
An Efficient Metric for Physical-layer Jammer
Detection in Internet of Things Networks

Mostafa Abdollahi ∗, Kousar Malekinasab†, Wanqing Tu‡, Mozafar Bag-Mohammadi∗
∗Engineering Faculty, Ilam University, Iran

†Iran University of Science and Technology, Department of Computer Engineering, Iran
‡Department of Computer Science, Durham University, United Kingdom

Abstract—An active jammer could severely degrade the com-
munication quality for wireless networks. Since all wireless nodes
openly access the shared media, the harsh effects are exaggerated
by retransmission attempts of affected devices. Fast and precise
detection of the jammer is of vital importance for heterogeneous
wireless environments such as the Internet of things (IoT). It
could activate a series of corrective countermeasures to ensure
the robust operation of the network. In this paper, we propose a
local, straightforward, and numerical metric called the number of
jammed slots (NJS), by which we can quickly detect the presence
of a jammer and identify the jammed nodes at the software level
in broadcast networks. NJS calculation is carried out by a central
node which collects the MAC-layer statuses of all wireless nodes
in a periodical fashion. Our simulation results indicate that NJS
outperforms current detection methods in terms of accuracy and
precision.

Index Terms—Jamming, jammer detection, jammer localiza-
tion, IoT networks.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging paradigm that
intends to connect a massive number of devices to the Internet
and develop smart services for users. The IoT networks are
vulnerable to a variety of security threats because of their large
scale and heterogeneity. Jamming attacks are among the most
important issues of IoT networks. The IoT devices might be
exposed to undesirable transmissions of wireless devices of
adjacent networks (i.e., unexpected jammers) and intelligent
jammer (intentional jammer). An intentional jammer deliber-
ately generates jamming signals over the transmission channel
to hinder legitimate transmissions, increase the channel busy
time, disrupt the packet receptions in the receivers, and drain
the battery of IoT devices degrading the overall performance
of the IoT network. The proactive and reactive jammers, as
the time domain physical layer jammers [1], are two common
vulnerabilities of IoT networks. A reactive jammer sends radio
signals over the channel after sensing an ongoing wireless
transmission. In contrast to reactive jammers, a proactive
jammer continuously jams the channel without sensing the
channel for the existence of any ongoing transmission before
sending the jamming signals.

The hardware approach and statistical indices are two
common methods to detect and localize proactive and reactive
jammers in IoT networks. The former detects jammers at the
hardware level by detecting their physical footprint, measuring
signal strength in receiving nodes [2], [3]. The latter uses

some predefined statistical indices, such as packet delivery
ratio (PDR) and busy time, [4] to estimate the probable
presence of a jammer in the network based on its effects
on transmission and reception. Clearly, the hardware-based
methods require specialized hardware to detect the signal
strength of the jammer. The majority of the deployed IoT
nodes are low-cost devices with limited processing power and
storage capacity which makes the special hardware solution
infeasible in today’s heterogeneous IoT environments [5]. On
the other hand, the statistical approach suffers from the false
jammer detection (false positive), inherent inaccuracy of the
statistical measures, and sensitivity to the traffic variation.

We noted that the cooperation between MAC layers of
individual IoT devices enables us to detect jammers in a
simple and reliable way and overcome the above challenges.
As an intuitive example (see Fig. 1), suppose that the node
S sends a data packet over the channel in the presence of
a reactive jammer. The radio ranges of S and the jammer
are shown with two circles around them. The jammer tries
to disturb this transmission by generating noise signals during
the transmission. Naturally, the IoT devices in the hatched area
cannot decode the reception due to the collision between the
sender and the jammer. Also, the IoT devices in the gray area
cannot infer the jammer presence even though they receive an
intact signal from the jammer. If we force all nodes to report
their radio states in the MAC-layer alongside their locations
to a central node, the central node has enough information to
deduce that there is no legitimate sender in the gray area. It
then came to the conclusion that the meaningless receptions
in that region are caused by a jammer. For the node in the
hatched area, the central node could not find another legitimate
sender other than S. Therefore, it assumes that the collisions
in this area have resulted from the presence of a jammer.
It could even detect the jammer location by using well-
known techniques such as the weighted centroid algorithm [6].
Therefore, corrupted receptions without any legitimate sender
are considered to be from the presence of a jammer, and
corrupted receptions with a legitimate sender are blamed on
normal wireless environments’ events such as fading, collision,
propagation, etc.

