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Abstract—Medical visual question answering (Med-VQA) is to
answer medical questions based on clinical images provided. This
field is still in its infancy due to the complexity of the trio formed
of questions, multimodal features and expert knowledge. In this
paper, we tackle, a ’myth’ in the Natural Language Processing
area - that unimodal bias is always considered undesirable in
learning models. Additionally, we study the effect of integrating
a novel dynamic attention mechanism into such models, inspired
by a recent graph deep learning study.

Unlike traditional attention, dynamic attention scores are
conditioned on different query words in a question and thus
enhance the representation learning ability of texts. We propose
that some questions are answered more accurately with a
reinforcement of question embedding after fusing multimodal
features. Extensive experiments have been implemented on the
VQA-RAD datasets and demonstrate that our proposed model,
reinforCe unimOdal dynamiC Attention (COCA), outperforms
the state-of-the-art methods overall and performs competitively
at open-ended question answering.

Index Terms—Healthcare data, medical application, multime-
dia, visual question answering, feature representation learning

I. INTRODUCTION

Medical Visual Question Answering (Med-VQA) is a
domain-specific multimodal challenging task widely studied
by research communities in computer vision and natural lan-
guage processing. Med-VQA aims to answer clinical questions
in text form, based on medical image and language informa-
tion, as a sub-domain of the question answering task in natural
language processing (NLP) [1]. Therefore, it is a multimodal
learning task related to both computer vision (CV) and NLP
[2], including a variety of sub-tasks, as shown in Fig 1 [3].

In practice, doctors are required to have a profound under-
standing of the problems indicated by medical images and
perform explicit reasoning to confirm a diagnosis [4], the

Fig. 1. Learning tasks involved in VQA, cited from [3]

process of which may be lengthy and costly. Instead, the
medical visual question answering task can better assist the
doctor in the diagnosis and alleviate the imbalanced medical
resource status [5], by significantly reducing misdiagnosis and
improving accuracy [4].

This paper aims to enhance the learning ability of models
in Med-VQA for the social good. The input for the Med-VQA
models is a pair of questions and images, and the output is the
answer to the question based on the image, shown in Figure
2. The dataset we use is VQA-RAD, proposed by [6], which
contains 11 topics of questions. There may be more than one
question-answer pair for one image. Questions can be divided
into open-ended - (free-form text) and close-ended answers
(limited answers, mostly ”yes” or ”no”).

Compared with general VQA tasks, Med-VQA requires
higher accurate prediction, due to the safety concern. I.e., it is
necessary to enhance the systems’ recognition and reasoning



Fig. 2. Example of Med-VQA Data

skills, to support correct clinical diagnosis [1]. The prime focus
is to improve the representation learning ability of models for
Med-VQA tasks. Our contributions are summarised as follows:

• We propose a novel pipeline to reinforce the text bias
after fusing multimodal features, combined with dynamic
attention, named the reinforCe unimOdal dynamiC Atten-
tion model (COCA), which can be applied universally for
visual question answering tasks.

• To the best of our knowledge, we are the first to question
an overall accepted ’myth’ that unimodal biases in medi-
cal VQA should be avoided [7] and, moreover, prove that
adding unimodal bias after feature fusion under certain
conditions can improve the prediction accuracy under
specific circumstances.

• Experimental results on a real-world dataset show the
superior performance of the proposed COCA model com-
pared with the state-of-the-art.

II. RELATED WORK

Medical Visual Question Answering Medical VQA sys-
tems are developed based on deep learning, to automatically
extract the information from medical images and assist in
clinical diagnosis [8]. Current medical VQA mainly consists
of a visual representation learning module, language modelling
for question module, and a multimodal feature fusion module.
Attention mechanisms, including Bilinear Attention Networks
(BAN) [9] and Stacked Attention Networks (SAN) [10] are
also deployed, to enhance the relation caption of visual and
textual information. Recent advances include reasoning [1],
to consider closed - and open-ended questions, multi-view
attention [4], to correlate questions with images and texts

with more attention, and Multiple Meta-model Quantifying
(MMQ) [11], to enhance meta-data, by auto-annotation with
noisy labels.

