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Abstract—This research focuses on semi-supervised classifica-
tion tasks, specifically for graph-structured data under data-
scarce situations. It is known that the performance of con-
ventional supervised graph convolutional models is mediocre at
classification tasks, when only a small fraction of the labeled
nodes are given. Additionally, most existing graph neural network
models often ignore the noise in graph generation and consider
all the relations between objects as genuine ground-truth. Hence,
the missing edges may not be considered, while other spurious
edges are included. Addressing those challenges, we propose a
Bayesian Graph Attention model which utilizes a generative
model to randomly generate the observed graph. The method
infers the joint posterior distribution of node labels and graph
structure, by combining the Mixed-Membership Stochastic Block
Model with the Graph Attention Model. We adopt a variety
of approximation methods to estimate the Bayesian posterior
distribution of the missing labels. The proposed method is
comprehensively evaluated on three graph-based deep learning
benchmark data sets. The experimental results demonstrate a
competitive performance of our proposed model BGAT against
the current state of the art models when there are few labels
available (the highest improvement is 5%), for semi-supervised
node classification tasks.

Index Terms—semi-supervised learning, graph neural network,
Bayesian neural network

I. INTRODUCTION

Graph representation learning has recently drawn the at-
tention of researchers from across various domains, includ-
ing computer vision, natural language processing, knowledge
graphs, and social networks [1]. Graphs are defined as G =
(V,E) where V is a set of nodes and E is a set of edges. As
graphs can be irregular, arbitrary, non-Euclidean in structure
and contain a rich range of values, they are good candidates to
represent the complex knowledge (entities and relationships)
existent in the real world [2]. Extensive graph neural network
(GNN) based models, including graph convolution networks
(GCNs) [3] and graph attention networks (GATs) [4] have been
developed for unsupervised, semi-supervised and supervised
learning cases. In the supervised setting, the training data is

given with all class labels [5], and models pass the information
from neighboring nodes and edges, to classify the central node,
by optimizing a predefined loss function. Despite the learning
abilities these models proved, their inference performance is
compromised for semi-supervised tasks, when only limited
labeled data is available [2]. Additionally, most existing studies
[3], [6], [7] process input graphs as the ground truth, but
neglect the fact that noise or spurious edges generated from
model assumptions may be included, and thus lack robustness.

Addressing the above problems, [2] proposed a generative
graph model to infer the joint posterior distribution of weights
of a Graph Convolutional Network (GCN) and the graph
structure of input. However, their posterior inference of the
graph is mainly conditioned on the structure of the observed
graph, and neglects the information from the node features. As
the data may be correlated with the actual graph structure, the
information of features is missing which resulted in a moderate
performance [8], particularly under data-scarce situations.

In this paper, we introduce a generative model that con-
siders the neighboring nodes’ features and labels using an
attention mechanism. We propose a Bayesian graph attention
network (BGAT) model, to simultaneously boost the model’s
performance and robustness when solving semi-supervised
classification.

In summary, the main contributions of this work are:

1) We propose a novel BGAT model combining GAT and
the Bayesian method, which allows, to the best of our
knowledge accounting for uncertain information, such
as spurious and missing edges between nodes in a graph,
by viewing the observed graphs, as generated from a
parametric random graph family.

2) We demonstrate our model’s improved performance
at classification tasks under data-scarce (under-labeled
data) situations.



II. RELATED WORK

The Graph Neural Network (GNN) was initially introduced
by [9] as updating nodes’ states iteratively, until reaching sta-
ble states, by propagating discrete features from neighboring
nodes. [10] elaborated it further, by extending recurrent models
to deal with graphs, including directed, cyclic, or mixed graphs
based on information diffusion and relaxation methods [11].
Later, [12] developed a new framework for GNNs, which
contained a message-passing phase and a readout phase. It
improved the performance at learning hierarchical graphical
representations, by using sub-graphs. GNNs are effective at
learning node representations, via feature propagation, but
generally struggle to model the dependencies between various
node labels. These methods usually assume a central node
classification is conditionally independent of the features, but
seldomly [8] model the joint distribution of the node labels
and graph to extract more relationships among nodes.

Most existing studies take the input graph as a fixed obser-
vation and assume it represents the ground-truth information.
In such cases, neural networks do not consider the uncertainty
of information, including spurious edges and missing edges
in graphs. A few studies [2], [8], [13] have understood the
problem and proposed to solve it by using generative models.
[13] introduced a Gaussian process-based approach in semi-
supervised learning and [2] incorporated the stochastic block
model and used Monte Carlo dropout [14]to represent model
uncertainty in deep learning. Recently, [8] introduced a graph-
based generative framework for semi-supervised learning, but
they did not consider the data-scarce situations in active
learning, which is the problem of interest in this paper.

