
Fast Deterministic Gathering with Detection on
Arbitrary Graphs: The Power of Many Robots

Anisur Rahaman Molla
Computer & Communication Sciences

Indian Statistical Institute
Kolkata, India

molla@isical.ac.in

Kaushik Mondal
Dept. of Mathematics

Indian Institute of Technology Ropar
Ropar, India

kaushik.mondal@iitrpr.ac.in

William K. Moses Jr.
Dept. of Computer Science

Durham University
Durham, UK

william.k.moses-jr@durham.ac.uk

Abstract—Over the years, much research involving mobile
computational entities has been performed. From modeling actual
microscopic (and smaller) robots, to modeling software processes
on a network, many important problems have been studied in this
context. Gathering is one such fundamental problem in this area.
The problem of gathering k robots, initially arbitrarily placed on
the nodes of an n-node graph, asks that these robots coordinate
and communicate in a local manner, as opposed to global, to
move around the graph, find each other, and settle down on a
single node as fast as possible. A more difficult problem to solve
is gathering with detection, where once the robots gather, they
must subsequently realize that gathering has occurred and then
terminate.

In this paper, we propose a deterministic approach to solve
gathering with detection for any arbitrary connected graph that is
faster than existing deterministic solutions for even just gathering
(without the requirement of detection) for arbitrary graphs. In
contrast to earlier work on gathering, it leverages the fact that
there are more robots present in the system to achieve gathering
with detection faster than those previous papers that focused on
just gathering. The state of the art solution for deterministic
gathering [Ta-Shma and Zwick, TALG, 2014] takes Õ(n5 log ℓ)
rounds, where ℓ is the smallest label among robots and Õ hides a
polylog factor. We design a deterministic algorithm for gathering
with detection with the following trade-offs depending on how
many robots are present: (i) when k ≥ ⌊n/2⌋+1, the algorithm
takes O(n3) rounds, (ii) when k ≥ ⌊n/3⌋+1, the algorithm takes
O(n4 logn) rounds, and (iii) otherwise, the algorithm takes Õ(n5)
rounds. The algorithm is not required to know k, but only n.

Index Terms—Gathering, Mobile agents, Mobile robots, Dis-
tributed algorithms, Arbitrary graphs

I. INTRODUCTION

A fundamental area of interest in distributed computing
relates to when computational entities are allowed to move
around in some fixed space and interact with each other.
Research of this type has broad implications ranging from
designing matter that can be programmed to respond to
external stimuli [1] to swarm robotics [2] to even modern

The work of W. K. Moses Jr. was supported in part by NSF grants CCF-
1540512, IIS-1633720, and CCF-1717075 and in part by BSF grant 2016419.
A. R. Molla was supported, in part, by DST INSPIRE Faculty Research Grant
DST/INSPIRE/04/2015/002801, Govt. of India and ISI DCSW/TAC Project,
file number E5412. The work of Kaushik Mondal was partially supported by
the FIST program of the Department of Science and Technology, Government
of India, Reference No. SR/FST/MS-I/2018/22(C).

Part of the work was done while William K. Moses Jr. was a post doctoral
fellow at the University of Houston in Houston, USA.

self-driving car technology [3]; when considering tasks over
a network, modeling processes via mobile robots can result
in benefits for a host of applications such as distributed
information retrieval, e-commerce, information dissemination,
and workflow applications and groupware [4]. When that space
is discretized, the popular framework of mobile robots on
graphs is used to study important problems in this area. This
framework is especially useful to study problems related to
real world robots that must move in structures with rooms
and corridors. It is also useful to study the behavior of
software agents that may travel in the internet from computer
to computer.

The problems that are actually studied in this setting usually
take on the form of either having the robots work together to
find something in the graph (e.g., exploration [5], [6], [7], [8],
[9], [10], treasure hunting [11]) or form a certain configuration
(e.g., gathering [12], [13], [14], [15], dispersion [16], [17],
[18], scattering [19], [20], [21], [22], pattern formation [23],
convergence [24]). In this paper, we look at the problem of
gathering with detection (a more difficult to solve variant of
gathering), where multiple robots, initially arbitrarily placed
on a graph, must find each other on the same node, become
aware that gathering is complete and subsequently terminate.1

While this is an abstract problem, solutions to it may be
adapted to the more concrete situation where you have multiple
humans or robots trying to find each other in a discretized
space such as in a maze with rooms and corridors between
them or in cities with roads and intersections. Furthermore,
gathering with detection can also be used as a subroutine
when solving problems like exploration, scattering, dispersion,
etc. as solving those problems when all robots are gathered is
easier than solving them when robots are arbitrarily placed in
the graph.

When trying to solve this problem, a fundamental difference
when designing solutions arises from whether the robots have
access to a source of randomness or not. While randomness
may allow for faster solutions, we want to focus on the
setting where robots do not have access to such a source
of additional power. In this setting, we present an algorithm

1In the past, gathering has also been referred to as the rendezvous problem
when there are just two robots; for consistency, we use the term gathering
throughout the paper.



to solve gathering that is faster than the current state of the
art with respect to time, assuming that all robots are initially
awake. A key insight used in our algorithm is that the number
of robots present in the graph may be considered an additional
power to the algorithm designer and may be leveraged. Some
example tasks where many robots might be used include
exploring an area [8], [25], [26], dispersing the robots over
a given area [16], [17], [27], searching for treasure, etc. After
the task is completed, we may want to gather the robots.

This is in contrast to previous work in the setting we
consider, where a solution to the problem of gathering when
just two robots are present is provided and it is assumed
that it can be generalized to multiple robots; this approach
is usually adopted because it has been shown that solutions
to gathering of two robots can be easily extended to handle
multiple robots [28]. We believe that providing an example
of such an approach to solving the problem will pave the
way for more such faster solutions. To highlight this, notice
that the problem of gathering was introduced more than 60
years ago [29] and the previous best known deterministic
solution [30], [31], which itself is more than 14 years old,
takes Õ(n5 log ℓ) time, where ℓ is the smallest label among all
robots. Our solution for the more difficult problem of gathering
with detection, when the number of robots is sufficiently large,
can take as little as O(n3) time.

A. Model

Consider an arbitrary connected undirected graph with n
nodes and m edges where the nodes are unlabeled. Each node
has port numbers corresponding to each of its edges. The ports
of a node have unique labels in [0, δ−1] where δ is the degree
of the node. Note that an edge between adjacent nodes may
have different port numbers assigned to it by the corresponding
nodes.

There are a total of k robots in the system.2 Each robot
has a unique identifier (ID), also called its label, assigned
to it from the range [1, nb], where b > 1 is a constant.
Note that robots need not have the same length bit string
for their IDs. Two robots co-located on the same node can
communicate with each other via messages to each other.
Typically, for the gathering problem, an assumption is made
that when robots meet, they can become aware of this fact
and this is considered sufficient. However, as noted in [32],
detection is intimately tied to how robots communicate with
one another. In [32], they considered that robots communicate
via the beeping model [33], which can be argued to be one
of the weakest communication models and in [34], they adopt
an even weaker notion that robots can only detect the number
of other robots co-located with it at a node. We opt for the
message passing framework where multiple robots, co-located
on the same node in the same round, can exchange messages
with each other in that round. This framework is also known
as the Face-to-Face model and has been used to study other

2In the literature, the computational entities have also been referred to as
“mobile agents”. We use “mobile robots” throughout for consistency.

problems related to mobile robots including exploration [35]
and dispersion [36], [27]. If a robot moves from one node to
an adjacent node, it is aware of both port numbers assigned
to the edge through which it passed. We assume that each
robot knows the value of n as well as its own unique ID. We
highlight the fact that robots do not know the values of k, b,
or any graph parameters other than n.