Unimodal Biases of VQA. According to [12], the data
collection process may lead to inherent biases in real-world
datasets, and models will learn the biases during training [13].
In general-domain VQA, unimodal bias refers to a model
answering questions without considering another modality,
like images or videos. Unimodal bias will undermine VQA
model performance when there is a dataset shift, and thus
reducing unimodal biases becomes a goal of state-of-the-art
learning strategies [14]. However, there are cases when reduc-
ing unimodal bias will not benefit model performance for other
textually biased VQA datasets [15]. Due to the small scale of
VQA datasets in the medical domain [7], this is less covered
and some questions indeed do not need to view the related
image before answering. In such cases, reinforcing unimodal
biases can improve prediction performance, particularly after
fusing multimodal features, which we study in this paper.

Attention Mechanism. The attention mechanism plays an
indispensable role in the existing VQA tasks for feature ex-
traction and multimodal fusion [1], [16], [17]. It assists models
in understanding the relations between questions and images
deeply and is necessary when the questions are complex or
difficult to answer. The use of attention can significantly
improve the performance of models on VQA tasks [4]. [1]
proposed a question-conditioned reasoning model, which se-
lectively fused the multimodal features, according to their
importance, and learned more semantic information from the
question representations. [4] then designed the multi-view
attention model, including image-to-question and word-to-text
attention, to correlate questions with images. In this paper,
we apply a different expressive attention method, known as
dynamic graph attention, introduced by [18], which we show
to outperform the state-of-the-art.

III. METHODOLOGY

In this section, we introduce our model, inspired by [1],
with dynamic attention mechanism and unimodal biases en-
hancement, as well as the basic blocks of models for VQA
tasks, shown in Fig 3.

A. Basic Blocks

A traditional VQA model consists of three sections: a) im-
age features caption module, b) text features caption module,
and c) multimodal feature fusion and classification module.
The structure is as follows:

Image Feature Extraction. Due to the small size of the
medical VQA dataset, in our model, the image features are
learnt the same way as in [19], which initialised the pre-trained
weights using Model-Agnostic Meta-Learning (MAML) and
a Collaborative Denoising Auto-Encoder (CDAE). MAML is
trained to solve new learning tasks with a small number of
samples [20]. It is suitable for the medical VQA task, which
has limited available training data [21]. CDAE can be applied



Fig. 3. Framework of the proposed COCA Method including feature extraction, fusion and unimodal bias reinforcing module

to large unlabeled datasets, to improve the robustness of the
model [4]. It can be formulated as follows:

si = fθ(v) = σ(Wv + b) (1)

yi = fθ′(si) = σ(W ′si + b′) (2)

where the image features are represented as vector v with
128 dimensions, and the auto-encoder is deployed, by finding
the latent representation s of image i first to denoise the inputs
in equation 1. From the latent representation si, it reconstructs
the original input, as in equation 2 [22]. Images will be passed
to the MAML and CDAE models separately, and the learned
features will be concatenated for further processing, as per
Figure 4. The rest of the model parameters are similar to [1].

Fig. 4. Image processing

Text Feature Extraction. Each question q consists of
n words, and the maximum length of a question is 12.
Every word in a question is represented by 300 dimensions
embedding Wemb, initialised from Glove [23]. Next, the word
embedding Wemb is passed to the Long Short Term Memory
(LSTM) model [24] in equation 4 [25], to obtain semantic
information Qemb.

Wemb = Wordembedding(q) (3)

it = σ(Wii · xt + bii +Whiht−1 + bhi),

ft = σ(Wif · xt + bif +Whfht− 1 + bhf ),

gt = tanh(Wig · xt + big +Whght− 1 + bhg),

ot = σ(Wio · xt + bio +Whoht− 1 + bho),

ct = ft · ct−1 + it · gt,
ht = ot · tanh(ct).

(4)

where x is the word embedding obtained from equation 3
and ht is the hidden state of word at time t . The dimension
of each hidden state is 1024, similar to [1]. it, ft, gt and ot
are gates for input, forget, cell and output. ct is the updated
cell state.

Qemb = LSTM(Wemb) (5)

This Qemb is then separated into closed and open-ended ques-
tion embeddings Qembcl and Qembop, respectively. Highlight-
ing the critical words in questions, [1] proposed an attention
mechanism: concatenate Wemb and Qemb (for simplification,
we omit the close cl and open op notations here) to obtain a
comprehensive representation of the text Temb and then use
its dot product for further attention calculation:

Tnew = tanh(W1Temb)⊙ σ(W2Temb) (6)

a = softmax(WaTnew), Qnew = aQemb (7)

where W1,W2, Wa are weights to be trained, ⊙ is a Hadamard
product, σ denotes the sigmoid activation, and Qnew is the
new question embedding, which considers the importance of
different words, and will be fed into the question type attention
layer.



