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Abstract—The uptake of electric vehicles and distributed
energy generation is adding significant new demand to dis-
tribution networks, however it is unknown whether this can
be accommodated by existing infrastructure. This paper first
presents an Optimisation approach for determining the maximum
penetration of electric vehicles that can be accommodated within
a distribution network in conjunction with renewable energy
and battery storage. An alternative approach, utilising Network
Impact Tokens is then introduced, simplifying the original Opti-
misation approach while providing accurate results. The electric
vehicle hosting capacity of the network is then analysed with
increasing penetration of solar generation, battery storage and
the use of V2G, showing that distributed generation can increase
the the electric vehicle capacity by up to 38%.

I. INTRODUCTION

The rapid uptake of electric vehicles and distributed re-
newable energy generation technologies, such as rooftop solar
photovoltaic (PV) panels, are causing unprecedented power
demand and major issues in low-voltage distribution networks.
It is therefore important for distribution system operators
(DSOs) to assess their existing network infrastructure to de-
termine its readiness for accommodating EV charging, and
if required, analyse suitable approaches to increase the EV
hosting capacity.

A number of studies have calculated the hosting capacity
as the number of EVs which can charge simultaneously.
Four different optimal power flow models were compared
in [1] to calculate the maximum number of EVs that could
charge simultaneously at each hour of the day. The authors of
[2] constructed an optimisation problem considering reactive
power compensation provided by EV chargers to maximise
the number of charge points that could simultaneously operate
at peak load. Shaaban et al. [3] analysed optimal sizing and
location of distributed generation (DG) installations within the
network to maximise the penetration of EVs subject to network
constraints, based on EV charging at peak load. A multi-feeder
study was conducted in [4], evaluating the maximum number
of residential EV charge points that could be simultaneously
operated across the feeders before a voltage violation occurs.

Evaluating the hosting capacity with simultaneous charging
at peak load analyses the worst case scenario, however smart
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charging can enable significantly more EVs to be accommo-
dated, resulting in an underestimation of a network’s capac-
ity. Kamruzzaman and Benidris [5], presented a coordinated
charging strategy to increase the EV penetration by adjusting
the charge power based on EV type and journey distance.
Three charging strategies were presented in [6] with loss-
optimal charging resulting in the highest EV penetration as
the charging achieved a flatter load profile.

Interaction between high and medium voltage networks
was considered in [7], with the hosting capacity of EVs and
PV maximised by optimally utilising available resources and
the flexibility of EVs. Zaidi et al. proposed a cumulative
distribution function approach for determining the maximum
penetration of EVs considering voltage unbalance and voltage
drop [8]. Parallel computing was utilised in [9] to significantly
reduce the computational time for determining the EV hosting
capacity using a binary search and power flow confirmation
method. Other studies, including [10] also calculated the
the hosting capacity by iteratively increasing the number of
vehicles in the study until network constraints were violated.
This iterative approach of evaluating a number of EVs in the
network against any constraints before adjusting the number
accordingly and repeating the study can be significantly slower
than calculating the maximum penetration through a single
optimisation problem, as power flows or optimisations must
be computed at each iteration before the maximum penetration
is found. In addition, the load profiles selected during each
iteration can have a big impact on whether a given penetration
can be accommodated.

The EV hosting capacity can also be found through the
calculation of the capacity of the network to accommodate
extra load in addition to the base load. The authors of [11]
maximised the Distribution System Loading Margin (DSLM)
based on a Monte Carlo simulation of the daily demand profile
subject to network constraints, with the expected maximum
EV penetration then calculated for uncontrolled and smart
EV charging strategies. The smart charging approach took
the uncontrolled EV charging profile as an input, solving an
optimisation problem to maximise the penetration of charging
EVs. The additional load that the network could accommodate
over peak load conditions was calculated in [12] by raising the
load at each node individually by a set amount and performing



a power flow study to determine whether any grid limits
are violated. The concept of Hourly Extra Available Power
(HEAP) was presented in [5], calculated by increasing the
hourly power at nodes until the voltage limits were violated.
The smart charging strategy then incorporated the HEAP to
determine the charge rate for each EV and the number of
EVs that can charge. Zhao et al. proposed the EV Chargeable
Region model as a scheduling strategy to maximise the EV
hosting capacity for each node, utilising shunt capacitors and
voltage regulators [13].