We consider a synchronous system that proceeds in rounds.
In each round, the robots perform the following sequence
of operations: (i) robots co-located at the same node may
communicate with each other via message passing; robots
perform local computation as required (ii) each robot, if it
decided to in step (i), performs a movement along an edge
to an adjacent node. In the framework of mobile robots on
a graph, the focus is on bounding the amount of movement
required by the robots as this is considered to be far more
expensive, time-wise, than local computation and communi-
cation. As such, a common assumption for problems studied
in this setting (e.g., exploration, dispersion) is that local
computation and communication is free and any amount of
communication and computation may be performed in step
(i) of a round. While this assumption is beneficial, to ensure
the practicality of our algorithms, we design them so that any
local computation performed is at most polynomial in n. We
make the assumption that all robots are initially awake and
start any prescribed algorithm at the same time.

We now formally state the problems of gathering and
gathering with detection.

Gathering: Initially, k robots are placed on the nodes of an
n-node graph. Design an algorithm to be run by each robot
such that eventually all k robots meet at one node.

Gathering With Detection: Initially, k robots are placed on
the nodes of an n-node graph. Design an algorithm to be run
by each robot such that eventually all k robots meet at one
node and subsequently terminate.

B. Our Contributions

Our main contribution is to showcase the first approach,
to the best of our knowledge, of leveraging many robots to
achieve fast deterministic gathering with detection of mobile
robots in graphs. To be clear, multiple robots can be used in
gathering for other purposes such as to break symmetry when
robots have no labels, but to the best of our knowledge they
have not been leveraged to achieve a faster running time. Also,
we are specifically talking about the problem of gathering
of mobile robots on a graph. The problem of exploration of
mobile robots on a graph has already seen this approach being
used, resulting in very fast algorithms [8].

In this paper, we propose a deterministic approach to solve
gathering with detection for any arbitrary graph that is faster
than existing deterministic solutions for even just gathering
(without the requirement of detection) for arbitrary graphs.
In contrast to earlier work on gathering, it leverages the
fact that there are more robots present in the system to
achieve gathering with detection faster than those previous

2



papers that focused on just gathering. The state of the art
solution for deterministic gathering on arbitrary graphs [31]
takes Õ(n5 log ℓ), where ℓ is the smallest label among robots
and Õ hides polylog factors of n. We design a deterministic
algorithm for gathering with detection with the following
trade-offs depending on how many robots are present: (i) when
k ≥ ⌊n/2⌋ + 1, the algorithm takes O(n3) rounds, (ii) when
k ≥ ⌊n/3⌋ + 1, the algorithm takes O(n4 log n) rounds, and
(iii) otherwise (for any k < ⌊n/3⌋ + 1), the algorithm takes
Õ(n5) rounds. Each robot only requires O(m log n) bits of
memory.3

It is clear to see that in the situation where a sufficient
number of robots are present, i.e., k ≥ ⌊n/3⌋+1, our algorithm
solves gathering with detection asymptotically faster than any
previous algorithm for even gathering. Furthermore, it should
be noted that the purpose of requiring many robots is to ensure
that there exist robots that are sufficiently close together in
the initial configuration. As such, regardless of the number of
robots available, if there exist two robots that are at a hop
distance of i apart, then the following holds. If i = 0, 1, 2,
then the algorithm achieves gathering with detection in O(n3)
rounds. If i = 3, 4, then the algorithm achieves gathering with
detection in O(n4 log n) rounds. For i ≥ 5, the algorithm
achieves gathering with detection in Õ(n5) rounds.

C. Technical Difficulties and High-Level Ideas

The hardest part of gathering is to ensure that the robots
have an effective exploration strategy of the graph that results
in robots eventually meeting. Normally, this is done by pro-
viding each robot with a sequence of moves to perform and
a schedule to perform them such that eventually the whole
graph is explored by each robot and there exists a sequence
of rounds such that for every pair of robots, one of them will
be stationary while the other one moves. The state of the art
exploration strategy has been to use a Universal Exploration
Sequence (UXS) and couple that with stationary rounds and
moving rounds corresponding to bits in the ID string of a
robot. While this approach works, the time it takes to use a
UXS to explore the graph is high.

One of the key ideas we leverage is that when more robots
are present on the graph, we can infer something about the
distance between the two closest robots in the starting config-
uration. More specifically, we show that when k ≥ ⌊n/c⌋+1,
there exist two robots which are at most 2c− 2 hop distance
from each other.

This insight is crucial, but not sufficient by itself to achieve
fast gathering. In fact, it is mentioned in Dessmark et al. [37]
that when two robots start simultaneously and the distance
between them is bounded by D, gathering can be achieved
in O(D∆D log ℓ) rounds, where ∆ is the maximum degree
of the graph. However, their result was for two robots, and
if we think about extending it to many robots, it appears that
D would reflect the maximum shortest hop distance between

3Note that we do not require robots to know the value of m, we just require
that they be provided sufficient memory.

any two robots in the initial configuration. Since robots are
thought to be placed by an adversary, this running time can
be quite large, even when there are plenty of robots on the
graph.4

Thus, we must find some way to cleverly leverage the fact
that there exist two robots close together. First of all, we have
these robots meet one another in a way similar to that of
Dessmark et al. [37], i.e., we have them perform a neighbor
search procedure to find one another. Once these two robots
meet, we then utilize them to gather the remaining robots.5 We
do this by first having these two robots construct a map of the
graph using a simple token-explorer style algorithm where one
robot acts as a movable token while the other robot grows its
knowledge of the graph in balls of increasing radius centered
at the node they first met at. Subsequently, these two robots
go around collecting the other robots.

However, we must account for situations where there might
be multiple such pairs of robots. We want to ensure that
eventually, all robots are gathered together. When some robots
move and some remain stationary, we must design a strategy
to ensure all robots are “captured” and gather together. To this
end, we have each pair of robots from the map construction
step do the following. One stays put (to capture other moving
robots) and the other robot moves around the whole graph in a
systematic way (to capture other stationary robots). The exact
nature of who captures who depends on the smallest label
among each pair of robots, which acts as a sort of ID for the
pair. If a robot from a lower ID pair comes into contact with
a robot from a higher ID pair, the higher ID robot is captured
by the lower ID robot, i.e., the higher ID robot stops whatever
it was doing and “follows” the lower ID robot henceforth. In
this manner, the pair with the lowest ID will capture all other
robots and subsequently gather them together.

