$. Since $y_{m}=y_{\ell}, \Omega_{s}$ holds. Since $x_{s} \in\{0,2\}$, the constraint $\sigma\left(x_{s}, 0,0, y_{\ell-1}, y_{m}\right)$ holds. Since $y_{m}=y_{m+1}$, the constraint $\sigma\left(x_{s}, 1,1, y_{m+1}, y_{m}\right)$ holds. Thus, Ω_{s-1} holds. If Universal chooses $x_{s}=1$, then Existential plays $y_{m}=y_{\ell-1}$. Since Φ_{s} holds on $x_{s}=1, \Omega_{s}$ holds. Since $y_{\ell-1}=y_{m}, \sigma\left(x_{s}, 0,0, y_{\ell-1}, y_{m}\right)$ holds. Since $x_{s}=1$, the constraint $\sigma\left(x_{s}, 1,1, y_{m+1}, y_{m}\right)$ holds. Hence, Ω_{s-1} holds.
$\left(\Omega_{s-1}\right.$ implies $\left.\Phi_{s-1}\right)$. Assume that Existential chooses $y_{\ell}=y_{\ell-1}$. Let Universal choose $x_{s}=0$. To satisfy $\sigma\left(x_{s}, 1,1, y_{m+1}, y_{m}\right)$ Existential has to choose $y_{m}=y_{m+1}$. Then for $y_{\ell-1} \neq y_{m+1}$ we have $y_{\ell} \neq y_{m}$, which by the property (3) for Ω_{s} implies that Φ_{s} holds on $x_{s}=0$.

Assume that Existential chooses $y_{\ell}=y_{m+1}$. Let Universal choose $x_{s}=1$. To satisfy $\sigma\left(x_{s}, 0,0, y_{\ell-1}, y_{m}\right)$ Existential has to choose $y_{m}=y_{\ell-1}$. Then for $y_{\ell-1} \neq y_{m+1}$ we have $y_{\ell} \neq y_{m}$, which by the property (3) for Ω_{s} implies that Φ_{s} holds on $x_{s}=1$.

Noting that $y_{\ell-1} \neq y_{m+1}$, and $y_{\ell}, y_{\ell-1}, y_{m+1} \in\{0,2\}$, we exhausted all possibilities for y_{ℓ} and in both cases found an appropriate evaluation of x_{s}, which completes the proof of the property (3) for Ω_{s-1}. Since Ω_{0} is an instance of $\operatorname{QCSP}(\Gamma)$, the property (3) for Ω_{0} implies that Ω_{0} and Φ_{0} are equivalent, and Φ_{0} is the original instance of co-QNAE3SAT.

8 NEW TRACTABLE LANGUAGE 1

In this section we will define a constraint language Γ on $A=\{0,1,2\}$ consisting of just 2 relations and constants such that $\operatorname{Pol}(\Gamma)$ has the EGP property but every pp-definition of τ_{n} (see Definition 1) has at least 2^{n} existential quantifiers. Moreover, we will show that $\operatorname{QCSP}(\Gamma)$ can be solved in polynomial time.

$$
\text { Let } R_{\text {and }, 2}=\left(\begin{array}{cccccc}
0 & 0 & 1 & 1 & 2 & \cdot \\
0 & 1 & 0 & 1 & \cdot & 2 \\
0 & 0 & 0 & 1 & . & \cdot
\end{array}\right), \delta=\left(\begin{array}{lll}
. & 1 & 2 \\
0 & 2 & 2
\end{array}\right) \text {, where by . }
$$

we mean any element from $\{0,1,2\}$. Let $\Gamma=\left\{R_{\text {and, } 2}, \delta,\{0\},\{1\},\{2\}\right\}$.
Recall that here τ_{n} is the $3 n$-ary relation defined by

$$
\left\{\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{n}, y_{n}, z_{n}\right) \mid \exists i:\{0,1\} \nsubseteq\left\{x_{i}, y_{i}, z_{i}\right\}\right\} .
$$

By σ_{n} we denote the $2 n$-ary relation defined by

$$
\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right) \mid \exists i:\left\{x_{i}, y_{i}\right\} \neq\{0,1\}\right\}
$$

Note τ_{n} can be pp-defined from σ_{n} but the obvious definition is of size exponential in n (see [9]). At the same time, σ_{n} can be ppdefined from τ_{n} by identification of variables.

The relation ρ of arity $2 n$ omitting just one tuple $1^{n} 0^{n}$ can be pp-defined over Γ as follows. First, as usual, we define an n-ary "and" by the following recursive formula

$$
\begin{aligned}
& R_{\text {and }, n+1}\left(x_{1}, \ldots, x_{n}, x_{n+1}, y\right)= \\
& \quad \exists z R_{\text {and,n}}\left(x_{1}, \ldots, x_{n}, z\right) \wedge R_{\text {and }, 2}\left(x_{n+1}, z, y\right)
\end{aligned}
$$

Then ρ can be defined by

$$
\begin{aligned}
& \rho\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\exists y_{1}^{\prime} \ldots \exists y_{n}^{\prime} \exists z \exists t R_{\text {and }, n}\left(x_{1}, \ldots, x_{n}, z\right) \wedge \\
& \delta\left(y_{1}, y_{1}^{\prime}\right) \wedge \cdots \wedge \delta\left(y_{n}, y_{n}^{\prime}\right) \wedge R_{\text {and,n }}\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}, t\right) \wedge R_{\text {and }, 2}(z, z, t) .
\end{aligned}
$$

As a conjunction of such relations with permuted variables we can define the relation σ_{n} but this definition will be of exponential size. Then, we know from [25] that $\operatorname{Pol}(\Gamma)$ has the EGP property, and from [9] that τ_{n} can be pp-defined from Γ. Below we will prove that any pp-definition of σ_{n} and τ_{n} is of exponential size, as well as the fact that $\operatorname{QCSP}(\Gamma)$ can be solved in polynomial time. In the following $<$ is the lexicographical order on $\{0,1\}^{n}$ built from $0<1$.

