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Phase separation and sharp
large deviations

Ostap Hryniv∗and Clare Wallace†

Abstract. Using a refined analysis of phase boundaries, we derive

sharp asymptotics of the large deviation probabilities for the total mag-

netization of a low-temperature Ising model in two dimensions.

1 Introduction

The phenomenon of “phase separation” has been at the heart of the theory of phase
transitions in low-temperature lattice systems since its discovery by Minlos and Sinai
[1, 2] in the late 1960s. Under suitable conditions, it makes possible to describe the
canonical ensembles of such models in terms of (families of) large contours, or “phase
boundaries”, and, as a result, to study the limiting behaviour of the corresponding proba-
bility distributions and their partition functions. This approach is especially successful in
two dimensions, as the resulting phase boundaries are one-dimensional contours, whose
statistical behaviour is well understood.

When combined with a careful analysis of the related variational problem, these re-
sults can provide a detailed description of the typical configurations in such ensembles.
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In the setting of the low-temperature Ising model on a two-dimensional torus, the fa-
mous Dobrushin-Kotecký-Shlosman theorem [3] rigorously justifies the so-called Wulff
construction and approximates the rescaled phase boundary by that of the Wulff shape,
a two-dimensional region enclosed by a curve with the smallest surface energy. In turn,
this determines the asymptotics of the logarithm of large deviation probabilities for the
total magnetization of the model.

To derive a sharp large deviation principle for the total spin, one needs to carefully anal-
yse the shape dependence of the corresponding distribution. We illustrate the approach in
the case of a low-temperature Ising model in two dimensions.

• • • • • •

2 Model

For integer N, M ≥ 1 consider a finite box

VNM
..=
{

x = (x1,x2) ∈ (Z2)∗ : |x1| ≤ N, |x2| ≤M
}

of the (dual) two-dimensional integer lattice (Z2)∗ ..= {x=(x1,x2) : x1+1/2, x2+1/2∈Z}.
To each site x ∈ VNM associate a spin σx ∈ {−1,+1} and write σ = (σx, x ∈ VNM) for a
configuration in ΩNM

..= {−1,+1}VNM . Write x ∼ y if sites x and y are neighbours in
(Z2)∗, i.e., |x− y| ..= |x1− y1|+ |x2− y2| = 1. For a subset V ⊂ (Z2)∗, use ∂V to denote
the external boundary of V , namely, the set {y ∈ (Z2)∗ \V : ∃x ∈V with x∼ y}.

Given an angle ϕ ∈ (−π/2,π/2), let σ̄ =
(
σ̄x, x ∈ (Z2)∗

)
be the two-component bound-

ary conditions, where σ̄x = +1 iff x = (x1,x2) satisfies x2 ≥ x1 tanϕ for x1 > 0 or
x2 > x1 tanϕ for x1 < 0; otherwise, put σ̄x = −1. Notice that in σ̄ the pairs of sites
which are centrally symmetric with respect to the origin (0,0) have spins of the opposite
sign, σ̄−x ≡−σ̄x for all x.

The Gibbs distribution in ΩNM with boundary conditions σ̄ is defined via

P σ̄
VNM

(σ) ..=
(
Z(VNM, σ̄)

)−1 exp
{
−βH (σ |σ̄)

}
, σ ∈ΩNM , (1)

where the partition function is

Z(VNM, σ̄) = ∑
σ∈ΩNM

exp
{
−βH (σ |σ̄)

}
(2)
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and the (joint) energy is given by

H (σ |σ̄) =−1
2 ∑
{x∼y}⊂VNM

σxσy− ∑
x∼y;x∈VNM ,y∈∂VNM

σxσ̄y , (3)

where the first sum runs over all pairs of neighbouring sites in VNM , while the second sum
is restricted to boundary pairs (x,y) of neighbouring sites with x ∈VNM and y ∈ ∂VNM . In
what follows we always assume that the temperature 1/β > 0 is sufficiently low.

Of key interest is the distribution of the total magnetization SVNM
..= ∑x∈VNM σx in large

volumes, namely, the limiting behaviour of the probability

P σ̄
VNM

(bN) ..= P σ̄
VNM

(
{σ ∈ΩNM : SVNM = bN}

)
as N→ ∞, for a suitable sequence of integer values bN ; of course, for the last probability
to be positive bN must be of the same parity as the number |VNM| of sites in VNM , i.e.,
even, and satisfy the a priori bound |bN | ≤ |VNM|. In what follows we assume that bN

satisfies these constraints.

