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Abstract

Video-based person Re-identification (Re-ID) has received increasing attention re-
cently due to its important role within surveillance video analysis. Video-based Re-
ID expands upon earlier image-based methods by extracting person features temporally
across multiple video image frames. The key challenge within person Re-ID is extracting
a robust feature representation that is invariant to the challenges of pose and illumination
variation across multiple camera viewpoints. Whilst most contemporary methods use a
CNN based methodology, recent advances in vision transformer (ViT) architectures boost
fine-grained feature discrimination via the use of both multi-head attention without any
loss of feature robustness. To specifically enable ViT architectures to effectively address
the challenges of video person Re-ID, we propose two novel modules constructs, Tem-
poral Clip Shift and Shuffled (TCSS) and Video Patch Part Feature (VPPF), that boost
the robustness of the resultant Re-ID feature representation. Furthermore, we combine
our proposed approach with current best practices spanning both image and video based
Re-ID including camera view embedding. Our proposed approach outperforms exist-
ing state-of-the-art work on the MARS, PRID2011, and iLIDS-VID Re-ID benchmark
datasets achieving 96.36%, 96.63%, 94.67% rank-1 accuracy respectively and achieving
90.25% mAP on MARS.

1 Introduction
Video based person re-identification (Re-ID) is a popular research area within computer
vision gaining increasing attention due to a wide range of potential applications, such as
intelligent video surveillance and automated security systems. Video person Re-ID refers
to the task of matching a person in a query surveillance video, to the same person within
other videos from multiple non-overlapping camera views. However, this poses a very chal-
lenging problem due to variations in human pose, occlusion, differing camera viewpoints,
illumination and background scene clutter. In general, unlike its single-frame image-based
counterpart [9, 38, 48, 70], video-based Re-ID benefits from rich multi-frame, temporal in-
formation to address the task of cross-video instance matching. Video-based Re-ID has also
benefited from the significant development of deep learning methods by building differing
structural approaches that learn discriminative and robust deep features of person subjects in
a video [2, 10, 27, 28, 37, 55, 65].

Of late, CNN-based methods have dominated and achieved remarkable success in both
image-based [23, 35, 43, 68] and video-based [2, 10, 27, 28, 37, 55, 65] person Re-ID with
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CNN-based feature extraction achieving superior results across most deep feature based
methods [2, 10, 27, 28, 37, 55, 65]. However, more recently vision transformer (ViT) ar-
chitectures [25, 34, 45, 58] have shown very notable progress across a number of image
understanding tasks, including object detection [6, 16, 34, 72], image segmentation [34],
and image classification [25, 34]. Transformers with multi-head attention and without any
down sampling operations potentially offer more effective frame-level feature extraction for
video person Re-ID tasks where it is imperative to extract fine-grained on-person feature
details. However within CNN based methods, such fine-grain features - that can potentially
boost the re-identification process - are often lost in the feature extraction process due to the
prevalence of multiple pooling and convolutional operations over varying strides. In contrast,
transformer based architectures tend to retain all of the visual information that is required to
boost person re-identification whilst additionally capturing detailed long range feature de-
pendencies. In this way, the multi-head attention within a transformer architecture has the
potential to capture long range feature dependencies, in contrast to CNN based models that
extract small discriminative regions, necessitating additional attention blocks [4, 30, 54, 64].
To date, very recent prior work using such ViT architectures to address the Re-ID problem
are limited to the non-temporal problem of image-based Re-ID [16, 71] or alternatively do
not jointly consider both the spatial and temporal relation of the video Re-ID task within a
single transformer [61].

In this paper, we introduce an enhanced vision transformer (ViT) as a novel backbone
architecture for frame-level feature extraction within video based Re-ID. Moreover, we in-
corporate additional novel modules to address the specific person Re-ID challenges of occlu-
sion, pose variation and camera view variation. Inspired by positional embedding in existing
vision transformers, we additionally add a learnable camera ID (camera view) embedding to
our patch embeddings to address camera view variation in the Re-ID task.