In this paper, we proposed a reliable method to detect
the physical layer jammers in wireless IoT networks. In our
method, the wireless devices record their MAC-layer states
in each timeslot. The MAC-layer state can be idle, receiving,



Fig. 1: A legitimate sender, S, (with Tx range R1) sends a
data packet, and a reactive jammer (with Tx range R2 ≥ R1)
transmits radio signals over the channel simultaneously.

transmitting, or corrupted. The corrupted state occurs when a
node receives a meaningless signal which could be resulted
from the 1) collision, 2) presence of a jammer, or 3) bit-level
errors. A batch (i.e., timeline) of recorded state within time
interval [t1, t2] is sent to a central node in a periodic manner.
The central node calculates the number of jammed slots (NJS)
for each node. For each specific time slot, it increases the NJS
of a node if the node is in receiving or corrupted states, but
there was not a legitimate wireless device around it. The non-
zero NJS value for a node indicates that a jammer exists in
the IoT network. By comparing the NJS values of neighboring
nodes, we can estimate the number of jammers and their
approximate locations. The simulation results show that the
precision and accuracy of an NJS-based method are 6% and
33% better than the state of art methods. Also, the NJS metric
is four times faster than other methods in determining when
a jammer is activated in the IoT networks.

In section 2, we briefly review the related works. The next
section is devoted to the system model and the main body
of the proposed method. Simulation results are presented in
section 4. Finally, section 5 concludes the paper.

II. RELATED WORKS

The detection of physical layer jammers is done via
hardware-assisted approaches and statistical indices methods.
In [3], [7], the affected nodes detect the constant jammer by
sensing the strength of the jamming signal (JSS). They also
report their measurements to a designated node in wireless
networks. The designated node looks for the jammer loca-
tion based on JSS data from the nodes near the jammer
using a proprietary algorithm. In [2], a machine-learning-
based scheme is proposed which requires anchor nodes to
collect information such as jammers’ signal strength from the
transmission medium. The information is then used to train a
decision tree algorithm in order to accurately detect or predict
a jammer. To detect a reactive jammer in IoT networks, [8]
proposed a hardware-based method that compares the receiv-
ing signals with the signal of conventional IoT devices using
a detector circuit. After detecting a jammer, the IoT devices

stimulate the jammer to attack the channel by generating
fake transmissions. They use the jamming signal to harvest
energy or as a communication means to transmit their data
through it using RF energy harvesting and ambient backscatter
techniques.

In [9], two connected neural networks are studied to detect
jammers and schedule links. The first neural network detects
jammers based on the location of ordinary wireless nodes
and their received signal strength. The second neural network
is for scheduling links by using the results from the first
neural network as its input. The localization of a directional
jammer has been studied in [10]. Based on the jamming signal
strengths from the boundary (i.e. in the border of the coverage
area of the jammer) and jammed nodes, and the geographical
locations of jammed nodes, an algorithm is presented to find
out affected nodes in a directional coverage of the jammer as
well as determine the transmission ranges of such jammers.

