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Abstract—Resilient algorithms in high-performance computing
are subject to rigorous non-functional constraints. Resiliency
must not increase the runtime, memory footprint or I/O demands
too significantly. We propose a task-based soft error detection
scheme that relies on error criteria per task outcome. They
formalise how “dubious” an outcome is, i.e. how likely it contains
an error. Our whole simulation is replicated once, forming two
teams of MPI ranks that share their task results. Thus, ideally
each team handles only around half of the workload. If a task
yields large error criteria values, i.e. is dubious, we compute
the task redundantly and compare the outcomes. Whenever
they disagree, the task result with a lower error likeliness is
accepted. We obtain a self-healing, resilient algorithm which
can compensate silent floating-point errors without a significant
performance, I/O or memory footprint penalty. Case studies
however suggest that a careful, domain-specific tailoring of the
error criteria remains essential.

Index Terms—soft errors, detection, correction, fault tolerance,
fault resilience

I. INTRODUCTION

Without a revolutionary hardware re-design, a massive
further reduction of clock frequency, or an increasing power
budget accommodating hardware failure correction, we have to
assume that exascale machines will fail frequently compared
to today’s machines [1], [2]. Empirical data leads us to expect
a linear correlation between the system size and the failure
rate [3]. The mean time between failures (MTBF) will shrink.
Simulation codes thus have to improve their resiliency. In
particular, they have to become able to identify machine errors
and to handle them.

Resilient codes traditionally run through two phases: First,
they spot the errors which can either materialise in machine
part failures (hard errors) or wrong results (soft errors). Soft
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errors are easy to spot if they materialise in exceptional values
(±∞, NaN, e.g.). In numerical simulations it is tricky to
identify them otherwise, as we typically work with approx-
imations. We have to define how far off from a result is
considered to be a soft error, while we might struggle to
determine this difference given that we typically do not know
the exact solution. The “simplest” approach is to not detect
soft errors at all, but to rely on an iterative algorithm, and
iterate as long as soft errors continue to pollute the outcome
[4]–[8]. To actually detect errors, codes can rely on algorithmic
a-posteriori checks [9], or they can run multiple redundant
computations and compare their outcomes [10]–[12]. The
last approach requires codes to run the same calculation on
different machines or machine parts: at least twice to detect
errors or even three times to label the “correct” solution via
a majority vote. In a second phase, resilient codes have to
fix the wrong data. Here, three strategies are on the table:
Codes can rely on algorithmic fixes—checksums for example
allow them to reconstruct results, while the aforementioned
iterative algorithms have the correction built in. They can rely
on a rollback to a previous snapshot which has been declared
valid, or they can swap in a redundant data set from a valid,
redundant calculation. All strategies assume that soft errors
arise sporadically and the machine remains, in principle, intact.

In a supercomputing context, these resiliency strategies need
to satisfy important non-functional requirements. A resiliency
strategy should not introduce significant

(i) additional synchronisation between otherwise indepen-
dent calculations: synchronisation hinders scalability;

(ii) additional communication bandwidth or latency: network
bandwidth and responsiveness are precious resources that
quickly develop into a bottleneck if stressed too much;

(iii) I/O needs: I/O operations are traditionally by magnitudes
slower than compute and communication tasks and thus
slow down the calculation;

(iv) additional memory footprint: supercomputing codes typ-
ically try to increase the memory usage per node already
to avoid strong scaling stagnation effects.



Our work starts from the observation that many simulations
decompose their work into work items (tasks over mesh cells,
e.g.) which allow us to define strong or weak confidence
metrics on the outcome of these items: Negative mass density
or NaNs unambiguously flag wrong data. Sudden changes in
eigenvalues feeding into an admissible time step size or sudden
oscillations make outcomes dubious—they might be actually
correct but the changes might also stem from a soft error.
In the absence of an algorithmic postprocessing step which
cures and eliminates errors (cmp. limiter-based techniques [9]
in our case), we propose to run our task-based simulation twice
in parallel. As long as tasks yield outcomes where we are
confident that they are reasonable, we make the two replicas
share their outcomes. Effectively, each replica only computes
half of the work and relies on its counterpart to compute the
remainder [13]. As soon as a task outcome is dubious, our code
waits for the counterpart simulation to compute the outcome
redundantly, and we then compare the results.

Soft errors, i.e. silent data corruption, are notoriously diffi-
cult to spot if there is no strong and immediate validation,
such as a hash value that reports data corruption reliably
and immediately after the error has arisen. In this case, only
comparisons to redundant results with majority vote help to
identify and fix them. Such an approach is infeasible in HPC,
as it synchronises, triples the compute workload, and requires
resources to host checkpoints. Due to task-based error criteria,
we can offer soft error detection without any immediate
synchronisation. We work on a per-task level, asynchronously,
and run the bit-wise redundancy checks only upon demand.
The error criteria also allow us to replace a majority vote
with a confidence vote, while result sharing among trusted
outcomes reduces the cost of the redundant computations.
In many cases, silent data corruption can immediately be
corrected, while the algorithm also provides evidence when
rollback-and-recompute becomes mandatory.

Our strategy towards saving the cost of replication by
sharing outcomes is different from other work which runs
replicas at a reduced execution rate for power savings [14]. In
contrast to task replay techniques in asynchronous many-task
runtime systems [15], our approach has reduced algorithmic
latency—the replicated computation runs in parallel—yet has
a higher memory footprint to store results temporarily until
they are approved. It is also able to recover from hard errors
(not shown), as we work with real rank redundancy.

