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Abstract. In the Feedback Vertex Set problem, we aim to find a
small set S of vertices in a graph intersecting every cycle. The Sub-
set Feedback Vertex Set problem requires S to intersect only those
cycles that include a vertex of some specified set T . We also consider
the Weighted Subset Feedback Vertex Set problem, where each
vertex u has weight w(u) > 0 and we ask that S has small weight. By
combining known NP-hardness results with new polynomial-time results
we prove full complexity dichotomies for Subset Feedback Vertex
Set and Weighted Subset Feedback Vertex Set for H-free graphs,
that is, graphs that do not contain a graph H as an induced subgraph.
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1 Introduction

In a graph transversal problem the aim is to find a small set of vertices within
a given graph that must intersect every subgraph that belongs to some speci-
fied family of graphs. Apart from the Vertex Cover problem, the Feedback
Vertex Set problem is perhaps the best-known graph transversal problem. A
vertex subset S is a feedback vertex set of a graph G if S intersects every cycle
of G. In other words, the graph G− S obtained by deleting all vertices of S is a
forest. We can now define the problem:

Feedback Vertex Set
Instance: a graph G and an integer k.
Question: does G have a feedback vertex set S with |S| ≤ k?

? Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.
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The Feedback Vertex Set problem is well-known to be NP-complete even un-
der input restrictions. For example, by Poljak’s construction [14], the Feedback
Vertex Set problem is NP-complete even for graphs of finite girth at least g
(the girth of a graph is the length of its shortest cycle). To give another relevant
example, Feedback Vertex Set is also NP-complete for line graphs [10].

In order to understand the computational hardness of Feedback Vertex
Set better, other graph classes have been considered as well, in particular those
that are closed under vertex deletion. Such graph classes are called hereditary.
It is readily seen that a graph class G is hereditary if and only if G can be
characterized by a (possibly infinite) set F of forbidden induced subgraphs.
From a systematic point of view it is natural to first consider the case where
F has size 1, say F = {H} for some graph H. This leads to the notion of H-
freeness: a graph G is H-free for some graph H if G does not contain H as an
induced subgraph, that is, G cannot be modified into H by a sequence of vertex
deletions.

As Feedback Vertex Set is NP-complete for graphs of finite girth at
least g for every g ≥ 1, it is NP-complete for H-free graphs whenever H has a cy-
cle. As it is NP-complete for line graphs and line graphs are claw-free, Feedback
Vertex Set is NP-complete for H-free graphs whenever H has an induced claw
(the claw is the 4-vertex star). In the remaining cases, the graph H is a linear
forest, that is, the disjoint union of one or more paths. When H is a linear forest,
several positive results are known even for the weighted case. Namely, for a graph
G, we can define a (positive) weighting as a function w : V → Q+. For v ∈ V ,
w(v) is the weight of v, and for S ⊆ V , we define the weight w(S) =

∑
u∈S w(u)

of S as the sum of the weights of the vertices in S. This brings us to the following
generalization of Feedback Vertex Set:

Weighted Feedback Vertex Set
Instance: a graph G, a positive vertex weighting w of G and a rational

number k.
Question: does G have a feedback vertex set S with w(S) ≤ k?

Note that if w is a constant weighting function, then we obtain the Feedback
Vertex Set problem. We denote the r-vertex path by Pr, and the disjoint union
of two vertex-disjoint graphs G1 and G2 by G1+G2 = ((V (G1)∪V (G2), E(G1)∪
E(G2)), where we write sG for the disjoint union of s copies of G. It is known
that Weighted Feedback Vertex Set is polynomial-time solvable for sP3-
free graphs [11] and P5-free graphs [1]. The latter result was recently extended
to (sP1 + P5)-free graphs for every s ≥ 0 [11]. We write H ⊆i G to denote that
H is an induced subgraph of G. We can now summarize all known results [1, 10,
11, 14] as follows.

Theorem 1. (Weighted) Feedback Vertex Set for the class of H-free
graphs is polynomial-time solvable if H ⊆i sP3 or H ⊆i sP1 + P5 for some
s ≥ 1, and is NP-complete if H is not a linear forest.
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Note that the open cases of Theorem 1 are when H is a linear forest with
P2 + P4 ⊆i H or P6 ⊆i H.

