
The Complexity of Transitively Orienting Temporal
Graphs
George B. Mertzios #

Department of Computer Science, Durham University, UK

Hendrik Molter #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer Sheva, Israel
Faculty IV, Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Malte Renken #

Faculty IV, Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Paul G. Spirakis #

Department of Computer Science, University of Liverpool, UK
Computer Engineering & Informatics Department, University of Patras, Greece

Philipp Zschoche #

Faculty IV, Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Abstract
In a temporal network with discrete time-labels on its edges, entities and information can only “flow”
along sequences of edges whose time-labels are non-decreasing (resp. increasing), i.e. along temporal
(resp. strict temporal) paths. Nevertheless, in the model for temporal networks of [Kempe, Kleinberg,
Kumar, JCSS, 2002], the individual time-labeled edges remain undirected: an edge e = {u, v} with
time-label t specifies that “u communicates with v at time t”. This is a symmetric relation between
u and v, and it can be interpreted that the information can flow in either direction. In this paper
we make a first attempt to understand how the direction of information flow on one edge can impact
the direction of information flow on other edges. More specifically, naturally extending the classical
notion of a transitive orientation in static graphs, we introduce the fundamental notion of a temporal
transitive orientation and we systematically investigate its algorithmic behavior in various situations.
An orientation of a temporal graph is called temporally transitive if, whenever u has a directed edge
towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1, then u also
has a directed edge towards w with some time-label t3 ≥ t2. If we just demand that this implication
holds whenever t2 > t1, the orientation is called strictly temporally transitive, as it is based on the
fact that there is a strict directed temporal path from u to w. Our main result is a conceptually
simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a given
temporal graph G is transitively orientable. In wide contrast we prove that, surprisingly, it is
NP-hard to recognize whether G is strictly transitively orientable. Additionally we introduce and
investigate further related problems to temporal transitivity, notably among them the temporal
transitive completion problem, for which we prove both algorithmic and hardness results.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Discrete mathematics

Keywords and phrases Temporal graph, transitive orientation, transitive closure, polynomial-time
algorithm, NP-hardness, satisfiability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.75

Related Version Full Version: https://arxiv.org/abs/2102.06783 [36]

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.
Hendrik Molter : Supported by the German Research Foundation (DFG), project MATE (NI 369/17),
and by the Israeli Science Foundation (ISF), grant No. 1070/20.

© George B. Mertzios, Hendrik Molter, Malte Renken, Paul G. Spirakis, and Philipp Zschoche;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 75; pp. 75:1–75:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:m.renken@tu-berlin.de
https://orcid.org/0000-0002-1450-1901
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
mailto:zschoche@tu-berlin.de
https://orcid.org/0000-0001-9846-0600
https://doi.org/10.4230/LIPIcs.MFCS.2021.75
https://arxiv.org/abs/2102.06783
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 The Complexity of Transitively Orienting Temporal Graphs

Malte Renken: Supported by the German Research Foundation (DFG), project MATE (NI 369/17).
Paul G. Spirakis: Supported by the NeST initiative of the School of EEE and CS at the University
of Liverpool and by the EPSRC grant EP/P02002X/1.

1 Introduction

A temporal (or dynamic) network is, roughly speaking, a network whose underlying topology
changes over time. This notion concerns a great variety of both modern and traditional
networks; information and communication networks, social networks, and several physical
systems are only few examples of networks which change over time [26,38,41]. Due to its vast
applicability in many areas, the notion of temporal graphs has been studied from different
perspectives under several different names such as time-varying, evolving, dynamic, and
graphs over time (see [13–15] and the references therein). In this paper we adopt a simple
and natural model for temporal networks which is given with discrete time-labels on the
edges of a graph, while the vertex set remains unchanged. This formalism originates in the
foundational work of Kempe et al. [27].

▶ Definition 1 (Temporal Graph [27]). A temporal graph is a pair G = (G, λ), where
G = (V, E) is an underlying (static) graph and λ : E → N is a time-labeling function which
assigns to every edge of G a discrete-time label.

Mainly motivated by the fact that, due to causality, entities and information in temporal
graphs can only “flow” along sequences of edges whose time-labels are non-decreasing
(resp. increasing), Kempe et al. introduced the notion of a (strict) temporal path, or (strict)
time-respecting path, in a temporal graph (G, λ) as a path in G with edges e1, e2, . . . , ek

such that λ(e1) ≤ . . . ≤ λ(ek) (resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path
naturally resembles the notion of a directed path in the classical static graphs, where the
direction is from smaller to larger time-labels along the path. Nevertheless, in temporal paths
the individual time-labeled edges remain undirected: an edge e = {u, v} with time-label
λ(e) = t can be abstractly interpreted as “u communicates with v at time t”. Here the
relation “communicates” is symmetric between u and v, i.e. it can be interpreted that the
information can flow in either direction.

In this paper we make a first attempt to understand how the direction of information flow
on one edge can impact the direction of information flow on other edges. More specifically,
naturally extending the classical notion of a transitive orientation in static graphs [23], we
introduce the fundamental notion of a temporal transitive orientation and we thoroughly
investigate its algorithmic behavior in various situations. Imagine that v receives information
from u at time t1, while w receives information from v at time t2 ≥ t1. Then w indirectly
receives information from u through the intermediate vertex v. Now, if the temporal graph
correctly records the transitive closure of information passing, the directed edge from u to w

must exist and must have a time label t3 ≥ t2. In such a transitively oriented temporal graph,
whenever an edge is oriented from a vertex u to a vertex w with time-label t, we have that
every temporal path from u to w arrives no later than t, and that there is no temporal path
from w to u. Different notions of temporal transitivity have also been used for automated
temporal data mining [40] in medical applications [39], text processing [45]. Furthermore, in
behavioral ecology, researchers have used a notion of orderly (transitive) triads A-B-C to
quantify dominance among species. In particular, animal groups usually form dominance
hierarchies in which dominance relations are transitive and can also change with time [32].

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:3

One natural motivation for our temporal transitivity notion may come from applications
where confirmation and verification of information is vital, where vertices may represent
entities such as investigative journalists or police detectives who gather sensitive information.
Suppose that v queried some important information from u (the information source) at
time t1, and afterwards, at time t2 ≥ t1, w queried the important information from v (the
intermediary). Then, in order to ensure the validity of the information received, w might
want to verify it by subsequently querying the information directly from u at some time
t3 ≥ t2. Note that w might first receive the important information from u through various
other intermediaries, and using several channels of different lengths. Then, to maximize
confidence about the information, w should query u for verification only after receiving the
information from the latest of these indirect channels.