Our concepts are illustrated within the wave equation solver
ExaHyPE [16] which uses an explicit time stepping scheme
to tackle the underlying hyperbolic equations and which relies
on an independent library called teaMPI [13] for transparent
replication of ranks and for task outcome sharing between
those ranks. Explicit time stepping schemes are notoriously
difficult to equip with resiliency, since they typically operate
with large data sets and are computationally demanding, while
the absence of an iterative solver step or diffusion implies that
errors spread out, propagate and pollute the outcome if they
are not immediately corrected. Since we neither need a tailored
error correction scheme [9], nor checkpointing, nor multiple

redundant computations [12], our ideas improve significantly
upon the state-of-the-art how to deliver resilient simulation
codes, plus they are of broad applicability and relevance: As
long as a solver’s algorithmics can be broken down into small
tasks and credibility metrics can be defined, our algorithmic
ideas are applicable.

The paper is organised as follows: We present our key
ideas and terminology in Section II as an abstract algorithmic
framework. In Section III, we introduce our wave equation
solver and highlight how the framework’s concept of error
criteria is realised for our application. This potential impact on
a wide range of applications is supported by numerical results
(Section V) which we present after Section IV’s discussion of
implementation details. With a realisation sketch and experi-
mental results at hand, we can classify and contextualise our
approach and thus highlight its broader impact (Section VI). A
brief summary and outlook in Section VII close the discussion.

II. ALGORITHMIC FRAMEWORK

Let an algorithm consist of tasks τi that take some input
θi and yield output yi = τi(θi). Some tasks have temporal
dependencies, i.e. τi @ τj : τi feeds into τj and thus has
to terminate before τj starts. A task scheduler exploits the
freedom for any task pair τi, τj : τi 6@ τj ∧ τj 6@ τi to deploy
such tasks τi and τj concurrently to the available compute
cores as the tasks are independent.

A hard error within a task makes our system crash or
prevents the task from terminating. A timeout can detect the
latter situation so hard errors can be reliably detected. We
focus on silent errors which make a task yield ỹi instead of
the correct y(correct)

i = τi(θi). As our numerical simulations
work with floating point approximations where the outcome
of a task is not absolutely deterministic due to register data
transfers or operation reordering, we characterise a silent error
through |ỹi − y(correct)

i | > toly (|.| being a suitable norm). For
simulations, we do not know y(correct)

i for a task prior to its
execution and thus struggle to characterise a soft error unless
an error yields NaNs or unreasonable data. The latter term
remains to be defined.

Let a team be the set of MPI ranks that are used for a
program run. If we run a simulation completely redundantly,
we have two teams A and B. Both issue the same tasks τAi and
τBi . The two team schedulers however might deliver different
task execution sequences for tasks without a total order. As
long as both teams yield correct data, i.e. do not suffer from
soft errors, |yAi − yBi | ≤ toly . toly depends on the machine
precision and error propagation during the task, so usually
encodes a relative error in IEEE floating point precision with
a fixed number of significant bits.

An error criterion is a hash function f : yi 7→ [0,∞], where
f(yi) ≤ tolf indicates that there is no reason to assume that a
soft error has occurred during the calculation. f(yi) = ∞
signals that something went wrong. Any value in-between
highlights that a silent error might have crept into the result. f
thus quantifies to which degree the task outcome is dubious.



Due to the numeric nature, there is however no guarantee
that f(yi) = 0 implies that no error has occurred and there
is no direct correlation between toly and tolf . f(yAi ) >
f(yBi ) does not necessarily mean that yAi is wrong. However,
f(yAi )� f(yBi ) suggests that |yAi −y

(correct)
i | > |yBi −y

(correct)
i |.

As silent errors are very unlikely to affect both outcomes,
the one with the lower f -value is likely correct. Depending
on the context, f evaluates an absolute value of yi or takes
historical data such as previous values of a numerical solution
into account and calibrates yi accordingly.

We combine multiple error criteria fk to an error indicator
φ(yi), which can yield boolean or numerical values. When
using booleans, we define φ(yi) via a logical predicate, such
as ∃fk : fk(yi) > tolfk . When using numerical values, we
may again use a tolerance φ(yi) > tolφ to indicate dubious
results. Different error criteria might exist for different tasks.
To streamline our notation, we focus on one task type τ only.
Let f1, f2, . . . then denote different criteria for task type τ ,
with tolerances tol1, tol2, . . ..

Our algorithmic framework relies on few key ingredients:

• There are two teams A and B. Their scheduler is ini-
tialised with a bias seed: If two tasks τi and τj are
independent and if A’s scheduler gives τi a high priority
and τj a low priority, then B’s scheduler gives τj a
high priority and τi a low one. This bias manifests non-
deterministically in different task completion sequences.

• Whenever a task completes, we can compute its error
criteria fk.

• Each team has a local cache of task outcomes; and hence
of their error criterion values. We use this cache to inform
the other team whenever we have completed a task earlier
than the team counterpart, and we use the cache also to
temporarily store local task results if we are not sure
whether they have been corrupted.

The algorithm then reads as follows (cf. Figure 1):

1) If a task is to be executed and the task outcome is not
yet in the cache, compute it locally.

2) If a local task computation yields error criterion values
which indicate that the result is trustworthy, share the task
outcome with the counterpart in the other team. Continue
with the computation.

3) If a local task computation yields error criterion values
which indicate that the result might be compromised,
share this outcome, too, but place the local result in
the local cache for the time being. Do not accept the
task outcome yet. Let the computing core progress with
another task and check the outcome later.