Our study builds on the work by [2], as their idea of
considering the uncertain graph information based on GCN
is practical and effective for semi-supervised learning, par-
ticularly under data-scarce situations. However, they did not
consider the specific weights of highly correlated features and
the interaction between those features and graph structure as
addressed above. By learning the influence among nodes, the
attention mechanism could mitigate the problem of including
spurious edges as addressed by [4]. We are interested in
combining Bayesian methods with GAT to learn the joint
distribution of labels, features and graph under data-scarce
situations for semi-supervised node classification tasks.

III. MODEL BUILDING - PRELIMINARIES

A. Graph Attention Mechanism

The standard deterministic soft attention modules have been
widely used in various neural networks. According to [15],
the basic idea is to map a number of key-value pairs to
the output. By indexing keys K and queries Q, attention
modules obtain non-negative deterministic attention weights
W through a softmax function, and the output values could
then be aggregated in the attention computation as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where V are the values and dk is the dimension of the
keys. The softmax function is applied on the attention scores
to calculate the attention distribution. The Graph Attention
Network (GAT) was proposed by [4] and its power consisted
in it considering the relative influence between neighboring
nodes and central nodes, instead of the fixed weights used in
GCN, based on attention mechanisms. It can be outlined as:

hli = σ(
∑

αl
ijW

thl−1
j ) (2)

Where αt
ij is the attention score between node i and j and

can be calculated as:

αt
ij = softmax(σ(a[Whl−1

i ||Whl−1
j ])) (3)

σ is the LeakyReLU activation, Wh are the weights of node
i and j in layer l − 1. Operation || is a concatenation and
the softmax function used to sum up all neighbors of node
i. Instead of performing single attention as above, employing
multiple attention layers allows to jointly attend to information
at different space [15] and has been used to solve node
classification task as a graph aggregator by assuming each
attention head’s importance is the same [4].

More recently, [16] proposed a Gated Attention Network
(GaAN) model, to further take into account the importance of
each attention head, separately. The model performed well for
both inductive node classification and traffic speed forecasting
tasks, and the authors argued that it could also be possibly
extended to integrate edge features for massive graphs.

B. Bayesian Neural Network

According to Seedat and Kanan [17], Bayesian neural
networks represent uncertainty by formulating a network’s
parameters in the manner of a probabilistic distribution. The
weight matrix can be modelled as random variables that p(Wl)
in layer l can be defined as Wl ∼ N (0, I), by introducing the
standard matrix Gaussian prior distribution with bias vector
bl. The classification task can be formulated as:

p(y|x,Wl) = categorical(exp(f̂)/
∑
d′

exp(f̂d′)) (4)

where f̂ = f̂(x,Wl) is a random output, given input x and a
random weight of a neural network Wl. Then a softmax func-
tion is added to obtain a multinomial probability distribution.
Considering the posterior distribution of the weight matrix W ,
the predictive function for a new point x* can be formulated
as:

p(y|x∗, X, Y ) =

∫
p (y|x∗, w) p(w|X,Y )dw (5)

As the functional form of a neural network is difficult
to integrate, the exact calculation of the model posterior
p(w|X,Y ) is generally intractable [18] and cannot usually
be analysed in a close form. Therefore, [19] introduced an
approximating variational distribution q(w) and minimised
the Kullback–Leibler (KL) divergence to approximate the
predictive distribution:



p(y|x∗, X, Y ) =

∫
p (y|x∗, w) q(w)dw (6)

The variational inference of equation (6) can be further
approximated using the Monte Carlo dropout method [14],
which accounts for model uncertainty in deep learning. We
can draw samples from the approximate posterior and average
the weight matrix W of the network with T stochastic forward
passes:

p(y|x∗, X, Y ) ≈ 1

T

T∑
t=1

p(y|x∗,W t
1 , ...,W

t
l ) (7)