It is worth noting here that the model of temporal graphs given in Definition 1 has been
also used in its extended form, in which the temporal graph may contain multiple time-labels
per edge [34]. This extended temporal graph model has been used to investigate temporal
paths [3, 9, 11,16, 34,47] and other temporal path-related notions such as temporal analogues
of distance and diameter [1], reachability [2] and exploration [1,3,20,21], separation [22,27,48],
and path-based centrality measures [12,28], as well as recently non-path problems too such as
temporal variations of coloring [37], vertex cover [4], matching [35], cluster editing [18], and
maximal cliques [8,25,46]. However, in order to better investigate and illustrate the inherent
combinatorial structure of temporal transitivity orientations, in this paper we mostly follow
the original definition of temporal graphs given by Kempe et al. [27] with one time-label per
edge [7,17,19]. Throughout the paper, whenever we assume multiple time-labels per edge we
will state it explicitly; in all other cases we consider a single label per edge.

In static graphs, the transitive orientation problem has received extensive attention which
resulted in numerous efficient algorithms. A graph is called transitively orientable (or a
comparability graph) if it is possible to orient its edges such that, whenever we orient u

towards v and v towards w, then the edge between u and w exists and is oriented towards w.
The first polynomial-time algorithms for recognizing whether a given (static) graph G on n

vertices and m edges is comparability (i.e. transitively orientable) were based on the notion
of forcing an orientation and had running time O(n3) (see Golumbic [23] and the references
therein). Faster algorithms for computing a transitive orientation of a given comparability
graph have been later developed, having running times O(n2) [43] and O(n + m log n) [29],
while the currently fastest algorithms run in linear O(n + m) time and are based on efficiently
computing a modular decomposition of G [30, 31]; see also Spinrad [44]. It is fascinating
that, although all the latter algorithms compute a valid transitive orientation if G is a
comparability graph, they fail to recognize whether the input graph is a comparability graph;
instead they produce an orientation which is non-transitive if G is not a comparability graph.
The fastest known algorithm for determining whether a given orientation is transitive requires
matrix multiplication, currently achieved in O(n2.37286) time [5].

Our contribution. In this paper we introduce the notion of temporal transitive orientation
and we thoroughly investigate its algorithmic behavior in various situations. An orientation
of a temporal graph G = (G, λ) is called temporally transitive if, whenever u has a directed
edge towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1,
then u also has a directed edge towards w with some time-label t3 ≥ t2. If we just demand
that this implication holds whenever t2 > t1, the orientation is called strictly temporally
transitive, as it is based on the fact that there is a strict directed temporal path from u to w.
Similarly, if we demand that the transitive directed edge from u to w has time-label t3 > t2,
the orientation is called strongly (resp. strongly strictly) temporally transitive.

MFCS 2021

75:4 The Complexity of Transitively Orienting Temporal Graphs

Although these four natural variations of a temporally transitive orientation seem super-
ficially similar to each other, it turns out that their computational complexity (and their
underlying combinatorial structure) varies massively. Indeed we obtain a surprising result
in Section 3: deciding whether a temporal graph G admits a temporally transitive orientation
is solvable in polynomial time (Section 3.2), while it is NP-hard to decide whether it admits
a strictly temporally transitive orientation (Section 3.1). On the other hand, it turns out that,
deciding whether G admits a strongly or a strongly strictly temporal transitive orientation is
(easily) solvable in polynomial time as they can both be reduced to 2SAT satisfiability.

Our main result is that, given a temporal graph G = (G, λ), we can decide in polynomial
time whether G is transitively orientable, and at the same time we can output a temporal
transitive orientation if it exists. Although the analysis and correctness proof of our algorithm
is technically quite involved, our algorithm is simple and easy to implement, as it is based on
the notion of forcing an orientation.1 Our algorithm extends and generalizes the classical
polynomial-time algorithm for computing a transitive orientation in static graphs described
by Golumbic [23]. The main technical difficulty in extending the algorithm from the static to
the temporal setting is that, in temporal graphs we cannot simply use orientation forcings to
eliminate the condition that a triangle is not allowed to be cyclically oriented. To resolve this
issue, we first express the recognition problem of temporally transitively orientable graphs as
a Boolean satisfiability problem of a mixed Boolean formula ϕ3NAE ∧ ϕ2SAT. Here ϕ3NAE is
a 3NAE (i.e. 3-Not-All-Equal) formula and ϕ2SAT is a 2SAT formula. Note that every
clause NAE(ℓ1, ℓ2, ℓ3) of ϕ3NAE corresponds to the condition that a specific triangle in the
temporal graph cannot be cyclically oriented. However, although deciding whether ϕ2SAT is
satisfiable can be done in linear time with respect to the size of the formula [6], the problem
Not-All-Equal-3-SAT is NP-complete [42].

Our algorithm iteratively produces at iteration j a formula ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT, which is

computed from the previous formula ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT by (almost) simulating the classical

greedy algorithm that solves 2SAT [6]. The 2SAT-algorithm proceeds greedily as follows. For
every variable xi, if setting xi = 1 (resp. xi = 0) leads to an immediate contradiction, the
algorithm is forced to set xi = 0 (resp. xi = 1). Otherwise, if each of the truth assignments
xi = 1 and xi = 0 does not lead to an immediate contradiction, the algorithm arbitrarily
chooses to set xi = 1 or xi = 0, and thus some clauses are removed from the formula as
they were satisfied. The argument for the correctness of the 2SAT-algorithm is that new
clauses are never added to the formula at any step. The main technical difference between
the 2SAT-algorithm and our algorithm is that, in our case, the formula ϕ

(j)
3NAE ∧ ϕ

(j)
2SAT is not

necessarily a sub-formula of ϕ
(j−1)
3NAE∧ϕ

(j−1)
2SAT , as in some cases we need to also add clauses. Our

main technical result is that, nevertheless, at every iteration j the formula ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is

satisfiable if and only if ϕ
(j−1)
3NAE ∧ϕ

(j−1)
2SAT is satisfiable. The proof of this result (see Theorem 9)

relies on a sequence of structural properties of temporal transitive orientations which we
establish. This phenomenon of deducing a polynomial-time algorithm for an algorithmic
graph problem by deciding satisfiability of a mixed Boolean formula (i.e. with both clauses of
two and three literals) occurs rarely; this approach has been successfully used for the efficient
recognition of simple-triangle (known also as “PI”) graphs [33].

In the second part of our paper (Section 4) we consider a natural extension of the temporal
orientability problem, namely the temporal transitive completion problem. In this problem we
are given a (partially oriented) temporal graph G and a natural number k, and the question

1 That is, orienting an edge from u to v forces us to orient another edge from a to b.

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:5

is whether it is possible to add at most k new edges (with the corresponding time-labels) to
G such that the resulting temporal graph is (strongly/strictly/strongly strictly) transitively
orientable. We prove that all four versions of temporal transitive completion are NP-complete,
even when the input temporal graph is completely unoriented. In contrast we show that, if
the input temporal graph G is directed (i.e. if every time-labeled edge has a fixed orientation)
then all versions of temporal transitive completion are solvable in polynomial time. As a
corollary of our results it follows that all four versions of temporal transitive completion are
fixed-parameter-tractable (FPT) with respect to the number q of unoriented time-labeled
edges in G.