4) If a task is to be executed, if the task outcome is already
in the local cache, i.e. has been sent in by the other team,
and if this incoming data has error criteria which suggest
that these data are trustworthy, skip the local computation
and accept the data sent in as task result.

5) If a task is to be executed, the task outcome is in the
local cache and is flagged as dubious, run the calculation
locally and share the outcome. Check the local outcome

start

task outcome
y′i available

hasComputed(yi)

no

yes

compute yi

no

share
yi with

other team

isDubious(yi)

yi valid

no

yes

hasComputed(yi)

yes

|yi − y′i| ≤ toly

yes

yi valid

yes

y′i more likely

no

copy y′i into
yi: yi = y′i

yes

yi valid

∀k : fk(yi) ==
fk(y′i)

no

keep yi

yes
yi valid

no

isDubious(y′i)

no

yes

copy y′i into
yi: yi = y′i

no

yi valid

Fig. 1. Control flow to compute, share, check and correct the outcomes yi
of a task execution. y′i denotes a task outcome from another team.

if it is not trustworthy.
The scheme is complemented by some garbage collection
that discards task results that are no longer required. This
happens for tasks that drop in as problematic while the local
computation yielded a result with low error criteria values, or
two task outcomes that cross in the network.

As long as all tasks yield trustworthy results, the above
scheme with the biased scheduler shares the actual compute
workload equally among the two teams. As soon as a dubious
task outcome arises on either team, the task result is backed
up in the local cache. We then have to match two outcomes for
the same task within the cache based upon the error criteria:
• If one task outcome has high error criteria values and

the other task outcome has low error criteria values, we
assume that the latter is the valid result and that the
former includes some silent error. We accept and continue
with the valid data.

• If both task outcomes have the same error criteria values
and |yAi − yBi | ≤ toly , our algorithm had become
over-dubious: It turned out that the result is “kind of
surprising” but valid.

• If both task outcomes have the same error criteria values
but disagree (i.e., |yAi − yBi | > toly), we have spotted a
silent error and need to moderate (e.g., keep the local yi).

• If both task outcomes have error criteria values of ∞,
we have spotted a hard or intrinsic algorithmic error. The
code has to terminate immediately, and it is up to the user
to decide whether to alter the setup or to restart from the
latest checkpoint.

It is straightforward to supplement the algorithmic framework
with some timeouts: If the redundant task’s outcome does not
arrive within a certain timeframe for dubious local results, or



Fig. 2. Two-dimensional cut through our three-dimensional benchmark setup:
We solve the compressible Navier Stokes equations to simulate a rising cloud
on a dynamically adaptive Cartesian grid [17].

if one team sends out task outcomes but does not receive any
outcomes from the other over a longer period, it is reasonable
to assume that the counterpart team suffers from a hard error.
In this case, the healthy team can still checkpoint. Checkpoint-
restart thus integrates seamlessly into our algorithmic frame-
work. As hard errors are out-of-scope in the present work, we
neglect further timeout discussions from hereon.

III. DEMONSTRATOR AND BENCHMARK SCENARIO

We realise our algorithmic ideas within the ExaHyPE engine
[16], relying on previous work to share task outcomes between
teams using the teaMPI library [13]. ExaHyPE provides a
parallel software infrastructure to solve hyperbolic partial
differential equations (PDEs) in their first-order form, e.g.:

∂Q

∂t
+∇ · F (Q,∇Q) = S(Q). (1)

We solve for a vector of unknowns Q(x, t) in time and space.
The formulation requires a flux tensor F (Q) and a source term
S(Q) plus possibly further terms omitted here. ExaHyPE’s
numerics are based upon the ADER-DG scheme [18], which
discretizes the PDE per element in space and in time with
high order polynomials and develops the solution in time with
a predictor-corrector scheme. The computational domain is
discretised by a dynamically adaptive Cartesian mesh [17].
Each mesh cell (cube) carries a solution polynomial. Per time-
step, we run through three sub-steps:

1) A cell-local solve yields the so-called space-time predic-
tor Q̂(x, t), a high-order polynomial approximation of
the solution within the given cell. This solution neglects
the influence of neighbour cells. As we compute it per
mesh cube, the space-time predictors can be executed
independently over the mesh.

2) A Riemann solve at each cube face in space and time
computes the numerical fluxes across the faces which are
induced by Q̂, and thus captures the influence of adjacent
cells upon each other.

3) A corrector step combines the space-time predictor Q̂
with the result from the Riemann solves into a new
solution Q(x, t + ∆t). Corrections are again computed
per cell and hence can run independently.

Our code combines non-overlapping domain decomposition
along the Peano space-filling curve with task-based paral-
lelisation. The domain decomposition is realised via MPI.
After each space-time prediction step, we have to exchange
the domain boundary data to allow all ranks to compute
all relevant Riemann problems. We have one data exchange
per time step which materialises in one MPI message burst.
Further data exchange such as a global reduction to determine
an admissible time step size is negligible w.r.t. bandwidth.

The tasking classifies all cells per rank into cells that are
adjacent to mesh resolution transitions or to the MPI boundary
and cells that can reside within the rank’s domain interior and
thus can be handled with lower priority. This enclave tasking
[19] implies that MPI data transfer and space-time predictor
computations overlap, and that we obtain good per-node
scaling [20]. The space-time prediction is the computationally
dominant task type in ExaHyPE [20]. We thus focus on this
task τ in the context of our resiliency work.

teaMPI [13] is a wrapper around MPI which plugs into
MPI’s tools interface PMPI. The teaMPI wrapper hides that
we operate with two replicated teams, by using split communi-
cators such that ExaHyPE is unaware of the redundancy. Exa-
HyPE leverages teaMPI’s interface for task outcome caching,
for communication of task outcomes and for querying whether
an outcome is available through a replica computation.