After extracting frame-level features using our ViT backbone, we introduce our novel
Temporal Clip Shift and Shuffle (TCSS) module to shift features between frames and
jointly shuffle the frame feature order. Subsequently, the resulted video features are more
robust to occlusion and pose variation. In our method, we generate video-level features both
globally and locally. To extract robust global video-level features we aggregate frame-level
features extracted by the ViT using temporal attention. Additionally, we propose an effi-
cient novel Video Patch Part Feature (VPPF) module to extract local video features across
multiple video frames. VPPF ensures that frame patches with the same in-frame position
are consistently used to generate local features that would be otherwise undiscoverable via
global feature extraction alone. Our subsequent results show that this dual use of both local
and global video-level features significantly boosts the re-identification performance (Sec-
tion 4). In summary, the main contributions of this paper are as follows:

• An enhanced vision transformer (ViT) based architecture for video person Re-ID, in-
corporating both global video-level features and local video patch part features.

• Our novel Temporal Clip Shift and Shuffle (TCSS) and Video Patch Part Feature
(VPPF) modules that are subsequently experimentally shown to provide robust fine-
grained feature extraction to boost overall video person Re-ID performance.

• Our experimental results, based on the use of this enhanced vision transformer (ViT)
architecture, that achieve state of the art performance on the MARS (96.36%), PRID2011
(96.63%), and iLIDS-VID (94.67%) for rank-1 accuracy.
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2 Related Work
In video person Re-ID the primary aim is to extract robust person feature representations
avoiding all auxiliary spatial or temporal scene distractors. All existing methods mainly fo-
cus on efficiently extracting rich spatial-temporal features, most recently leveraging CNN
networks [2, 3, 17, 32, 51] to extract per-frame appearance representation followed by vary-
ing methods to aggregate temporal information. Some approaches then perform spatial-
temporal average or max pooling [7, 14, 33] on video frames to generate video-level features.
Attention models [29, 43, 69] are rapidly becoming the most common strategy to aggregate
initial video frame features. Attention based aggregation focuses on selecting the most in-
formative frames, while average and max pooling treats all the frames equally. Whilst many
techniques use optic flow [7, 37, 55], many person Re-ID applications require real-time per-
formance precluding the use of such computationally expensive techniques. Alternatively,
recurrent CNN are also explored to capture the temporal structure and aggregate temporal
features within videos [7, 55, 69].

In recent work, 3D convolution has been adopted for video feature learning in video per-
son Re-ID, as it directly extracts spatial-temporal features [41, 46]. Multi-scale 3D (M3D)
CNN [27] uses 3D convolutions to extract spatial-temporal features but requires a signif-
icantly larger number of parameters to be optimised resulting in both additional computa-
tional complexity and an increased memory footprint for both training and inference.

More recently, the use of graph neural networks for video Re-ID has been introduced
in [57], where two separate graph networks for spatial and temporal features are created
and jointly optimised to extract video spatial-temporal features. Yan et al. [56] use mul-
tiple hypergraphs representing different granularities, wherein graph nodes are constructed
according to part-based body features. Spatial-temporal features are then aggregated via a
graph convolution network.

Conversely, vision transformers (ViT) are gaining significantly more traction of late [25,
34, 45, 58] and, with their multi-head attention and strong fine-grain feature retention, yield
a highly suitable feature extractor for video person Re-ID. However, video person Re-ID
differs from other computer vision tasks by jointly facing the combined challenges of human
pose variation, occlusion, differing camera viewpoints, illumination, and background scene
clutter simultaneously. To these ends, the very recent work of Zang et. al [61] proposed
a multi-direction and multi-scale Pyramid in Transformer (PiT) that looks at each frame
without division, with vertical patch division and horizontal patch division in addition to
the patch-based division strategies to explore the fine-grained features. By contrast, we
employ a classical vision transformer architecture (ViT) to provide frame-level feature with
only patch-based division strategies. This is enhanced with our Temporal Clip Shift and
Shuffle (TCSS) and Video Patch Part Feature (VPPF) modules to subsequently address these
combined challenges of video person Re-ID via the learning of more robust discriminative
video features within a ViT based formulation.