Lemma 23. Suppose $R=\Phi\left(x_{1}, \ldots, x_{n}\right)$, where Φ is a conjunctive formula over $\Gamma, \alpha \in\{0,1\}^{n} \backslash R$, there exists $\beta \in\{0,1\}^{n} \cap R$ such that $\beta<\alpha$ and there exists $\beta \in\{0,1\}^{n} \cap R$ such that $\beta>\alpha$. Then there exists a variable y in Φ, such that for $R^{\prime}=\Phi\left(x_{1}, \ldots, x_{n}, y\right)$ we have the following property

$$
\begin{aligned}
& \beta \in\{0,1\}^{n} \wedge(\beta<\alpha) \wedge \beta d \in R^{\prime} \Rightarrow d=0, \\
& \beta \in\{0,1\}^{n} \wedge(\beta>\alpha) \wedge \beta d \in R^{\prime} \Rightarrow d=1 .
\end{aligned}
$$

Informally speaking, this lemma says that whenever we have a tuple outside of a relation there should be a variable in its pp-definition distinguishing between smaller and greater tuples of the relation.

Proof. For every variable y of Φ let C_{y} be the set of all elements d such that there exists $\beta \in\{0,1\}^{n} \cap R, \beta<\alpha$ and Φ has a solution with $y=d$ and $\left(x_{1}, \ldots, x_{n}\right)=\beta$. Similarly, let D_{y} be the set of all elements d such that there exists $\beta \in\{0,1\}^{n} \cap R, \beta>\alpha$ and Φ has a solution with $y=d$ and $\left(x_{1}, \ldots, x_{n}\right)=\beta$.

Then we assign a value $v(y)$ to every variable y in the following way: if $C_{y}=\{0\}$ then put $v(y):=0$; otherwise, if $C_{y} \subseteq\{0,1\}$ and $D_{y}=\{1\}$ then put $v(y):=1$; otherwise put $v(y):=2$.

If $\alpha(i)=0$ then $C_{x_{i}}=\{0\}$ and $v\left(x_{i}\right)=0$. If $\alpha(i)=1$ then $C_{x_{i}} \subseteq\{0,1\}$ and $D_{x_{i}}=\{1\}$, therefore $v\left(x_{i}\right)=1$. Since $\alpha \notin R$, v cannot be a solution of Φ, therefore v breaks at least one of the relations in Φ. We consider several cases:
(1) The corresponding relation is $y=a$ for some a. If $a=0$ then $C_{y}=\{0\}$ and $v(y)=0$, if $a=1$ then $C_{y}=D_{y}=\{1\}$ and $v(y)=1$, if $a=2$ then $C_{y}=\{2\}$ and $v(y)=2$. Thus, the evaluation v cannot break the relation $y=a$.
(2) The corresponding relation is $R_{\text {and }, 2}\left(y_{1}, y_{2}, y_{3}\right)$. Assume that $v\left(y_{1}\right)=0$ and $v\left(y_{2}\right) \in\{0,1\}$. Then $C_{y_{1}}=\{0\}$ and $C_{y_{2}} \subseteq$ $\{0,1\}$, which means that on all tuples $\beta<\alpha$ the value of y_{3} should be equal to 0 . Hence $C_{y_{3}}=\{0\}$ and $v\left(y_{3}\right)=0$. If $v\left(y_{1}\right)=2$ or $v\left(y_{2}\right)=2$, then we cannot break the relation $R_{\text {and }, 2}$. The only remaining case is when $v\left(y_{1}\right)=v\left(y_{2}\right)=1$, which means that $C_{y_{1}}, C_{y_{2}} \subseteq\{0,1\}$ and $D_{y_{1}}=D_{y_{2}}=\{1\}$. This implies that $C_{y_{3}} \subseteq\{0,1\}$ and $D_{y_{3}}=\{1\}$. If $C_{y_{3}}=\{0\}$, then y_{3} is the variable we were looking for. Otherwise, the evaluation of y_{3} is 1 , which agrees with the definition of $R_{\text {and }, 2}$.
(3) The corresponding relation is $\delta\left(y_{1}, y_{2}\right)$. If $v\left(y_{1}\right)=0$ then $C_{y_{1}}=\{0\}$, and by the definition of δ we have $C_{y_{2}}=\{0\}$, which means that $v\left(y_{2}\right)=0$. If $v\left(y_{1}\right) \neq 0$, it follows from the fact that $v\left(y_{2}\right)$ cannot be outside of $\{0,2\}$.

Note that $s_{2}, s_{0,2}$, and $g_{0,2}$ preserve Γ (see Section 2.1 for the definition). Put $h_{0,2}(x, y, z)=g_{0,2}\left(s_{0,2}\left(x_{1}, x_{3}\right), s_{2}\left(x_{2}, x_{3}\right)\right)$, then

$$
h_{0,2}(x, y, z)= \begin{cases}x, & \text { if } x=z=0 \\ x, & \text { if } x=1, y=z \\ 2, & \text { otherwise }\end{cases}
$$

The following lemma and corollary do not play a role in our main result but we include them for their intrinsic intriguingness as well as by way of a sanity check

Lemma 24. Any pp-definition of σ_{n} over Γ, where $n \geqslant 3$, has at least 2^{n} variables.

Proof. Let the pp-definition be given by a conjunctive formula Φ such that $\sigma_{n}=\Phi\left(x_{1}, \ldots, x_{2 n}\right)$. By Lemma 23 for any $\alpha \in\{0,1\}^{2 n} \backslash$ σ_{n} there should be a variable y such that if we define the relation $R^{\prime}=\Phi\left(x_{1}, \ldots, x_{2 n}, y\right)$, then for every $\beta<\alpha$ (we consider only tuples from $\{0,1\}^{2 n}$) we have $\beta d \in R^{\prime} \Rightarrow d=0$ and for every $\beta>\alpha$ we have $\beta d \in R^{\prime} \Rightarrow d=1$.

Assume that one variable y can be used for two different tuples $\alpha_{1}, \alpha_{2} \in\{0,1\}^{2 n} \backslash \sigma_{n}$. We consider two cases.

Case 1 . Assume that there is i such that $\alpha_{1}(i)=\alpha_{2}(i)$. Without loss of generality we assume that $\alpha_{1}(1)=\alpha_{2}(1)$ and $\alpha_{1}(2 n) \neq$ $\alpha_{2}(2 n)$. Let us define tuples $\beta_{1}, \beta_{2}, \beta_{3} \in \sigma_{n}$.

$$
\begin{aligned}
& \operatorname{Put} \beta_{1}(i)=\left\{\begin{array}{ll}
1, & \text { if } i \in\{1,2\} \\
\alpha_{1}(i), & \text { otherwise }
\end{array}, \beta_{2}(i)= \begin{cases}1, & \text { if } i \in\{3,4\} \\
\alpha_{2}(i), & \text { otherwise }\end{cases} \right. \\
& \beta_{3}(i)= \begin{cases}\alpha_{1}(i), & \text { if } \alpha_{1}(i)=\alpha_{2}(i) \text { or } i \leqslant 4 . \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Let us show that $h_{0,2}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\beta_{1}$. In fact, for the first two rows, reading down through the $2 n$ rows of $h_{0,2}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$, we have $h_{0,2}(1,0,0)=h_{0,2}(1,1,1)=1$. For the next two rows we have $h_{0,2}(0,1,0)=0$ and $h_{0,2}(1,1,1)=1$. For the remaining rows we either use $h_{0,2}(0,0,0)=0$ and $h_{0,2}(1,1,1)=1$, or $h_{0,2}(0,1,0)=0$ and $h_{0,2}(1,0,0)=1$.