In statistical indices methods, the jammers are detected by
measuring their footprints in the transmission medium and
wireless nodes. The jammer activity alters the statistical in-
dices of the network. These changes are reflected through some
discrete time measurements. When a meaningful difference is
found in two consecutive measurements, an active jammer is
detected. The gradient descent method [4] is used to detect
jammers by tracing PDR reduction in the network. In [11], the
packet transmission time is used as a statistical index to detect
the presence of jammer in time-critical IoT applications. If the
packet transmission time exceeds a threshold, the node will
conclude the delay is resulted from a simultaneous jammer ac-
tivity. Hence, it switches to a safe channel and retransmits the
packet. Similarly, in the context of cognitive radio networks
for IoT applications, [12] used a packet-invalidity ratio that
represents the probability that the packet transmission delay is
greater than a threshold. When the ratio exceeds the threshold,
the IoT device implicitly assumes the presence of a jammer
in the network and switches to a secure channel to transmit
the packet.

In [13] and [14], a variation of carrier sense time (CST),
PDR, and packet send ratio (PSR) are examined when a
jammer is active. They found that PSR and PDR are decreased,
and CST is increased dramatically in the presence of an active
jammer. When the jammer acquires the channel completely,
the aforementioned indices (i.e., PDR and PSR) became zero.
In [15], the jammer is identified by comparing the number
of idle and busy slots before and after the activation of the
jammer. Each node maintains a profile containing past medium
status, which is updated periodically. A central node collects
all profiles and processes them to detect the jammer. Reference
[16] uses two metrics, i.e., PDR and bad packet ratio (BPR),
for identifying an active jammer. They found that in the
presence of an active jammer, PDR is deceased and BPR is
increased. There are other proposals that use similar methods
for detecting the jammer [1], [17].

In [18], a new detection method is proposed using a time
series analysis. They modeled the network measurements, such
as busy time, taken over time as a time series and proposed an



algorithm for detecting sequential change point. It can quickly
detect anomalies using a proper indicator that varies with
the jammer activities over time. We have implemented their
method for the comparison purpose. In order to detect jammers
based on statistical indices methods, existing studies employed
metrics such as PDR and BPR to evaluate the receiving
performance. However, in the lack of an additional helping
method, these metrics may not tell whether the performance
degradation along these metrics is caused by jamming or other
reasons (e.g., wireless overload links). In addition, the existing
metrics are sensitive to fading, link quality, etc.

III. THE NUMBER OF JAMMED SLOTS METRIC

A. System Model

In our system, there are N wireless nodes and a central
control node (e.g., a wireless gateway). The MAC-layer of
a wireless node ni (i ∈ [0, N − 1]) could have one of the
following four statuses:

• Idle: ni is not sending signals or occupying the channel;
• Receiving: ni is receiving a frame correctly from the

channel;
• Transmitting: ni is sending a frame to the channel;
• Corrupted: ni is receiving a corrupted frame from the

channel due to collision, fading, jamming, etc.
The wireless node records the channel status from its view-

point periodically. The timeline is divided into slots (periods)
of a fixed length. The slot length τ is proportional to the time
required to send/receive a data frame. Clearly, τ value must be
slightly greater than the normal packet length divided by the
channel bit rate. For example, τ could be 7ms when bandwidth
is 2Mbps and the data frame length is 1518B. All wireless
nodes are synchronized through NTP [19]. This would allow
us to have a clear snapshot of the MAC-layer status from
different viewpoints in each time slot. It is worth mentioning
that each node could be in only one state in each time slot.
Each wireless node ni reports the collected MAC-layer sta-
tuses from the last m time-slots to a central control node. The
central control node, after receiving wireless nodes’ reports,
runs the NJS algorithm (subsection III-C) and compares the
timeline of individual nodes using network topology informa-
tion, such as transmission range and location of nodes, to infer
jamming attacks. Similar to other well-known routing metrics
in wireless networks [20], the reports could be delivered to
the central node by flooding or unicasting methods in arbitrary
time intervals (e.g. 0.5-1 minute).

B. The NJS Background

Our basic idea is to track the jammer’s footprint among
the reported MAC statuses at central node to detect jamming
signals. First, it prunes the correct data frame’s reception and
transmissions based on the network topology and received
timelines. A normal or correct reception has a valid sender in
its transmission range. Also, it treats all erroneous receptions
in the neighborhood of a valid sender as normal channel
errors. Therefore NJS is not sensitive to traffic variation, link
quality, fading, etc., which enables it to accurately detect

the jammer. To find the actual effects of the jammer, we
present a general and comprehensive assertion that helps
us to prune normal frames from the jammer-influenced frames.