3 Methodology
We describe our video Re-ID methodology by first outlining our approach of frame-level
feature extraction and subsequently introducing our novel Temporal Clip Shift and Shuffle
(TCSS) and Video Patch Part Feature (VPPF) modules. Finally, we detail our loss function
optimization strategy for the overall ViT based network architecture proposed.
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Figure 1: Our VID-Trans-ReID architecture with VPPF and TCSS modules shown.

3.1 Feature Extraction
Consider a surveillance video Vi with number of frames as Vi = {I1, I2, .., Ik}. We split frame
I j ∈ RH×W×C where H,W,C are the height, width and number of channels respectively, into
n equal size patches as I j ∈ Vi and I j = {I j

p1 , I
j
p2 , .., I

j
pn} such that our patches overlap to

avoid information loss between patches [16, 49, 60]. The overlap region for patch size P×P
and step size s is (P− s)P. The number of patches for a frame of size H ×W can be thus
calculated as:

n = ⌊H + s−P
s

⌋×⌊W + s−P
s

⌋ (1)

Subsequently, in video person Re-ID each frame I j with n patches is prepended with a learn-
able class embedding Icls as follows:

I j = [I j
cls; F(I j

p1); F(I j
p2); · · · ; F(I j

p(n))] (2)

where I j
cls is frame class token to represent the global feature of the frame and F is the

mapping function that project patches to D dimensional space. The spatial information is
preserved within the transformer architectural formulation by adding a learnable positional
embedding pos, yielding:

I j = I j + pos , where pos ∈ R(n+1)×D. (3)

Given the multi-camera nature of video person Re-ID, we add additional learnable camera
embedding to represent the camera ID of a given view, inspired by positional embedding
within the baseline transformer architecture. Prior work indicates the effectiveness of this
lightweight learnable embedding for learning invariant non-visual features [16, 40]. Camera
embedding is a learnable 1-D embedding cam, where cam∈RC×D and C denotes the number
of camera views within the dataset. In contrast to position embedding, all patches in a given
video will carry the same cam value: if video Vi is recorded by camera m, then camm is
the camera embedding for all patches in this video. The video frame input passed to the
transformer layers can thus be expressed as:

I j = I j +λ pos+(1−λ )camm (4)
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where I j is the frame patch prepended by frame class token, pos denotes position embedding
for each patch, camm is the camera embedding for a frame recorded by camera m and λ

balances the weight of the positional embedding and camera embedding.

3.2 Video Level Features
To generate effective video-level features we jointly use both a global branch to extract global
video features (Sec. 3.2.1) and a local branch to extract fine-grained features using our novel
Temporal Clip Shift and Shuffle (TCSS) and Video Patch Part Feature (VPPF) modules (Sec.
3.2.2 / 3.2.3). An overview of our proposed architecture is shown in Figure 1.

3.2.1 Global Video Features

In the global branch the model learns to produce clip-level features, C, at the training stage
by choosing random frames, T , from the tracklet. At inference time, all of the frames in a
tracklet are used to produce the video-level feature by dividing the video Vi into several clips
as Vi=[C1,C2, ...,Cm], where each clip Ci has T frames Ci=[I1, I2, ..IT ], and T is the number
of selected frames to train the network. A transformer network is used to extract features at
the frame-level. These features are then aggregated in the global branch to clip-level features
using spatio-temporal attention [14]. Here our spatio-temporal attention is a 2D convolution
with an input dimensionality of 768 mapped to a 256 dimensional output, followed by a 1D
temporal convolution on the frame-level features to generate temporal attention st

i . The final
frame attention score at

i is calculated using so f tmax(·) [69]. At the end of this branch, one
fully connected layer applied to clip Ci features to predicts the person ID (Global_ID in
Figure 1).