In our replica/teaMPI mindset, task outcome caches syn-
chronise with their MPI rank counterpart only, as both teams
A and B employ exactly the same non-overlapping domain
decomposition. If a task τAi is spawned on rank r within
team A, the same task will be spawned by rank r in team B
eventually. No data exchange between different rank numbers
within the two teams is necessary.

A. Test setup

Our test benchmark solves the three-dimensional compress-
ible Navier Stokes equations

∂

∂t

 ρ
ρv
ρE


︸ ︷︷ ︸

=Q

+∇ · F (Q,∇Q) =

 0
−gkρ

0


︸ ︷︷ ︸

=S(Q)

, (2)

where

F (Q,∇Q) =

 ρv
v ⊗ ρv + pI + σ

v · ((ρE + p)I + σ)− κ∇T

 .

Here, ρ denotes the density, ρv the momentum and ρE the
energy density. The pressure is given by p and the temperature
by T . The constant κ is used to model diffusion of the
temperature in the term κ∇T . A stress tensor σ = σ(Q,∇Q)
accounts for viscosity. In the source term, k denotes the unit
vector in vertical direction and g the gravity of Earth.



To solve the PDE system (2), we use the ExaHyPE-based
ADER-DG solver by Krenz et al. [21] to simulate a rising
warm air bubble (see Fig. 2). This scenario reproduces the
setup from [22], where a perturbation in a potential tem-
perature field propagates over a background state that is in
hydrostatic balance.

B. Error criteria

ExaHyPE realises an explicit time stepping scheme where
the space-time predictor yi = τi(θi) for each cell maps a
polynomial onto an extrapolated polynomial. Any error that is
introduced to the solution perturbs the outcome polynomial.
We may assume that localised errors affecting individual
sample points within our Gauss-Legendre ansatz decrease the
smoothness of the overall polynomial. At the same time, (2)
prevents certain solution values such as negative densities:

a) Arithmetic corruption: If yi = τ(θi) contains NaNs,
the data yi has been compromised. We can employ a simple
checksum/reduction to identify these cases. Let fNaN(yi) =∞
if yi holds NaNs. In this case, the task outcome is invalid.
Otherwise, fNaN(yi) = 0. We do not employ a tolerance tolNaN
in this case or may work with any 0 < tolNaN.

b) Physical corruption: Our application setup solves
conservation laws subject to certain plausibility checks. We
call them physical admissibility (PA) checks. The solver tracks
the density and potential temperature of the solution as primary
variables over the mesh. Both are subject to the PDE and
have to be non-negative. The physical admissibility criterion
furthermore can derive a pressure from all of the primary
quantities plus some material parameters. This pressure serves
as further admissibility criterion, as it always has to be
positive, too. Let fPA(yi) = ∞ if yi violates the physical
admissibility check. Otherwise, fPA(yi) = 0. Like fNaN(yi),
fPA(yi) is a boolean label, too.

c) Dubious time step size changes: ExaHyPE relies on
adaptive time stepping, i.e. the time step size ∆t is not
prescribed, but depends on the largest eigenvalue of the flux
(in the above example, both the largest eigenvalue of the flux
and the viscous flux), the polynomial order and the mesh size.
It is chosen thus to fulfil the CFL condition, i.e. follows the
speed information spreads through the grid.

We store the time step size ∆ti per cell and thus can deter-
mine how significant the time step size per cell changes from
one time step to the other. If we employ global adaptive time
stepping, the overall time step size results from a reduction
over cell-local time step sizes. For the resiliency strategy,
solely the local data are of interest.

Let f∆t(yi) = |∆tnew
i −∆told

i |/∆told
i . f∆t(yi) accepts that

the time step size per cell changes—as waves enter or leave
the cell—but doubts the task result if this change is, relative
to the previous time step, significant. The criterion indirectly
relates the eigenvalues of the PDE over a cell to historic data.

d) Solution smoothness evolution: ∂2

∂x2
d

denotes the sec-
ond partial derivative operator in direction d. As we work
with element-wise polynomial solutions in ADER-DG, it is

straightforward to determine the second derivatives over the
sample points ξn per cell. Let

fDer,d(yi) =
1

N

∑
ξn

∣∣∣ ∂2

∂x2
d
ynew
i (ξn)− ∂2

∂x2
d
yold
i (ξn)

∣∣∣∣∣∣ ∂2

∂x2
d
yold
i (ξn)

∣∣∣ .

This error metric computes to which extent a newly computed
task outcome increases the maximum second derivative com-
pared to its previous value. It considers all directions sepa-
rately. We evaluate the second derivative at each sample point
ξn of the polynomial’s Lagrangian representation, and sum up
all obtained values per direction to obtain a single reduced
value fDer(yi) :=

∑
d fDer,d(yi). While small changes of the

maximum second derivative are natural as waves propagate,
very large values of fDer(yi) are suspicious. They flag drastic
changes of the solution smoothness. This can happen for non-
linear equations due to wave stiffening, yet is rare.

e) Combining multiple error criteria: A free choice of
tol∆t and tolDer allows the user to incorporate domain-specific
knowledge (“is the solution usually smooth or are shocks/steep
gradients typical” for example) and facilitates a balancing
between sensitivity and speed.