Since $\beta_{1}>\alpha_{1}, \beta_{2}>\alpha_{2}, \beta_{3}<\alpha_{1}$, by Lemma 23, y should be equal to 1 in any solution of Φ such that $\left(x_{1}, \ldots, x_{2 n}\right) \in\left\{\beta_{1}, \beta_{2}\right\}$, and it should be equal to 0 in any solution of Φ such that $\left(x_{1}, \ldots, x_{2 n}\right)=\beta_{3}$. Since $h_{0,2}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\beta_{1}$ and $h_{0,2}(1,1,0)=2$, we get a contradiction.

Case 2. Assume that $\alpha_{1}(i) \neq \alpha_{2}(i)$ for every i. Put

$$
\begin{gathered}
\beta_{1}(i)=\left\{\begin{array}{ll}
1, & \text { if } i \in\{1,2\} \\
\alpha_{1}(i), & \text { otherwise }
\end{array}, \beta_{2}(i)=\left\{\begin{array}{ll}
1, & \text { if } i \in\{1,2\} \\
\alpha_{2}(i), & \text { otherwise }
\end{array},\right.\right. \\
\beta_{3}(i)=\left\{\begin{array}{ll}
1, & \text { if } i \in\{1,2\} \\
0, & \text { otherwise }
\end{array}, \beta_{4}(i)= \begin{cases}1, & \text { if } i \in\{3,4\} \\
\alpha_{1}(i), & \text { otherwise }\end{cases} \right. \\
\beta_{5}(i)= \begin{cases}\alpha_{1}(i), & \text { if } i \in\{1,2\} \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Since $h_{0,2}(1,1,1)=h_{0,2}(1,0,0)=1, h_{0,2}(0,1,0)=0$, we have $h_{0,2}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\beta_{1}$. Since $\beta_{1}>\alpha_{1}$ and $\beta_{2}>\alpha_{2}$, by Lemma $23, y$ should be equal to 1 in any solution of Φ such that $\left(x_{1}, \ldots, x_{2 n}\right) \in$ $\left\{\beta_{1}, \beta_{2}\right\}$. Since $h_{0,2}(1,1, a)=1$ only if $a=1, y$ should be equal to 1 on β_{3} (in any solution of Φ such that $\left(x_{1}, \ldots, x_{2 n}\right)=\beta_{3}$). Since $h_{0,2}\left(\beta_{3}, \beta_{4}, \beta_{5}\right)=\beta_{3}$, and y should be equal to 1 on β_{4} and equal to 0 on β_{5}, we obtain $h_{0,2}(1,1,0)=1$, which contradicts the definition of $h_{0,2}$.

Thus, for every tuple $\alpha \in\{0,1\}^{2 n} \backslash \sigma_{n}$ there exists a unique variable y, which completes the proof.

Since σ_{n} can be obtained from τ_{n} by identification of variables, we have the following corollary.
Corollary 25. Any pp-definition of τ_{n} over Γ has at least 2^{n} variables.

Below we present an algorithm that solves $\operatorname{QCSP}^{2}(\Gamma)$ in polynomial time (see the pseudocode). By h we denote the operation defined on subsets of A by $h(B)=\left\{\begin{array}{ll}0, & \text { if } B=\{1\} \\ 1, & \text { otherwise }\end{array}\right.$. By SolveCSP we denote a polynomial algorithm, solving constraint satisfaction problem for a constraint language preserved by the semilattice operation s_{2} : it returns true if it has a solution, it returns false otherwise.
Lemma 26. Function SOLVE solves $\operatorname{QCSP}^{2}(\Gamma)$ in polynomial time.
Proof. First, let us show that the algorithm actually solves the problem. If the answer is false, then we found an evaluation of

```
function \(\operatorname{Solve}_{1}(\Theta)\)
    Input: \(\operatorname{QCSP}^{2}(\Gamma)\) instance \(\Theta=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{s} \Phi\).
    if \(\neg \operatorname{SolvECSP}(\mathbf{x}=(0, \ldots, 0) \wedge \Phi)\) then return false
                                    \(\triangleright\) Here \(\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)\)
    if \(\neg \operatorname{SolveCSP}(\mathrm{x}=(1, \ldots, 1) \wedge \Phi)\) then return false
    for \(j:=1, \ldots, s\) do
        for \(i:=1, \ldots, n\) do
            \(D_{i}:=\varnothing\)
            \(\mathbf{c}:=(\underbrace{1, \ldots, 1}_{i-1}, 0,1, \ldots, 1)\)
            for \(a \in A\) do
                    if \(\operatorname{SolveCSP}\left(\mathbf{x}=\mathbf{c} \wedge y_{j}=a \wedge \Phi\right)\) then
                    \(D_{i}:=D_{i} \cup\{a\}\)
                if \(D_{i}=\varnothing\) then return false
        if \(\neg \operatorname{SolveCSP}\left(\mathrm{x}=\left(h\left(D_{1}\right), \ldots, h\left(D_{n}\right)\right) \wedge \Phi\right)\) then
            return false
    return true
```

$\left(x_{1}, \ldots, x_{n}\right)$ such that the corresponding CSP has no solutions, which means that the answer is correct.