C. Mixed Membership Stochastic Block Model

The mixed membership stochastic block model (MMSBM)
[20] is a popular framework for community detection [21],
which considers a graph G(V,E) and the associated adjacency
matrix A. Assuming there are n nodes in the graph, denoted
by x1, . . . , xn. An adjacency matrix A for this graph is an n
by n dimensional matrix. If there is no connection between
node xp and node xq , A(p, q) = 0 otherwise A(p, q) = 1.
The MMSBM models the adjacency matrix A in a Bayesian
hierarchical framework. According to a very recent work of
[22], the absence or presence of a link between any pair of
nodes (xp, xq) is described by a Bernoulli distribution B with
a latent group membership zp,q,1 zp,q,2:

A(p, q) | zp,q,1, zp,q,2, B ∼ Bernoulli
(
zTp,q,1Bzp,q,2

)
(8)

The Bernoulli probability matrix B has a K by K dimen-
sion, which, for community detection, represents the number
of communities in the data. As we focus on undirected graphs,
zp,q,1 means the node xp is interacting with xq where both
nodes are K-dimensional vectors, where only one element
equals to one. It can be denoted as z = [z1, ...zK ]T , indicating
the corresponding community the node belongs to (the rest
being zero). According to [22], the joint distribution of latent
group memberships of nodes Z and data X is:

p (X,Z1, Z2, π |α,B)=
∏
p,q

p1 (X(p, q) | zp,q,1,zp,q,2, B)

p2 (zp,q,1 |πp) p2 (zp,q,2 | πq)
∏
p

p3 (πp | α)
(9)

p1 is the Bernoulli distribution (β) which refers to the possibil-
ity of a link between two nodes. p2, p3 are prior of latent group
membership and the prior of the former one, with multinomial
and Dirichlet distributions, respectively.

IV. BAYESIAN GRAPH ATTENTION NETWORK

A. Learning Attention Using the Bayesian Framework

We consider a semi-supervised learning problem and model
it with conditional probability using parametrization, including
the graph’s attention. The deterministic attention weights are
transformed into a distribution, making it straightforward and
requiring minimal changes to the standard attention model.
We can adapt a pre-trained standard attention model for

variational fine-tuning. For backpropagate through stochastic
nodes, re-parametrization trick [23] can be used to construct
the distribution. Learning attention distribution as a variational
inference helps in constructing a re-parametrizable attention
distribution. The graph structure is encoded in the attention
masks, so that nodes can only attend to the neighborhood’s
features in the graph.

B. Methodology

As aforementioned, the motivation for introducing the
Bayesian Graph Attention model derives from the Bayesian
Graph Convolutional Neural Network (BGCN) model [2]. We
use a building block layer to construct an arbitrary graph
attention network (through stacking this layer) and apply
a Bayesian approach. In this paper, the Bayesian approach
views a graph as a realization from a parametric family of
random graphs based on the known labels of nodes, Y and
structures from observed graphs. The joint posterior of the
weights in GAT, the parameters of the random graph and the
remaining unknown node labels are the target inference. By
marginalization, the graph parameters, posterior estimation of
the labels could be inferred and obtained. Then we combine
the posterior of labels and attention of nodes and implement
a softmax function to obtain the final output. The posterior
probability of labels is formulated as:

p (Z | Gobs,X,Y) =

∫
p(Z |W,Gr,X)p (W | Y,X,Gr)

p(Gr | ζ)p (ζ | Gobs) dWdGrdζ
(10)

ζ is the parameter that describes a family of random
graphs Gr, which can be derived from the observed graph
Gobs using the MMSBM random graph model. W is the
sampled weights of BGAT over the random graphs Gr by
approximating variational inference via Monte Carlo dropout
as aforementioned in III-B. Y is the known label of nodes
and later GAT will take (X,G) as input to infer the unknown
labels of nodes. A softmax function will be added to the output
of GAT to model p(Z|X,Y,Gobs) in a categorical distribution.
Figure 1 provides a detailed schematic of our Bayesian GAT
model.



Fig. 1. Overview of BGAT

Since the highly non-linear nature of likelihood leads to
intractable computation of posterior in the equation (10),
we can use variational inference [14], [24], [25] or MCMC
[26], [27] to approximate the posterior of p(W |Y,X,Gr).
According to [28], averaging the weights of the network is
an approximate way of Monte Carlo dropout. The weight
metrices W can then be sampled from p (W | Y,X,Gr) using
Monte Carlo dropout given the sampled graphs generated
from p(Gr|ζ). To model p(ζ|Gobs), parametric random graph
generation models, such as degree corrected block model [29]
and mixed membership stochastic block model [20] could be
considered. In summary, the Monte Carlo approximation of
equation (10) is:

p (Z | Y,X,Gobs) ≈
1
V

∑V
v

1
NGS

∑NC

a=1

∑S
s=1 p (Z |Ws,a,Ga,X)

(11)

Ga is the graph sampled from the random graphs Gr and
the weight matrix Ws,a is sampled from p (W | Y,X,Gr)
based on Ga. For the Bayesian GAT, we use a similar Mixed
Membership Stochastic Block Model (MMSBM) setting used
in Bayesian GCN [2] for the graph and learn its parameter
ζ = {β, z} using stochastic optimization to maximize the
posterior of β and z based on the observed graph Gobs.