The (Weighted) Feedback Vertex Set problem can be further general-
ized in the following way. Let T be some specified subset of vertices of a graph
G. A T -cycle of G is a cycle that intersects T . A set ST ⊆ V is a T -feedback
vertex set of G if ST contains at least one vertex of every T -cycle; see also Fig. 1.
We now consider the following generalizations of Feedback Vertex Set:

Subset Feedback Vertex Set
Instance: a graph G, a subset T ⊆ V (G) and an integer k.
Question: does G have a T -feedback vertex set ST with |ST | ≤ k?

Weighted Subset Feedback Vertex Set
Instance: a graph G, a subset T ⊆ V (G), a positive vertex weighting w

of G and a rational number k.
Question: does G have a T -feedback vertex set ST with w(ST ) ≤ k?

The NP-complete cases in Theorem 1 carry over to (Weighted) Subset Feed-
back Vertex Set; just set T := V (G) in both cases. However, this is no longer
true for the polynomial-time cases: Fomin et al. [7] proved NP-completeness of
Subset Feedback Vertex Set for split graphs, which form a subclass of 2P2-
free graphs. Interestingly, Papadopoulos and Tzimas [13] proved that Weighted
Subset Feedback Vertex Set is NP-complete for 5P1-free graphs, whereas
Brettell et al. [4] proved that Subset Feedback Vertex Set can be solved
in polynomial time even for (sP1 +P3)-free graphs for every s ≥ 1 [4]. Hence, in
contrast to many other transversal problems, the complexities on the weighted
and unweighted subset versions do not coincide for H-free graphs.

It is also known that Weighted Subset Feedback Vertex Set can be
solved in polynomial time for permutation graphs [12] and thus for its sub-
class of P4-free graphs. The latter result also follows from a more general re-
sult related to the graph parameter mim-width [15]. Namely, Bergougnoux, Pa-
padopoulos and Telle [3] proved that Weighted Subset Feedback Vertex

Fig. 1. Two examples of a slightly modified Petersen graph with the set T indicated by
square vertices. In both examples, the set ST of black vertices is a T -feedback vertex
set. On the left, ST \ T 6= ∅. On the right, ST ⊆ T .

.
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Set is polynomial-time solvable for graphs for which we can find a decomposi-
tion of constant mim-width in polynomial time [3]; the class of P4-free graphs is
an example of such a class. Brettell et al. [5] extended these results by proving
that Weighted Subset Feedback Vertex Set, restricted to H-free graphs,
is polynomial-time solvable if H ⊆i 3P1 + P2 or H ⊆i P1 + P3.

The above results leave open a number of unresolved cases for both problems,
as identified in [4] and [5], where the following open problems are posed:

Fig. 2. The graph 2P1 + P4.

Open Problem 1 Determine the complexity of Weighted Subset Feedback
Vertex Set for H-free graphs if H ∈ {2P1 + P3, P1 + P4, 2P1 + P4}.

Open Problem 2 Determine the complexity of Subset Feedback Vertex
Set for H-free graphs if H = sP1 + P4 for some integer s ≥ 1.

1.1 Our Results

We completely solve Open Problems 1 and 2.
In Section 3, we prove that Weighted Subset Feedback Vertex Set is

polynomial-time solvable for (2P1 + P4)-free graphs. This result generalizes all
known polynomial-time results for Weighted Feedback Vertex Set. It also
immediately implies polynomial-time solvability for the other two cases in Open
Problem 1, as (2P1+P3)-free graphs and (P1+P4)-free graphs form subclasses of
(2P1 + P4)-free graphs. Combining the aforementioned NP-completeness results
of [7] and [13] for 2P2-free graphs and 5P1-free graphs, respectively, with the
NP-completeness results in Theorem 1 for the case where H has a cycle or a
claw and this new result gives us the following complexity dichotomy (see also
Fig. 2).

Theorem 2. For a graph H, the Weighted Subset Feedback Vertex Set
problem on H-free graphs is polynomial-time solvable if H ⊆i 2P1 + P4, and is
NP-complete otherwise.