Assume that the answer is true. Let $R\left(x_{1}, \ldots, x_{n}\right)$ be defined by the formula $\exists y_{1} \ldots \exists y_{s} \Phi$. We need to prove that R is a full relation. Assume the converse. Using the semilattice operation s_{2} we can generate A^{n} from $\{0,1\}^{n}$, hence $\{0,1\}^{n} \nsubseteq R$. Then let α be a minimal tuple from $\{0,1\}^{n} \backslash R$. Without loss of generality we assume that $\alpha=1^{k} 0^{n-k}$. For every i we put $\alpha_{i}=1^{i-1} 01^{n-i}$. Since α is minimal, all the tuples smaller than α should be in R (note that $(0,0, \ldots, 0) \in R)$. Then by Lemma 23 there should be a variable y such that for any $\beta<\alpha$ we have $\beta d \in R^{\prime} \Rightarrow d=0$, for any $\beta>\alpha$ we have $\beta d \in R^{\prime} \Rightarrow d=1$, where $R^{\prime}=\Phi\left(x_{1}, \ldots, x_{n}, y\right)$. Since $D_{i} \neq \varnothing, \alpha_{i} \in R$ for every i, and for every $i>k$ we have $\alpha_{i} d \in R^{\prime} \Rightarrow d=1$.

Let $\beta=01^{k-1} 0^{n-k}$. Note that $\beta<\alpha$ and therefore, $\beta \in R$. Assume that D_{1} calculated for the variable y is equal to $\{1\}$, then $\alpha_{1} d \in$ $R^{\prime} \Rightarrow d=1$. Put $\gamma_{0}=s_{0,2}\left(\beta, \alpha_{1}\right)=01^{k-1} 2^{n-k}$. Since $s_{0,2}$ preserves R^{\prime} and $s_{0,2}(0,1)=2$, we have $\gamma_{0} 2 \in R^{\prime}$. Put $\gamma_{i}=g_{0,2}\left(\alpha_{k+i}, \gamma_{i-1}\right)$ for $i=1,2, \ldots, n-k$. Since $g_{0,2}(1,2)=2$, we have $\gamma_{i} 2 \in R^{\prime}$ for every i. Note that $\gamma_{n-k}=\alpha_{n} \in\{0,1\}^{n}$. We can check that $g_{0,2}\left(\alpha_{1} 1, \gamma_{n-k} 2\right)=$ $\alpha_{1} 2$, which contradicts the fact that $D_{1}=\{1\}$. In this way we can show that D_{1}, \ldots, D_{k} calculated for y are not equal to $\{1\}$. We also know that the corresponding D_{k+1}, \ldots, D_{n} are equal to $\{1\}$. Hence, the tuple $\left(h\left(D_{1}\right), \ldots, h\left(D_{n}\right)\right)=\alpha$ was checked in the algorithm, which contradicts the fact that $\alpha \notin R$.

It remains to show that the algorithm works in polynomial time. It follows from the fact that in the algorithm we just solve $3 \cdot s \cdot n+$ $s+2$ CSP instances over a language preserved by the semilattice operation s_{2}.

Corollary 27. $\mathrm{QCSP}(\Gamma)$ is in P.

Proof. Since $s_{0,2}$ is a 0 -stable operation preserving Γ, Lemma 18 implies that $\operatorname{QCSP}(\Gamma)$ can be polynomially reduced to $\operatorname{QCSP}^{2}(\Gamma)$, and $\operatorname{QCSP}^{2}(\Gamma)$ can be solved by the function Solve ${ }_{1}$.

9 NEW TRACTABLE LANGUAGE 2

In this section we define another constraint language Γ^{\prime} on $A=$ $\{0,1,2\}$ such that $\operatorname{Pol}\left(\Gamma^{\prime}\right)$ has the EGP property but every ppdefinition of τ_{n} (see Definition 1) has at least 2^{n} existential quantifiers. Moreover, we will show that $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ can be solved in polynomial time.

$$
\text { Let } R_{\text {and }, 2}^{\prime}=\left(\begin{array}{cccccc}
0 & \cdot & 1 & 1 & 2 & 2 \\
\cdot & 0 & 1 & 2 & 1 & 2 \\
0 & 0 & 1 & \cdot & \cdot & \cdot
\end{array}\right), \delta=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & \cdot & \cdot
\end{array}\right) \text {, where by }
$$

- we denote any element from $\{0,1,2\}$.

Let $\Gamma^{\prime}=\left\{R_{\text {and }, 2}^{\prime}, \delta,\{0\},\{1\},\{2\}\right\}$.
Again, recall that here τ_{n} the $3 n$-ary relation defined by

$$
\left\{\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{n}, y_{n}, z_{n}\right) \mid \exists i:\{0,1\} \nsubseteq\left\{x_{i}, y_{i}, z_{i}\right\}\right\} .
$$

By σ_{n} we denote the $2 n$-ary relation defined by

$$
\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right) \mid \exists i:\left\{x_{i}, y_{i}\right\} \neq\{0,1\}\right\}
$$

Note τ_{n} can be pp-defined from σ_{n} but the obvious definition is of size exponential in n (see [9]). At the same time, σ_{n} can be ppdefined from τ_{n} by identification of variables. It follows from the following lemma that $\operatorname{Pol}\left(\Gamma^{\prime}\right)$ has the EGP property.
Lemma 28. σ_{n} can be pp-defined over Γ^{\prime}.
Proof. Recursively we define

$$
\begin{aligned}
& R_{\text {and, } n+1}^{\prime}\left(x_{1}, \ldots, x_{n}, x_{n+1}, y\right)= \\
& \exists z R_{\text {and }, n}^{\prime}\left(x_{1}, \ldots, x_{n}, z\right) \wedge R_{\text {and }, 2}^{\prime}\left(x_{n+1}, z, y\right), \\
& \omega_{n}\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)= \\
& \exists u_{1} \ldots \exists u_{n} \exists z R_{\text {and,2n }}^{\prime}\left(x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{n}, z\right) \wedge \\
& \delta^{\prime}\left(y_{1}, u_{1}\right) \wedge \cdots \wedge \delta^{\prime}\left(y_{n}, u_{n}\right) \wedge z=0 .
\end{aligned}
$$

The relation ω_{n} contains all the tuples but $(1,0,1,0, \ldots, 1,0)$. Then the relation σ_{n} can be represented as a conjunction of 2^{n} relations such that each of them is obtained from ω_{n} by a permutation of variables.

We can check that Γ^{\prime} is preserved by $f_{0,2}$ (see Section 2.1 for the definition). Below we will show that $\operatorname{QCSP}(\Gamma)$ is solvable in polynomial time for any constraint language $\Gamma \subseteq \operatorname{Inv}\left(f_{0,2}\right)$. Note that $s_{0,2}(x, y)=f_{0,2}(x, y, y)$ and $s_{2}(x, y)=s_{0,2}\left(x, s_{0,2}(y, x)\right)$.