We support rigorous or lazy evaluation of the error criteria.
In the rigorous variant, all error criteria are evaluated. If
any criterion is violated, the outcome is seen as dubious and
needs to be checked further. We obtain φ(yi) = (fNaN(yi) >
0) ∨ (fPA(yi) > 0) ∨ (fDer(yi) > tolDer) ∨ (f∆t(yi) > tol∆t)
as a boolean dubiosity error indicator. Here, ∨ denotes a
strict logical OR. It ensures that all error indicator values
are available for comparisons with a matching task outcome
from another team for φ(yi) = 1. In the lazy variant, we first
evaluate the computationally cheap error criteria fNaN, fPA and
f∆t. Only if one of these pre-filtering criteria is violated, the
derivative error criterion fDer is evaluated. The task outcome is
dubious if and only if it violates one of the pre-filtering criteria
and the derivatives criterion, i.e. φ(yi) = [(fNaN(yi) > 0) ∨
(fPA(yi) > 0) ∨ (f∆t(yi) > tol∆t)]∧∧(fDer(yi) > tolDer).
Here, ∧∧ denotes a non-strict logical AND. If the pre-filtering
criteria are non-dubious, we formally assume fDer = 0.

Once two task outcomes’ criteria differ, we have to de-
cide which outcome is erroneous. We base this decision
on comparisons of the individual error criterion values, i.e.,
yAi is more likely than yBi according to fk if fk(yAi ) <
fk(yBi ). We cascade these comparisons according to the order
fNaN, fPA, fDER and f∆t non-strictly, i.e., we stop as soon
as one fk has flagged yi as more likely. This results in a
prioritized evaluation. Criteria checked earlier are not allowed
to contradict subsequent criteria for marking an outcome yAi
as more likely, i.e., we demand that fk(yAi ) == fk(yBi ) for
these criteria. This can result in situations in which we cannot
decide upon the erroneous outcome. In these cases, we keep
the local outcome and emit a warning indicating that a silent
error could not be corrected. Further error recovery measures
could then be activated to avoid error propagation.



IV. IMPLEMENTATION

A. Selection of tasks

The space-time predictor tasks are reasonable to hook in an
error indicator, as they match the non-functional requirements
that we identified for the overall resilient algorithm:

(i) The cost to compute a task of interest has to be high
compared to the evaluation cost of the error criteria. An upper
threshold for the f -cost is the computational time to compute
the core task τ itself—otherwise, the effective cost per task
doubles, and even if the two teams perfectly share their
outcomes, the absolute time-to-solution remains invariant. In
practice, we expect to see at least some runtime savings in
return for investing twice as many resources and the cost of
the f -evaluations thus has to be significantly smaller. For our
space-time predictor, we observe that the cost for the dubiosity
checks are significantly smaller than the τ computation, as the
space-time predictor solves a dense non-linear problem.

(ii) The number of ready tasks that can be shared between
teams has to be high. Only if the runtime is dominated by
phases when a lot of ready tasks linger in the system, we
can shuffle their execution order and hence profit from task
outcome sharing, and exchange task outcomes while other
tasks are still computed. For ADER-DG, the first phase per
time step, which issues embarrassingly parallel space-time
prediction tasks only, is a perfect fit to this requirement.
Previous work of ours has demonstrated that we can shuffle
the execution order of these tasks slightly by assigning task
priorities, and obtain reasonable task sharing ratios as long
as the tasks remain uncorrupted and we can assume that all
incoming task outcomes are valid [13].

(iii) Tasks must, on an academic notion of the task concept,
be atomic and final: They must not have any immediate side
effects, and it must be possible to delay re-using outcomes in
follow-up computations. Furthermore, tasks are not allowed
to interrupt or spawn further tasks. Each STP task can run
independently to other STP tasks as it accesses only element-
local data. An STP’s result feeds into Riemann solves at the
adjacent cell-faces of an element for computing the numerical
flux from and to its neighbours, but it does not directly yield
further tasks. Instead, we wait for the corrections to be finished
before we issue the next type of tasks (Riemann solves).

(iv) The memory footprint of a task’s output must be
relatively small. We have to share task outcomes between
rank pairs from different teams, and we have to cache task
results locally whenever a task result drops in or our local
computations suggests that some dubiosity and consistency
checks become necessary. Furthermore, only small footprints
ensure that we can transfer output quickly via MPI and the task
result sharing does not introduce interconnect congestion. Our
preliminary work [13], which we use as code base here, has
demonstrated that task outcomes can be shared in a timely
manner as long as we take special care regarding the MPI
progression. However, the present approach still runs risk to
double the effective memory footprint per rank.

(v) The likelihood that silent data corruption affects the
task outcome directly has to be high. Our approach relies
on local checks and immediate correction of corrupted task
outcomes. STP tasks account for most of the consumed CPU
time during an ExaHyPE run [9], [20], making them very
likely to be affected by silent data corruption. Previous work
using a simplified oscillation analysis (min/max condition) in
combination with the physical admissibility criterion further-
more suggests that these two criteria can identify up to 60%
of the significant silent data corruptions within STPs for the
Euler and Einstein equations [9]. However, it remains to be
validated experimentally to which degree these insights carry
over to our lazy dubiosity checks, apply to our application
domain, and how a selection of dubiosity tolerances affects
both the runtime and the error detection rates.

While the space-time predicator tasks τ are responsible for
the bulk of the compute cost, they are not the only tasks
within our system. Other, cheap tasks feed into the space-
time predictor tasks or follow them, i.e. pass their result into
predictor tasks of the subsequent time step. If errors affect
these cheaper tasks that are not subject to our team checks,
they will pollute follow-up space-time predictors to which our
error detection and correction approach is applied again.