In Section 4 we solve Open Problem 2 by proving that Subset Feedback
Vertex Set can be solved in polynomial time for (sP1 + P4)-free graphs,
for every s ≥ 1. This result generalizes all known polynomial-time results for
Weighted Feedback Vertex Set. After combining it with the aforemen-
tioned NP-completeness results of [7] and Theorem 1 we obtain the following
complexity dichotomy.
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Theorem 3. For a graph H, the Subset Feedback Vertex Set problem on
H-free graphs is polynomial-time solvable if H ⊆i sP1 + P4 for some s ≥ 0, and
is NP-complete otherwise.

Due to Theorems 2 and 3 we now know where exactly the complexity jump
between the weighted and unweighted versions occurs.

Our proof technique for these results is based on the following two ideas.
First, if the complement FT of a T -feedback vertex set contains s vertices of
small degree in FT , then we can “guess” these vertices and their neighbours in
FT . We then show that after removing all the other neighbours of small-degree
vertices, we will obtain a graph of small mim-width. If FT does not contain s
small-degree vertices, we will argue that FT contains a bounded number of ver-
tices of T . We guess these vertices and exploit their presence. This is straight-
forward for Subset Feedback Vertex Set but more involved for Weighted
Subset Feedback Vertex Set. The latter was to be expected from the hard-
ness construction for Weighted Subset Feedback Vertex Set on 5P1-free
graphs, in which |T | = 1 (but as we will show our algorithm is able to deal with
that construction due to the (2P1 + P4)-freeness of the input graph).

We finish our paper with a brief discussion on related graph transversal
problems and some open questions in Section 5.

2 Preliminaries

Let G = (V,E) be a graph. If S ⊆ V , then G[S] denotes the subgraph of G
induced by S, and G− S is the graph G[V \ S]. We say that S is independent if
G[S] has no edges, and that S is a clique and G[S] is complete if every pair of
vertices in S is joined by an edge. A (connected) component of G is a maximal
connected subgraph of G. The neighbourhood of a vertex u ∈ V is the set N(u) =
{v | uv ∈ E}. A graph is bipartite if its vertex set can be partitioned into at
most two independent sets.

Recall that for a graph G = (V,E) and a subset T ⊆ V , a T -feedback vertex
set is a set S ⊆ V that intersects all T -cycles. Note that G− S is a graph that
has no T -cycles; we call such a graph a T -forest. Thus the problem of finding a
T -feedback vertex set of minimum size is equivalent to finding a T -forest of max-
imum size. Similarly, the problem of finding a T -feedback vertex set of minimum
weight is equivalent to finding a T -forest of maximum weight. These maximisa-
tion problems are actually the problems that we will solve. Consequently, any
T -forest will be called a solution for an instance (G,T ) or (G,w, T ), respec-
tively, and our aim is to find a solution of maximum size or maximum weight,
respectively.

Throughout our proofs we will need to check if some graph F is a solution.
The following lemma shows that we can recognize solutions in linear time. The
lemma combines results claimed but not proved in [9, 13]. It is easy to show but
for an explicit proof we refer to [4, Lemma 3].
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Lemma 1. It is possible to decide in O(n+m) time if a graph F is a T -forest
for some given set T ⊆ V (F ).

In our proofs we will not refer to Lemma 1 explicitly, but we will use it implicitly
every time we must check if some graph F is a solution.

3 The Weighted Variant

In this section, we present our polynomial-time algorithm for Weighted Sub-
set Feedback Vertex Set on (2P1 + P4)-free graphs.
Outline. Our algorithm is based on the following steps. We first show in Sec-
tion 3.1 how to compute a solution F that contains at most one vertex from T ,
which moreover has small degree in F . In Section 3.2 we then show that if
two vertices of small degree in a solution are non-adjacent, we can exploit the
(2P1 + P4)-freeness of the input graph G to reduce to a graph G′ of bounded
mim-width. The latter enables us to apply the algorithm of Bergougnoux, Pa-
padopoulos and Telle [3]. In Section 3.3 we deal with the remaining case, where
all the vertices of small degree in a solution F form a clique and F contains at
least two vertices of T . We first show that every vertex of T that belongs to
F must have small degree in F . Hence, as the vertices in T ∩ V (F ) must also
induce a forest, F has exactly two adjacent vertices of T , each of small degree
in F . This structural result enables us to do a small case analysis. We combine
this step together with our previous algorithmic procedures into one algorithm.