Finally, a word must be said about the catch-all case, i.e.,
when there are not enough robots or when there do not exist
robots that are sufficiently close together to allow for faster
gathering with detection as described above. In this situation,
we default to using a Universal Exploration Sequence (UXS)
to help robots find one another, similar to the idea in Ta-
Shma and Zwick [31]. However, we introduce our own twist
to ensure that gathering with detection occurs. Since the value
of n, the number of nodes in the graph, is known to all
robots, they can deterministically compute the same UXS that
guarantees that they can explore the graph, say of length
T . Now, we have robots perform the following sequence of
actions in phases of 2T rounds. For each robot, it reads its
label from least significant bit to the most significant bit. If

4A possible adversarial placement is one that maximizes the running time,
for example by keeping the robots as far away from each other as possible.
For example, suppose all robots are in two groups, and these groups are D−1
distance from each other. If ∆ = Ω(n) and D = Ω(n), then the running
time of Dessmark et al.’s algorithm would be exponential. For randomized
placement, we may not get such bad configurations in every placement with
high probability.

5Note that it may be the case that two or more robots end up meeting.
This is functionally the same as just having two robots meet so we ignore
this situation when describing the high level idea; we explicitly handle this
situation in the algorithm description.

3



the bit is 0, then the robot waits at its current node for T
rounds and then explores the graph using the UXS for the
next T rounds. If the bit is 1, the robot does things in the
opposite order. If a robot comes across another robot with
a higher ID, it starts to follow that higher ID robot, i.e., it
implements choices according to the ID bits of the higher ID
robot. If a robot runs out of bits, then it stays at its node for
2T rounds. In this time, if no robot with a higher ID (or higher
ID than the robot it is following) shows up, the robot decides
that gathering has been achieved and subsequently terminates.

D. Related Work

Gathering is a very old problem, first studied more than
60 years ago in Schelling [29]. Subsequent research on the
problem has been divided broadly into whether the underlying
medium of movement is a continuous space (e.g., Euclidean
plane) or a discretized space (e.g., graphs). We focus on
graphs; Flocchini [38] is a good survey of work on gathering
in a plane. A further divide occurs when considering whether
the solutions require robots to have access to randomness or
not. In the current work, we focus on deterministic solutions
to gathering on a graph; Alpern [39] is a good survey of
randomized solutions (not just on a graph). Our focus in this
paper is on the specific scenario where the robots have unique
labels; Pelc [40] is a good survey with a section devoted to
when robots are anonymous.

For the currently considered setting of deterministic gath-
ering of labeled robots, there has been a bit of work on
arbitrary graphs [37], [28], [31]; there has also been work on
gathering with detection of two robots on arbitrary graphs [32]
and gathering with detection of several robots on arbitrary
graphs [34]. Dessmark et al. [37] studied gathering of two
robots in a variety of settings including on arbitrary graphs
with a startup delay of τ between the starting times of the two
robots. In such a setting, time is measured from the moment
the final robot wakes up. They presented the first deterministic
algorithm to solve gathering in an arbitrary connected graph
in time polynomial in τ , n, and ℓ, where ℓ is the smaller of
the two robots’ labels. Specifically, the running time of their
algorithm was O(n5

√
τ log ℓ log n + n10 log2 n log ℓ) rounds.

They also showed that when it is assumed that robots start
simultaneously, i.e., τ = 0, gathering can be accomplished in
O(D∆D log ℓ) rounds, where D is the initial distance between
the two robots and ∆ is the maximum degree of the graph.
Since robots are thought to be placed on the graph by an
adversary, and there exist graphs with diameter of the order
of Ω(n), this algorithm takes an exponential time in n on
some graphs. Kowalski and Malinowski [28] show how to
deterministically achieve gathering, even when there is a non-
zero startup delay between robots, in O(log3 ℓ+ n15 log12 n)
rounds. In addition, they show how any solution for gathering
of two robots can be adapted to solve gathering of an arbitrary
number of robots (> 2) in the same running time. The current
state of the art, Ta-Shma and Zwick [31] reduced the running
time of gathering, again even if there is a non-zero startup
delay, to Õ(n5 log ℓ) rounds, where the Õ notation hides

polylog factors of n. All these results were for gathering,
but gathering with detection of two robots in this setting was
studied by Elouasbi and Pelc [32]. They showed that when
robots are allowed to communicate via the beeping model,
gathering with detection can be solved deterministically in
Õ(n5 log ℓ) rounds. Bouchard et al. [34] considered the even
weaker model where robots may only detect the number of
other robots co-located with them on a node and determinis-
tically solved gathering with detection in time polynomial in
N and log ℓ, where N is an upper bound on n and is known
to all robots, and in time exponential in n when an upper
bound on n is not known to all robots. An important note is
that in the aforementioned papers except [34], the robots did
not know the value of n initially while in the current paper,
we make this assumption. However, in contrast to the papers
on gathering [37], [28], [31], we solve the harder problem
of gathering with detection. And in contrast to the paper on
gathering with detection in the beeping model [32], in the
current paper, the robots do not know the value of k initially
(it can be argued that since [32] studies gathering specifically
for two robots, this knowledge is implicit in their protocol
design). And in contrast to [34], our algorithm is faster when
there are more robots as theirs uses the algorithm from [31].

Regarding lower bounds for deterministic solutions to the
problem of gathering with detection, we are not aware of
any non-trivial lower bound. A trivial lower bound is Ω(n)
(consider two (groups of) robots at either end of a line, it
takes at least n/2 rounds for them to meet).

II. GATHERING ON ARBITRARY GRAPHS

In this section, we present our main algorithm for gathering
with detection. We first present a gathering algorithm using
universal exploration sequence (UXS) in Section II-A, which
works for any number of robots and detects the gathering.
However, the UXS based algorithm takes long time, Õ(n5)
rounds. We use this algorithm as a subroutine later in the
main algorithm.

Then we present a faster gathering algorithm with detection.
For the faster algorithm, we first show how to solve the
problem on a slightly limited set of input configurations of
robots on nodes, and then show how to extend this algorithm
to work for all input configurations. We interchangeably use
the terms ‘distribution’ and ‘configuration’ of the robots.

A. Gathering with Detection using Universal Exploration Se-
quence (UXS)

In this section we show that gathering can be achieved with
detection (i.e, robots can detect that gathering is completed and
subsequently they can terminate) for any number of robots on
an arbitrary n-node graph, where robots have the knowledge
of n but do not know k. For this we use the following result
on universal exploration sequence (UXS), which implicitly
follows from [31].

A single robot with the knowledge of n in an arbitrary
anonymous graph can compute a bounded size UXS, and using
the UXS it can explore the graph in time Õ(n5). As the length

4



of the sequence is bounded, the robot terminates. Let T be
an upper bound of the exploration time, i.e., T = Õ(n5), for
some large constant, and let M be an upper bound on the
memory required to implement the UXS.

Using the above result and the ID bits of robots, we can
gather any number of robots with detection deterministically.
Robots may have different lengths of ID bit-string. Further,
robots only know n and no other parameters. The gathering
algorithm works as follows.

Initially, the robot(s) starting from same node form a group.
If there is only one robot at some node, it forms a singleton
group. Every robot in a group follows the largest ID robot
during graph exploration. Every robot that is not following any
robot (i.e., the largest ID robot in a group or a singleton robot),
reads their ID bits (one by one) from the least significant bit
to the most significant bit and does the following in parallel.

(i) If the bit is 1, the robot explores the graph using UXS
for T rounds, and then waits at the node where it finishes
the exploration for the next T rounds. Thus, it takes 2T
rounds. Recall that the other robots in the group (if any)
simply follow it. If two or more groups meet during any
of those 2T rounds, the respective groups merge. The
robots start following the largest ID robot of the merged
group thereafter.