3.2.2 Temporal Clip Shift and Shuffle (TCSS)

To deliver more discriminative fine-grained video features we additionally propose a local
feature branch in parallel with earlier global branch (see Figure 1). This local branch extracts
fine-grained features using our novel Temporal Clip Shift and Shuffle (TCSS) and Video
Patch Part Feature (VPPF) modules. Here, frame features T are extracted by the transformer
and concatenated at the patch level to form clip features, Ci as follows:

Ci = [P0{I1
p0
, I2

p0
, · · · , IT

p0
}; · · · ;Pn{I1

pn , I
2
pn , · · · , I

T
pn}] (5)

As shown in Figure 2a (Clip Features), each clip Ci is passed to the Temporal Clip Shift
and Shuffle (TCSS) module that takes T frame-level with n patch features from clip Ci and
then concatenates these features at the patch level by connecting all the patches at the same
position across different adjacent frames. These clip features are then shifted on a patch-wise
basis by S steps (Figure 2a, Shifted Clip Features) as follows:

Csh
i = [{Ci

P(0+S)}0
T∗D; · · · ;{Ci

P(n)}0
T∗D;{Ci

P(0)}0
T∗D; · · · ;{Ci

P(s)}0
T∗D] (6)

where Csh
i is the clip features shifted by S steps. Inspired by He et al. [16] and shuffleNet

[62], where image shuffling boosts the fine-grained feature extraction, we apply a further
shuffling layer to clip-level shifted features Ci. Our shuffling process is performed at the
patch level by dividing it into two groups and then shuffling.

3.2.3 Video Patch Part Feature (VPPF)

Part-based localised part features have been successfully used in earlier CNN-based methods
to extricate fine-grained features for person Re-ID [36, 43, 47, 59]. Inspired specifically by
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(a) Temporal Clip Shift. (b) Video Patch Part Feature (VPPF) with 4
strips.

Figure 2: Temporal Clip Shift and Shuffle (TCSS) and Video Patch Part Feature (VPPF).

local strip features in CNN-based methods [36, 43, 47, 59], we propose novel Video Patch
Part Feature (VPPF). VPPF extracts fine-grained video features by dividing image patch
features into horizontally aligned strips from which we extract strip features, not only from
each frame but from all the frames T within the video clip. In our method we use strip length,
strip = 4, as shown in Figure 2b. These strip features are then passed to a single transformer
layer to generate video local part features ((local_ f 1, local_ f 2, local_ f 3, local_ f 4) in
Figure 1), which are subsequently passed to multiple fully connected layers equal to the
number of strips to predict per-strip person ID. At inference time, we use a combination
of both Video Global Features generated by global branch and Video Local Part Features
generated by the Video Patch Part Feature (VPPF) module to represent the features of a
person in a query or gallery video (see Figure 1).

3.3 Model Optimisation
Our two branches, video global features and video local part features are optimised using a
combined loss function comprising label smoothing cross entropy loss LID [44] , triplet loss
Ltriple [18], LEatt [39] and center loss [53] as follows:

L= LID(GlobID)+Ltriple(Glob f )+β ×Lcenter(Glob f )+LEatt

+
1

stripes

stripes

∑
j=1

(LID(Local j
ID)+Ltriple(local j

f )+Lcenter(local j
f ))

(7)

where are Glob f is video-level feature extracted by global branch, local f is video local part
features extracted by VPPF, (GlobID and LocalID) are the predicted ID labels and stripes
is the number of stripes used within VPPF (Figure.1, Figure.2b) and beta is β = 0.00005.
Within this formulation (Eqn. 7), we use commonplace person Re-ID losses and smooth
both cross entropy loss [44] and triplet loss [18] to both support more robust discriminative
feature and to pool samples by similarity within the resulting feature embedding space. We
also include center loss [53] with the aim of further regularising the inter instance distances
within the feature embedding space on a class-wise basis.

4 Evaluation
We evaluate our approach using three established benchmark video person Re-ID datasets
(MARS, PRID2011, iLIDS-VID). MARS [66] is the largest video person Re-ID benchmark

Citation
Citation
{Luo, Jiang, Zhang, Fan, Qian, and Zhang} 2019{}

Citation
Citation
{Sun, Zheng, Yang, Tian, and Wang} 2018

Citation
Citation
{Wang, Yuan, Chen, Li, and Zhou} 2018

Citation
Citation
{Yao, Zhang, Hong, Zhang, Xu, and Tian} 2019

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Hermans, Beyer, and Leibe} 2017

Citation
Citation
{Pathak, Eshratifar, and Gormish} 2020

Citation
Citation
{Wen, Zhang, Li, and Qiao} 2016

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Hermans, Beyer, and Leibe} 2017