For a given ϕ ∈ (−π/2,π/2), assume additionally that (2N)−2bN→ b as N→∞ with the
limiting value satisfying |b| < b(ϕ), for a suitably chosen constant b(ϕ) > 0, see below.
Then the Dobrushin-Kotecký-Shlosman theory [3] implies that for some α ∈ (0,1)

lnP σ̄
VNM

(bN) =−2βNW (ϕ,b)+O(Nα) as N→ ∞ , (4)

provided β ≥ β0 with suitably chosen β0 > 0, and the aspect ratio M/N is uniformly
bounded from below by a positive constant depending on ϕ . Here ln denotes the nat-
ural logarithm, and the rate functional W (ϕ,b) can be expressed in terms of the surface
energy of the Wulff profile, a unique solution to the related variational problem, see be-
low.

Our aim here is to derive a sharp asymptotic of the probability P σ̄
VNM

(bN), equivalently,
to improve the expansion in (4) up to the zero order term. To state our main result, we
need to introduce some additional concepts.

Similarly to the Gibbs distribution (1)–(3) with two-component boundary conditions
σ̄ , consider its analogue P+

VNM
(σ), σ ∈ΩNM , where σ̄ is replaced by the constant “plus”

configuration σ+ = (σ+
x ,x ∈ (Z2)∗) with σ+

x = 1 for all x. The corresponding energy is
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defined via

H (σ |+) =−1
2 ∑
{x∼y}⊂VNM

σxσy− ∑
x∼y;x∈VNM ,y∈∂VNM

σxσ
+
y , (5)

and the partition function is

Z(VNM,+) = ∑
σ∈ΩNM

exp
{
−βH (σ |+)

}
.

Then the surface tension in direction of the normal nϕ to the line x2 = x1 tanϕ is

τ(nϕ) :=− lim
N→∞

lim
M→∞

cosϕ

2βN
ln

Z(VNM, σ̄)

Z(VNM,+)
. (6)

Informally, τ(nϕ) is the price (per unit length) of the presence of the phase boundary
induced by the two-component boundary conditions σ̄ , relative to the constant “plus”
boundary conditions σ+. As shown in [3], τ(nϕ) also arises in the simultaneous limit
N→∞ and M→∞ in (6) along a sequence of suitably shaped volumes; in particular, this
holds for rectangular volumes VNM with uniform condition M ≥ (1+ | tanϕ|)N.

The related Wulff variational problem is to minimize the value of the Wulff functional,

W (γ) ..=
∫

γ

τ(ns)ds , (7)

in the class of all rectifiable curves γ enclosing area |V (γ)| ≥ 1. Its solution W = Wβ ,
known as the Wulff shape, is unique (up to translations), and can be constructed by a
simple geometric procedure [3, 5]. The boundary of the Wulff shape W is strictly convex
for all β ≥ β0 [3].

The rate functional W (ϕ,b) in (4) can be defined in terms of the surface energy of a
suitable part of the Wulff shape boundary [4]. Without loss of generality, let b < 0. By
strict convexity of the Wulff shape Wβ there is a unique position of a straight line at angle
ϕ to the horizontal intersecting Wβ , such that the area a of the top part and the horizontal
projection w of its straight boundary, see Fig. 1, satisfy the relation

a = w2|b|/(2m(β )) , (8)

where the spontaneous magnetization m(β ) is positive for all β large enough. Then,
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rescaling the resulting shape (see the right part of Fig. 1) so that the horizontal projection
of γ0 equals one, we have

W (ϕ,b) = W (γ1)−W (γ0) ,

recall (7). The strict convexity of the surface tension τ(nϕ) implies that W (ϕ,b)≥ 0.

ϕ

a

w γ0

γ1

Figure 1: Construction of the Wulff profile corresponding to W (ϕ,b).

Let a(ϕ) be the value of the area corresponding to the straight line at angle ϕ to the
horizontal passing through the right-most point of Wβ (the dashed line on the left of
Fig. 1); write w(ϕ) for the horizontal projection of the resulting shape. If |a|< a(ϕ), the
tangent at every point of the boundary γ1 is non-vertical. As shown in [4], for such a the
fluctuations of the phase boundary of the Ising model (1)–(3) around the suitably scaled
curve γ1 are asymptotically Gaussian.

The maximal value b(ϕ), determining the validity of (4), is linked to a(ϕ) via (8)
with w = w(ϕ). In what follows we assume that the sequence bN of even numbers is
ϕ-admissible in that there is ε > 0 such that for all N we have (2N)−2|bN |< b(ϕ)− ε .