(ii) If the bit is 0, the robot waits at the current node for the
first T rounds, and for the next T rounds, it explores the
graph using UXS. It takes 2T rounds. Similarly, if two
or more groups meet during any of these 2T rounds, the
respective groups merge. The robots start following the
largest ID robot of the merged group thereafter.

(iii) If the (largest ID) robot finishes scanning all its ID bits,
it waits for another 2T rounds. If it does not meet any
group during this time, it terminates. Else, the respective
groups merge and the robot starts following the largest
ID robot of the merged group thereafter.

The high level idea behind such type of exploration and
waiting for each bit is to make sure that robots can terminate.
Consider a robot that is waiting for 2T rounds. In this period
if no other robot meets this waiting robot, that means there is
no robot that is still working on its bits, else that robot must
meet this waiting robot irrespective of that robot working on
its 0 or 1 bit.

We show that the above procedure correctly gathers any
number of robots in O(T logL) rounds, where L is the largest
ID of the robots. In addition, the robots detect that the gather-
ing is completed and subsequently terminate. The correctness
of the algorithm follows from the following lemmas.

Lemma 1. In step (iii), a robot say, r, which is not following
any robot, is waiting for 2T rounds. The robot r meets a group
of exploring robots while waiting if and only if the length of
the ID of the largest ID robot, say r′, in that group is larger
than the length of the ID of r.

Proof. First we show the ‘only if’ part.

Let us assume that the length of ID of r′ is equal to the
length of ID of r. Then both r and r′ finish scanning their ID
bits at the same time and both of them must wait at the same
time. That is, while r is waiting, r′ also must be waiting.

Now let us assume that the length of ID of r′ is less than
the length of ID of r. As r′ is the largest ID robot in its group,
it must have finished scanning its ID before r does. So it is
not possible that r′ comes and meets r while r is waiting.

Let us now argue the ‘if’ part. Let r′ be the robot whose
ID length is more than the ID length of r and r is waiting for
2T rounds. That is, r′ still has some bits left (at least one)
to scan. Therefore, r′ must do an exploration of the graph,
irrespective of the fact that its corresponding bit is 0 or 1. So,
r′ meets r during its waiting time of 2T rounds.

Lemma 2. In step (iii), let r be a robot that is not following
any other robot. If r waits for 2T rounds and no robots meet
r at this time, the gathering is completed.

Proof. If no robot meets r during its wait, it follows from
Lemma 1 that there is no robot with larger ID present in the
graph which is still working on some of its bits. This implies
that all the other robots which are not following any robots,
either have same length ID as r, or have lesser length ID than
that of r.

First consider the case where a robot r′ which is not
following any robot and has same length ID as of r. This
implies that both r and r′ finished working on their bits at the
same time. Since ID of r and r′ must differ at some bit, they
must have gathered during the working on that particular bit.

Now consider the case where the robot r′ which is not
following any robot and have lesser ID length than that of r.
Since r′ is not following anybody, it must finished scanning
all its bits before r did. So when r′ waited for 2T rounds, it
must have met by r (see Lemma 1).

This completes the proof.

Lemma 3. In step (iii), let r be a robot that is not following
any other robot. If r terminates after 2T rounds, the termina-
tion is correct.

Proof. This is straightforward from Lemma 2, since r termi-
nates only after gathering is completed.

Lemma 4. Let r be a robot that is following some other robot.
The robot r always terminates correctly.

Proof. Lemma 3 says that each robot that is not following any
robots terminates correctly. Now r is following some robot,
say r′, which means that r′ is not following any other robot.
So r terminates only when r′ terminates. Since r′ terminates
correctly, r terminates correctly.

Lemma 5. The algorithm runs for O(T logL) rounds.

Proof. Let r be the largest ID robot whose ID length is
O(logL) as we assume L is the ID. According to our
algorithm, r must finish working on all of its bits. For each
bit, it takes 2T rounds. After finishing all the bits, r waits for

5



another 2T rounds and then terminates. This makes the time
complexity O(T logL) rounds.

Recall that T = Õ(n5). Thus, the time complexity of
this UXS based algorithm becomes Õ(n5) rounds, since we
assume the robots’ ID lies in the range [1, nb] for some
constant b. Lemmas 3–5 imply the following result.

Theorem 1. Consider a connected, undirected, anonymous
graph of n nodes and some robots (any number) are dis-
tributed over the nodes arbitrarily. Robots only know the value
of n. Then there is a deterministic algorithm that gathers all
the robots at some node with detection in Õ(n5) rounds, where
the IDs of the robots lie in the range [1, nb] for some constant
b. The algorithm requires that robots know only the value of
n. Each robot requires O(M + log n) bits of memory, where
M is the memory required to implement the UXS.

In the following two sections, we present a faster gathering
algorithm. We first consider a setting where the initial distribu-
tion of the robots is undispersed, defined to be a distribution of
the robots over the nodes where there is at least one node with
two or more robots. After describing how to solve the problem
of gathering in this setting in Section II-B, we then show in
Section II-C how to extend our results to not only handle
undispersed initial distributions of robots but also dispersed
distributions, defined to be the situation where each node
initially holds at most one robot. Notice that this distinction
is useful in situations where the number of robots k is at
most the number of nodes n, i.e. k ≤ n. When k > n,
it is easy to see that there will always exist one node with
more than one robot on it (also called as Pigeonhole principle)
and as such any initial setup where k > n is a undispersed
distribution. Since the union of undispersed and dispersed
initial configurations is the set of all input configurations,
the algorithm presented in Section II-C works for all input
configurations. We show that the algorithm from dispersed
distribution gathers the robots faster if either at least two
robots located at two nearby nodes (neighbors or a few hop
distance away) or there are ‘many’ robots. This validates the
intuitive fact that the dispersed configuration is the worst
configuration for the gathering problem.

B. Gathering with Detection from Undispersed Configuration

In the undispersed configuration, initially there is at least
one node with multiple robots. A robot can have one of the
following three states: (i) finder (ii) helper (iii) waiter. If
a robot is not alone in the initial configuration and its ID is
the minimum among the co-located robots, it sets its state as
finder. If a robot is not alone in the initial configuration and
its ID is not the minimum among the co-located robots, it sets
its state as helper. If a robot is alone in a node in the initial
configuration, it sets its state as waiter. Each robot maintains a
variable groupid. Initially the groupid of each finder robot is
its own ID whereas each helper robot stores the ID of the co-
located finder robot in its groupid. Each waiter robot puts -1
in its groupid. The algorithm runs in phases. The first phase is

devoted to map finding and the second phase is for gathering.
Each robot can detect when the gathering is complete. Let us
first provide a high level idea before explaining the algorithm.

As each finder robot has a company of helper robots,
the finder robot finds a map of the graph using an existing
algorithm in Phase 1. Then in Phase 2, each finder robot
explores the graph following the map it posses. The helper
and waiter robots remain at their initial location until some
finder robot arrives and pick them up. During the exploration,
the finder robots collect the helper and waiter robots.
Though, at this point, it seems the robots may end up in
multiple groups, later we describe how one particular finder
robot gathers all the other robots to its initial position after
just one run of graph exploration. Below we present the full
algorithm.