Assertion: ”The frame or an erroneous signal received
without a valid owner (sender) is meant to be sent by a
jammer. This frame is called a jammed frame.”

Based on that assertion, two useful propositions are derived
which help us to predict the jammer’s type and its location.
A proactive jammer continuously broadcasts the noise signal
regardless of the existence of an active transmitter on the
channel. As a result, the receivers will continuously receive
frames/signals on the channel while there is no active sender
around them. Therefore, we can use the following proposition
to identify a proactive jammer. Suppose that the collision
area is defined as a circle with a radius greater than that of a
wireless node’s transmission range.

Proposition 1: If we can find at least one time slot in
which almost all nodes that reside in a collision area report
multiple jammed frames, there is a proactive jammer in the
center of the collision area.

In contrast to a proactive jammer which continuously
occupies the channel, a reactive jammer only sends a jammed
frame whenever a valid sender is activated in its vicinity.
Therefore, the existence of reactive jammers will be confirmed
using the following proposition:

Proposition 2: if multiple jammed frames alongside a valid
sender is found in a collision area in two or more consecutive
timeslots, there is a reactive jammer in the network.

C. The NJS Algorithm

We need a carefully crafted algorithm to determine jammed
nodes and the number of jammed slots for those nodes in
the presence of a jammer using the defined assertion and
propositions. The algorithm calculates the number of jammed
slots from the node’s perspective in the most recent m
timeslots. The NJS metric has a simple, robust way to find
jammed nodes, jammed slots, and the number of jammers. It is
composed of two distinct parts: finding explicitly jammed slots
(NJSexp) and inferring implicitly jammed slots (NJSimp).
First, to calculate the explicit part of NJS, i.e. NJSexp, we
seek for a timeslot with corrupted receptions and without
a valid sender. In other words, we ignore the corrupted
receptions in the range of a valid sender. To infer NJSimp, we
look at the nodes in the intersection area of a sender and the
jammer. For those nodes, the corrupted receptions are blamed
on the presence of the jammer and their NJSimp is increased
per corrupted timeslots. In the following, we have devised a
simple algorithm to calculate NJS.

In lines 1-4 of the algorithm, the explicit counterpart of NJS
is calculated in most recent m timeslots. For each receiver



Fig. 2: The calculation of explicit NJS.

Algorithm 1: NJS Calculation
Input: Nodes’ state timeline
Output: NJS metric for all jammed nodes

1 for slot i← 0 to m do
2 for node j ← 0 to N do
3 if CheckJammedNode(i,j)==true then
4 NJSExp[j] + +

5 for slot i← 0 to m do
6 for node j ← 0 to N do
7 if IsThisAJammedSlot(i,j)==true

&&NJSExp[j] > 0&&
CheckJammedNode(i,j)==false
&&T imelineji! = Idle then

8 NJSImp[j] + +

9 for node j ← 0 to N do
10 NJS[j] = NJSExp[j] +NJSImp[j]

11 Function CheckJammedNode(slot i,node j):
12 ValidSender=false
13 if T imelineji == RX then
14 for node k ← 0 to N do
15 if k! = j&&distancekj < R

&&T imelineki == TX then
16 ValidSender=true

17 return !ValidSender

18 Function IsThisAJammedSlot(slot i,node j):
19 Result=false
20 if T imelineji! = Idle then
21 for node k ← 0 to N do
22 if k! = j&&distancekj < 2R