Suppose $R=\Phi\left(x_{1}, \ldots, x_{n}\right)$, where Φ is a conjunctive formula over a constraint language $\Gamma \subseteq \operatorname{Inv}\left(f_{0,2}\right)$. For a variable y of Φ we define a partial operation $F_{y}\left(x_{1}, \ldots, x_{n}\right)$ on $\{0,1\}$ as follows. If $\alpha \in R$ and every solution of Φ with $\left(x_{1}, \ldots, x_{n}\right)=\alpha$ has $y=c$, where $c \in\{0,1\}$, then $F_{y}(\alpha)=c$. Otherwise we say that $F_{y}(\alpha)$ is not defined. We say that $\alpha \in R \cap\{0,1\}^{n}$ is a minimal 1 -set for a variable y if $F_{y}(\alpha)=1$, and $F_{y}(\beta)=0$ for every $\beta<\alpha$ (every time we use < we mean that both tuples are on $\{0,1\}$).

The following lemma proves that F_{y} is monotonic.
Lemma 29. Suppose $\alpha \leqslant \beta, F_{y}(\alpha)$ and $F_{y}(\beta)$ are defined. Then $F_{y}(\alpha) \leqslant F_{y}(\beta)$.

Proof. Assume the contrary, then $F_{y}(\alpha)=1$ and $F_{y}(\beta)=0$. We have $s_{0,2}(\beta 0, \alpha 1)=\beta 2$, which means that there exists a solution of Φ with $\left(x_{1}, \ldots, x_{n}\right)=\beta$ and $y=2$, hence $F_{y}(\beta)$ is not defined. Contradiction.

Lemma 30. There is at most one minimal 1-set for every variable y.
Proof. Assume the contrary. Let α_{1} and α_{2} be two minimal 1sets for y. It follows from the definition that α_{1} and α_{2} should be incomparable. Let $\alpha=\alpha_{1} \wedge \alpha_{2}$ (by \wedge we denote the conjunction on $\{0,1\})$. Then $f_{0,2}\left(\alpha_{1} 1, \alpha 0, \alpha_{2} 1\right)=\alpha_{1} 2$, which contradicts the fact that F_{y} is defined on α_{1}.
Lemma 31. Suppose $\alpha \in\{0,1\}^{n} \backslash R, \alpha$ contains at least two 1 s, and $\beta \in R$ for every $\beta<\alpha$. Then there exists a constraint $\rho\left(z_{1}, \ldots, z_{l}\right)$ in Φ and $B \subseteq\{1, \ldots, l\}$ such that $\alpha=\bigvee_{i \in B} \alpha_{i}$, where α_{i} is the minimal 1 -set for the variable z_{i} (by \vee we denote the disjunction on $\{0,1\}$).

Proof. First, to every variable y of Φ we assign a value $v(y)$ in the following way. If $F_{y}(\beta)=0$ for every $\beta<\alpha$ then we put $v(y):=0$. Otherwise, if $F_{y}(\beta) \in\{0,1\}$ for every $\beta<\alpha$ then we put $v(y):=1$. Otherwise, put $v(y):=2$.

If $\alpha(i)=0$ then $F_{x_{i}}(\beta)=0$ for every $\beta<\alpha$, which means that $v\left(x_{i}\right)=0$. If $\alpha(i)=1$ then $F_{x_{i}}(\beta) \in\{0,1\}$ for every $\beta<\alpha$. Since α has at least two 1 , for some $\beta<\alpha$ we have $F_{x_{i}}(\beta)=1$, which means that $v\left(x_{i}\right)=1$. Thus we assigned the tuple α to $\left(x_{1}, \ldots, x_{n}\right)$.

Since $\alpha \notin R$ the evaluation v cannot be a solution of Φ, therefore it breaks at least one constraint from Φ. Let us add to Φ all projections of all constraints we have in Φ. Thus, for every constraint $C=$ $\rho\left(z_{1}, \ldots, z_{l}\right)$ we add $\operatorname{pr}_{S} C$, where $S \subseteq\left\{z_{1}, \ldots, z_{l}\right\}$. Obviously, when we do this, we do not change the solution set of Φ and stay in $\operatorname{Inv}\left(f_{0,2}\right)$.

Choose a constraint of the minimal arity $\rho\left(z_{1}, \ldots, z_{l}\right)$ that does not hold in the evaluation v, that is, $\left(v\left(z_{1}\right), \ldots, v\left(z_{l}\right)\right) \notin \rho$. Let $\left(a_{1}, \ldots, a_{l}\right)=\left(v\left(z_{1}\right), \ldots, v\left(z_{l}\right)\right)$. Since ρ is a constraint of the minimal arity, the evaluation v holds for every proper projection of $\rho\left(z_{1}, \ldots, z_{l}\right)$, which means that for every i there exists b_{i} such that $\left(a_{1}, \ldots, a_{i-1}, b_{i}, a_{i+1}, \ldots, a_{l}\right) \in \rho$.

Assume that $\left(a_{1}, \ldots, a_{l}\right)$ has two 2 , that is $a_{i}=a_{j}=2$ for $i \neq j$. Then the semilattice s_{2} applied to ($a_{1}, \ldots, a_{i-1}, b_{i}, a_{i+1}, \ldots, a_{l}$) and $\left(a_{1}, \ldots, a_{j-1}, b_{j}, a_{j+1}, \ldots, a_{l}\right)$ gives $\left(a_{1}, \ldots, a_{l}\right)$, which contradicts the fact that s_{2} preserves ρ.

Assume that $a_{i}=2$ for some i. W.l.o.g. we assume that $a_{l}=2$. By the definition, there should be a tuple $\beta<\alpha$ such that $F_{z_{l}}(\beta)$ is not defined. Put $c_{i}=F_{z_{i}}(\beta)$ for every $i<l$, and $c_{l}=2$. By the definition of $F_{z_{l}}(\beta)$, there should be a solution of Φ with $\left(x_{1}, \ldots, x_{n}\right)=\beta$ and $z_{l}=2$, or two solutions of Φ with $\left(x_{1}, \ldots, x_{n}\right)=\beta$ and $z_{l}=0,1$. Since s_{2} preserves Γ, in both cases we have a solution of Φ with $\left(x_{1}, \ldots, x_{n}\right)=\beta$ and $z_{l}=2$. Note that $\left(z_{1}, \ldots, z_{l}\right)=\left(c_{1}, \ldots, c_{l}\right)$ in this solution, therefore $\left(c_{1}, \ldots, c_{l}\right) \in \rho$. By the definition, $c_{i} \leqslant a_{i}$ for every $i<l$. We apply $s_{0,2}$ to the tuples $\left(a_{1}, \ldots, a_{l-1}, b_{l}\right)$ and $\left(c_{1}, \ldots, c_{l}\right)$ to obtain the tuple (a_{1}, \ldots, a_{l}), which is not from ρ. This contradicts the fact that $s_{0,2}$ preserves ρ.