B. Asynchronous checking of task outcomes

The performance of our approach relies on a highly asyn-
chronous implementation where teams are not running in lock
step mode. They are not tightly synchronised. Therefore, a
team is never allowed to block for receiving a redundantly
computed result. Our implementation regularly checks for
incoming task outcomes and receives them whenever available.
Such a mechanism handles “unexpected” messages carrying
task outcomes from tasks that have been executed earlier on
the replicated rank than on the local rank. Polling the MPI
subsystem prevents overflow of the MPI buffers in use and
that MPI has to switch to a rendezvous protocol.

Once a task has been computed locally on a team A and its
outcome is considered as dubious, there is no guarantee that
team B delivers a matching outcome in a timely fashion (right
branch of first check in Figure 1). Latency or contention delay
any message delivery further. Busy waiting for the “control
computation” therefore is not an option.

Whenever we wait for a replicated task’s outcome, we
want to switch to further computations while we wait. To be
independent from modern MPI+X callback mechanisms [23]
that support tasks with “interrupts” or listeners for incoming
MPI messages, we introduce an additional task type which
checks and corrects a computed dubious task result. This
task is spawned for each dubious STP task that cannot be
checked immediately. It is created with low-priority and re-
schedules itself until a redundantly computed result has been
inserted into the local cache. Then, the consistency checks are
performed and, if necessary, the task outcome is corrected.
The tasks that reschedule themselves logically realise a polling
mechanism, but the actual polling is spread out over further
calculations as further tasks slot in.



C. Error model

Our experiments rely on a manual error injection to facilitate
controlled studies. The underlying error model assumes that
silent data corruption happens exclusively within the STP. It
takes the STP’s outcome Q̂, and introduces errors by adding
δQ to this outcome. We assume that no other errors arise, and
that the silent data corruption exclusively affects the outcome
of floating point calculations. This is reasonable, as data
corruptions on integer data typically lead to wrong memory
accesses or wrong execution logic, such that they materialise
almost immediately in a hard error.

As our Q in (1) is represented by polynomials in a La-
grangian formalism over the cells, and as our error injection
picks a sample point ξn and adds a value, a silent error
alters the per-cell representation of a task outcome. In our
task formalism, we obtain altered Lagrangian weights ỹi =
yi + e = τ(θi) + e, which translates to a flawed space-time
prediction Q̂(x, t)+δQ(x, t). An injected error thus alters the
representation of the (predicted) solution in the entire cell, but
does not immediately propagate globally.

Less than 20% of random bitflips within a given float-
ing point number actually introduce non-negligible errors in
Q(x, t) for our application [9]. We therefore refrain from
injecting an error into the task calculation or into θi. Instead,
we fix a value |e| and artificially add this value to one sample
point ξn of one of the STP outcomes in one time step. This
yields a guaranteed permutation δQ. We pick the error location
randomly, i.e. a randomly chosen cell and a randomly chosen
coefficient in its STP is affected. We also pick the affected
time step randomly. There is only one single “bitflip” which
manifests in a significant error, i.e. falls into the 20% category,
and this “bitflip” is non-persistent, i.e. occurs only once.

V. EXPERIMENTAL RESULTS

We run all our tests on the SuperMUC-NG1 supercom-
puter hosted by the Leibniz-Rechenzentrum in Garching. Each
SuperMUC-NG compute node features two Intel Xeon Plat-
inum 8174 CPUs (“Skylake” architecture) with 96 GBytes
of main memory and 24 cores per CPU. Nodes are inter-
connected in a fat tree topology with Intel Omnipath. We com-
pile and run ExaHyPE and teaMPI with the 2019 generation
of the Intel compiler, Intel TBB and Intel MPI.

A. Sensitivity analysis

We first analyse sensitivity and correctnesss of the error
criteria. We systematically prescribe different sizes of errors
e (in contrast to Section IV-C discriminating between positive
and negative errors), and then conduct 100 test runs for each
fixed error size, randomly inserting that error once during the
run. We track whether the injected error was detected and
successfully corrected during the run, and thus compute the
sensitivity rate, i.e. the total number of corrected runs divided
by the total number of runs. In the case of a successfully cor-
rected error, the solution remains unaffected by any corruption.

1https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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Fig. 3. Top: Error sensitivity for fPA + fNaN. Bottom: Error sensitivity for
the time step sizes criterion f∆t.

Injected but undetected errors or errors where the algorithm
picks the wrong team as valid propagate and pollute the long-
term wave field. We run all following parameter studies on a
single node with two teams and with a single MPI rank per
team. We report results only for numerical order 7 for brevity,
although we obtained comparable results at other orders, too.

For the physical admissibility checks combined with the
NaN search, the error size determines the sensitivity (Fig-
ure 3). The larger an error the more reliably it is detected and
corrected. The NaN criterion is particularly robust, i.e. finds
all NaN in the output (not shown), while the combined
sensitivity is biased towards negative error contributions.

As our admissibility criterion searches for negative pres-
sures or negative density values, its sensitivity is higher for
negative error contributions compared to positive values. If
the random error introduces a negative density in one sample
point, it is clear that we have an error. However, also positive
changes of any unknown can violate the admissibility: If
the density is increased relative to the energy, the pressure
reconstruction yields a negative pressure. The derived quantity
harms the physical admissibility.