In the third and last part of our paper (Section 5) we consider the multilayer transitive
orientation problem. In this problem we are given an undirected temporal graph G = (G, λ),
where G = (V, E), and we ask whether there exists an orientation F of its edges (i.e. with
exactly one orientation for each edge of G) such that, for every “time-layer” t ≥ 1, the
(static) oriented graph induced by the edges having time-label t is transitively oriented in
F . Problem definitions of this type are commonly referred to as multilayer problems [10].
Observe that this problem trivially reduces to the static case if we assume that each edge has
a single time-label, as then each layer can be treated independently of all others. However, if
we allow G to have multiple time-labels on every edge of G, then we show that the problem
becomes NP-complete, even when every edge has at most two labels.

Due to space constraints, some of our results are deferred to a full version [36].

2 Preliminaries and Notation

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V is
denoted by the unordered pair {u, v} ∈ E, and in this case the vertices u, v are said to
be adjacent. If the graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to
denote the oriented edge from u to v (resp. from v to u). For simplicity of the notation, we
will usually drop the parentheses and the comma when denoting an oriented edge, i.e. we
will denote (u, v) just by uv. Furthermore, ûv = {uv, vu} is used to denote the set of both
oriented edges uv and vu between the vertices u and v.

Let S ⊆ E be a subset of the edges of an undirected (static) graph G = (V, E), and let
Ŝ = {uv, vu : {u, v} ∈ S} be the set of both possible orientations uv and vu of every edge
{u, v} ∈ S. Let F ⊆ Ŝ. If F contains at least one of the two possible orientations uv and
vu of each edge {u, v} ∈ S, then F is called an orientation of the edges of S. F is called
a proper orientation if it contains exactly one of the orientations uv and vu of every edge
{u, v} ∈ S. Note here that, in order to simplify some technical proofs, the above definition
of an orientation allows F to be not proper, i.e. to contain both uv and vu for a specific edge
{u, v}. However, whenever F is not proper, this means that F can be discarded as it cannot
be used as a part of a (temporal) transitive orientation. For every orientation F denote by
F −1 = {vu : uv ∈ F} the reversal of F . Note that F ∩ F −1 = ∅ if and only if F is proper.

In a temporal graph G = (G, λ), where G = (V, E), whenever λ({v, w}) = t (or simply
λ(v, w) = t), we refer to the tuple ({v, w}, t) as a time-edge of G. A triangle of (G, λ) on
the vertices u, v, w is a synchronous triangle if λ(u, v) = λ(v, w) = λ(w, u). Let G = (V, E)
and let F be a proper orientation of the whole edge set E. Then (G, F), or (G, λ, F), is a
proper orientation of the temporal graph G. A partial proper orientation F of G = (G, λ) is
an orientation of a subset of E. To indicate that the edge {u, v} of a time-edge ({u, v}, t) is
oriented from u to v (that is, uv ∈ F in a (partial) proper orientation F), we use the term
((u, v), t), or simply (uv, t). For simplicity we may refer to a (partial) proper orientation just
as a (partial) orientation, whenever the term “proper” is clear from the context.

MFCS 2021

75:6 The Complexity of Transitively Orienting Temporal Graphs

A static graph G = (V, E) is a comparability graph if there exists a proper orientation F

of E which is transitive, that is, if F ∩ F −1 = ∅ and F 2 ⊆ F , where F 2 = {uw : uv, vw ∈ F

for some vertex v} [23]. Analogously, in a temporal graph G = (G, λ), where G = (V, E), we
define a proper orientation F of E to be temporally transitive, if:

whenever (uv, t1) and (vw, t2) are oriented time-edges in (G, F) such that t2 ≥ t1, there
exists an oriented time-edge (wu, t3) in (G, F), for some t3 ≥ t2.

In the above definition of a temporally transitive orientation, if we replace the condition
“t3 ≥ t2” with “t3 > t2”, then F is called strongly temporally transitive. If we instead replace
the condition “t2 ≥ t1” with “t2 > t1”, then F is called strictly temporally transitive. If we
do both of these replacements, then F is called strongly strictly temporally transitive. Note
that strong (strict) temporal transitivity implies (strict) temporal transitivity, while (strong)
temporal transitivity implies (strong) strict temporal transitivity. Furthermore, similarly to
the established terminology for static graphs, we define a temporal graph G = (G, λ), where
G = (V, E), to be a (strongly/strictly) temporal comparability graph if there exists a proper
orientation F of E which is (strongly/strictly) temporally transitive.

We are now ready to formally introduce the following decision problem of recognizing
whether a given temporal graph is temporally transitively orientable or not.

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G, λ), where G = (V, E).
Question: Does G admit a temporally transitive orientation F of E?

In the above problem definition of TTO, if we ask for the existence of a strictly
(resp. strongly, or strongly strictly) temporally transitive orientation F , we obtain the
decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive
Orientation (TTO).

Let G = (G, λ) be a temporal graph, where G = (V, E). Let G′ = (V, E′) be a graph such
that E ⊆ E′, and let λ′ : E′ → N be a time-labeling function such that λ′(u, v) = λ(u, v) for
every {u, v} ∈ E. Then the temporal graph G′ = (G′, λ′) is called a temporal supergraph of G.
We can now define our next problem definition regarding computing temporally orientable
supergraphs of G.

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G, λ), where G = (V, E), a (partial) orientation F of G,
and an integer k.

Question: Does there exist a temporal supergraph G′ = (G′, λ′) of (G, λ), where G′ = (V, E′),
and a transitive orientation F ′ ⊇ F of G′ such that |E′ \ E| ≤ k?

Similarly to TTO, if we ask in the problem definition of TTC for the existence of a
strictly (resp. strongly, or strongly strictly) temporally transitive orientation F ′, we obtain
the decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive
Completion (TTC).

Now we define our final problem which asks for an orientation F of a temporal graph
G = (G, λ) (i.e. with exactly one orientation for each edge of G) such that, for every
“time-layer” t ≥ 1, the (static) oriented graph defined by the edges having time-label t is
transitively oriented in F . This problem does not make much sense if every edge has exactly
one time-label in G, as in this case it can be easily solved by just repeatedly applying any
known static transitive orientation algorithm. Therefore, in the next problem definition, we
assume that in the input temporal graph G = (G, λ) every edge of G potentially has multiple
time-labels, i.e. the time-labeling function is λ : E → 2N.