Assume that $a_{i} \neq 2$ for every i. W.l.o.g. we assume that $a_{1}=\cdots=$ $a_{k}=1$ and $a_{k+1}=\cdots=a_{l}=0$. If $k=0$ and $\left(a_{1}, \ldots, a_{l}\right)=(0, \ldots, 0)$, then we consider a solution of Φ corresponding to $\left(x_{1}, \ldots, x_{n}\right)=$ $(0, \ldots, 0)$. By the definition of $F_{z_{i}}$ we have $\left(z_{1}, \ldots, z_{l}\right)=(0, \ldots, 0)$ in this solution. Hence, $(0, \ldots, 0) \in \rho$, which contradicts our assumption. Assume that $k \geqslant 1$. For each $i \in[k]$ we define a tuple α_{i} as follows. Since $F_{z_{i}}$ is defined on any tuple $\beta<\alpha$ and $F_{z_{i}}(\beta)=1$ for some $\beta<\alpha$, there exists a minimal 1-set $\alpha_{i} \leqslant \beta$ for z_{i}. Assume that $\alpha^{\prime}:=\alpha_{1} \vee \cdots \vee \alpha_{k}<\alpha$. Consider a solution of Φ with $\left(x_{1}, \ldots, x_{n}\right)=\alpha^{\prime}$. Since $F_{z_{i}}\left(\alpha^{\prime}\right)$ is defined, $F_{z_{i}}\left(\alpha_{i}\right)=1$ and
$F_{z_{i}}$ is monotonic, we have $F_{z_{i}}\left(\alpha^{\prime}\right)=1$ for every $i \in[k]$. Therefore, $\left(z_{1}, \ldots, z_{l}\right)=\left(a_{1}, \ldots, a_{l}\right)$ in this solution, which means that $\left(a_{1}, \ldots, a_{l}\right) \in \rho$ and contradicts the assumption.

Thus, $\alpha^{\prime} \nless \alpha$. Since $\alpha_{i} \leqslant \alpha$ for every i, we obtain $\alpha^{\prime} \leqslant \alpha$, and therefore $\alpha^{\prime}=\alpha$, which completes the proof.
Lemma 32. Suppose α is a minimal 1 -set for $y, i \in\{1,2, \ldots, n\}$, and $2^{i-1} 02^{n-i} \in R$. Then $\alpha(i)=1$ if and only if $F_{y}\left(2^{i-1} 02^{n-i}\right)=0$.

Proof. Assume that $\alpha(i)=0$ and $F_{y}\left(2^{i-1} 02^{n-i}\right)=0$. We have $s_{2}\left(2^{i-1} 02^{n-i} 0, \alpha 1\right)=2^{i-1} 02^{n-i} 2$, which means that Φ has a solution with $\left(x_{1}, \ldots, x_{n}\right)=2^{i-1} 02^{n-i}$ and $y=2$. This contradicts the fact that $F_{y}\left(2^{i-1} 02^{n-i}\right)=0$.

Assume that $\alpha(i)=1$ and $F_{y}\left(2^{i-1} 02^{n-i}\right)$ is not defined or equal to 1 . Then Φ has a solution with $\left(x_{1}, \ldots, x_{n}\right)=2^{i-1} 02^{n-i}$ and $y=c$, where $c \neq 0$. Let $\beta<\alpha$ be the tuple that differs from α only in the i-th coordinate. Since $f_{0,2}\left(\alpha, \beta, 2^{i-1} 02^{n-i}\right)=\alpha$ and $f_{0,2}(1,0, c)=2$, Φ should have a solution with $\left(x_{1}, \ldots, x_{n}\right)=\alpha$ and $y=2$, which contradicts the definition of a minimal 1 -set.

The following lemma and corollary do not play a role in our main result, but we present them for further curiosity and another sanity check.
Lemma 33. Suppose $\Gamma \subseteq \operatorname{Inv}\left(f_{0,2}\right)$, all relations in Γ are of arity at most k. Then any pp-definition of σ_{n} over Γ, where $n \geqslant 2$, has at least $2^{n} / 2^{k}$ constraints.

Proof. Suppose $\sigma_{n}=\Phi\left(x_{1}, \ldots, x_{n}\right)$, where Φ is a conjunctive formula over Γ. There exist 2^{n} tuples from $A^{2 n} \backslash \sigma_{n}$ and each of them has at least two 1s. By Lemma 31, for each $\alpha \in A^{2 n} \backslash \sigma_{n}$ there should be a constraint $\rho\left(z_{1}, \ldots, z_{l}\right)$ such that $\alpha=\bigvee_{i \in B} \alpha_{i}$ for some $B \subseteq\{1,2, \ldots, l\}$. Since every constraint of Φ is of arity at most k , there are at most 2^{k} options to choose B. Therefore, one constraint of Φ can cover at most 2^{k} tuples from $A^{2 n} \backslash \sigma_{n}$. Thus, Φ has at least $2^{n} / 2^{k}$ constraints.

Thus, for a fixed (finite) Γ we need exponentially many constraints to define σ_{n}. Since σ_{n} can be obtained from τ_{n} by identification of variables, we have the following corollary.

Corollary 34. Suppose $\Gamma \subseteq \operatorname{Inv}\left(f_{0,2}\right)$, all relations in Γ are of arity at most k. Then any pp-definition of τ_{n} over Γ, where $n \geqslant 2$, has at least $2^{n} / 2^{k}$ constraints.

Below we present an algorithm that solves $\operatorname{QCSP}^{2}(\Gamma)$ in polynomial time for $\Gamma \subseteq \operatorname{Inv}\left(f_{0,2}\right)$ (see the pseudocode of the function Solve $_{2}$). Again, by SolveCSP we denote a polynomial algorithm, solving constraint satisfaction problem for a constraint language preserved by a semilattice operation: it returns true if it has a solution, it returns false otherwise.
Lemma 35. Function Solve2 solves $\operatorname{QCSP}^{2}(\Gamma)$ in polynomial time for a finite constraint language $\Gamma \subseteq \operatorname{Inv}\left(f_{0,2}\right)$.