Remark. Some of the lemmas in the following three subsections hold for (sP1+
P4)-free graphs, for every s ≥ 2, or even for general graphs. In order to re-use
these lemmas in Section 4, where we consider Subset Feedback Vertex Set
for (sP1 + P4)-free graphs, we formulate these lemmas as general as possible.

3.1 Three Special Types of Solutions

In this section we will show how we can find three special types of solutions in
polynomial time for (2P1 + P4)-free graphs. These solutions have in common
that they contain at most one vertex from the set T and moreover, this vertex
has small degree in F .

Let G = (V,E) be a graph and let T ⊆ V be a subset of vertices of G. A
T -forest F is a ≤1-part solution if F contains at most one vertex from T and
moreover, if F contains a vertex u from T , then u has degree at most 1 in F .
The following lemma holds for general graphs and is easy to see.

Lemma 2. For a graph G = (V,E) with a positive vertex weighting w and a set
T ⊆ V , it is possible to find a ≤1-part solution of maximum weight in polynomial
time.

Let G = (V,E) be a graph and let T ⊆ V be a subset of vertices of G. A
T -forest F is a 2-part solution if F contains exactly one vertex u of T and u has
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exactly two neighbours v1 and v2 in F . We say that u is the center of F and
that v1 and v2 are the center neighbours. Let A be the connected component of
F that contains u. Then we say that A is the center component of F . We will
prove how to find 2-part solutions in polynomial time even for general graphs.
In order to do this, we will reduce to a classical problem, namely:

Weighted Vertex Cut
Instance: a graph G = (V,E), two distinct non-adjacent terminals t1

and t2, and a positive vertex weighting w.
Task: determine a set S ⊆ V \ {t1, t2} of minimum weight such that

t1 and t2 are in different connected components of G− S.

The Weighted Vertex Cut problem is well known to be polynomial-time
solvable by standard network flow techniques.

Lemma 3. Weighted Vertex Cut is polynomial-time solvable.

We use Lemma 3 in several of our proofs, including in the (omitted) proof of the
next lemma.

Lemma 4. For a graph G = (V,E) with a positive vertex weighting w and a set
T ⊆ V , it is possible to find a 2-part solution of maximum weight in polynomial
time.

Let G = (V,E) be a graph and let T ⊆ V be a subset of vertices of G. A T -
forest F is a 3-part solution if F contains exactly one vertex u of T and u has
exactly three neighbours v1, v2, v3 in F . Again we say that u is the center of F ;
that v1, v2, v3 are the center neighbours; and that the connected component of F
that contains u is the center component of F . We can show the following lemma
(proof omitted).

Lemma 5. For a (2P1+P4)-free graph G = (V,E) with a positive vertex weight-
ing w and a set T ⊆ V , it is possible to find a 3-part solution of maximum weight
in polynomial time.

3.2 Mim-Width

We also need some known results that involve the mim-width of a graph. This
width parameter was introduced by Vatshelle [15]. For the definition of mim-
width we refer to [15], as we do not need it here. A graph class G has bounded
mim-width if there exists a constant c such that every graph in G has mim-
width at most c. The mim-width of a graph class G is quickly computable if it is
possible to compute in polynomial time a so-called branch decomposition for a
graph G ∈ G whose mim-width is bounded by some function in the mim-width of
G. We can now state the aforementioned result of Bergougnoux, Papadopoulos
and Telle in a more detailed way.
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Theorem 4 ([3]). Weighted Subset Feedback Vertex Set is polynomial-
time solvable for every graph class whose mim-width is bounded and quickly com-
putable.

Belmonte and Vatshelle [2] proved that the mim-width of the class of permu-
tation graphs is bounded and quickly computable. As P4-free graphs form a
subclass of the class of permutation graphs, we immediately obtain the follow-
ing lemma.5

Lemma 6. The mim-width of the class of P4-free graphs is bounded and quickly
computable.

For a graph class G and an integer p ≥ 0, we let G + pv be the graph class that
consists of all graphs that can be modified into a graph from G by deleting at
most p vertices. The following lemma follows in a straightforward way from a
result of Vatshelle [15].

Lemma 7. If G is a graph class whose mim-width is bounded and quickly com-
putable, then the same holds for the class G + pv, for every constant p ≥ 0.