&&CheckJammedNode(i, k) == true then
23 Result=true

24 return Result

25 comments:
26 T imelineji == the state of node i in slot j.
27 distancekj == the distance between nodes k and j
28 R = Tx range

node such as j in timeslot i, if it could not find a valid sender
in its neighborhood, NJSexp[j] is increased. As shown in Fig.
2, the NJSexp is increased for some nodes in time slot i in the
presence of a reactive jammer. The number of jammed slots
is written in the related circles. The same would happen for
other nodes in timeslots j and k. Thus, all jammed nodes are
detected after some slots. In lines 5-8, NJSimp is increased
for those nodes that their NJSexp > 0. In Fig. 3, NJSimp

will be non-zero for jammed nodes that are in the intersection
between the jammer and a sender. NJSimp is useful for the
cases when both a jammer and a valid sender are active at
the same timeslot. The increment value is dependent on the
number of timeslots in which the jammer is active. Finally,
the value of the NJS metric for node j is calculated as follow:

NJS[j] = NJSexp[j] +NJSimp[j] (1)

It is worth mentioning that although the nodes in the
intersection between the sender (e.g. sender A) and the jam-
mer have a valid sender, the random access to the channel
performed by all wireless nodes gives this opportunity for
jammed nodes to have non-zero NJSexp when they are not in
the range of a valid sender (e.g. jammed nodes in slots j and
k). Also, when a proactive jammer is active in the network,
all jammed nodes almost have the same NJSexp because the
jammed nodes will record the same number of jammed slots.

In Fig. 3, we have shown that how NJS detects a reactive
jammer. In the beginning, the jammer is silent. When the
jammer detects some active senders in the network, it jams the
network in consecutive timeslots. Since there is no legitimate
sender around D in timeslots 4-6, NJS deduces that (in the
first loop of the algorithm) the corrupted receptions at node
D are due to the existence of an active jammer. Therefore,
it increases NJSexp for D. More interestingly, although it
finds a valid sender in these timeslots, it increases NJSimp

for nodes A, C, and E since there is a node (i.e. D) with
NJSexp ≥ 0 in their vicinity. We note that the computational
complexity of the algorithm is O(N2m), where N and m are
the number of nodes and slots in each timeline, respectively.

D. The NJS Properties

NJS metric has the following properties:
1) A non-zero NJS metric is a clear indicator of the

presence of an active jammer.



Fig. 3: The calculation of NJSimp is illustrated.

2) Similar NJS values in a neighborhood means that only
a single jammer is active.

3) Non-similar NJS values in a neighborhood is resulted
from the presence of multiple jammers. For example,
the NJS values for nodes that exist in the intersection
area of two active jammers are expected to be more (see
Fig. 4).

Some interesting scenarios are depicted in Fig. 5. In Fig.
5-a, a proactive jammer is active in the network and all
transmitters are inactive due to channel business. Here, the
nodes have received a signal/packet on the channel from an
invalid sender. Therefore, the central node will easily locate the
proactive jammer using proposition 1 since the NJSexp for all
jammed nodes is almost the same. In other words, according
to proposition 1, for a timeslot j, NJSexp of all the jammed
nodes for that timeslot will be 1 and NJSimp will be 0. In Fig.
5-b, a legitimate sender (i.e., A) starts sending a data packet;
the jammer is notified and jams the network simultaneously.
The nodes that located at the intersection of the jammer and
the sender will receive erroneous packets. At the same time,
some nodes will receive the data packet correctly, while there
are some nodes that only receive the jammed packets. The
central node could detect the reactive jammer by comparing
explicit and implicit NJS values for the jammed nodes using
proposition 2 (i.e. for any jammed slot j, NJSimp of at least
one jammed node will be 1 for the timeslot).

A more challenging scenario is depicted in Fig. 5-c where
a reactive jammer exists in the network. The jammer is com-
pletely in the transmission range of node A. The transmission
range of node B has some overlaps with the transmission range
of the jammer. Although the jammer is not detectable when A
is active, it could be easily detected when B is active since the
NJS value is more than one for the node marked by the bold
arrow. It is worth noticing that NJS could detect a jammer that
copies legitimate packets from other sources. In that case, the
central node will find that some nodes have received a packet
from an inactive sender.