Algorithm UNDISPERSED-GATHERING:

Phase 1 (map finding): The robots with state finder and
helper take part in this phase. The waiter robots remain at
their position. Each robot with state finder works as an agent
and the remaining co-located robots (with state helper) work
as a movable token. Collaboratively they run the exploration
algorithm with movable token (for map finding) presented in
[41]. It is possible for each finder to compute an isomorphic
map of the underlying graph in O(n3) rounds. Since each
finder robot needs to store the map of the graph, the memory
requirement becomes O(m log n) where m is the number of
edges of the graph. After constructing the map, each finder
meets the helper robots which were working as its token
during this phase, and provides the value of n to the helper
robots. Note that, even if multiple finder-helper(s) combination
perform this algorithm in parallel, still each finder can keep
track of its helpers (and vice-versa), as the groupid of its
helpers must be equal to its own ID.

Let the number of rounds in Phase 1 be denoted as R1 =
O(n3). After Phase 1 completes, each finder robot knows
an isomorphic copy of the map of the graph. The finder and
helper robots wait until R1 rounds are over. Then, from round
R1 + 1, they execute Phase 2.

Phase 2 (gathering): All the robots take part in this phase.
Below we provide the tasks of the robots in a round with
different states.

• Algorithm for finder robots: each finder robot com-
putes a spanning tree from the graph (map) it posses and
does exploration along the edges of the spanning tree.
Let a finder robot f be at some node at the start of
some round. It communicates with the co-located robots
to know each other’s states as well as groupid.

– If there are only waiter robots present in that node,
the finder provides the value of n and moves to
another node to continue exploration according to
its spanning tree unless it is back to the node from
which it started its exploration.

– If there are other finder and/or helper robot(s)
present in that node, f provides moves to another

6



node to continue exploration according to its span-
ning tree unless it is back to the node from which
it started its exploration if its groupid is minimum
among the co-located robot’s groupid; else if there
is a finder robot with the minimum groupid, f
changes its state to helper, updates its groupid to
that finder robot’s groupid, and starts following
that robot; else if there is a helper robot with the
minimum groupid, f changes its state to helper,
updates its groupid to that helper robot’s groupid
and stays at this node.

– If there are only helper robots present in that node,
f moves to another node to continue exploration
according to its spanning tree unless it is back to the
node from which it started its exploration, if there
are no helper robots with lesser groupid than the
groupid of f ; else f changes its state to helper,
updates its groupid to the minimum groupid among
the helper robot’s groupid and stays there.

• Algorithm for helper robots: A helper robot stays at
the node if no finder robot arrives in that node in the
previous round. If one or more finder robots arrive,
if there is at least one finder robot whose groupid is
less than the helper robot’s groupid, the helper robot
changes its groupid to the groupid of the finder robot
whose groupid is minimum among all the co-located
finder robots and starts following it.

• Algorithm for waiter robots: A waiter robot stays at
the node if no finder robot arrives in the previous round.
Else, if one or more finder robots arrive, the waiter
starts following the minimum groupid finder robot. It
also changes its state to helper and update its groupid
to the groupid of the minimum groupid finder robot.

• Termination: Each robot keeps a counter of number of
rounds since the start of the algorithm. When the counter
equals R1 + 2n, each robot terminates.

Correctness:
Correctness of Phase 1 follows from [41]. Here we study the
correctness of Phase 2. Let f be that finder robot whose
groupid, say, l is the minimum among all the finder robots.
Let S be the set of helper robots with groupid equal to l
at the beginning of Phase 2. It is easy to observe that S is
non-empty, else f would not have been a finder robot. Let
v be the node where f and the helper robots of S belongs to
at the beginning of Phase 2. We claim the following.

Lemma 6. By the time the finder robot f with smallest
groupid completes its graph exploration and comes back to
the node v from where it started Phase 2, all other robots are
gathered at v.

Proof. In the very first round of Phase 2, f definitely finds its
groupid l to be the minimum among the co-located robot’s and
starts graph exploration. Note that the groupid of the robots of
S is also l but this does not restrict f to consider its groupid
to be the minimum among co-located robots. It is easy to see

that, according to our algorithm, f never changes its state and
comes back to v after completing the graph traversal as its
groupid always remains the minimum among all.

Consider any helper robot h with groupid larger than l.
The robot h stays at its position till some finder robot with
lesser groupid arrives. If the first finder that arrives at the
node where h resides happens to be f , then h reaches v along
with f as h continue to follow f . If some other finder robot
f ′ with lesser groupid meets h first, then h starts to follow
f ′. Definitely f ′ did not explore node v yet else it would have
been stuck there. This continues unless f ′ meets another finder
f ′′ and becomes a helper. Again, it is definite that f ′′ did not
visit v yet. This continues till h reaches at v. The helper
h does not reach v at some round implies that the finder
robot whom h is currently following, has not yet finished
its exploration. Since our algorithm proceeds in synchronous
rounds, by this round f is also not done with its exploration
then. This shows each helper robot eventually reaches v by
the time f completes exploration and returns back to v.

Consider any waiter robot w. According to our algorithm,
whenever w meets some finder robot, it changes its state
to helper, updates groupid and starts following the finder
robot. As we have already shown that any helper robot
eventually reaches v, this shows each waiter robot eventually
reaches v by the time f completes exploration and returns
back to v.

Consider any finder robot f ′ other than f . According to
our algorithm, the following three cases are possible.

• f ′ reaches v while exploring the graph as a finder robot.
In this case f ′ changes its groupid to l, changes its state
to helper and stays at v. This is because l is the minimum
possible groupid among all available groupids.

• f ′ does not reach v as a finder. This happens in the
following two cases.

– During exploration f ′ meets some finder robot
f ′′ with lesser groupid and started follow f ′′ after
changing its state to helper. As we have already
shown that any helper robot eventually reaches v,
we are done with this case.

– During exploration f ′ meets some helper robot with
lesser groupid, changes its state to helper and stay
at that node. As we have already shown that any
helper robot eventually reaches v, we are done with
this case.

It is straightforward to observe that this phase gathers robots
in 2n rounds as the minimum ID finder robot requires exactly
2n rounds to explore all the nodes of the graph along some
spanning tree that the finder computes using the copy of the
map of the graph it posses. Also, all the finder and helper
robots know n by the end of phase 1 and each waiter robot
receives the value of n from some finder robot in phase 2
since each waiter robot meets at least one finder robot in this
phase. Hence it is possible for each robot to terminate once
the counter equals R1 + 2n.

Now we have the following main theorem of this section.

7



Theorem 2. Given an n-node anonymous graph (undirected
and connected) and k robots are distributed over the nodes
arbitrarily such at least one node holds more than one robot,
then the deterministic algorithm UNDISPERSED-GATHERING
gathers all the robots to a single node in O(n3) time using
O(m log n) memory per robot, where m is the number of edges
in the graph. Also, each robot can detect when the gathering
is completed.

Proof. The correctness of Phase 1 of our algorithm follows
from [41]. The correctness of Phase 2 of our algorithm that
gathers all the robots is already provided in Lemma 6. The
time complexity of Phase 1 is O(n3) and follows from [41].
As any robot except the minimum ID robot can be a finder
robot, the memory requirement due to storing a map of the
graph is O(m log n) bits per robot. The time complexity of
Phase 2 depends on the time required by the finder robot
with minimum groupid to complete the graph exploration and
return to its initial position at the beginning of Phase 2. As the
finder explores according to a spanning tree of the graph, it
needs exactly 2n rounds. Hence the overall time complexity
becomes O(n3).