Let G = (V,E) be an (sP1+P4)-free graph for some s ≥ 2 and let T ⊆ V . Let F
be a T -forest of G. We define the core of F as the set of vertices of F that have
at most 2s − 1 neighbours in F . We say that F is core-complete if the core of
F has no independent set of size at least s; otherwise F is core-incomplete.6 We
use the above results to show the following algorithmic lemma (proof omitted).

Lemma 8. Let s ≥ 2. For an (sP1 + P4)-free graph G = (V,E) with a positive
vertex weighting w and a set T ⊆ V , it is possible to find a core-incomplete
solution of maximum weight in polynomial time.

3.3 The Algorithm

In this section we present our algorithm for Weighted Subset Feedback
Vertex Set restricted to (2P1 + P4)-free graphs. We first need to prove one
more structural lemma for core-complete solutions. We prove this lemma for
any value s ≥ 2, such that we can use this lemma in the next section as well.
However, for s = 2 we have a more accurate upper bound on the size of the core.

Lemma 9. For some s ≥ 2, let G = (V,E) be an (sP1 + P4)-free graph. Let
T ⊆ V . Let F be a core-complete T -forest of G such that T ∩ V (F ) 6= ∅. Then
the core of F contains every vertex of T ∩ V (F ), and T ∩ V (F ) has size at most
2s−2. If s = 2, the core of F is a clique of size at most 2 (in this case T ∩V (F )
has size at most 2 as well).
5 It is well-known that P4-free graphs have clique-width at most 2, and instead of
Theorem 4 we could have used a corresponding result for clique-width. We chose
to formulate Theorem 4 in terms of mim-width, as mim-width is a more powerful
parameter than clique-width [15] and thus bounded for more graph classes.

6 These notions are not meaningful if s ∈ {0, 1}. Hence, we defined them for s ≥ 2.
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Proof. Consider a vertex u ∈ T ∩ V (F ). For a contradiction, assume that u
does not belong to the core of F . Then u has at least 2s neighbours in F . Let
Vu = {v1, . . . , vp} for some p ≥ 2s be the set of neighbours of u in F .

Let A be the connected component of F that contains u. As F is a T -forest,
A− u consists of p connected components D1, . . . , Dp such that vi ∈ V (Di) for
i ∈ {1, . . . , p}. In particular, this implies that Vu = {v1, . . . , vp} must be an
independent set. As the core of F has no independent set of size s, this means
that at most s−1 vertices of Vu may belong to the core of F . Recall that p ≥ 2s.
Hence, we may assume without loss of generality that v1, . . . , vs+1 do not belong
to the core of F . This means that v1, . . . , vs+1 each have degree at least 2s in
A. Hence, for i ∈ {1, . . . , s + 1}, vertex vi is adjacent to some vertex wi in Di.
As s ≥ 2, we have that 2s > s+ 1 and hence, vertex vs+2 exists. However, now
the vertices w1, v1, u, vs+2, w2, w3, . . . , ws+1 induce an sP1 + P4, a contradiction
(see also Fig. 3).

From the above, we conclude that every vertex of T ∩ V (F ) belongs to the
core of F . As F is a T -forest, T ∩ V (F ) induces a forest, and thus a bipartite
graph. As F is core-complete, every independent set in the core has size at most
s− 1. Hence, T ∩ V (F ) has size at most 2(s− 1) = 2s− 2.

Now suppose that s = 2. As F is core-complete, the core of F must be a
clique. As the core of F contains T ∩ V (F ) and T ∩ V (F ) induces a forest, this
means that the core of F , and thus also T ∩ V (F ), has size at most 2. This
completes the proof of the lemma. ut

u ∈ T

p ≥ 2s

s+ 1

Vu {w1, . . . , ws+1}

w1

ws+1

v1

vs+2

vp

Fig. 3. An example of the contradiction obtained in Lemma 9: the assumption that
a vertex u ∈ T does not belong to the core of a core-complete solution leads to the
presence of an induced sP1 + P4 (highlighted by the black vertices and thick edges).

By using the above results and the results from Sections 3.1 and 3.2, we are now
able to prove our main result.