Proof. First, let us show that the algorithm actually solves the problem. If the answer is false, then we found an evaluation of $\left(x_{1}, \ldots, x_{n}\right)$ such that the corresponding CSP has no solutions, which means that the answer is correct.

Assume that the answer is true. Let $R\left(x_{1}, \ldots, x_{n}\right)$ be defined by the formula $\exists y_{1} \ldots \exists y_{s} \Phi$. We need to prove that R is a full relation.

```
function \(\operatorname{Solve}_{2}(\Theta)\)
    Input: \(\operatorname{QCSP}^{2}(\Gamma)\) instance \(\Theta=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{s} \Phi\).
    if \(\neg \operatorname{SolveCSP}(x=(0, \ldots, 0) \wedge \Phi)\) then return false
                                    \(\triangleright\) Here \(\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)\)
    for \(i:=1, \ldots, n\) do \(\quad \triangleright\) Check all tuples with just one 1
        \(\mathbf{c}:=(\underbrace{0, \ldots, 0}, 1,0, \ldots, 0)\)
            \(i=1\)
        if \(\neg \operatorname{SolvECSP}(\mathbf{x}=\mathbf{c} \wedge \Phi)\) then return false
    for \(j:=1, \ldots, s\) do
            \(\triangleright\) Calculate the minimal 1-set for every \(y_{j}\)
        \(\alpha_{j}:=(0, \ldots, 0)\)
        for \(i:=1, \ldots, n\) do
                \(D_{i}:=\varnothing\)
                \(\mathbf{c}:=(\underbrace{2, \ldots, 2,0,2, \ldots, 2)}\)
                    \(i-1\)
                for \(a \in A\) do
                if \(\operatorname{SolveCSP}\left(\mathbf{x}=\mathbf{c} \wedge y_{j}=a \wedge \Phi\right)\) then
                \(D_{i}:=D_{i} \cup\{a\}\)
                if \(D_{i}=\varnothing\) then return false
                if \(D_{i}=\{0\}\) then
                    \(\alpha_{j}:=\alpha_{j} \vee(\underbrace{0, \ldots, 0}_{i-1}, 1,0, \ldots, 0)\)
                    \(i-1\)
    for a constraint \(\rho\left(z_{1}, \ldots, z_{l}\right)\) of \(\Phi\) do
                                    \(\triangleright\) Check all constraints
        for \(V \subseteq\{1,2, \ldots, l\}\) do
                                    \(\triangleright\) Check all subsets of variables
        \(\beta:=(0, \ldots, 0)\)
        for \(j \in V\) do
            if \(z_{j}=x_{i}\) for some \(i\) then
                \(\beta:=\beta \vee(\underbrace{0, \ldots, 0,1,0, \ldots, 0)}_{\substack{i-1 \\ \triangleright \\ \triangleright \\ \text { Add the minimal 1-set for } x_{i}}}\)
            if \(z_{j}=y_{i}\) for some \(i\) then
            \(\beta:=\beta \vee \alpha_{i}\)
                \(\triangleright\) Add the minimal 1-set for \(y_{i}\)
                if \(\neg \operatorname{SolveCSP}(\mathbf{x}=\beta \wedge \Phi)\) then return false
    return true
```

Assume the converse. Using the semilattice operation s_{2} we can generate A^{n} from $\{0,1\}^{n}$, hence $\{0,1\}^{n} \nsubseteq R$. Then let α be a minimal tuple from $\{0,1\}^{n} \backslash R$. Since we checked that $(0,0, \ldots, 0)$ and all tuples having just one 1 are from R, α contains at least two 1 . Then, by Lemma 31, there should be a constraint $\rho\left(z_{1}, \ldots, z_{l}\right)$ of Φ and a subset $V \subseteq\{1,2, \ldots, l\}$ such that α is a disjunction of the minimal 1 -sets of z_{i} for $i \in V$. Thus, it is sufficient to find the minimal 1 -set corresponding to each variable and check all the disjunctions.

By Lemma 32, if α_{j} is a minimal 1-set for a variable y_{j} then it was correctly found in lines $7-17$ of the algorithm. Note that if y_{j} does not have a minimal 1-set then we do not care what we found. Then, in lines 18-25 we check all constraints of Φ, check all subsets of variables V, and calculate the corresponding disjunction. In line 26 we check whether Φ has a solution with $\left(x_{1}, \ldots, x_{n}\right)=\alpha$. Thus, Lemma 31 guarantees that $\{0,1\}^{n} \subseteq R$, and therefore $A^{n} \subseteq R$.

It remains to show that the algorithm works in polynomial time. In the algorithm we just solve at most $1+n+s \cdot n \cdot 3+m \cdot 2^{r}$ CSP instances over a language preserved by the semilattice operation s_{2}, where m is the number of constraints in Φ and r is the maximal arity of constraints in Φ. Since Γ is finite, r is a constant, hence the algorithm is polynomial.

Corollary 36. $\operatorname{QCSP}(\Gamma)$ is in P for every finite $\Gamma \subseteq \operatorname{Inv}\left(f_{0,2}\right)$.

Proof. Since $s_{0,2}$ is a 0 -stable operation preserving Γ, Lemma 18 implies that $\operatorname{QCSP}(\Gamma)$ can be polynomially reduced to $\operatorname{QCSP}^{2}(\Gamma)$, and $\operatorname{QCSP}^{2}(\Gamma)$ can be solved by the function Solve 2 .

10 CONCLUSION

Our demonstration of QCSP monsters suggests that a complete complexity classification of $\mathrm{QCSP}(\Gamma)$ under polynomial reductions is likely to be exceedingly challenging. Indeed, suppose $P \neq N P$, how many equivalence classes of problems $\operatorname{QCSP}(\Gamma)$ are there up to polynomial equivalence? In this paper we showed that there are at least six of them. Are there any more? Are there infinitely many? We don't know the answer.

Meanwhile, the most sensible approach to complexity classification for $\operatorname{QCSP}(\Gamma)$ might be to try to find those that are in P, in contradistinction to those that are NP-hard under polynomial Turing reductions (which would thus capture also the co-NP-hardness). Similarly, someone could ask about a general criteria for the QCSP to be PSpace-hard or to be a member of a concrete complexity class, which is also a very intriguing question.

As the next step, it seems very natural to work on a classification for constraint languages on a three-element domain without constants, where the reduction to CSP doesn't work and brand new ideas are required.