However, there is little research into determining the maxi-
mum EV penetration when DG and V2G are also considered,
and network load capacity approaches have not yet been
applied to studies involving these additional energy resources.

This paper presents an optimisation problem to calculate the
maximum penetration (hosting capacity) of EVs that a resi-
dential distribution network can accommodate in conjunction
with solar PV, energy storage, smart EV charging and V2G.
The maximum EV penetration is defined here as the number
of EVs, expressed as a percentage of the number of houses
in the network, that are able to recharge fully within the 24h
period, subject to network power limits and constraints on the
EVs movements and charging. Maximising the number of EVs
that depart fully charged ensures optimal usage of the network
and energy resources - no alternative control strategy for EV
charging, discharging and renewable resources can result in a
greater number of EVs departing fully charged. A Monte Carlo
simulation is performed to evaluate the capacity of the network
under a variety of baseload, EV demand and driving patterns,
and renewable energy generation profiles to capture real-world
variations. An alternative load capacity based method, referred
to as the Network Impact Token approach is then proposed to
simplify and speed up the hosting capacity calculation. The
results of the study show the importance of energy resources
in facilitating EV charging and also enables DSOs to model
the impact of new demand profiles and cost-effectiveness of
potential network hardware upgrades on the maximum EV
penetration.

II. OPTIMISATION APPROACH

In this section, the optimisation problem for calculating the
maximum EV penetration is presented.

A. Network Model and Load Profiles

A 24 hour period is studied, from 8am to 8am the next
day, using the IEEE 2015 Low Voltage European Test Feeder,
which supplies 55 houses across 3 phases [14].

A set of 1000 summer baseload profiles have been generated
based on real load profiles provided by Electricity North
West [15]. Similarly, 1000 solar generation profiles have been
generated with each house assigned a solar array capacity of
either 3, 5 or 7 kWp to generate its PV generation profile. The
base solar irradiance data is for June to analyse the greatest
impact of solar generation on the EV hosting capacity [16]. A
set of EV profiles have been generated based on estimated
travel patterns, with the majority of EVs departing in the

morning to travel to work and returning early evening, with
other EVs remaining at home but potentially making another
journey later in the day. The energy requirements of EVs have
been randomly selected based on the premise that increasing
EV ranges will mean that multiple journeys are made before
EVs are plugged in to recharge. Every house is allocated an
EV to enable any set of EVs to fully charge, independent of
their location in the network and chosen load profiles.

The 24-hour period is divided into 144 timesteps of ten
minute duration, with all loads assumed to be constant over
the ten-minute period. The total number of timesteps is defined
as T , while t refers to any one of the individual steps with
duration ∆T . The number of houses in the network is denoted
K, and the set of all houses, K.

B. Network Initialisation

A series of power flow studies are first performed on the
network to determine parameters used in the optimisation
problem. For these studies, every house is allocated the same
generic baseload profile, and no DG, battery storage or EVs
are considered in the network at this point. The benefit of using
the generic load profile is that the power flow results generate
a set of parameters specific to the networks’ topology and
hardware (e.g. line impedances, phase connections etc) and
only have to be run once for a given network topology, but
can be used to estimate the effect of any loads on the network.

Firstly, a power flow study is run for the entire network
across all timesteps. A single timestep is then chosen (such
as t = 100), and for each house in turn the generic baseload
value is increased by 1 kW and the power flow re-run. Lastly,
the previous step is repeated but by decreasing the load by 1
kW at each house instead. The results of this process allow the
voltage and current sensitivity matrices to be calculated, which
are defined as the change in voltage at each node and change in
current in each line as a result of a change in load at a different
node. The four calculations of positive (increased load) and
negative (decreased load) voltage sensitivity matrices, W+

and W−, and current sensitivity matrices L+ and L− are
based on the approach given in [17].

C. Optimisation Problem

As the maximum EV hosting capacity of a network depends
on a number of factors, such as the baseload, DG energy
production, EV energy requirements and movement patterns,
a Monte Carlo simulation is used to calculate the distribution
of the maximum EV penetration as these vary. At each repeat
of the Monte Carlo, each household is allocated a random
baseload and EV profile, and a random group of houses are
allocated solar DG profiles in accordance with the desired
DG penetration of the study, and the following optimisation
problem is solved. In total, 1000 repeats are completed to see
the distribution in EV hosting capacity caused by variations
in these factors.