Theorem 5. Weighted Subset Feedback Vertex Set is polynomial-time
solvable for (2P1 + P4)-free graphs.
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Proof. Let G = (V,E) be a (2P1 + P4)-free graph, and let T be some subset
of V . Let w be a positive vertex weighting of G. We aim to find a maximum
weight T -forest F for (G,T,w) (recall that we call T -forests solutions for our
problem). As s = 2, the core of F is, by definition, the set of vertices of F that
have maximum degree at most 3 in F .

We first compute a core-incomplete solution of maximum weight; this takes
polynomial time by Lemma 8 (in which we set s = 2). We will now compute in
polynomial time a core-complete solution F of maximum weight for (G,T,w).
We then compare the weights of the two solutions found to each other and pick
one with the largest weight.

By Lemma 9, it holds for every core-complete solution F that T ∩ V (F )
belongs to the core of F , and moreover that |T ∩V (F )| ≤ 2. We first compute a
core-complete solution F with |T ∩V (F )| ≤ 1 of maximum weight. As T ∩V (F )
belongs to the core of F , we find that if |T ∩ V (F )| = 1, say T ∩ V (F ) = {u}
for some u ∈ T , then u has maximum degree at most 3 in F . Hence, in the case
where |T ∩ V (F )| ≤ 1, it suffices to compute a ≤1-part solution, 2-part solution
and 3-part solution for (G,T,w) of maximum weight and to remember one with
the largest weight. By Lemmas 2, 4 and 5, respectively, this takes polynomial
time.

It remains to compute a core-complete solution F with |T ∩ V (F )| = 2 of
maximum weight. By Lemma 9, it holds for every such solution F that both
vertices of T ∩ V (F ) are adjacent and are the only vertices that belong to the
core of F .

We consider all O(n2) possibilities of choosing two adjacent vertices of T to
be the two core vertices of F . Consider such a choice of adjacent vertices u1, u2.
So, u1 and u2 are the only vertices of degree at most 3 in the solution F that
we are looking for and moreover, all other vertices of T do not belong to F .

Suppose one of the vertices u1, u2 has degree 1 in F . First let this vertex
be u1. Then we remove u1 and all its neighbours except for u2 from G. Let G′
be the resulting graph. Let T ′ = T \ ({u1} ∪ (N(u1) \ {u2})), and let w′ be
the restriction of w to G′. We now compute for (G′, w′, T ′), a ≤1-part solution
and 2-part solution of maximum weight with u2 as center. By Lemmas 2 and 4,
respectively, this takes polynomial time.7 We then add u1 back to the solution
to get a solution for (G,w, T ). We do the same steps with respect to u2. In the
end we take a solution with largest weight.

So from now on, assume that both u1 and u2 have degree at least 2 in F . We
first argue that in this case both u1 and u2 have degree exactly 2 in F . For a
contradiction, suppose u1 has degree 3 in F (recall that u1 has degree at most 3
in F ). Let v1 and v′1 be two distinct neighbours of u1 in V (F ) \ {u2}. Let v2 be
a neighbour of u2 in V (F ) \ {u1}. As F is a T -forest, v1, v′1, v2 belong to distinct
connected components D1, D′1 and D2, respectively, of F −{u1, u2}. As the core
of F consists of u1 and u2 only, v1, v′1, v2 each have a neighbour x1, x

′
1, x2 in D1,

7 Strictly speaking, this statement follows from the proofs of these two lemmas, as we
have fixed u2 as the center.
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D′1 and D2, respectively. However, now x2, v2, u2, u1, x1, x
′
1 induce a 2P1+P4 in

F and thus also in G, a contradiction; see also Fig. 4.

u1 u2

v1 v′1 v2

x1 x′
1 x2

Fig. 4. The situation in Theorem 5 where u1 has degree at least 3 in F and u2 has
degree 2 in F ; this leads to the presence of an induced 2P1 + P4 (highlighted by the
black vertices and thick edges).

From the above we conclude that each of u1 and u2 has exactly one other
neighbour in F . Call these vertices v1 and v2, respectively. We consider all O(n2)
possibilities of choosing v1 and v2. As F is a T -forest, G−{u1, u2} consists of two
connected components D1 and D2, such that v1 belongs to D1 and v2 belongs
to D2.