ACKNOWLEDGMENTS

The first proof that there is a concrete finite constraint language Γ such that $\operatorname{QCSP}(\Gamma)$ is co-NP-complete is due to Miroslav Oľ̆ák. The observation that QCSP (Γ) as in Corollary 10 is Θ_{2}^{P}-complete was communicated to us by Emil Jeřábek. We are grateful for discussions with Victor Lagerkvist about polynomial-sized pp-definitions, with particular reference to our relations τ_{i}. We would like also to thank Antoine Mottet and Libor Barto for fruitful discussions, as well as discerning comments from several anonymous reviews.

The first author has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005) and from Russian Foundation for Basic Research (grant 19-01-00200).

REFERENCES

[1] Libor Barto and Michael Pinsker. 2016. The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, fuly 5-8, 2016. 615-622. https://doi.org/10.1145/2933575.2934544
[2] Manuel Bodirsky and Hubie Chen. 2009. Relatively quantified constraint satisfaction. Constraints 14, 1 (2009), 3-15. https://doi.org/10.1007/s10601-008-9054-z
[3] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. 1969. Galois theory for Post algebras parts I and II. Cybernetics 5 (1969), 243-252, 531-539.
[4] Ferdinand Börner, Andrei A. Bulatov, Hubie Chen, Peter Jeavons, and Andrei A. Krokhin. 2009. The complexity of constraint satisfaction games and QCSP. Inf. Comput. 207, 9 (2009), 923-944.
[5] Joshua Brakensiek and Venkatesan Guruswami. 2018. Promise Constraint Satisfaction: Structure Theory and a Symmetric Boolean Dichotomy. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018. 1782-1801. https://doi.org/10.1137/1.9781611975031.117
[6] Andrei A. Bulatov. 2017. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). 319-330.
[7] Samuel R. Buss and Louise Hay. 1991. On Truth-Table Reducibility to SAT. Inf. Comput. 91, 1 (1991), 86-102. https://doi.org/10.1016/0890-5401(91)90075-D
[8] Catarina Carvalho, Florent R. Madelaine, and Barnaby Martin. 2015. From complexity to algebra and back: digraph classes, collapsibility and the PGP. In 30th Annual IEEE Symposium on Logic in Computer Science (LICS).
[9] Catarina Carvalho, Barnaby Martin, and Dmitriy Zhuk. 2017. The Complexity of Quantified Constraints Using the Algebraic Formulation. In 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark. 27:1-27:14. https://doi.org/10.4230/LIPIcs.MFCS. 2017.27
[10] Hubie Chen. 2004. Quantified Constraint Satisfaction and 2-Semilattice Polymorphisms. In Principles and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September 27-October 1, 2004, Proceedings. 168-181. https://doi.org/10.1007/978-3-540-30201-8_15
[11] Hubie Chen. 2006. A rendezvous of logic, complexity, and algebra. SIGACT News 37, 4 (2006), 85-114. https://doi.org/10.1145/1189056.1189076
[12] Hubie Chen. 2008. The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case. SIAM 7. Comput. 37, 5 (2008), 1674-1701. https://doi.org/10.1137/060668572
[13] Hubie Chen. 2011. Quantified constraint satisfaction and the polynomially generated powers property. Algebra universalis 65, 3 (2011), 213-241. https: //doi.org/10.1007/s00012-011-0125-4 An extended abstract appeared in ICALP B 2008.
[14] Hubie Chen. 2012. Meditations on Quantified Constraint Satisfaction. In Logic and Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His 60th Birthday. 35-49.
[15] Hubie Chen, Florent R. Madelaine, and Barnaby Martin. 2015. Quantified Constraints and Containment Problems. Logical Methods in Computer Science 11, 3 (2015). https://doi.org/10.2168/LMCS-11(3:9)2015
[16] Hubie Chen and Peter Mayr. 2016. Quantified Constraint Satisfaction on Monoids. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France. 15:1-15:14. https://doi.org/10.4230/LIPIcs. CSL. 2016.15
[17] David Geiger. 1968. Closed systems of functions and predicates. Pacific journal of mathematics 27, 1 (1968), 95-100.
[18] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. 2017. The Complexity of General-Valued CSPs. SIAM F. Comput. 46, 3 (2017), 1087-1110. https://doi.org/10.1137/16M1091836
[19] Victor Lagerkvist and Magnus Wahlström. 2017. The power of primitive positive definitions with polynomially many variables. F. Log. Comput. 27, 5 (2017), 1465-1488. https://doi.org/10.1093/logcom/exw005
[20] Thomas Lukasiewicz and Enrico Malizia. 2017. A novel characterization of the complexity class $\Theta_{\mathrm{k}}^{\mathrm{P}}$ based on counting and comparison. Theor. Comput. Sci. 694 (2017), 21-33. https://doi.org/10.1016/j.tcs.2017.06.023
[21] Florent R. Madelaine and Barnaby Martin. 2018. On the Complexity of the Model Checking Problem. SIAM 7. Comput. 47, 3 (2018), 769-797. https://doi.org/10. 1137/140965715
[22] Barnaby Martin. 2017. Quantified Constraints in Twenty Seventeen. In The Constraint Satisfaction Problem: Complexity and Approximability, Andrei Krokhin and Stanislav Zivny (Eds.). Dagstuhl Follow-Ups, Vol. 7. Schloss Dagstuhl-LeibnizZentrum fuer Informatik, Dagstuhl, Germany, 327-346. https://doi.org/10.4230/ DFU.Vol7.15301.327
[23] Christos H. Papadimitriou. 1994. Computational Complexity. Addison-Wesley.
[24] D. Zhuk. 2017. A Proof of CSP Dichotomy Conjecture. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). 331-342. https://doi. org/10.1109/FOCS. 2017.38
[25] Dmitriy Zhuk. 2019. The size of generating sets of powers. Journal of Combinatorial Theory, Series A 167 (2019), 91-103.
[26] Dmitriy Zhuk and Barnaby Martin. 2019. QCSP monsters and the demise of the Chen Conjecture. CoRR abs/1907.00239 (2019). arXiv:1907.00239 http: //arxiv.org/abs/1907.00239

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 STOC '20, June 22-26, 2020, Chicago, IL, USA
 © 2020 Association for Computing Machinery.
 ACM ISBN 978-1-4503-6979-4/20/06...\$15.00
 https://doi.org/10.1145/3357713.3384232