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:7

Table 1 Orientation conditions imposed by a triangle (left) and an induced path of length two
(right) in the underlying graph G for the decision problems (Strict/Strong/Strong Strict)
TTO. Here, ⊤ means that no restriction is imposed, ⊥ means that the graph is not orientable, and
in the case of triangles, “non-cyclic” means that all orientations except the ones that orient the
triangle cyclicly are allowed.

u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strong TTO ⊥ wu ∧ wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strict TTO ⊤ non-cyclic vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Str. Str. TTO ⊤ vu =⇒ wu

uv =⇒ wv

vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G, λ), where G = (V, E) and λ : E → 2N.
Question: Is there an orientation F of the edges of G such that, for every t ≥ 1, the (static)

oriented graph induced by the edges having time-label t is transitively oriented?

3 The recognition of temporally transitively orientable graphs

In this section we investigate the computational complexity of all variants of TTO. We
show that TTO as well as the two variants Strong TTO and Strong Strict TTO, are
solvable in polynomial time, whereas Strict TTO turns out to be NP-complete.

The main idea of our approach to solve TTO and its variants is to create Boolean
variables for each edge of the underlying graph G and interpret setting a variable to 1 or 0
with the two possible ways of directing the corresponding edge.

More formally, for every edge {u, v} we introduce a variable xuv and setting this variable
to 1 corresponds to the orientation uv while setting this variable to 0 corresponds to the
orientation vu. Now consider the example of Figure 1(a), i.e. an induced path of length
two in the underlying graph G on three vertices u, v, w, and let λ(u, v) = 1 and λ(v, w) = 2.
Then the orientation uv “forces” the orientation wv. Indeed, if we otherwise orient {v, w}
as vw, then the edge {u, w} must exist and be oriented as uw in any temporal transitive
orientation, which is a contradiction as there is no edge between u and w. We can express
this “forcing” with the implication xuv =⇒ xwv. In this way we can deduce the constraints
that all triangles or induced paths on three vertices impose on any (strong/strict/strong
strict) temporal transitive orientation. We collect all these constraints in Table 1.

MFCS 2021

75:8 The Complexity of Transitively Orienting Temporal Graphs

When looking at the conditions imposed on temporal transitive orientations collected
in Table 1, we can observe that all conditions except “non-cyclic” are expressible in 2SAT.
Since 2SAT is solvable in linear time [6], it immediately follows that the strong variants of
temporal transitivity are solvable in polynomial time, as the next theorem states.

▶ Theorem 2. Strong TTO and Strong Strict TTO are solvable in polynomial time.

In the variants TTO and Strict TTO, however, we can have triangles which impose
a “non-cyclic” orientation of three edges (Table 1). This can be naturally modeled by a
not-all-equal (NAE) clause.2 However, if we now naïvely model the conditions with a Boolean
formula, we obtain a formula with 2SAT clauses and 3NAE clauses. Deciding whether such
a formula is satisfiable is NP-complete in general [42]. Hence, we have to investigate these
two variants more thoroughly.

The only difference between the triangles that impose these “non-cyclic” orientations in
these two problem variants is that, in TTO, the triangle is synchronous (i.e. all its three
edges have the same time-label), while in Strict TTO two of the edges are synchronous
and the third one has a smaller time-label than the other two. As it turns out, this difference
of the two problem variants has important implications on their computational complexity.
In fact, we obtain a surprising result: TTO is solvable in polynomial time while Strict
TTO is NP-complete.

3.1 Strict TTO is NP-Complete
In this section we show that in contrast to the other variants, Strict TTO is NP-complete.

▶ Theorem 3. Strict TTO is NP-complete even if the temporal input graph has only four
different time labels.

3.2 A polynomial-time algorithm for TTO
Let G = (V, E) be a static undirected graph. There are various polynomial-time algorithms
for deciding whether G admits a transitive orientation F . However our results in this section
are inspired by the transitive orientation algorithm described by Golumbic [23], which is
based on the crucial notion of forcing an orientation. The notion of forcing in static graphs
is illustrated in Figure 1 (a): if we orient the edge {u, v} as uv (i.e., from u to v) then we
are forced to orient the edge {v, w} as wv (i.e., from w to v) in any transitive orientation F

of G. Indeed, if we otherwise orient {v, w} as vw (i.e. from v to w), then the edge {u, w}
must exist and it must be oriented as uw in any transitive orientation F of G, which is a
contradiction as {u, w} is not an edge of G. Similarly, if we orient the edge {u, v} as vu then
we are forced to orient the edge {v, w} as vw. That is, in any transitive orientation F of
G we have that uv ∈ F ⇔ wv ∈ F . This forcing operation can be captured by the binary
forcing relation Γ which is defined on the edges of a static graph G as follows [23].

uv Γ u′v′ if and only if
{

either u = u′ and {v, v′} /∈ E

or v = v′ and {u, u′} /∈ E
. (1)

We now extend the definition of Γ in a natural way to the binary relation Λ on the edges
of a temporal graph (G, λ), see Equation (2). For this, observe from Table 1 that the only
cases, where we have uv ∈ F ⇔ wv ∈ F in any temporal transitive orientation of (G, λ), are

2 A not all equal clause is a set of literals and it evaluates to true if and only if at least two literals in the
set evaluate to different truth values.

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:9

u w

v

(a)

u w

v

(b)
3

55

Figure 1 The orientation uv forces the orientation wu and vice-versa in the examples of (a) a
static graph G where {u, v}, {v, w} ∈ E(G) and {u, w} /∈ E(G), and of (b) a temporal graph (G, λ)
where λ(u, w) = 3 < 5 = λ(u, v) = λ(v, w).

when (i) the vertices u, v, w induce a path of length 2 (see Figure 1 (a)) and λ(u, v) = λ(v, w),
as well as when (ii) u, v, w induce a triangle and λ(u, w) < λ(u, v) = λ(v, w). The latter
situation is illustrated in the example of Figure 1 (b). The binary forcing relation Λ is only
defined on pairs of edges {u, v} and {u′, v′} where λ(u, v) = λ(u′, v′), as follows.

uv Λ u′v′ if and only if λ(u, v) = λ(u′, v′) = t and


u = u′ and {v, v′} /∈ E, or
v = v′ and {u, u′} /∈ E, or
u = u′ and λ(v, v′) < t, or
v = v′ and λ(u, u′) < t.

(2)

Note that, for every edge {u, v} ∈ E we have that uv Λ uv. The forcing relation Λ for temporal
graphs shares some properties with the forcing relation Γ for static graphs. In particular,
the reflexive transitive closure Λ∗ of Λ is an equivalence relation, which partitions the edges
of each set Et = {{u, v} ∈ E : λ(u, v) = t} into its Λ-implication classes (or simply, into its
implication classes). Two edges {a, b} and {c, d} are in the same Λ-implication class if and
only ab Λ∗ cd, i.e. there exists a sequence ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd, with k ≥ 0.
Note that, for this to happen, we must have λ(a0, b0) = λ(a1, b1) = . . . = λ(ak, bk) = t for
some t ≥ 1. Such a sequence is called a Λ-chain from ab to cd, and we say that ab (eventually)
Λ-forces cd. Furthermore note that ab Λ∗ cd if and only if ba Λ∗ dc. For the next lemma, we
use the notation Â = {uv, vu : uv ∈ A}.