Let the running time of UNDISPERSED-GATHERING be
upper bounded by R, where R = R1 + 2n ∈ O(n3). We
use this later in presenting the main algorithm which works
for any initial distribution.

C. Gathering from Dispersed Configuration

In this section, we first present an algorithm for gathering
the robots from the dispersed configuration. In particular,
given the k ≤ n robots initially positioned at a dispersed
configuration, we present an efficient approach to reach an
undispersed configuration. Then applying the above algorithm
in Section II-B, it solves the gathering problem. To make it
lucid, let us first consider the following simpler case.

Suppose, in the dispersed configuration, two robots are
positioned in two neighboring nodes (i.e., 1-hop away). We
show that it is possible to convert this configuration to an
undispersed configuration in O(n log n) time. For this, we use
the ID bit-string of the robots to assemble them to a single
node, and hence reaching to an undispersed configuration. Let
the two robots ru and rv be positioned on two neighboring
nodes u and v respectively. Since the IDs of the robots are
distinct, the ID bit-string of ru and rv are different (and
possibly different lengths). The robots ru and rv run the
following procedure to assemble.

1-HOP-MEETING: The approach runs in cycles and each
cycle consists of 2(n − 1) rounds. A robot performs the
following by looking at the bits of its ID from ‘right’ to ‘left’
(i.e., in the reversed order). If the bit is 0, the robot doesn’t
move and stays at its node for the 2(n−1) rounds. If the bit is
1, the robot visits all the neighbors one by one following the
port numbers starting from 1. Since visiting a neighbor takes
2 rounds (go to the neighbor and come back), the robot must

complete visiting all the neighbors in 2(n− 1) rounds.6 If the
degree of the node is less than n − 1, the robot waits at its
node for the remaining rounds of the cycle. Further, since the
ID lengths are different, a robot may finish scanning all its
ID bits earlier than the others. Once a robot finishes scanning
its ID bits, it waits for the procedure to be ended— which
is an log n rounds, for some large constant a7. The robots
wait in both the cases to synchronize the start/end time of the
cycles. Therefore, it takes one cycle time for one bit. Since
we assume the IDs are of length O(log n) bits, the procedure
stops in O(n log n) rounds.

The above procedure guarantees the meeting of two neigh-
boring robots. Since the ID bit-strings of the robots are
different, there is at least one index in the string where their
bits are different, i.e., one is 0 and another is 1. For the first
such an index, one of them doesn’t move and the other visits
all the neighbors. Thus, they meet and assemble there. Notice
that the procedure doesn’t guarantee assembling any pair of
neighboring robots, but ensures assembling at least one pair
and hence reaching to an undispersed configuration. Therefore,
we get the following lemma.

Lemma 7. Suppose two robots are located on the two
neighboring nodes in a dispersed configuration. Then it takes
O(n log n) rounds to reach an undispersed configuration.

The 1-HOP-MEETING procedure can be extended to the
meeting of two robots which are at i-hop distance away from
each other. Let us call the procedure as i-HOP-MEETING.

i-HOP-MEETING: In the same way, the approach runs in
cycles where each cycle consists of T (i) =

∑i
j=1 2(n − 1)j

rounds. A robot performs the following by looking at the bits
of its ID from ‘right’ to ‘left’ (i.e., in the reversed order). If
the bit is 0, the robot doesn’t move and stays at its node for
the T (i) rounds. If the bit is 1, the robot visits all the nodes lie
within the i-hop distance from it using DFS traversal following
the port numbers. In the same way, if the degree of some nodes
is less than n−1 the robot waits at its node for the remaining
rounds of the cycle. A robot also waits for an log n rounds at
its node if finishes scanning all its ID bits, where a is some
large constant.

The procedure takes (
∑i

j=1 2(n− 1)j log n) rounds, which
is O(ni log n) rounds. Thus, we get the following general
result.

Lemma 8. Suppose, in the dispersed configuration, two robots
are positioned on the two nodes which are at a i-hop distance
away from each other. Then it takes T (i) =

∑i
j=1 2(n −

1)j log n = O(ni log n) rounds to reach an undispersed
configuration, where i ≤ D, the diameter of the graph.

6If the maximum degree of the graph ∆ is known to the robots, then visiting
neighbors may take 2∆ rounds. However, assuming ∆ = n−1 will not affect
the asymptotic bound in our main result for some cases.

7Technically, the value of a should be larger than b in the ID range [1, nb].
If such a value of a is not known, a can be taken as log logn. In this case,
the logn factor in all the running time bounds below will be replaced by
(logn log logn). For simplicity, we assume a to be a large constant.

8



Therefore, it follows from the above lemma that when i > 5,
the procedure i-HOP-MEETING itself takes a longer time than
the existing gathering result— Õ(n5 log n) rounds. For i ≤ 5,
our algorithm outperforms the best existing algorithms.

Therefore, the complete algorithm, for any number of robots
and for any initial distribution of the robots, works as follows.

Algorithm FASTER-GATHERING:

Step 1: Every robots run the UNDISPERSED-GATHERING
algorithm. If, indeed, the initial distribution of the robots is
undispersed configuration, then gathering is successful and
the robots terminate if it is not alone (see the Lemma 9).
Otherwise, there won’t be any movement of the robots and all
the robots stay at their original position (node) for R rounds.

(Step 2 to Step 6): For i = 2, . . . , 6, run the following steps.
Step i: After (i − 1)R rounds, if gathering is not achieved
(i.e., the initial distribution is dispersed), every robots first
run the (i − 1)-HOP-MEETING procedure and then run the
UNDISPERSED-GATHERING algorithm. If at least two robots
located at neighboring nodes, then 1-HOP-MEETING converts
the initial distribution to an undispersed configuration. Then
by running UNDISPERSED-GATHERING solves the gather-
ing problem. Each robot terminates if it is not alone (see
Lemma 9). Otherwise, there won’t be any movement of the
robots and all the robots stay at their position for R rounds.

Step 7: After 6R rounds, if gathering is not yet achieved, run
the gathering algorithm using UXS presented in Section II-A.
Since this algorithm works for any number of robots and for
arbitrary initial distribution of the robots, gathering must be
achieved with the detection.

We now show that every robots detect that gathering is
achieved in the end of every steps of the algorithm.

Lemma 9. In the end of any of the first 6 steps of the FASTER-
GATHERING algorithm, if a robot is alone at some node, then
each robot is alone.

Proof. Each of the first 6 steps call UNDISPERSED-
GATHERING algorithm at the end. There can be the following
two cases.

• At the time when UNDISPERSED-GATHERING algorithm
starts in any particular phase and the robot configuration
is dispersed. In this case, all the robots are waiter robots
and do nothing. Accordingly at the end of this step,
each robot is alone as the dispersed configuration never
changes.

• At the time when UNDISPERSED-GATHERING algorithm
starts in any particular phase and the robot configuration
is undispersed. Then by Theorem 2, no robot will be
alone at the end of the step.

Thus, it follows from the above lemma that a robot can
detect gathering via alone or not. Finally, the Step 7 also
guarantees gathering with detection.