IV. PERFORMANCE EVALUATION

A. Performance Metrics

• The Precision and accuracy metric: The true positive (tp)
(true negative (tn)) outcome happens when a jammed
(normal node) is correctly detected by the system. Also,
the false positive (fp) and false negative (fn) outcomes
occur when the system incorrectly predicts jammed and
normal nodes, respectively. With these terms, precision
and accuracy, as important measures in the field of infor-
mation retrieval that determine the degree of suitability of
documents retrieved by the system, are defined as follows:

Precision =
tp

tp+ fp
(2)

and
Accuracy =

tp+ tn

tp+ tn+ fp+ fn
. (3)

In the jammer localization problem, the jammed nodes
should locate the jammer in the network. In such appli-
cations, the behavior of normal nodes is irrelevant (i.e.
tn and fn) since it does not affect the jammer’s location.
Hence, the scheme’s precision is more important than
its accuracy. In contrast, all nodes are participating in
rerouting the traffic to avoid the jammed area. Here,
the behaviors of both jammed and non-jammed nodes
are important. For such applications, accuracy is a better
metric.

• The First detection time: To calculate the speed of de-
tecting jammed nodes in the network, we defined the first
detection time metric. This metric reflects how fast the
jammer is detected by the scheme. It is defined as the
time difference between the jammer activation time and
the earliest jammer detection time reported or detected
by any normal node.

B. Simulations

We used an improved version of MIXIM 2.3 framework
and omnet++ simulator to implement all the simulations. All
nodes are based on 802.11 MAC protocol that opportunis-
tically broadcast the data packets and RTS/CTS is disabled.



Fig. 4: The intersection of two active jammers.
Fig. 5: The noise generation scenarios.

TABLE I: The simulation parameters.

Name Value
Tx radius of nodes (R) 220m
Tx radius of jammer R and 1.5R

CTS/RTS Disabled
Bandwidth 2Mb

Tx rate of nodes Random(0,50)ms/Random(0,100)ms
Packet size of nodes 1500 B

Packet (noise)size of jammer 500, 1000 B

Fig. 6: A generated network topology with a random distribu-
tion of the nodes.

The channel is exposed to the normal packet loss due to
fading, propagation, etc. Thus, to calculate the probability of
receiving a packet successfully as a function of the distance
between two nodes, we used the model in [21]. They employ
path loss exponent or power attenuation factor β = 2 and
maximum transmission range of R. The simulation parameters
are depicted in the table I.

In order to evaluate the efficiency of the proposed metric,
we have implemented NJS metric alongside conventional PDR
(labeled as PDR-c) [22] and busy-time (labeled as BT-c)
metrics [13]. Also, we have implemented the time series
analysis as proposed in [18] with z=0.2. It considered network
measurements taken over time as a time series and proposed
an algorithm for detecting the change of state in the time
series. We have applied their algorithm to PDR and busy-time

(a)

(b)

Fig. 7: a) The precision of detected jammed nodes and b)
accuracy of detected jammed and non-jammed nodes for
evaluated methods.



Fig. 8: First time detection of a jammer.

Fig. 9: The NJS values when two active jammers simultane-
ously jam the network.

measurements. The resulted methods are called PDR-t and BT-
t for convenience. In PDR-c (BT-c), the presence of jammer
is announced when the average PDR (BT-c) is decreased
(increased) by 10% in comparison to the past second. In PDR-
t and BT-t, the measurement is updated every 20 timeslots
(i.e. 140ms). The overall simulation time is 10 seconds. The
network topology is a simple grid as shown in Fig. 6. For each
square, a wireless node is placed in a random location inside
the square. Finally, each simulation experiment is repeated
50 times. Also, the confidence interval of 95% shows for the
diagrams.