▶ Lemma 4. Let A be a Λ-implication class of a temporal graph (G, λ). Then either
A = A−1 = Â or A ∩A−1 = ∅.

▶ Definition 5. Let F be a proper orientation and A be a Λ-implication class of a temporal
graph (G, λ). If A ⊆ F , we say that F respects A.

▶ Lemma 6. Let F be a proper orientation and A be a Λ-implication class of a temporal
graph (G, λ). Then F respects either A or A−1 (i.e. either A ⊆ F or A−1 ⊆ F), and in
either case A ∩A−1 = ∅.

The next lemma, which is crucial for proving the correctness of our algorithm, extends
an important known property of the forcing relation Γ for static graphs [23, Lemma 5.3] to
the temporal case.

▶ Lemma 7 (Temporal Triangle Lemma). Let (G, λ) be a temporal graph and with a syn-
chronous triangle on the vertices a, b, c, where λ(a, b) = λ(b, c) = λ(c, a) = t. Let A, B, C be
three Λ-implication classes of (G, λ), where ab ∈ C, bc ∈ A, and ca ∈ B, where A ≠ B−1

and A ̸= C−1.
1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.
2. If some b′c′ ∈ A and a′b′ ∈ C, then c′a′ ∈ B.
3. No edge of A touches vertex a.

MFCS 2021

75:10 The Complexity of Transitively Orienting Temporal Graphs

Deciding temporal transitivity using Booleansatisfiability. Starting with any undirected
edge {u, v} of the underlying graph G, we can clearly enumerate in polynomial time the
whole Λ-implication class A to which the oriented edge uv belongs (cf. Equation (2)). If
the reversely directed edge vu ∈ A then Lemma 4 implies that A = A−1 = Â. Otherwise, if
vu /∈ A then vu ∈ A−1 and Lemma 4 implies that A ∩A−1 = ∅. Thus, we can also decide in
polynomial time whether A ∩ A−1 = ∅. If we encounter a Λ-implication class A such that
A∩A−1 ̸= ∅, then it follows by Lemma 6 that (G, λ) is not temporally transitively orientable.

In the remainder of the section we will assume that A ∩A−1 = ∅ for every Λ-implication
class A of (G, λ), which is a necessary condition for (G, λ) to be temporally transitive
orientable. Moreover it follows by Lemma 6 that, if (G, λ) admits a temporally transitively
orientation F , then either A ⊆ F or A−1 ⊆ F . This allows us to define a Boolean variable
xA for every Λ-implication class A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means
that A ⊆ F (resp. A−1 ⊆ F), where F is the temporally transitive orientation which we are
looking for. Let {A1, A2, . . . , As} be a set of Λ-implication classes such that {Â1, Â2, . . . , Âs}
is a partition of the edges of the underlying graph G.3 Then any truth assignment τ of the
variables x1, x2, . . . , xs (where xi = xAi

for every i = 1, 2, . . . , s) corresponds bijectively to
one possible orientation of the temporal graph (G, λ), in which every Λ-implication class is
oriented consistently.

Now we define two Boolean formulas ϕ3NAE and ϕ2SAT such that (G, λ) admits a temporal
transitive orientation if and only if there is a truth assignment τ of the variables x1, x2, . . . , xs

such that both ϕ3NAE and ϕ2SAT are simultaneously satisfied. Intuitively, ϕ3NAE captures
the “non-cyclic” condition from Table 1 while ϕ2SAT captures the remaining conditions. Here
ϕ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where
every clause NAE(ℓ1, ℓ2, ℓ3) is satisfied if and only if at least one of the literals {ℓ1, ℓ2, ℓ3} is
equal to 1 and at least one of them is equal to 0. Furthermore ϕ2SAT is a 2SAT formula,
i.e., the disjunction of 2CNF clauses with two literals each, where every clause (ℓ1 ∨ ℓ2) is
satisfied if and only if at least one of the literals {ℓ1, ℓ2} is equal to 1.

For simplicity of the presentation we also define a variable xuv for every directed edge uv.
More specifically, if uv ∈ Ai (resp. uv ∈ A−1

i) then we set xuv = xi (resp. xuv = xi). That is,
xuv = xvu for every undirected edge {u, v} ∈ E. Note that, although {xuv, xvu : {u, v} ∈ E}
are defined as variables, they can equivalently be seen as literals in a Boolean formula over
the variables x1, x2, . . . , xs. The process of building all Λ-implication classes and all variables
{xuv, xvu : {u, v} ∈ E} is given by Algorithm 1.

Description of the 3NAE formula ϕ3NAE. The formula ϕ3NAE captures the “non-cyclic”
condition of the problem variant TTO (presented in Table 1). The formal description of
ϕ3NAE is as follows. Consider a synchronous triangle of (G, λ) on the vertices u, v, w. Assume
that xuv = xwv, i.e., xuv is the same variable as xwv. Then the pair {uv, wv} of oriented
edges belongs to the same Λ-implication class Ai. This implies that the triangle on the
vertices u, v, w is never cyclically oriented in any proper orientation F that respects Ai

or A−1
i . Note that, by symmetry, the same happens if xvw = xuw or if xwu = xvu. Assume,

on the contrary, that xuv ̸= xwv, xvw ̸= xuw, and xwu ̸= xvu. In this case we add to ϕ3NAE
the clause NAE(xuv, xvw, xwu). Note that the triangle on u, v, w is transitively oriented if
and only if NAE(xuv, xvw, xwu) is satisfied, i.e., at least one of the variables {xuv, xvw, xwu}
receives the value 1 and at least one of them receives the value 0.

3 Here we slightly abuse the notation by identifying the undirected edge {u, v} with the set of both its
orientations {uv, vu}.

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:11

Algorithm 1 Building the Λ-implication classes and the edge-variables.

Input: A temporal graph (G, λ), where G = (V, E).
Output: The variables {xuv, xvu : {u, v} ∈ E}, or the announcement that (G, λ) is tempor-

ally not transitively orientable.