The FASTER-GATHERING algorithm correctly gathers the
robots at a single node, detect the completion of the gathering

and terminates. Each step can be synchronized easily using
the time bound of UNDISPERSED-GATHERING and i-HOP-
MEETING. Therefore, the time complexity of the algorithm
can be written as O(min{R + T (i), Õ(n5)} rounds for i =
0, 1, 2, . . . , 5, where T (0) = 0 indicates an undispersed distri-
bution, T (i) = O(ni log n), for i = 1, 2, . . . , 5, see Lemma 8
and Õ(n5) is the time complexity of the gathering algorithm
using UXS, see Theorem 1. In the following, we present the
main result.

Theorem 3 (Faster Gathering). Given an n-node, m-edge
anonymous graph (undirected and connected) and k robots
are distributed over the nodes arbitrarily, then there is a
deterministic algorithm which gathers all the robots to a single
node with detection in time:

(i) O(n3) rounds, if the initial distribution of the robots is
either undispersed, or dispersed with at least two robots
positioned at a distance 2 from each other.

(ii) O(ni log n) rounds, if the initial distribution of the robots
is dispersed with at least two robots positioned at a
distance i from each other, for i = 3, 4 and 5.

(iii) Otherwise, Õ(n5) rounds.
The algorithm requires that robots know only the value of

n. Each robot requires O(M+m log n) bits of memory, where
M is the memory required to implement the UXS.

Remark 1. We note that if the hop distance information in the
initial configuration is given, then the FASTER-GATHERING
algorithm finishes faster by directly running the particular step
of the algorithm.

Remark 2. Let us further remark that if ∆, the maximum de-
gree of the graph, is known to the robots, the time complexity of
FASTER-GATHERING becomes O(min{R+∆i log n, Õ(n5)})
rounds for i ≤ 5. It follows from the procedure i-HOP-
MEETING, in which, each cycle consists of T (i) =

∑i
j=1 2∆

j

rounds to visit all the neighbors of a node.

Now, we show a crucial result on the fact that when there
are many robots, one cannot place all of them far from each
other in the dispersed configuration. In other words, if there
are sufficiently many robots, at least two of them must be
positioned nearby (say, at most 5-hop away from each other).
It follows from a more general result stated below.

Lemma 10. Suppose
⌊
n
c

⌋
+1 robots are distributed arbitrarily

over the nodes on a n-node graph, for any constant c. Then
there exists at least two robots which are at most 2c− 2 hop
distance away from each other.

Proof. The number of robots is ⌊n
c ⌋ + 1 ≥ 2, since c ≤ n.

By contradiction, assume that any pair of robots have distance
at least 2c − 1. We show a contradiction. Consider a robot,
say, r, located at some node v and let v′ be the node that
contains another robot. Since the graph is connected, v must
be connected to v′. Let v1, v2, · · · , vc−1 be the first c − 1
nodes on a shortest path from v to v′. So the distances of v1,
v2, . . ., vc−1 from v are 1, 2, . . . , c− 1 respectively. Then by

9



the assumption, no robot r′ can be positioned at a distance
less than c from any of the nodes v1, v2, . . ., vc−1; otherwise,
the distance between r and r′ becomes less than 2c− 1. This
implies that for any robot r, there must exists a path of at least
c−1 nodes which are free, i.e., not holding a robot (since the
graph is connected). It is easy to observe that, vi can not lie
on a free path of any other robot, say r′. If it is the case, then
r′ is a robot that lies within c distance from vi and it is a
contradiction since vi is a part of a free path of r.

Since r is any arbitrary robot, the above is true for all the
robots. This implies there must exist at least one set of such
c−1 designated nodes for each robot positioned at some node.

As we started with ⌊n
c ⌋ + 1 many robots, we have (c −

1)⌊n
c ⌋+ (c− 1) distinct nodes corresponding to those robots.

Further, ⌊n
c ⌋+1 robots positioned at ⌊n

c ⌋+1 nodes. Hence, the
total number of nodes in the graph required to place ⌊n

c ⌋+ 1
robots with the assumed condition is: (c− 1)⌊n

c ⌋+ (c− 1) +
⌊n
c ⌋ + 1 = c⌊n

c ⌋ + c ≥ n + 1. This is a contradiction as the
number of nodes in the graph is n. So our assumption that
any pair of robots has distance at least 2c−1 is wrong. Hence
the proof.

Then, from the above results, namely, Theorem 3, Lemma 8,
Lemma 9 and Lemma 10, we get the following results on
gathering with detection.

Theorem 4 (Gathering with Detection). Given an n-node
anonymous graph (undirected and connected) and k robots
are distributed over the nodes arbitrarily, then the robots can
be gathered to a single node deterministically and every robot
detects the gathering in time:

(i) O(n3) rounds, if k ≥
⌊
n
2

⌋
+ 1.

(ii) O(n4 log n) rounds, if
⌊
n
3

⌋
+ 1 ≤ k <

⌊
n
2

⌋
+ 1.

(iii) Õ(n5) rounds, if k <
⌊
n
3

⌋
+ 1.

The algorithm requires that robots know only the value of n.
Each robot requires O(M +m log n) bits of memory, where
M is the memory required to implement the UXS.

Proof. Let us show the bounds for all the cases one by one.
(i) If there are k ≥

⌊
n
2

⌋
+ 1 robots, then the Lemma 10

ensures that there exists a pair of robots within 2-hop
distance. Then by Theorem 3, gathering is achieved in
O(n3) rounds, and by Lemma 9, every robot detects it.

(ii) Similarly, for
⌊
n
3

⌋
+ 1 ≤ k <

⌊
n
2

⌋
+ 1, the Lemma 10

ensures that there exists a pair of robots within 4-hop
distance. Then by Theorem 3 and Lemma 9, gathering
with detection is achieved in O(n4 log n) rounds.

(iii) For k <
⌊
n
3

⌋
+ 1, gathering can be achieved in Õ(n5)

rounds, from Theorem 3.
Therefore, it follows that the algorithm FASTER-

GATHERING solves the gathering with detection faster
(than the existing results) if there are many robots in the
system. To be specific, if there are at least

⌊
n
3

⌋
+ 1 robots,

then our algorithm performs significantly faster than any
existing algorithm as it requires no more than O(n4 log n)
rounds to gather the robots (with detection). And if the
number of robots is more than

⌊
n
2

⌋
+ 1, then our algorithm

performs even better — takes only O(n3) rounds. Note
that, while having many robots is a sufficient condition for
achieving faster gathering with detection, it is not a necessary
condition. One can achieve the same with any number of
k robots (k ≥ 2), if there exists a pair of robots located
within a distance 5 from each other on the graph in the initial
configuration. This is evident from Theorem 3.

III. CONCLUSION AND FUTURE WORK

In this paper, we looked at the problem of gathering with
detection of robots in a graph. We presented a deterministic
algorithm that worked faster than all pre-existing deterministic
algorithms for this problem and even for the easier problem
of gathering without detection, subject to some conditions.