Theorem 2.1 Let |ϕ| < π/2 and consider a ϕ-admissible sequence bN with b =

limN→∞(2N)−2bN . Fix a sequence of volumes VNM such that M = MN with M/N→ c > 0
as N→∞, for large enough c = c(ϕ)> 0. Then there exist β0 > 0 and a positive constant
C =C(ϕ,b) such that for β ≥ β0,

P σ̄
VNM

(bN) =
C(ϕ,b)√

2πN3
exp
{
−2βNW (ϕ,b)

}(
1+o(1)

)
as N→ ∞ . (9)

Remark 2.2 The asymptotic (9) improves the error in (4) to 3/2 lnN+const. The constant
C(ϕ,b) can be expressed in terms of the covariances of the related tilted distributions.
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• • • • • • • • • • • • •

3 Sketch of the proof

It is convenient to represent each configuration σ ∈ ΩNM in terms of contours, the
connected components of edges of Z2 separating neighbouring spins of different values,
see Fig. 2. By the choice of the values N and M, one of the contours of σ ∈ ΩNM is an
open polygon S connecting the vertical sides of VNM (and called the phase boundary),
while all other contours, if any, are closed polygons. Let GNM be the collection of all
possible phase boundaries of configurations σ ∈ΩNM; write S∼ σ (or σ ∼ S) if S is the
phase boundary of σ . For S ∈ GNM , write {S} for the event {σ ∈ΩNM : σ ∼ S}.

Figure 2: Contour representation of the Ising model: the open contour is the phase bound-
ary S corresponding to the bounday conditions along the dotted line. Left pic-
ture: a configuration with its contours. Right picture: ∆+(S) is the collection
of plus spins along S, ∆−(S) is the collection of minus spins, open circles form
V+(S) and filled circles form V−(S).

To derive the sharp asymptotics (9), we first use the formula of total probability,

P σ̄
VNM

(SVNM = bN) = ∑
S∈GNM

P σ̄
VNM

(SVNM = bN |{S})P σ̄
VNM

({S}) , (10)

study the S-dependence of the conditional probability in (10) and then re-sum. It is crucial
that for typical phase boundaries S decomposing VNM into two parts with fixed cardinality
ratio, the conditional probability in (10) regularly depends on S. In the remainder of this
section we present the main ingredients of the proof; the complete argument will appear
elsewhere.

Step I. For σ ∈ΩNM with phase boundary S= S(σ) ∈ GNM write G (σ) for the collec-
tion of all other (closed, if any) contours in σ . Then the probabilities P σ̄

VNM
(σ) in (1) are
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proportional to exp{−2β (|S|+∑Γ∈G (σ) |Γ|)}, where |Γ| denotes the length (number of
edges) of polygon Γ.

To study the behaviour of the total magnetization one uses the tilted distribution

P σ̄
VNM ,h(σ) =

(
Z(VNM,h, σ̄)

)−1 exp
{
−β
(
2|S|+2 ∑

Γ∈G (σ)

|Γ|−hSVNM (σ)
)}

, (11)

with suitably defined normalization Z(VNM,h, σ̄). This distribution, however, lacks the
necessary analyticity properties, and, as in [3], one needs to restrict attention to configu-
rations with cutoffs; subsequently, following the approach of [3, Chap. 3], one can relax
the cutoff constraint for the events of interest.

As in [3], for ωN > 0 we let

Ω
ωN
NM

..=
{

σ ∈ΩNM : ∀Γ ∈ G (σ),diamΓ≤ ωN
}

be the configurations with cutoff ωN , and for each σ ∈Ω
ωN
NM put

P σ̄
VNM ,h,ωN

(σ) =
(
Z(VNM,h, σ̄ ,ωN)

)−1 exp
{
−β
(
2|S|+2 ∑

Γ∈G (σ)

|Γ|−hSVNM (σ)
)}

, (12)

with suitably defined normalization Z(VNM,h, σ̄ ,ωN). As shown in [3, Chap. 3], if ωN ≥
K ln |VNM| with sufficiently large constant K, and if |h|ωN < c < 1, the limiting properties
of the probability distributions (11) and (12) are similar. At the same time, for the partition
function Z(VNM,h, σ̄ ,ωN) the usual low-temperature cluster expansion holds, provided
complex h satisfies |h|ωN < c < 1.

Step II. We then adapt the argument of [3, Chap. 3] to study the conditional distribution
P σ̄

VNM ,h,ωN
(σ |{S}), generated by (12). Let

M(S)≡Mσ̄
VNM ,h,ωN

(S) ..= Eσ̄
VNM ,h,ωN

(
SVNM |{S}

)
(13)

be the expectation of the total spin SVNM with respect to P σ̄
VNM ,h,ωN

(σ |{S}). For (even)
integer b denote

qSNM(b) ..=
2

(2π|VNM|d(β ))1/2 exp
{
− (b−M(S))2

2|VNM|d(β )

}
, (14)

where d(β ) > 0 is the specific variance of a single spin in the pure plus phase, i.e., the
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limit of the Gibbs distribution P+
VNM

(σ) with plus boundary conditions.

The following analogue of Theorem 3.18 in [3] holds.