Multimodal Feature Fusion and Classification. The
open - and close-ended question features will be updated
considering each type of question attention. The final features
of open - and close-ended questions will be fed into a linear
prediction layer for classification:

C =

{
MLP (F (vop, Qop

new) · a
op
type) for open question

MLP (F (vcl, Qcl
new) · acltype) for closed question

where F is a multimodal feature fusion function. The new
fused embedding will then multiply a question type attention
atype. Then, an MLP is applied for the final classification C.

B. Dynamic Attention

Based on the basic blocks for multimodal learning, we have
the following improvement. The improved attention mecha-
nism is mainly inspired by [18], who proposed that dynamic
attention rather than static attention in graph attention network
(GAT) [26] should be deployed in graph representation learn-
ing. According to [27], a graph neural network with multi-
head attention can be considered a transformer. To be more
specific, we select one question out of the dataset: Is there a
rib fracture?; and analyse it from both graph and transformer
aspects, depicted in (a) and (b) in Figure 6. In Transformer, the
attention mechanism will measure the relative importance of
all other words to each word in a sentence [28]. From the graph
perspective, it indicates that each word/node is connected with
all other words/nodes, and the attention between any pair of
nodes will be calculated for every edge. In other words, graph
attention can be seen as a shared linear transformation for
all words [29]. Therefore, sentences can be considered fully-
connected word graphs and there is no need to build an extra
graph structure or adjacency matrix.

Fig. 5. Graph view of a sentence

Fig. 6. Transformer view of a sentence

In such a case, applying graph dynamic attention learning
to texts is reasonable. Each question sentence is viewed as a
graph containing different nodes/words. The attention αi,j of
node j to node i in graph representation learning is normally
obtained by calculating a score for every edge ei,j followed
by a softmax function:

e(hi, hj) = LeakyReLU(aT · [Whi||Whj ])

αij =
exp(eij)∑

j∈Ni
exp(eij′)

(8)

where || denotes concatenation, aT is a learnable vector.
LeakyReLU is an activation applied later and j ∈ Ni refers to
all neighbours of node i. According to [18], the above method
is typical Static Attention, as there is a highest scoring key
kjf , for every query qi, f(qi, kjf ) ≥ f(qi, kjelse). In which
case, a specific key will always be considered and the attention
value is always the same, regardless of the query, due to the
monotonicity of softmax and LeakyReLU.

The ideal attention should be Dynamic Attention that for
any query qi, f(qi, kjf ) > f((qi, kjelse)) and the formula is:

e(hi, hj) = aTLeakyReLU(W · [hi||hj ]) (9)

followed by the same softmax function in eq 8. The new
attention score will be different, conditioned on the query
node. Inspired by [18], we apply this dynamic attention to the
original question representation q to calculate the attention at
of closed and open-ended questions by adding a LekyReLu ac-
tivation, which is then applied to an MLP based on the existing
attention, obtained in eq. 7. Next, the attention multiplies with
the updated embeddings after the multimodal feature fusion
function. Note that we only change the computing order within
the attention mechanism and keep the same Glove and LSTM
model for text feature extraction, as addressed in subsection
III-A.

C. Reinforcing Unimodal Biases

Inspired by [14], we input question features directly into
the classifier layer, to obtain a unimodal prediction, which



Fig. 7. Multiple questions for one image

will be multiplied by the previous prediction to reinforce
the unimodal biases. The idea is that some questions can
be theoretically answered or assumed as logic-based, e.g.,
How would you measure the length of the kidneys? What is
located immediately inferior to the right hemidiaphragm? The
answers to the above questions are coronal plane and the liver,
respectively, which do not require screening first. Additionally,
as there are multiple questions for one image, as shown in 7,
if we reinforce the unimodal bias (text), the model may better
understand the question for the same image.

Therefore, we add the function for close-ended questions:

P cl
only = MLP (Qcl

new) (10)

P cl
final = P cl

prior ∗ σ(P cl
only) (11)

this P cl
only denotes the question-only prediction based on

unimodal question embeddings. P cl
prior is the previous predic-

tion obtained by the classifier layer using fused multimodal
features. It will be updated by multiplying with the question-
only prediction P cl

only after a sigmoid function to obtain the
final prediction P cl

final. Then the final prediction Pfinal is
passed to the cross-entropy loss function:

Loss = BCE(P cl
final, Y

cl) +BCE(P op, Y op) (12)

where BCE is the binary cross-entropy loss function and Y
is the ground truth.