Fig. 7-a depicts the precision of evaluated methods for
reactive and proactive jammers for different traffic ratios. For
example, in a random (0,0.05) scenario, each node generates
a random number r between 0 and 50 ms. It then waits for
r seconds and transmits a data frame. It then generates the
next random numbers. Clearly, the frame generation rate of
(0, 0.1) scenario is two times larger than (0,0.05) scenario on
average. In both scenarios, NJS precisely detects the jammer.
In contrast, other methods could not detect near 40% of jam-

Fig. 10: The NJS value during the activation time of a jammer.

mer activities. In Fig. 7-b, the accuracy of evaluated methods
is depicted. Clearly, NJS is the most accurate method. Its
accuracy for low-rate traffic is 100%. The accuracy decreases
slightly for high-rate traffic. In that case, the wireless media
is nearly occupied by the jammer and NJS could not find
enough evidence to detect the jammer. This phenomenon is
accentuated for high-rate traffic in reactive jammer scenarios.

The first detection time metric is depicted in Fig .8. Clearly,
NJS detects reactive and proactive jammers sooner than other
methods. It is four times faster than closest rival (i.e. BT T).
Next, we evaluate the ability of the NJS metric in detecting
two adjacent reactive jammers, as depicted in Fig. 9. NJS1 and
NJS2 are calculated for the nodes in the vicinity of jammer 1
and jammer 2. Evidently, the NJS value for the nodes in the
intersection area is higher than NJS1 and NJS2. It means that
the proposed algorithm is able to deal with this situation.

Fig. 10 shows the average of the NJS values for all jammed
nodes vs. the jammer activation time. In the proactive sce-
narios, the jammer always occupies the same number of slots
proportional to its rate. Hence, the number of collisions in
(0,50) ms configuration is higher than (0,100) ms ones. As
a result, NJS is lower. Similarly, NJS is lower in (0,50) ms
configuration for reactive scenarios. Finally, we have evaluated
NJS efficiency in the presence of a powerful jammer (Fig. 11).
In this scenario, the jammer’s transmission range is 50% more
than normal nodes. Again, NJS precision is 100%. Also, its
accuracy is more than 95% while other methods struggle to
reach 60% accuracy in most cases.

V. CONCLUSION

The open access of the shared media allows active jammers
to have severe effects on the communication quality of wireless
nodes. Several direct and indirect methods are proposed to de-
tect active jammers in wireless networks. However, the meth-
ods are not very reliable in terms of accuracy and precision. In
this paper, we propose a local, straightforward, and numerical
metric called the number of jammed slots (NJS), by which we
can detect the proactive and/or reactive jammer quickly and



(a)

(b)

Fig. 11: a) The precision of detected jammed nodes and
b) accuracy of detected jammed and non-jammed nodes for
evaluated methods in the presence of powerful jammer (with
Tx range of 1.5R).

precisely. The calculation of the metric is based on collecting
the MAC-layer state of all wireless nodes in a periodical
manner by a central node. Our simulation results indicate that
the proposed method outperforms current detection methods
in terms of accuracy and precision. As future work, we are
working on a more general metric that utilizes the same idea
to detect and locate the jammer in traditional wireless networks
that use the unicast communication paradigm.

REFERENCES

[1] T. W. X. Wei, Q. Wang and J. Fan, “Jammer localization in multi-
hop wireless network: a comprehensive survey,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 2, pp. 765–799, 2016.

[2] S. S. B. Upadhyaya and B. Sikdar, “Machine learning-based jamming
detection in wireless iot networks,” IEEE APWCS, 2019.

[3] W. X. Z. Liu, H. Liu and Y. Chen, “An error-minimizing framework for
localizing jammers in wireless networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 2, pp. 508–517, 2013.

[4] I. B. K. Pelechrinis, I. Koutsopoulos and S. Krishnamurthy, “Jammer
localization in wireless networks: An experimentation-driven approach,”
Computer Communications, vol. 86, pp. 75–85, 2016.

[5] A. Gouissem, K. Abualsaud, E. Yaacoub, T. Khattab, and M. Guizani,
“Game Theory for Anti-Jamming Strategy in Multi-Channel Slow fading
IoT Networks,” IEEE Internet of Things Journal, 2021.