1: s← 0; E0 ← E

2: while E0 ̸= ∅ do
3: s← s + 1; Let {p, q} ∈ E0 be arbitrary
4: Build the Λ-implication class As of the oriented edge pq (by Equation (2))
5: if qp ∈ As then {As ∩A−1

s ̸= ∅}
6: return “NO”
7: else
8: xs is the variable corresponding to the directed edges of As

9: for every uv ∈ As do
10: xuv ← xs; xvu ← xs {xuv and xvu become aliases of xs and xs}
11: E0 ← E0 \ Âs

12: return Λ-implication classes {A1, A2, . . . , As} and variables {xuv, xvu : {u, v} ∈ E}

Description of the 2SAT formula ϕ2SAT. The formula ϕ2SAT captures all conditions apart
from the “non-cyclic” condition of the problem variant TTO (presented in Table 1). The
formal description of ϕ2SAT is as follows. Consider a triangle of (G, λ) on the vertices u, v, w,
where λ(u, v) = t1, λ(v, w) = t2, λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then we add
to ϕ2SAT the clauses (xuw ∨ xwv) ∧ (xvw ∨ xwu); note that these clauses are equivalent to
xwu = xwv. If t1 ≤ t2 < t3 then we add to ϕ2SAT the clauses (xwv ∨ xuw) ∧ (xuv ∨ xwu);
note that these clauses are equivalent to (xvw ⇒ xuw) ∧ (xvu ⇒ xwu). Now consider a path
of length 2 that is induced by the vertices u, v, w, where λ(u, v) = t1, λ(v, w) = t2, and
t1 ≤ t2. If t1 = t2 then we add to ϕ2SAT the clauses (xvu ∨ xwv) ∧ (xvw ∨ xuv); note that
these clauses are equivalent to (xuv = xwv). Finally, if t1 < t2 then we add to ϕ2SAT the
clause (xvu ∨ xwv); note that this clause is equivalent to (xuv ⇒ xwv).

Brief outline of the algorithm. In the initialization phase, we exhaustively check which
truth values are forced in ϕ3NAE ∧ ϕ2SAT by using the subroutine Initial-Forcing. During
the execution of Initial-Forcing, we either replace the formulas ϕ3NAE and ϕ2SAT by the
equivalent formulas ϕ

(0)
3NAE and ϕ

(0)
2SAT, respectively, or we reach a contradiction by showing

that ϕ3NAE ∧ ϕ2SAT is unsatisfiable.

▶ Observation 8. The temporal graph (G, λ) is transitively orientable if and only if ϕ
(0)
3NAE ∧

ϕ
(0)
2SAT is satisfiable.

The main phase of the algorithm starts once the formulas ϕ
(0)
3NAE and ϕ

(0)
2SAT have been

computed. Then we iteratively try assigning to each variable xi the truth value 1 or 0.
Once we have set xi = 1 (resp. xi = 0) during the iteration j ≥ 1 of the algorithm, we call
algorithm Boolean-Forcing (see Algorithm 3) as a subroutine to check which implications
this value of xi has on the current formulas ϕ

(j−1)
3NAE and ϕ

(j−1)
2SAT and which other truth values

of variables are forced. The correctness of Boolean-Forcing can be easily verified by
checking all subcases of Boolean-Forcing. During the execution of Boolean-Forcing,
we either replace the current formulas by ϕ

(j)
3NAE and ϕ

(j)
2SAT, or we reach a contradiction by

showing that, setting xi = 1 (resp. xi = 0) makes ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT unsatisfiable. If each of

the truth assignments {xi = 1, xi = 0} leads to such a contradiction, we return that (G, λ)

MFCS 2021

75:12 The Complexity of Transitively Orienting Temporal Graphs

Algorithm 2 Initial-Forcing.

Input: A 2-SAT formula ϕ2SAT and a 3-NAE formula ϕ3NAE

Output: A 2-SAT formula ϕ
(0)
2SAT and a 3-NAE formula ϕ

(0)
3NAE such that ϕ

(0)
2SAT ∧ ϕ

(0)
3NAE

is satisfiable if and only if ϕ2SAT ∧ ϕ3NAE is satisfiable, or the announcement that
ϕ2SAT ∧ ϕ3NAE is not satisfiable.

1: ϕ
(0)
3NAE ← ϕ3NAE; ϕ

(0)
2SAT ← ϕ2SAT {initialization}

2: for every variable xi appearing in ϕ
(0)
3NAE ∧ ϕ

(0)
2SAT do

3: if Boolean-Forcing
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT, xi, 1

)
= “NO” then

4: if Boolean-Forcing
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
= “NO” then

5: return “NO” {both xi = 1 and xi = 0 invalidate the formulas}
6: else
7:

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT

)
← Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
8: else
9: if Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
= “NO” then

10:
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)
← Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 1

)
11: for every clause NAE(xuv, xvw, xwu) of ϕ

(0)
3NAE do

12: for every variable xab do
13: if xab

∗⇒
ϕ

(0)
2SAT

xuv and xab
∗⇒

ϕ
(0)
2SAT

xvw then {add (xab ⇒ xuw) to ϕ
(0)
2SAT}

14: ϕ
(0)
2SAT ← ϕ

(0)
2SAT ∧ (xba ∨ xuw)

15: Repeat lines 2 and 11 until no changes occur on ϕ
(0)
2SAT and ϕ

(0)
3NAE

16: return
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)

is a no-instance. Otherwise, if at least one of the truth assignments {xi = 1, xi = 0} does
not lead to such a contradiction, we follow this truth assignment and proceed with the next
variable.

As we prove in our main technical result of this section (Theorem 9), ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT is

satisfiable if and only if ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable. Note that, during the execution of the

algorithm, we can both add and remove clauses from ϕ
(j)
2SAT. On the other hand, we can only

remove clauses from ϕ
(j)
3NAE. Thus, at some iteration j, we obtain ϕ

(j)
3NAE = ∅, and after that

iteration we only need to decide satisfiability of ϕ
(j)
2SAT which can be done efficiently [6].

We are now ready to present in the next theorem our main technical result of this section.

▶ Theorem 9. For every iteration j ≥ 1 of the algorithm, ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable if

and only if ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT is satisfiable.

Using Theorem 9, we can now conclude this section with the next theorem.

▶ Theorem 10. TTO can be solved in polynomial time.

Proof sketch. First recall by Observation 8 that the input temporal graph (G, λ) is transit-
ively orientable if and only if ϕ

(0)
3NAE ∧ ϕ

(0)
2SAT is satisfiable.

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:13

Algorithm 3 Boolean-Forcing.

Input: A 2-SAT formula ϕ2, a 3-NAE formula ϕ3, and a variable xi of ϕ2 ∧ ϕ3, and a truth
value Value ∈ {0, 1}

Output: A 2-SAT formula ϕ′
2 and a 3-NAE formula ϕ′

3, obtained from ϕ2 and ϕ3 by setting
xi = Value, or the announcement that xi = Value does not satisfy ϕ2 ∧ ϕ3.