It should be noted that reinforcing bias does not mean
we only consider single modular data. In our model, we
reinforce the unimodal bias after the multimodal feature fusion
step, shown in Figure 3, which means we have considered
both images and questions earlier. Such reinforcement enables
COCA to better understand the difference between the current
question and other questions. Therefore, reinforcing unimodal
bias would not hurt performance and can be applied to other

TABLE I
MEDICAL-VQA RAD DATA SUMMARY [6]

Training Set Test Set

Close-ended Open-ended Close-ended Open-ended

Modality 77 77 17 16

Plane 47 47 12 14

Organ 15 34 2 8

Abnormal 191 126 38 18

Presence 965 267 122 45

Position 67 439 8 52

Attribute 79 70 14 4

Color 67 17 3 0

Count 17 22 4 2

Size 244 25 41 5

Other 52 119 11 15

Total 1821 1243 272 179

datasets - where most examples require fusing between multi-
ple modal features. The effectiveness of reinforcing unimodal
bias is illustrated in the Ablation study.

IV. EXPERIMENTS

A. Dataset

We use the same benchmark dataset, VQA-RAD, as in [1]. It
has been divided into training (3,064) and test (451) sets, with
3,515 question-answer pairs and 315 radiology images. There
are eleven question topics, such as modality, plane, position,
and colour, as shown in Table I. Questions can be divided
into two types: open-ended and close-ended. The answers of
the former are free-form [6], and the answers of the latter are
mainly binary - in the form of ”yes” or ”no” and other limited
choices.

B. Baselines and Experiment Settings

Baselines. We consider seven widely adopted -, and the-
state-of-the-art methods, as baselines.

• Multimodal Compact Bilinear (MCB) pooling aims to
reduce cost in feature fusion by projecting the outer
product to lower the dimensional space [1], [30].

• Bilinear Attention Networks (BAN) deploy a low-rank
bilinear pooling mechanism to reduce the computational
cost in multimodal feature fusion [9].

• Stacked Attention Networks (SAN) focus on relevant
areas in images in a multi-step reasoning manner, based
on a stacked attention model [10].



• The mixture of Enhanced Visual Features (MEVF +
BAN) combines the MEVF framework with a separate
attention model to fuse multimodal features [19].

• Conditional Reasoning (CR) considers the influence of
type via an attention mechanism based on BAN and
MAML [1].

• Multi-view attention model (MuVAM) applies a dual
attention mechanism for image-to-question and word-
to-text and combines a composite loss to improve the
similarity between visual and textual cross-modal features
[4].

• Multiple Meta-model Quantifying (MMQ) proposes to
use meta-annotation, leverages meaningful features for
the Med-VQA task, and is the state-of-the-art [11].

Experimental Settings. We implement the proposed frame-
work with Pytorch 1.11.0 and CUDA 11.3 on a Linux system
(Ubuntu 20.04) with a GPU NVIDIA RTX 2080Ti. The hyper-
parameters of the base model are mainly borrowed from the
experiments of Conditional Reasoning [1]. The number of
hidden units is set as 1024, batch size 64, question length
12, learning rate 0.005 and the Adam optimiser is deployed.
A MAML with CDAE module [22] is implemented and pre-
trained as in [19], to capture the image features, and the size
is 128. For question features, a 1024 dimension hidden states
LSTM model with Glove [23] is applied to initialise word
embeddings.

C. Experimental Results

Accuracy is calculated as the proportion of the total amount
of questions that the model classifies correctly:

Acc =
Pcorrect

Ptotal
(13)

TABLE III
THE AVERAGE PREDICTION ACCURACY OF MODELS IN VQA-RAD

DATASET

Methods Open-ended Close-ended Overall

MCB 25.4 60.6 46.2

SAN 24.2 57.2 44.2

BAN 28.4 67.9 52.3

MEVF+BAN 49.2 77.2 66.1

MMQ 53.7 75.8 67.0

CR 60 79.3 71.6

MuVAM 63.3 81.1 72.2

Ours 61.7 81.9 73.3

Table III shows the classification performance of different
models on the VQA-RAD datasets. The proposed COCA
model outperforms most baselines, except for the open-
ended questions, compared with MuVAM. The possible reason
can be that we do not deploy extra attention for vision-to-
questions, yet, we still obtain a competitive result - improved
by 1.7% compared to the base model CR. This demonstrates
the effectiveness of the proposed COCA model on Med-VQA
tasks.