Citation
Citation
{Wen, Zhang, Li, and Qiao} 2016

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016



ALSEHAIM, BRECKON: VID-TRANS-REID 7

that consists of 1261 identities and 20,715 tracklets under 6 camera views with bounding
boxes from the DPM detector [13] and GMMCP tracker [11]. PRID2011 [19] contains 400
tracklets of 200 identities from two cameras varying from 5 to 675 frames. iLIDS-VID [50],
contains 600 tracklets of 300 identities from 2 cameras varying from 23 to 192 frames.
For statistical evaluation, we use the Cumulative Match Characteristic (CMC) and mean
Average Precision (mAP) metrics. CMC is used to evaluate model performance in identi-
fying the correct identity within the top-k ranked matches (reporting Rank-1 accuracy for
each dataset). The mAP metric is used to evaluate model performance across multi-shot
re-identification datasets such as MARS [66].

4.1 Implementation Details
All video frames are resized to 256× 128 and padded with 10 zero-valued pixels. Each
training example is flipped horizontally with random erasing [67] using 0.5 probability. Nor-
malised RGB pixel triplets are rescaled via division by (0.5,0.5,0.5) and normalized via
subtraction of (0.5,0.5,0.5), respectively (following [25]). The batch size is set to 32 with 4
videos for each ID. Our optimizer is Stochastic Gradient Descent (SGD) with learning rate
equal to 0.008 with cosine learning rate decay (momentum = 0.9, weightdecay = 1e− 4).
The initial weights of ViT [25] for the MARS [66] dataset are pre-trained on ImageNet-21K
and pretrained on MARS [66] for iLIDS and PRID. Our model is trained for 120 epochs
and trained to generate clip features, where each clip consists of T = 4 frames chosen ran-
domly from the video for each ID. We use λ = 0.25 for the transformer input in order to give
more weight to camera embedding, to better capture change in video view whilst positional
embedding remains the same in all frames, however.

4.2 State-of-the-Art Comparison
Our experiments show that the use of our approach improves Re-ID performance against
leading contemporary approaches by over a 5% margin for CMC Rank-1 on the most chal-
lenging Re-ID dataset MARS [66] (see Table 1). With the smaller Re-ID datasets (iLIDS-
VID [50], PRID2011 [19]), pre-trained on MARS [66], our method improves CMC Rank-1
performance on iLIDS-VID [50] by 2%+. Furthermore, we narrowly improve CMC for
PRID2011 [19] whilst we also demonstrate state of the art mAP accuracy for the MARS
dataset (90.25%) (see Table 1).

These experiments support our hypothesis that a transformer based video Re-ID approach
can indeed outperform contemporary CNN based methods since there is no loss of any in-
formation through convolutional-based pooling and stride. Furthermore, the long range fea-
ture dependencies using multi-head attention in transformers deliver accurate detailed fine-
grained information that maximises person Re-ID performance.

5 Ablation Study
The effectiveness of our proposed Temporal Clip Shift and Shuffle (TCSS) and Video Patch
Part Feature (VPPF) modules at extracting robust person features is illustrated in Tables 2
and 3. In Table 2 we can see that removal of the TCSS module degrades both CMC Rank-1
and mAP by approximately -3% on MARS [66]. Similarly, we show that without the support
of VPPF, our model loses approximately -2% in Rank-1 accuracy and about -1% in mAP on
MARS [66].

We also study the effect of removing Cam, the learnable camera embedding. Table 2
shows that a drop in performance of approximately 5% in Rank-1 and about 9% in mAP for

Citation
Citation
{Felzenszwalb, Girshick, McAllester, and Ramanan} 2009

Citation
Citation
{Dehghan, Modiriprotect unhbox voidb@x protect penalty @M  {}Assari, and Shah} 2015