[6] H. Liu, X. Wenyuan, Y. Chen, and Z. Liu, “Localizing jammers in
wireless networks,” in 2009 IEEE International Conference on Pervasive
Computing and Communications. IEEE, 2009, pp. 1–6.

[7] W. X. Z. Liu, H. Liu and Y. Chen, “Error minimizing jammer localiza-
tion through smart estimation of ambient noise,” MASS, pp. 308–316,
2012.

[8] D. T. Hoang, D. N. Nguyen, M. A. Alsheikh, S. Gong, E. Dutkiewicz,
D. Niyato, and Z. Han, “Borrowing Arrows with Thatched Boats: The
Art of Defeating Reactive Jammers in IoT Networks,” IEEE Wireless
Communications, vol. 27, no. 3, pp. 79–87, 2020.

[9] M. Z. M. L. Y. Ju, M. Lei and M. Zhao, “A joint jamming detection
and link scheduling method based on deep neural networks in dense
wireless networks,” IEEE VTC, 2019.

[10] T. W. J. Fan, T. Liang and J. Liu, “Identification and localization of the
jammer in wireless sensor networks,” The Computer Journal, vol. 62,
no. 10, pp. 1515–1527, 2019.

[11] R. D. Halloush, “Transmission early-stopping scheme for anti-jamming
over delay-sensitive iot applications,” IEEE Internet of Things Journal,
vol. 6, no. 5, pp. 7891–7906, 2019.

[12] H. A. B. Salameh, S. Almajali, M. Ayyash, and H. Elgala, “Spectrum
assignment in cognitive radio networks for internet-of-things delay-
sensitive applications under jamming attacks,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1904–1913, 2018.

[13] Y. Z. W. Xu, W. Trappe and T. Wood, “The feasibility of launching and
detecting jamming attacks in wireless networks,” ACM MobiHoc, 2005.

[14] W. T. W. Xu, K. Ma and Y. Zhang, “Jamming sensor networks: attack
and defense strategies,” IEEE network, vol. 20, no. 3, pp. 41–47, 2006.

[15] X. W. P. K. Y. Cai, K. Pelechrinis and Y. Mo, “Joint reactive jammer
detection and localization in an enterprise wifi network,” Computer
Networks, vol. 57, no. 18, pp. 3799–3811, 2013.

[16] M. Çakirolu and A. Özcerit, “Jamming detection mechanisms for
wireless sensor networks,” Infoscale, 2008.

[17] M. I. K. Pelechrinis and S. Krishnamurthy, “Denial of service attacks in
wireless networks: The case of jammers,” IEEE Communications surveys
& tutorials, vol. 13, no. 2, pp. 245–257, 2010.

[18] Y. M. Cheng, Y. Ling and W. Wu, “Time series analysis for jamming
attack detection in wireless networks,” GLOBECOM, 2017.

[19] P. Ferrari, P. Bellagente, A. Depari, A. Flammini, M. Pasetti, S. Rinaldi,
and E. Sisinni, “Evaluation of the impact on industrial applications of
ntp used by iot devices,” pp. 223–228, 2020.

[20] M. Abdollahi, F. Eshghi, M. Kelarestaghi, and M. Bag-Mohammadi,
“Opportunistic routing metrics: A timely one-stop tutorial survey,”
Journal of Network and Computer Applications, p. 102802, 2020.

[21] A. N. J. Kuruvila and I. Stojmenovic, “Hop count optimal position-based
packet routing algorithms for ad hoc wireless networks with a realistic
physical layer,” IEEE JSAC, vol. 23, no. 6, pp. 1267–1275, 2005.

[22] J. B.-O. L. Mokdad and A. Nguyen, “Djavan: Detecting jamming attacks
in vehicle ad hoc networks,” Performance Evaluation, vol. 87, pp. 47–
59, 2015.