D. Ablation Study

We conduct an ablation study to demonstrate the effective-
ness of our COCA model. As shown in Table IV, reinforcing
the unimodal bias - the close question embedding (CQM)
improves the overall accuracy from 71.6% to 72.7%. For
dynamic attention (with DA), the closed-ended questions,
overall and open-ended questions’ accuracy improve by 1.9%,
1.6% and 1.1%, respectively. We also test our model with open
question embedding (OQM) reinforcement for open question
prediction P op

final, similar to equation 11:

P op
final = P op

prior ∗ σ(P
op
only) (14)

which significantly downgrades the performance. It demon-
strates that there are certain contexts to reinforce unimodal
biases in VQA tasks.

As in this VQA-RAD dataset, one image can link to
multiple questions, in which case some questions ask about the
abnormal object in an image, while others ask for the normal
area. The result validates the point that dynamic attention
enables the model to better understand the differences between
those questions, assisting in the classification.

TABLE IV
ABLATION STUDY OF OUR COCA MODEL

Methods Open-ended Close-ended Overall

CR 60.0 79.3 71.6

COCA without CQM 61.1 81.2 73.2

COCA without DA 60.6 80.8 72.7

COCA with OQM 51.1 79.3 68.1

COCA 61.7 81.9 73.3

E. Visualisation Study

The visualisation evaluation of our model, COCA, on the
VQA-RAD dataset in three organs: head, chest and abdomen,
is shown in Fig 8. P represents the predicted answer, A refers
to the ground truth, and ABD is short for the abdomen.
The green colour of prediction means the inferred answers
are correct, and red denotes the wrong prediction. Generally,
COCA can identify the keywords of the question and correctly



Fig. 8. Visualisation of the proposed model, COCA

identify the corresponding visual information. For instance,
COCA accurately answers the position-type question in the
first open-ended question related to the head, and understands
the keyword ”abnormality”. Note that in radio-graph images,
the actual location is opposite of what we observe [4]. Our
method can understand if the image is a typical description
of an organ, e.g. liver, in the first image of ABD. It gives
the correct answer, ”no”, which indicates it remembers what
a typical liver looks like.

However, our model cannot always give correct answers, as
the first example for the chest shows. The question requires
to be answered by more reasoning skills and the professional
experience of doctors, such as what phenomena can be counted
as evidence of an aortic aneurysm and how it can be shown on
the image. It is hard to answer the question without external
knowledge of aortic aneurysms, such as knowledge graphs.
Additionally, the proposed model requires more specific de-
scriptions in the questions to give correct answers. In the
third sample for the head, it could be clearer to ask if both
sides were affected, as affection includes various illnesses, and
the method cannot know all of them, making it impossible
to predict correctly. Therefore, we point out possible further

improvements in section VI.

V. CONCLUSION

This paper takes on, for the first time, to the best of
our knowledge, the accepted ’myth’ that unimodal biases in
medical VQA should be avoided - and proposes a novel
and effective pipeline for question-answering tasks, based on
condition reasoning methods. We demonstrate that dynamic
attention can enhance the text representation of the language
model, and adding unimodal question biases after fusing multi-
modal features improves the prediction accuracy for the closed
questions. Extensive experiments illustrate that the proposed
method, COCA, outperforms the state-of-the-art.

VI. FUTURE WORK

There are several promising future research directions to
explore:

• One is to design an indicator to measure the unimodal
portion of multimodal datasets and automatically apply
our methods to those with high unimodal portions.

• The representation learning ability for images can be
enhanced. For instance, a state-of-the-art model, Vision-
Transformer [31], can be deployed for image feature



extraction, to improve the current results. Additionally,
as there is a limited amount of training data available in
medical VQA, we can apply graph generative methods
[32], to enhance the generalisation ability of models.

• Graph representation learning methods can be introduced
to the question embeddings, such as heterogeneous graph
neural networks for different words [33], [34], [35].

• External knowledge, such as knowledge graphs, can be
considered [36], [37], so that the model can understand
questions and implement the inference, by connecting
questions to knowledge graphs.

• Our proposed COCA framework can be applied to other
visual question-answering tasks, such as image retrieval
[38], cultural heritage [39] advertising [40], surveillance
[41] and personal assistant [42], or other multimodal
learning, including human-computer interaction [43] and
communication [44], [45], to enhance the prediction
performance of models.
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