With the criterion f∆t, our algorithm similarly reacts mostly
to larger error magnitudes with sensitivity values of up to 50%
(Figure 3). The sensitivity rate does not strongly correlate
to the tolerance tol∆t and yields solely qualitative metrics,
i.e. dubious vs. reasonable. Most smaller solution changes do
not alter the time step size even if we compare the time step
sizes bit-wisely, i.e. pick tol∆t = 0. This property results from
the fact that we use the maximum eigenvalue of the result to
determine the admissible time step size. It is only a change
that feeds into the maximum eigenvalue that also triggers the
error criterion. While fPAD + fNaN seems to yield stronger
qualitative sensitivity statements for large errors, f∆t is more
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Fig. 4. Error sensitivity for the derivatives criterion fDer.

TABLE I
AVERAGE ERROR SENSITIVITIES FOR DIFFERENT CONFIGURATIONS OF

ERROR CRITERIA (ROUNDED TO TWO DECIMALS).

tol∆t tolDer fPA + fNaN f∆t fDer all crite-
ria (rig.)

all crite-
ria (lazy)

0 0 0.17 0.16 1.00 1.00 1.00
0 100 0.17 0.16 0.86 1.00 0.83
0 10000 0.17 0.16 0.66 1.00 0.66
0.02 0 0.17 0.16 1.00 1.00 0.51
0.02 100 0.17 0.16 0.86 0.87 0.46
0.02 10000 0.17 0.16 0.66 0.77 0.37

sensitive for error in the order of |e| ≈ 102.
The derivatives criterion is the most sensitive one (Figure 4):

we can spot and correct errors with high sensitivity of > 0.8
in most cases. Sensitivity increases with lower tolerance tolDer
and—like the other criteria—with larger error magnitudes.

B. Combined dubiosity checks

We next investigate the combination of multiple criteria and
compare averaged sensitivities for experiments using only one
of the error criterion functions f ∈ {fPA+fNaN, f∆t, fder} with
experiments using either the rigorous or the lazy combination
of all presented error criteria (Table I). In all cases but one,
the sensitivity for the rigorous combination of all criteria is
higher than the individual ones. The lazy combination yields
a reduced sensitivity.

The lazy scheme skips some fDer evaluations which mark a
task outcome as dubious in the rigorous counterpart. It misses
out on some dubious results. Yet, a combination of different
criteria allows an additional calibration of the overall code’s
sensitivity beyond the tuning of tolerances, and thus yields
more sensitive algorithmics for both the rigorous and lazy
evaluation. While a maximum sensitivity of 1.0 can be ob-
tained with the tolerances tol∆t = 0 and tolDer = 0, a rigorous
combination of the error criteria comes at a performance price.

C. Performance

Both the choice of the error criterion functions as well as
the respective thresholds are influential parameters as they
determine how many task outcomes need to be validated,
i.e. how many (additional) indicator evaluations we have to
run (Figure 5). An optimal sensitivity of 1.0 (all error are
recognised and fixed) can be obtained for many configurations
where we evaluate fDer always. However, the throughput is
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Fig. 5. Performance/sensitivity tradeoff of different configurations in a two
rank setup (single injected error per run). The rigorous configurations with
tolder = 0 (red) are overlapped by others in the upper left corner.

about a factor of three worse than the throughput of a code
without any sensitivity check. This throughput statements
refers to a single team run, i.e. we neglect savings due to the
sharing of outcomes in a replicated world. On the other hand,
the setup with the highest performance only exhibits an aver-
age sensitivity of ≈ 0.2. We observe a trade-off between per-
formance and sensitivity. Configurations with lazy evaluation
typically come at a penalty on sensitivity compared to their
rigorous counterparts, but they achieve higher performance.
Configurations with tolDer = 100 (e.g., with lazy evaluation
and tol∆t = 0) give the best performance-accuracy trade-off:
they achieve a sensitivity of around 0.8 while coming at a
performance that is faster than fully redundant computation.

D. Upscaling

We scale our benchmark on up to 35, 088 cores on
SuperMUC-NG (Figure 6), where we compare the perfor-
mance of different configurations. Each configuration runs
two teams (each on up to 17, 544 cores). In the two base-
line configurations, no errors are injected and our correction
approach is disabled. Tasks are either computed redundantly
(dashed black) or the two teams skip redundant computations
using task outcome sharing [13] (dashed brown). Besides,
there are three different variants with error injection and
correction: (1) a rigorous variant with high sensitivity and high
redundancy (red), (2) a lazy variant with lower sensitivity but
less redundancy (green) and (3) a lazy variant which — in line
with the results in Figure 5 — we may assume to have a good
performance-accuracy trade-off (blue). In all runs, we measure
the performance for 100 time steps. We inject (and correct)
10 errors in each run with error correction. The error values
and spatial positions are hardcoded to obtain a controlled and
deterministic setup. All experiments fix a number of MPI ranks
for which our code results in a balanced domain decomposition
of either a uniform grid with 253 cells (left half in Figure 6)
or with 793 cells (right half in Figure 6). We then scale up
the number of cores available to each rank.
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Fig. 6. Strong scaling of our benchmark on up to 35, 088 cores. A grid of
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The rigorous variant, as well as the blue lazy variant,
have a lower performance than the baseline with redundant
computation. In both cases, error checking adds overhead for
computing the error criteria, for transmitting outcomes and
for waiting for their validation. Compared to the red rigorous
variant, only a selected subset of all cells is checked in the
blue lazy one, which explains why the blue variant performs
better for the small grid. Yet, the non-uniform behavior of not
validating all cells in the blue variant also creates load imbal-
ances between ranks — a bottleneck, especially at high rank
counts. The lazy green variant performs best, running at the
full speed of the baseline that saves redundant computations,
as error checking is applied to only few highly dubious cells.
No error correction overhead is visible for this variant. All
variants scale up similarly well, albeit small strong scaling
effects at high core counts.