However, in order for this algorithm to work, we assumed
that all robots simultaneously woke up. An interesting future
direction would be to see if we can leverage this approach of
utilizing many robots for faster gathering, even if robots wake
up at arbitrary times. Additionally, it would be interesting to
see if we can still design fast algorithms if the communication
capabilities of the robots are reduced, for example to just being
able to beep or not. Finally, try to get a faster deterministic
gathering algorithm for a small number of robots, say, whether
it is possible a o(n5)-time algorithm for a constant (or poly-
logarithmic) number of robots.

An interesting line of future work is as follows. We do not
restrict the size of messages exchanged between robots at a
node. It would be interesting to consider the model where the
size of messages is restricted and study the resulting effect on
running time.

REFERENCES

[1] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable
matter,” Computer, vol. 38, no. 6, pp. 99–101, 2005.

[2] Z. Shi, J. Tu, Q. Zhang, L. Liu, and J. Wei, “A survey of swarm robotics
system,” in ICSI, 2012, pp. 564–572.

[3] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. F. R. Jesus, R. F. Berriel, T. M. Paixão, F. W. Mutz,
L. de Paula Veronese, T. Oliveira-Santos, and A. F. D. Souza, “Self-
driving cars: A survey,” Expert Syst. Appl., vol. 165, p. 113816, 2021.

[4] D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,”
CACM, vol. 42, no. 3, pp. 88–89, 1999.

[5] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and
A. Kosowski, “Euler tour lock-in problem in the rotor-router model:
I choose pointers and you choose port numbers,” in DISC, 2009, pp.
423–435.

[6] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg,
“Label-guided graph exploration by a finite automaton,” ACM Trans.
Algorithms, vol. 4, no. 4, pp. 42:1–42:18, Aug. 2008.

[7] S. Das, “Mobile agents in distributed computing: Network exploration,”
Bulletin of the EATCS, vol. 109, pp. 54–69, 2013.

[8] D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, and P. Uznański,
“Fast collaborative graph exploration,” Inf. Comput., vol. 243, no. C,
pp. 37–49, Aug. 2015.

[9] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg, “Graph
exploration by a finite automaton,” Theor. Comput. Sci., vol. 345, no.
2-3, pp. 331–344, Nov. 2005.

[10] A. Menc, D. Pajak, and P. Uznanski, “Time and space optimality of
rotor-router graph exploration,” Inf. Process. Lett., pp. 17–20, 2017.

[11] A. Miller and A. Pelc, “Tradeoffs between cost and information for
rendezvous and treasure hunt,” J. Parallel Distributed Comput., vol. 83,
pp. 159–167, 2015.

10



[12] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro, “Distributed
computing by mobile robots: Gathering,” SIAM J. Comput., vol. 41,
no. 4, pp. 829–879, 2012.

[13] M. Cieliebak and G. Prencipe, “Gathering autonomous mobile robots,”
in SIROCCO, 2002, pp. 57–72.

[14] B. Degener, B. Kempkes, T. Langner, F. Meyer auf der Heide,
P. Pietrzyk, and R. Wattenhofer, “A tight runtime bound for synchronous
gathering of autonomous robots with limited visibility,” in SPAA, 2011.

[15] G. Prencipe, “Impossibility of gathering by a set of autonomous mobile
robots,” Theor. Comput. Sci., vol. 384, no. 2-3, pp. 222–231, 2007.

[16] J. Augustine and W. K. Moses Jr., “Dispersion of mobile robots: A study
of memory-time trade-offs,” CoRR, vol. abs/1707.05629, 2018.

[17] A. D. Kshemkalyani, A. R. Molla, and G. Sharma, “Fast dispersion of
mobile robots on arbitrary graphs,” in ALGOSENSORS, 2019.

[18] A. R. Molla, K. Mondal, and W. K. Moses Jr., “Byzantine dispersion
on graphs,” in IPDPS. IEEE, 2021, pp. 942–951.

[19] L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro, “Uniform
scattering of autonomous mobile robots in a grid,” in IPDPS, 2009.

[20] Y. Elor and A. M. Bruckstein, “Uniform multi-agent deployment on a
ring,” Theor. Comput. Sci., vol. 412, no. 8-10, pp. 783–795, 2011.

[21] P. Poudel and G. Sharma, “Time-optimal uniform scattering in a grid,”
in ICDCN, 2019, pp. 228–237.

[22] M. Shibata, T. Mega, F. Ooshita, H. Kakugawa, and T. Masuzawa,
“Uniform deployment of mobile agents in asynchronous rings,” in
PODC, 2016, pp. 415–424.

[23] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots:
Formation of geometric patterns,” SIAM J. Comput., vol. 28, no. 4, pp.
1347–1363, 1999.

[24] R. Cohen and D. Peleg, “Robot convergence via center-of-gravity
algorithms,” in SIROCCO, 2004, pp. 79–88.

[25] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc, “Collective
tree exploration,” Networks, vol. 48, no. 3, pp. 166–177, 2006.

[26] C. Ortolf and C. Schindelhauer, “A recursive approach to multi-robot
exploration of trees,” in SIROCCO. Springer, 2014, pp. 343–354.

[27] A. R. Molla and W. K. Moses Jr., “Dispersion of mobile robots,” in
ICDCN, 2022, pp. 217–220.

[28] D. R. Kowalski and A. Malinowski, “How to meet in anonymous
network,” Theor. Comput. Sci., vol. 399, no. 1-2, pp. 141–156, 2008.

[29] T. C. Schelling, “The strategy of conflict oxford,” 1960.
[30] A. Ta-Shma and U. Zwick, “Deterministic rendezvous, treasure hunts

and strongly universal exploration sequences,” in SODA, 2007, pp. 599–
608.

[31] A. Ta-Shma and U. Zwick, “Deterministic rendezvous, treasure hunts,
and strongly universal exploration sequences,” ACM Trans. Algorithms,
vol. 10, no. 3, pp. 12:1–12:15, 2014.

[32] S. Elouasbi and A. Pelc, “Deterministic rendezvous with detection using
beeps,” Int. J. Found. Comput. Sci., vol. 28, no. 01, pp. 77–97, 2017.

[33] A. Cornejo and F. Kuhn, “Deploying wireless networks with beeps,” in
DISC. Springer, 2010, pp. 148–162.

[34] S. Bouchard, Y. Dieudonné, and A. Pelc, “Want to gather? no need to
chatter!” in PODC, 2020, pp. 253–262.

[35] S. Das, “Graph explorations with mobile agents,” in Distributed Com-
puting by Mobile Entities. Springer, 2019, pp. 403–422.

[36] J. Augustine and W. K. Moses Jr., “Dispersion of mobile robots: A study
of memory-time trade-offs,” in ICDCN, 2018, pp. 1–10.

[37] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc, “Deterministic
rendezvous in graphs,” Algorithmica, vol. 46, no. 1, pp. 69–96, 2006.

[38] P. Flocchini, “Gathering,” in Distributed Computing by Mobile Entities.
Springer, 2019, pp. 63–82.

[39] S. Alpern, “Rendezvous search: A personal perspective,” Operations
Research, vol. 50, no. 5, pp. 772–795, 2002.

[40] A. Pelc, “Deterministic rendezvous algorithms,” in Distributed Comput-
ing by Mobile Entities. Springer, 2019, pp. 423–454.

[41] Y. Dieudonné, A. Pelc, and D. Peleg, “Gathering despite mischief,” ACM
Trans. Algorithms, vol. 11, no. 1, pp. 1:1–1:28, 2014.

11