1: ϕ′
2 ← ϕ2; ϕ′

3 ← ϕ3

2: while ϕ′
2 has a clause (xuv ∨ xpq) and xuv = 1 do

3: Remove the clause (xuv ∨ xpq) from ϕ′
2

4: while ϕ′
2 has a clause (xuv ∨ xpq) and xuv = 0 do

5: if xpq = 0 then return “NO”
6: Remove the clause (xuv ∨ xpq) from ϕ′

2; xpq ← 1

7: for every variable xuv that does not yet have a truth value do
8: if xuv

∗⇒ϕ′′
2

xvu, where ϕ′′
2 = ϕ′

2 \ ϕ2 then xuv ← 0

9: for every clause NAE(xuv, xvw, xwu) of ϕ′
3 do {synchronous triangle on vertices u, v, w}

10: if xuv
∗⇒ϕ′

2
xvw then {add (xuv ⇒ xuw) ∧ (xuw ⇒ xvw) to ϕ′

2}
11: ϕ′

2 ← ϕ′
2 ∧ (xvu ∨ xuw) ∧ (xwu ∨ xvw)

12: Remove the clause NAE(xuv, xvw, xwu) from ϕ′
3

13: if xuv already got the value 1 or 0 then
14: Remove the clause NAE(xuv, xvw, xwu) from ϕ′

3

15: if xvw and xwu do not have yet a truth value then
16: if xuv = 1 then {add (xvw ⇒ xuw) to ϕ′

2}
17: ϕ′

2 ← ϕ′
2 ∧ (xwv ∨ xuw)

18: else {xuv = 0; in this case add (xuw ⇒ xvw) to ϕ′
2}

19: ϕ′
2 ← ϕ′

2 ∧ (xwu ∨ xvw)
20: if xvw = xuv and xwu does not have yet a truth value then
21: xwu ← 1− xuv

22: if xvw = xwu = xuv then return “NO”

23: Repeat lines 2, 4, 7, and 9 until no changes occur on ϕ′
2 and ϕ′

3

24: if both xuv = 0 and xuv = 1 for some variable xuv then return “NO”

25: return (ϕ′
2, ϕ′

3)

Let (G, λ) be a yes-instance. Then, by iteratively applying Theorem 9 it follows that
ϕ

(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable, for every iteration j of the algorithm. Recall that, at the end of

the last iteration k of the algorithm, ϕ
(k)
3NAE ∧ ϕ

(k)
2SAT is empty. Then the algorithm gives the

arbitrary truth value xi = 1 to every variable xi which did not yet get any truth value yet.
This is a correct decision as all these variables are not involved in any Boolean constraint
of ϕ

(k)
3NAE ∧ ϕ

(k)
2SAT (which is empty). Finally, the algorithm orients all edges of G according

to the corresponding truth assignment. The returned orientation F of (G, λ) is temporally
transitive as every variable was assigned a truth value according to the Boolean constraints
throughout the execution of the algorithm.

Now let (G, λ) be a no-instance. We will prove that, at some iteration j ≤ 0, the
algorithm will “NO”. Suppose otherwise that the algorithm instead returns an orientation
F of (G, λ) after performing k iterations. Then clearly ϕ

(k)
3NAE ∧ ϕ

(k)
2SAT is empty, and thus

MFCS 2021

75:14 The Complexity of Transitively Orienting Temporal Graphs

Algorithm 4 Temporal transitive orientation.

Input: A temporal graph (G, λ), where G = (V, E).
Output: A temporal transitive orientation F of (G, λ), or the announcement that (G, λ) is

temporally not transitively orientable.

1: Execute Algorithm 1 to build the Λ-implication classes {A1, A2, . . . , As} and the Boolean
variables {xuv, xvu : {u, v} ∈ E}

2: if Algorithm 1 returns “NO” then return “NO”
3: Build the 3NAE formula ϕ3NAE and the 2SAT formula ϕ2SAT

4: if Initial-Forcing (ϕ3NAE, ϕ2SAT) ̸= “NO” then {Initialization phase}

5:
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)
← Initial-Forcing (ϕ3NAE, ϕ2SAT)

6: else {ϕ3NAE ∧ ϕ2SAT leads to a contradiction}
7: return “NO”
8: j ← 1; F ← ∅ {Main phase}
9: while a variable xi appearing in ϕ

(j−1)
3NAE ∧ ϕ

(j−1)
2SAT did not yet receive a truth value do

10: if Boolean-Forcing
(

ϕ
(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 1

)
̸= “NO” then

11:
(

ϕ
(j)
3NAE, ϕ

(j)
2SAT

)
← Boolean-Forcing

(
ϕ

(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 1

)
12: else {xi = 1 leads to a contradiction}

13: if Boolean-Forcing
(

ϕ
(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 0

)
̸= “NO” then

14:
(

ϕ
(j)
3NAE, ϕ

(j)
2SAT

)
← Boolean-Forcing

(
ϕ

(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 0

)
15: else
16: return “NO”
17: j ← j + 1
18: for i = 1 to s do
19: if xi did not yet receive a truth value then xi ← 1
20: if xi = 1 then F ← F ∪Ai else F ← F ∪Ai

21: return the temporally transitive orientation F of (G, λ)

clearly satisfiable. Therefore, iteratively applying Theorem 9 implies that ϕ
(0)
3NAE ∧ ϕ

(0)
2SAT is

also satisfiable, and thus (G, λ) is temporally transitively orientable by Observation 8, which
is a contradiction to the assumption that (G, λ) be a no-instance.

Lastly, we prove that our algorithm runs in polynomial time. The Λ-implication classes
of (G, λ) can be clearly computed in polynomial time. Our algorithm calls a subroutine
Boolean-Forcing at most four times for every variable in ϕ

(0)
3NAE ∧ ϕ

(0)
2SAT. Boolean-

Forcing iteratively adds and removes clauses from the 2SAT part of the formula, while it
can only remove clauses from the 3NAE part. Whenever a clause is added to the 2SAT part,
a clause of the 3NAE part is removed. Therefore, as the initial 3NAE formula has at most
polynomially-many clauses, we can add clauses to the 2SAT part only polynomially-many
times. Hence, we have an overall polynomial running time. ◀

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:15

4 Temporal Transitive Completion

We now study the computational complexity of Temporal Transitive Completion
(TTC). In the static case, the so-called minimum comparability completion problem,
i.e. adding the smallest number of edges to a static graph to turn it into a comparabil-
ity graph, is known to be NP-hard [24]. Note that minimum comparability completion
on static graphs is a special case of TTC and thus it follows that TTC is NP-hard too.
Our other variants, however, do not generalize static comparability completion in such a
straightforward way. Note that for Strict TTC we have that the corresponding recognition
problem Strict TTO is NP-complete (Theorem 3), hence it follows directly that Strict
TTC is NP-hard. For the remaining two variants of our problem, we show in the following
that they are also NP-hard, giving the result that all four variants of TTC are NP-hard.
Furthermore, we present a polynomial-time algorithm for all four problem variants for the
case that all edges of underlying graph are oriented, see Theorem 12. This allows directly to
derive an FPT algorithm for the number of unoriented edges as a parameter.

▶ Theorem 11. All four variants of TTC are NP-hard, even when the input temporal graph
is completely unoriented.

We now show that TTC can be solved in polynomial time, if all edges are already oriented,
as the next theorem states.