As addressed in section III-C, the MMSBM model is used to
model the random graph based on the observed graphs, which
helps us establish a strong community structure between nodes
and determine which community node may belong to. If any
two nodes belong to the same community, meaning they have
the same label, and it is highly likely to have a link between
them, compared to when the two nodes belong to different
communities [20]. β is to denote the possibility that there
is a link between any two nodes and z is the parameter for
the community membership probability distribution of nodes,
and the priors of them are Beta and Dirichlet distribution,
respectively.

The posterior probability of labels p(Z|Y,X,Gobs) is mod-
eled as a K-dimensional categorical distribution, where K

is the number of classes/communities of the data. In GAT,
a weight matrix W containing the F dimensions of features
of the nodes is introduced as an initial linear transformation,
and then self-attention will be applied, to compute attention
coefficients, as the relative influence of node j’s features on
node i, defined by [4]:

eij = a
(
W~hi,W~hj

)
(12)

The Bayesian inference of attention can be generalised to
a stochastic generative process [30], with input x and the
parameter of the posterior distribution of the attention θ:

θ ∼ p(θ,G), z = fatt (x; θ) (13)

Where z is the output of the attention model and the
Bayesian inference for the attention and labels can be formu-
lated as p(z|x,G). Hence we model the posterior of labels and
attention nodes, which allows us to incorporate the features of
the nodes and trained labels in the graph inference process.

This study uses the Markov Chain Monte Carlo (MCMC)
method to approximate the posterior of labels and model
the posterior using a categorical distribution to establish the
community membership among nodes. We then model the
posterior of labels and learned attention of nodes by applying
the softmax function to the output of GAT. The attention
improves the model’s expressiveness and the Bayesian GAT
model leverages deterministic self-attention layers to process
node features for graph node classification. The graph structure
is encoded in the attention masks, so nodes can only attend to
their neighborhoods’ features in the graph.

V. EXPERIMENT

Experiments implemented to demonstrate the effectiveness
of our model are described in this section. Specifically, we
aim to answer the following research questions:
RQ1 How to improve graph representation learning models

for semi-supervised classification tasks given scarce
data?

RQ2 How to improve the robustness of the graph representa-
tion learning model to noise by considering uncertainty?

A. Datasets

As mentioned, we perform a semi-supervised node classi-
fication task on three citation datasets: Cora, CiteSeer, and
Pubmed [31]. The details of each dataset is summarised in
Table I. In these datasets, each node represents a scientific
document and if anyone paper cites the other, there will be an
undirected edge between them, shown in Figure 3 and 4, where
Citeseer is more decentralized compared with Cora. We do not
consider the direction of the citation here. Each node has a
sparse feature vector (keywords of the document) and the label
describes the topic of the document. For instance, each node
has 1433 dimensions of features attached to it, represented as
0 or 1 in Cora and the node label in the last column represents
the topic/community that document belongs to, as shown in



Figure 2. Please note that we only have access to few nodes
per class during training to infer labels for other nodes.

TABLE I
DATASET SUMMARY

Datasets Cora Citeseer Pubmed
Nodes 2708 3327 19717
Edges 5429 4732 44338

Communities 7 6 3
Features 1433 3703 500

Features Type Binary Binary TF/IDF
Average Degree 4 2 3

Fig. 2. Layout of the Cora Dataset

Fig. 3. Visualisation of the Cora Dataset

Fig. 4. Visualisation of the Citeseer Dataset

B. Baselines

We consider three widely applied graph learning models
and one previous work on semi-supervised learning under
data-scarce situations as baselines: ChebyNet, GCN, GAT and
BGCN.

• ChebyNet A spectral CNN-based model uses Chebyshev
polynomials to approximate and localize filters of graphs
[32].

• GCN A spectral CNN-based method that deploys the
first-order approximation of ChebNet and assigns a non-
parametric weight of neighborhood to central nodes [3].