Let G′ be the graph obtained from G by removing every vertex of T , every
neighbour of u1 except v1 and every neighbour of u2 except v2. Let w′ be the
restriction of w to G′. Then, it remains to solve Weighted Vertex Cut for the
instance (G′, v1, v2, w

′). By Lemma 3, this can be done in polynomial time. Out
of all the solutions found for different pairs u1, u2 we take one with the largest
weight. Note that we found this solution in polynomial time, as the number of
branches is O(n4).

As mentioned we take a solution of maximum weight from all the solutions
found in the above steps. The correctness of our algorithm follows from the fact
that we exhaustively considered all possible situations. Moreover, the number
of situations is polynomial and processing each situation takes polynomial time.
Hence, the running time of our algorithm is polynomial. ut

4 The Unweighted Variant

In this section, we present our polynomial-time algorithm for Subset Feedback
Vertex Set on (sP1 + P4)-free graphs for every s ≥ 0. As this problem is
a special case of Weighted Subset Feedback Vertex Set (namely when
w ≡ 1), we can use some of the structural results from the previous section.

Theorem 6. Subset Feedback Vertex Set is polynomial-time solvable on
(sP1 + P4)-free graphs for every s ≥ 0.

Proof. Let G = (V,E) be an (sP1 + P4)-free graph for some integer s, and let
T ⊆ V . Let |V | = n. As the class of (sP1 + P4)-free graphs is a subclass of the
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class of ((s+ 1)P1 + P4)-free graphs, we may impose any lower bound on s; we
set s ≥ 2. We aim to find a T -forest F of G of maximum size (recall that we call
T -forests solutions for our problem).

We first compute a maximum-size core-incomplete solution for (G,T ). By
Lemma 8, this takes polynomial time. It remains to compare the size of this
solution with a maximum-size core-complete solution, which we compute below.

By Lemma 9, we find that T ∩ V (F ) has size at most 2s − 2 for every
core-complete solution F . We consider all O(n2s−2) possibilities of choosing the
vertices of T ∩V (F ). For each choice of T ∩V (F ) we do as follows. We note that
the set of vertices of G−T that do not belong to F has size at most |T ∩V (F )|;
otherwise F ′ = V \T would be a larger solution than F . Hence, we can consider
all O(n|T∩V (F )|) = O(n2s−2) possibilities of choosing the set of vertices of G−T
that do not belong to F , or equivalently, of choosing the set of vertices of G−T
that do belong to F . In other words, we guessed F by brute force, and the number
of guesses is O(n4s−4). In the end we found in polynomial time a maximum-size
core-complete solution. We compare it with the maximum-size core-incomplete
solution found above and pick one with the largest size. ut

5 Conclusions

By combining known hardness results with new polynomial-time results, we
completely classified the complexities of Weighted Subset Feedback Ver-
tex Set and Subset Feedback Vertex Set for H-free graphs. We recall
that the classical versions Weighted Feedback Vertex Set and Feedback
Vertex Set are not yet completely classified (see Theorem 1).

We now briefly discuss the variant where instead of intersecting every T -
cycle, a solution only needs to intersect every T -cycle of odd length. These
two problems are called Weighted Subset Odd Cycle Transversal and
Subset Odd Cycle Transversal, respectively. So far, these problems be-
have in exactly the same way on H-free graphs as their feedback vertex set
counterparts (see [4] and [5]). So, the only open cases for Weighted Sub-
set Odd Cycle Transversal on H-free graphs are the ones where H ∈
{2P1 +P3, P1 +P4, 2P1 +P4} and the only open cases for Subset Odd Cycle
Transversal on H-free graphs are the ones where H = sP1 + P4 for some
s ≥ 1. As solutions F for these problems may only contain vertices of T of high
degree, we can no longer use our proof technique, and new ideas are needed.

We note, however, that complexity dichotomies of Weighted Subset Odd
Cycle Transversal and Subset Odd Cycle Transversal do not have
to coincide with those in Theorems 2 and 3 for their feedback vertex set coun-
terparts. After all, the complexities of the corresponding classical versions may
not coincide either. Namely, it is known that Odd Cycle Transversal is NP-
complete for (P2+P5, P6)-free graphs [6], and thus for (P2+P5)-free graphs and
P6-free graphs, whereas for Feedback Vertex Set such a hardness result is
unlikely: for every linear forest H, Feedback Vertex Set is quasipolynomial-
time solvable on H-free graphs [8].
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