Citation
Citation
{Hirzer, Beleznai, Roth, and Bischof} 2011

Citation
Citation
{Wang and Zhao} 2014

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016

Citation
Citation
{Zhong, Zheng, Kang, Li, and Yang} 2020

Citation
Citation
{Kolesnikov, Dosovitskiy, Weissenborn, Heigold, Uszkoreit, Beyer, Minderer, Dehghani, Houlsby, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Kolesnikov, Dosovitskiy, Weissenborn, Heigold, Uszkoreit, Beyer, Minderer, Dehghani, Houlsby, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016

Citation
Citation
{Wang and Zhao} 2014

Citation
Citation
{Hirzer, Beleznai, Roth, and Bischof} 2011

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016

Citation
Citation
{Wang and Zhao} 2014

Citation
Citation
{Hirzer, Beleznai, Roth, and Bischof} 2011

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016

Citation
Citation
{Zheng, Bie, Sun, Wang, Su, Wang, and Tian} 2016



8 ALSEHAIM, BRECKON: VID-TRANS-REID

Methods Publication MARS [66] iLIDS-VID [50] PRID2011 [19]
Rank-1 (mAP)

Att-Driven [65] CVPR 2019 87.0 (78.2) 86.3 -
VRSTC [20] CVPR 2019 88.5 (82.3) 83.4 -
Co-Segment [42] ECCV 2019 84.9 (79.9) 77.8 -
GLTR [26] ICCV 2019 87.02 (78.47) 86 95.50
M3D [27] IEEE-T IP 2020 88.63 (79.46) 86.67 96.60
TACAN [28] WACV 2020 89.1 (84.0) 88.9 95.3
AP3D[15] ECCV 2020 90.1(85.1) - -
AFA [8] ECCV 2020 90.2(82.9) 88.5 -
TCLNet [21] ECCV 2020 89.8(85.1) 86.6 -
MGH [56] CVPR 2020 90(85.8) 85.6 94.8
MG-RAFA [63] CVPR 2020 88.8(85.9) 88.6 95.9
STGCN [57] CVPR 2020 89.95 (83.70) - -
Co-Aware[54] IEEE TIFS 2021 88.2 (84.1) 85.8 92.2
HMN [52] IEEE TCS VT 2021 89.0 (88.80) - -
SANet[4] IEEE TCS VT 2021 91.2 (86.0) - -
STMN [12] ICCV 2021 90.5 (84.5) - -
STRF [1] ICCV 2021 90.3 (86.10) 89.30 -
DenseIL [17] ICCV 2021 90.8 (87.0) 92.0 -
PSTA [51] ICCV 2021 91.5 (85.8) 91.5 95.6
SSN3D [24] AAAI2021 90.1(86.2) 88.9 -
CTL [31] CVPR2021 91.40(86.70) 89.70 -
Watching You [32] CVPR 2021 91.0 (84.8) 90.4 96.2
BiCnet-TKS [22] CVPR 2021 90.2 (86.0) - -
PiT [61] IEEE TII 2022 90.22 (86.80) 92.07 -
SINet [5] CVPR 2022 91.0 (86.2) 92.5 96.5
ViT [25] (baseline) 90.68(78.61) 38.67 74.16
VID-Trans-ReID (ours) – 96.36 (90.25) 94.67 96.63

Table 1: Video person Re-ID: state-of-the-art comparison

MARS [66] with camera embedding removed. Similarly, the removal of camera embedding
decreases Rank-1 by 8% and 3% in iLIDS[50] and PRID [19] respectively. Within person
Re-ID, information performance between neighbor patches is conveyed via the use of patch
overlapping within the Re-ID process is also of great importance (Table 2 / 3). Table 2 and 3
similarly show that the use of pure transformer settings (without patch overlapping) results
in significant degradation on both Rank-1 and mAP.

Method Rank-1 mAP
ours without TCSS 93.80 86.26
ours without VPPF 94.62 88.70
ours without camera embedding 91.60 80.73
ours without patch overlapping 91.44 78.55
VID-Trans-ReID (our full method) 96.36 90.25

Table 2: Ablation results: MARS.

Method (with Rank-1 reported only) iLIDS PRID
ours without TCSS 93.33 94.63
ours without VPPF 89.0 94.38
ours without camera embedding 86.67 93.26
ours without patch overlapping 89.33 95.51
VID-Trans-ReID (our full method) 94.67 96.63

Table 3: Ablation results: iLIDS & PRID.