• GAT An attention mechanism-based neural network
method that considers the weight of neighbor information
to central nodes [4].

• BGCN A Bayesian GCNN framework that considers
the randomness of input graphs by incorporating the
Bayesian method with GCN [2].

C. Model Settings

The hyper-parameters of BGAT are borrowed from the
experiments of GAT [4] and BGCN [2]. We use two layers
and the number of hidden units is 16, with a 50 percent
dropout rate at each layer. Learning rate is 0.01 and the L2
regularisation parameter is 0.0005. In addition, the hyper-
parameters associated with the Mixed Membership Stochastic
Block Model (MMSBM) inference are: n =500, ε0 = 1, τ =
1024, κ = 0.5, η = 1, α = 1 and ρ= 0.001.

Three different experimental settings for a semi-supervised
classification task have been considered, where 5, 10 and 20
labels per class are available in the training set, to infer labels
for the others. The partitioning of the data into 20 labels per
class is set the same as in [2], whereas in the other two cases,
the training sets are constructed by considering the first 5 or
10 labels from the previous partition.



D. Experimental Results

TABLE II
THE AVERAGE PREDICTION ACCURACY OF MODELS IN CORA

Random split 5 labels 10 labels 20 labels

ChebyNet 61.7±6.8 72.5±3.4 78.8±1.6
GCN 70.0±3.7 76.0±2.2 79.8±1.8
GAT 70.4±3.7 76.6±2.8 79.9±1.8
BGCN 74.6±2.8 77.5±2.6 80.2±1.5
BGAT 74.8± 4.5 78.8± 2.8 84.3± 1.8

TABLE III
AVERAGE PREDICTION ACCURACY OF MODELS IN CITESEER

Random split 5 labels 10 labels 20 labels

ChebyNet 58.5±4.8 65.8±2.8 67.5±1.9
GCN 58.5±4.7 65.4±2.6 67.8±2.3
GAT 56.7±5.1 64.1±3.3 67.6±2.3
BGCN 63.0±4.8 69.9±2.3 71.1±1.8
BGAT 68.6± 4.6 71.4± 2.6 74.2± 1.6

TABLE IV
AVERAGE PREDICTION ACCURACY OF MODELS IN PUBMED

Random split 5 labels 10 labels 20 labels

ChebyNet 62.7±6.9 68.6±5.0 74.3±3.0
GCN 69.7±4.5 73.9± 3.4 77.5± 2.5
GAT 68.0±4.8 72.6±3.6 76.4±3.0
BGCN 70.2±4.5 73.3±3.1 76.0±2.6
BGAT 71.4± 4.7 72.3±3.4 74.5±2.4

The mean and standard deviation of the proposed method’s
test accuracy versus the baselines are shown above in Tables II,
III and IV. The proposed model achieves a better performance
in all bar 2 cases. For instance, the proposed model improves
more than 4% and 5% of the test set accuracy in the Cora
and Citeseer data sets, when there are 20 and 5 labels
available, respectively. The results support the improvements
introduced by our model for classification tasks under data-
scarce situations. Nevertheless, the proposed model does not
reach the highest accuracy in the Pubmed dataset, for the
cases of 10 and 20 labels per community. GCN presents the
most expressive power for the Pubmed dataset. One possible
explanation is that there are more low-pass subgraphs in
Pubmed and the repeated graph propagation is the primary
source of the expressive power of GCN [33]. Another possible
reason is that the MMSBM model may not be appropriate for
data with a heavy-tailed degree distribution [2].

VI. CONCLUSION

This paper introduces a novel method for graph-based semi-
supervised learning, which allows for considering uncertainty
in the graph generation process. We present how to incorpo-
rate MMSBM with a graph attention mechanism and examine
our model on three graph-based deep learning benchmark
datasets. The results demonstrate that the proposed model out-
performs other graph-based semi-supervised learning methods,

when there are only a few labels of the nodes known for
classification tasks in most settings. Given the robustness and
performance of BGAT, it could be used as a new baseline in
future generative graph learning.

VII. FUTURE WORK

There are several potential extensions to our work that could
be addressed as future study. One is to investigate how to
extend the generative models, by accounting for more graph
structure information to other graph-based learning tasks. For
instance, the direction of the citation could be considered and
modelled in the graph generation process. Moreover, extending
the method’s expressive power with sub-structure counting
could also be insightful, from the application perspective.
Finally, extending the model with more scalable techniques
would allow us to perform practical inference over large-scale
graphs under data-scarce situations.
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