VI. CLASSIFICATION AND DISCUSSION

We next classify the properties of our approach, putting it
into the context of related work where applicable.

a) Local vs. global analysis: Soft errors manifest in data
corruption and can be found by running a full simulation at
least twice and comparing both results [24]–[26]. While both
runs may be executed in parallel, the comparison requires an
offline or post-mortem analysis phase, once both redundant
solutions are available. Differing solutions either imply silent
corruption or an error in the application itself.

Such a global analysis challenges the supercomputer, as it
introduces an explicit synchronisation between the two redun-
dant runs, and as the subsequent comparison phase is very
communication or I/O-heavy. Such bursts stress critical com-
ponents of the machine. Instead, we adopt a local approach
where task outcomes are compared while the computation is
running. We thus avoid explicit synchronisation, and we spread
out all comparisons over the whole simulation time.

b) Check granularity: Whenever we compare two redun-
dantly computed solutions, equality is to be interpreted in a nu-
merical sense. In a multi-threaded setting, the different orders
of adding up individual partial numerical results may result
in two byte-wise disagreeing solutions. A similar argument
holds for complex cache access patterns where data is put
from registers into memory and back.

The checks of redundantly computed results can happen
at varying granularities: in principle, each individual floating
point operation may be checked, i.e. we might compare data
bit-wisely subject to floating point precision. In practice, this is
often not feasible. On the other hand, we might operate with
global checksums or hashes which map the whole solution
onto one or few characteristic values and compare these. Our
approach realises a bit-wise comparison in the tradition of
the former approach. Yet, these checks are not automatically
performed for all data all the time and we hence meet our
non-functional requirement that the resiliency routines may
not inacceptably increase the compute cost.

c) Redundancy level, check coverage and sensitivity:
Redundant computations are the method of choice to spot
errors and realise resiliency [12], [27]. While our approach
technically offers full redundancy, i.e. two applications are
in principle capable to run fully in parallel, the error criteria
checks reduce the logical redundancy level: Sharing task
outcomes implies that we logically work with a partially
redundant setup where some data are assumed to be correct
and are not cross-checked. There is no full coverage or
validation of the outcomes.

We can only be weakly confident that we spot silent data cor-
ruptions. Strong errors resulting in NaNs or non-termination
are always spotted by our algorithm. In return, our runtime
data suggest that the sharing of confident outcomes allows
us to reduce the overhead cost of the redundant calculation
significantly. Resiliency is not for free, but it does not increase
the compute cost by multiples of the baseline cost. As we
cache redundant computations only temporarily, the permanent
memory footprint also is not increased by multitudes.

Any error correction scheme must try to identify and
correct potential soft errors as soon as possible to avoid error
propagation. Ideally, an error is detected and corrected imme-
diately, i.e., before it actually has the opportunity to affect any
other numerical computations (immediate correction). As we
abandon the idea of global bit-wise comparisons, we deploy
the responsibility to identify errors immediately to the user
code providing the error criterion functions.

d) Recovery strategies: Off-the-shelf solutions to recover
from data corruption require simulations to run at least three
times such that the code can rely on a majority vote to identify
which results are valid. If one run is determined to be invalid,
the whole simulation state is swapped, i.e. we continue after
replicating a valid state. This is a global recovery strategy.

As we rely on cell-local error metrics, our approach realises
a local recovery strategy where individual task outcomes are
replaced if we spot an error. Furthermore, we rely solely
on a redundancy level of two. Our error criteria replace the



majority vote. This allows us to operate without an expensive
synchronisation after a time step that brings a corrupted sim-
ulation back on track. We also do not have to store complete
checkpoints or hold them in memory.

VII. CONCLUSION AND OUTLOOK

We propose a task-based algorithmic framework which
can recognise and correct soft errors. A clever combination
of dubiosity metrics with task outcome sharing gives us an
algorithm which exhibits almost the full robustness w.r.t. er-
rors of a fully replicated run without the runtime penalty.
Checkpointing is completely eliminated although we have to
keep task outcomes in memory longer than the non-resilient
baseline code and thus have a slightly increased memory
footprint. While we have studied the impact for our ExaHyPE
code and all of our work is open source,2, 3 the paradigms and
ideas are of relevance for a large set of explicit time stepping
codes and, to the best of our knowledge, the only known
alternative to standard checkpoint-restart or full replication.

Natural follow-up work will combine the present ideas with
algorithmic error correction techniques such as auto-correcting
codes or limiter techniques. There are two further directions of
future work worth exploring: On the one hand, a key ingredient
of an efficient resilient realisation is the fast evaluation of
the error criteria. The evaluation does not necessarily have
to be done on a compute node. With smart network devices,
task movement orchestration, labelling and merging may be
offloaded into an intelligent network.

On the other hand, the choice of proper tolerances is worth
investigating. In our experiments, we chose fixed particular
tolerance combinations and highlighted how they affect the
runtime and sensitivity. At the same time, our experiments
“permitted” errors to happen only in one step of the overall
computation. This fact plus the potential task divergence for
dubious task outcomes imply that soft errors still can sneak
into a computation and pollute the long-term behaviour. How-
ever, our data suggests that harsh sensitivity thresholds can find
errors in any task—a propagated error can formally be seen
as a newly added error in a cell—and recover from them. It is
thus reasonable to experiment with dynamic thresholds which
are typically rather relaxed. If a system suspects that errors
start to creep in, it is reasonable to increase the sensitivity and
thus to recover also from long-term errors.
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