In addition, we also consider the use of our novel TCCS and VPPF modules within other
leading contemporary transformer architectures when applied to video person Re-ID, such
as Swin transformer [34] and the Focal transformer [58] with their original implementation,
without the use of camera embedding and overlapping patches. As most transformer archi-
tectures are suitable for uniformly square frames, whilst in person Re-ID most of the subject
frames are non-uniform (following the aspect ratio of the human body), we consider perfor-
mance based on both the use of non-uniform (Table 4) and uniform (Table 5) frame size.
We observe that our method, using a ViT architecture, [25] outperforms Swin [34] and Focal
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[58]) by 3% even with the addition of our novel TCSS and VPPF modules to each of these
architectures. In both cases the addition of these modules to Swim and Focal only make a
marginal performance improvement that remains significantly lesser when compared to our
own approach (Table 4). Whilst the use of uniform frame size is shown to further improve
performance (for Swin, Focal), the use of TCCSS and VPPF provide further improvement
across both (Table 4) and our approach is still shown to outperform on the challenging MARS
dataset (Table 4, Table 5 - mAP).

Methods Rank-1 mAP
Swin (baseline) [34] 78.79 53.38

Swin + TCSS + VPPF 80.30 54.17

Focal (baseline) [58] 92.36 78.87

Focal + TCSS + VPPF 93.08 81.14

VID-Trans-ReID (ours) 96.36 90.25

Table 4: Non-uniform frame size: MARS.

Methods Rank-1 mAP
Swin + TCSS + VPPF 94.53 81.86

Focal + TCSS + VPPF 93.08 81.14

VID-Trans-ReID (ours) 93.03 84.96

Table 5: Uniform frame size (224 × 224):
MARS.

Figure 3: Attention Map Visualization: (a) original
input samples, (b) attention maps - ViT vs. VID-
Trans-ReID (ours).

Qualitatively we can also show that our proposed method extracts more focused person re-
lated features from the image and ignores any unrelated scene clutter more effectively. Fig.
3 clearly demonstrates the difference between using an unmodified ViT architecture [25] and
our method with the additional TCSS and VPPF models added that result in a much more
distinct separation of the on person features (via the attention map) from those of either the
background or interacting objects such as the bicycle (Fig. 3).

Figure 4: Rank-10 results: VID-Trans-ReID (ours) & ViT (baseline) (green = correct, red = incorrect)
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If we consider the first row of Fig. 3, our method only captures on-person features via
the use of attention while bicycle features are ignored, resulting in improved Re-ID against
other videos of the same person without the bicycle present. This point is further illustrated
in Fig. 4 where we can see that a query image containing a bicycle is erroneously matched
to instances of other people riding bicycles by the ViT baseline (Fig. 4, lower) whilst our
approach performs correct Re-ID (Fig. 4, upper). Furthermore, across a range of video
person Re-ID related challenges illustrated within Fig. 5(a-e) we can see that our approach
successfully deals with issues such as scaling, human pose variation and motion blur (Fig.
5, left) whilst the baseline ViT [25] is shown to fail more prominently in these cases (Fig. 5,
right).

Figure 5: Comparison of top-6 retrieval results on MARS [66] using our proposed method
(VID-Trans-ReID ) and ViT baseline (green = correct Re-ID, red = incorrect Re-ID).

6 Conclusion
In this paper, we propose an enhanced video transformer architecture for video person Re-
ID using our novel Temporal Clip Shift and Shuffled (TCSS) and Video Patch Part Fea-
ture (VPPF) modules, in combination with both camera (view) embedding and current best
practice approaches in video Re-ID. Quantitatively our approach outperforms all recent
prior work in the field on established video Re-ID benchmarks (Rank-1 (mAP) – MARS:
96.36%(90.25%), iLIDS: 94.67%, PRID: 96.63) whilst qualitatively we illustrate enhanced
attention maps with superior focus given to on-person visual features. Furthermore, we show
the impact of adding our TCSS and VPPF modules to alternative transformer architectures
(Swin + Focal) where we additionally show enhanced performance against the baseline.
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