Proposition 3.1 Fix a sequence of volumes VNM as in Theorem 2.1. Let h = hN and
ωN ≥ K ln |VNM|, with K = K(β ) > 0 large enough, be such that |h|ωN < c < 1. Then
there exists β0 > 0 such that for all β ≥ β0 we have

lim
N→∞

P σ̄
VNM ,hN ,ωN

(SVNM = b|{S})
qSNM(b)

= 1 (15)

for all even b satisfying |b−M(S)| ≤ K′
(
|VNM|d(β )

)1/2 with some K′ < ∞.

Remark 3.2 As shown in [3, Theorem 3.19], in the case hN ≡ 0 the gaussian approxima-
tion (15) can be extended to all even bN satisfying

lim
N→∞

|bN−M(S)|
|VNM|2/3 = 0 ,

where M(S) is defined via (13) with h = 0.

The following analogue of Proposition 3.26 in [3] is also true.

Proposition 3.3 Let the cutoff levels ωN satisfy limN→∞ ωN/(ln |VNM|)3 = 0. For positive
constants C and c, define

αNM(x) ..=

C exp{−cx2/|VNM|} , if |x| ≤ |VNM|/ωN ,

C exp{−c|x|/ωN} , if |x|> |VNM|/ωN .

Then there exist β0 large enough, positive constants C =C(β ) and c = c(β ) such that

P σ̄
VNM ,0,ωN

(SVNM = b|{S})≤ αNM
(
b−M(S)

)
(16)

for all b, where β > β0 and M(S) is defined via (13) with h = 0.

As a result, the probability distribution P σ̄
VNM ,0,ωN

(SVNM = b|{S}) is well concentrated
around the corresponding average M(S).

Step III. We next describe dependence of the average M(S) on the shape of the phase
boundary S. Let ∆+(S) (respectively, ∆−(S)) be the set of all x ∈ VNM such that σx ≡ 1
(respectively, σx ≡ −1) for all configurations σ ∈ ΩNM compatible with S, i.e., σ ∼ S.
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Then the complement VNM \(∆+(S)∪∆−(S)) decomposes into two regions, one of which
is surrounded by only plus spins for all σ ∼ S (denoted V+ = V+(S)) while the other is
surrounded by only minus spins for all σ ∼ S (and denoted V− =V−(S)), see Fig. 2. Then

M(S) = |∆+(S)|− |∆−(S)|+E+
V+,h,ωN

(SV+)+E−V−,h,ωN
(SV−) ,

with obvious interpretation of the last two averages. It is natural to expect that for typical
S and large VNM we have

E+
V+,h,ωN

(SV+)≈ m(β )|V+| , E−V−,h,ωN
(SV−)≈−m(β )|V−| ,

where m(β ) is the spontaneous magnetization, so that

M(S)≈M∗(S) ..= |∆+(S)|− |∆−(S)|+m(β )
(
|V+|− |V−|

)
. (17)

A naı̈ve application of the shape dependence results from [3, Chap. 3] suggests that

|M(S)−M∗(S)| ≤ K
(
|∆+(S)|+ |∆−(S)|+N +M

)
,

with the right-hand side value of order N for typical S. At the same time, for such S the
difference δ−(S) ..= |∆+(S)|− |∆−(S)| has symmetric distribution with zero mean, and it
is intuitively “obvious” that the typical values of this difference are much smaller than

δ+(S) ..= |∆+(S)|+ |∆−(S)| ≤ 4|S| .

In fact, it is not difficult to show that for some α ∈ (1/2,1) the rescaled difference
δ−(S)N−α has exponential tails. By applying a suitably adjusted version of the clus-
ter expansions used in [4], one can verify that a similar property holds for M(S)−M∗(S),
and therefore

M(S) = m(β )
(
|V+|− |V−|

)
+O(Nα) (18)

for typical S ∈ GNM .

Step IV. Let q(S) ..= (|V+(S)| − |V−(S)|)/2 be the area defect created by the phase
boundary S, so that (18) becomes M(S)≈ 2m(β )q(S). Using this approximation in (14),
it is easy to see that the simplified version of the local CLT asymptotics (15) is valid for
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all b satisfying |b−2m(β )q(S)|� |VNM|2/3. When combined with the uniform estimates
(16) for the remaining values of b, one can see that the sum in (10) is essentially reduced
to the phase boundaries S satisfying q(S) = q with∣∣∣q− bN

2m(β )

∣∣∣� N4/3 . (19)

On the other hand, the area defect q(S) has standard deviation of order O(N3/2) and
therefore the probability of the event {q(S) = q} is almost constant for all q in (19). As a
result, the sum in (10) is well approximated by the value

P σ̄
VNM

(
q(S) = bN/2m(β )

)
,

whose asymptotic can be derived from the results in [4]. The target relation (9) follows.

• • • • •
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