▶ Theorem 12. An instance (G, F, k) of TTC where G = (G, λ) and G = (V, E), can be
solved in O(m2) time if F is an orientation of E, where m = |E|.

Using Theorem 12 we can now prove that TTC is fixed-parameter tractable (FPT) with
respect to the number of unoriented edges in the input temporal graph G.

▶ Corollary 13. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E). Then
I can be solved in O(2q ·m2), where q = |E| − |F | and m the number of time edges.

5 Deciding Multilayer Transitive Orientation

In this section we prove that Multilayer Transitive Orientation (MTO) is NP-
complete, even if every edge of the given temporal graph has at most two labels. Recall that
this problem asks for an orientation F of a temporal graph G = (G, λ) (i.e. with exactly one
orientation for each edge of G) such that, for every “time-layer” t ≥ 1, the (static) oriented
graph defined by the edges having time-label t is transitively oriented in F . As we discussed
in Section 2, this problem makes more sense when every edge of G potentially has multiple
time-labels, therefore we assume here that the time-labeling function is λ : E → 2N.

▶ Theorem 14. MTO is NP-complete, even on temporal graphs with at most two labels per
edge.

References
1 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. Ephemeral

networks with random availability of links: The case of fast networks. Journal of Parallel and
Distributed Computing, 87:109–120, 2016.

2 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of
optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,
2017.

MFCS 2021

75:16 The Complexity of Transitively Orienting Temporal Graphs

3 Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos,
Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic
temporal graphs? Journal of Computer and System Sciences, 114:65–83, 2020. An extended
abstract appeared at ICALP 2019.

4 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex
cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123,
2020.

5 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539, 2021.

6 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121–123,
1979.

7 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum
temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming, (ICALP), pages 149:1–149:14, 2016.

8 Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier,
and René Saitenmacher. Listing all maximal k-plexes in temporal graphs. ACM Journal of
Experimental Algorithmics, 24(1):13:1–13:27, 2019.

9 Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient
computation of optimal temporal walks under waiting-time constraints. Applied Network
Science, 5(1):73, 2020.

10 Robert Bredereck, Christian Komusiewicz, Stefan Kratsch, Hendrik Molter, Rolf Niedermeier,
and Manuel Sorge. Assessing the computational complexity of multilayer subgraph detection.
Network Science, 7(2):215–241, 2019.

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(02):267–285, 2003.

12 Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic aspects of
temporal betweenness. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 2084–2092. ACM, 2020.

13 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:
Formal Models and Metrics. Technical report, Defence R&D Canada, April 2013. URL:
https://hal.archives-ouvertes.fr/hal-00865762.

14 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:
Problems, Analysis, and Algorithmic Tools. Technical report, Defence R&D Canada, April
2013. URL: https://hal.archives-ouvertes.fr/hal-00865764.

15 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

16 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. In 31st International Symposium on Algorithms
and Computation (ISAAC), pages 30:1–30:18, 2020.

17 Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse
spanners. In Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 132, pages 134:1–134:14, 2019.

18 Jiehua Chen, Hendrik Molter, Manuel Sorge, and Ondřej Suchý. Cluster editing in multi-layer
and temporal graphs. In Proceedings of the 29th International Symposium on Algorithms and
Computation (ISAAC), pages 24:1–24:13, 2018.

19 J. Enright, K. Meeks, G.B. Mertzios, and V. Zamaraev. Deleting edges to restrict the size
of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60–77,
2021.

https://hal.archives-ouvertes.fr/hal-00865762
https://hal.archives-ouvertes.fr/hal-00865764

G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:17

20 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in
temporal graphs. Journal of Computer and System Sciences, 115:169–186, 2021.

21 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. In
Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), pages 444–455, 2015.

22 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020.

23 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2nd edition,
2004.

24 S Louis Hakimi, Edward F Schmeichel, and Neal E Young. Orienting graphs to optimize
reachability. Information Processing Letters, 63(5):229–235, 1997.

25 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the
Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1):35:1–35:16, 2017.

26 Petter Holme and Jari Saramäki. Temporal network theory, volume 2. Springer, 2019.
27 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for

temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
28 Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex networks. Physical

Review E, 85(2):026107, 2012.
29 Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient

transitive orientation of comparability graphs. In Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 536–545, 1994.

30 Ross M. McConnell and Jeremy P. Spinrad. Linear-time transitive orientation. In Proceedings
of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 19–25, 1997.

31 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201(1-3):189–241, 1999.

32 David B McDonald and Daizaburo Shizuka. Comparative transitive and temporal orderliness
in dominance networks. Behavioral Ecology, 24(2):511–520, 2013.

33 George B. Mertzios. The recognition of simple-triangle graphs and of linear-interval orders is
polynomial. SIAM Journal on Discrete Mathematics, 29(3):1150–1185, 2015.

34 George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Temporal
network optimization subject to connectivity constraints. In Proceedings of the 40th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP), pages 657–668,
2013.

35 George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.
Computing maximum matchings in temporal graphs. In Proceedings of the 37th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 154, pages 27:1–
27:14, 2020.

36 George B. Mertzios, Hendrik Molter, Malte Renken, Paul G. Spirakis, and Philipp Zschoche.
The complexity of transitively orienting temporal graphs. arXiv preprint, 2021. arXiv:
2102.06783.

37 George B Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph
coloring. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI),
volume 33, pages 7667–7674, 2019.

38 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-
nications of the ACM, 61(2):72–72, 2018.

39 Robert Moskovitch and Yuval Shahar. Medical temporal-knowledge discovery via temporal
abstraction. In Proceedings of the AMIA Annual Symposium, page 452, 2009.

40 Robert Moskovitch and Yuval Shahar. Fast time intervals mining using the transitivity of
temporal relations. Knowledge and Information Systems, 42(1):21–48, 2015.

MFCS 2021

http://arxiv.org/abs/2102.06783
http://arxiv.org/abs/2102.06783

75:18 The Complexity of Transitively Orienting Temporal Graphs

41 V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora. Graph metrics for
temporal networks. In Temporal Networks. Springer, 2013.

42 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC), pages 216–226, 1978.

43 Jeremy P. Spinrad. On comparability and permutation graphs. SIAM Journal on Computing,
14(3):658–670, 1985.

44 Jeremy P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs.
American Mathematical Society, 2003.

45 Xavier Tannier and Philippe Muller. Evaluating temporal graphs built from texts via transitive
reduction. Journal of Artificial Intelligence Research (JAIR), 40:375–413, 2011.

46 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245–252, 2016.

47 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016.

48 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of
finding separators in temporal graphs. Journal of Computer and System Sciences, 107:72–92,
2020.

	1 Introduction
	2 Preliminaries and Notation
	3 The recognition of temporally transitively orientable graphs
	3.1 Strict TTO is NP-Complete
	3.2 A polynomial-time algorithm for TTO

	4 Temporal Transitive Completion
	5 Deciding Multilayer Transitive Orientation