1) Optimisation Objective: The optimisation maximises the
number of EVs that reach full charge by departure:



ΛEV
max = max

χenergy

ΛEV (1)

where ΛEV
max is the maximum EV penetration of the network,

χenergy is the controllable set of energy resources, consisting
of the charge and discharge rate of each EV, the amount
of discharging of the stationary battery, the amount of solar
energy used for loads and battery charging and Ψk, and ΛEV

is the percentage of EVs that fully charge, calculated by:

ΛEV =
1

K

∑
k∈K

Ψk × 100 (2)

where Ψk is a binary indicator variable denoting if the EV at
house k achieves full charge.

2) Baseload: Because the power flows were computed
using the generic load profile, the difference between the real
baseload and generic profile must be calculated and included
in the optimisation as an additional load.

BLt
∆k

= BLt
realk

−BLt
generic (3)

3) Distributed Generation and Battery Storage: The pen-
etration of distributed generation ΛDG, is defined as the
percentage of houses that have installed solar PV panels and
battery storage. A random set of houses in the network are
allocated DG based on ΛDG. The use of these energy resources
is constrained in the optimisation problem subject to:

Solar power produced PDG,k can either be consumed by the
network P t

DGcons,k
, stored in the house’s battery P t

DGbat,k
, or

must be curtailed P t
DGcurtail,k

:

P t
DG,k = P t

DGcons,k + P t
DGbat,k

+ P t
DGcurtail,k

(4)

The amount of energy stored in the battery at house k at time
t is given by Bt

storek
. The initial energy stored in the battery

at t = 0 is 0 kWh, and cannot fall below 0 kWh, nor exceed
the battery’s capacity Bcapk

of 7 kWh.

Bt
storek

= B0
storek

+

t∑
n=1

(
Pn
DGbat,k

− Pn
batdis,k

)
·∆T (5)

where Pn
batdis,k

is the battery discharge rate at timestep n. The
battery charge rate must be less than or equal to the power
produced by the PV panels, and the maximum discharge rate
is set to 7 kW.

0 ≤ P t
DGbat,k

≤ P t
DG (6)

0 ≤ P t
batdis,k

≤ 7 (7)

4) Electric Vehicles: The EV charge rate P t
EVch,k

is con-
strained as:

−3 ·ΨV2G ≤ P t
EVch,k

≤ 7 · EVpresent (8)

where ΨV2G is a binary variable indicating whether V2G is
enabled. The maximum discharge rate of the EV battery for
V2G is set as -3 kW, the maximum EV charge rate is set at 7
kW and EVpresent,k is a binary value indicating if the EV is

at home and able to charge. The state of charge (SoC) of the
EV at house k is given by:

SoCt
k = SoCin,k − SoCt

J,k +×
t∑

n=1

P t
EVch,k

· ∆T · η
Bcap,k

(9)

where SoCin,k is the initial SoC of EV k, SoCt
J,k is the SoC

consumed by the EV on any journeys between t = 1 and
the current timestep t, η is the charging efficiency (90%) and
Bcap,k is the battery capacity of the EV.

If EV k can be scheduled to fully charge by its departure
time Tdep, SoCdeficit,k equals 0. Two binary indicator vari-
ables are used to indicate whether full charge is achieved - if
so, Ψk = 1 and Ψ−

k = 0.

SoCdeficit,k = 1− SoC
Tdep

k (10)

Ψ−
k ≥ SoCdeficit,k ≥ −1 ·Ψk (11)

Ψk +Ψ−
k = 1 (12)

To prevent some EVs from fully discharging to further
increase the number of fully charged EVs, a final constraint
ensures that if an EV engages in V2G, it cannot leave with a
lower SoC than when it arrived.

T∑
t=1

P t
EVch,k

≥ 0 (13)

5) Constraints on the Distribution Network: The opera-
tion of the distribution network is subject to constraints on
transformer power, maximum line currents and bus voltages.
Absolute values are taken of the power flow results for
compatibility with Matlab’s optimisation solvers.

The voltage at each house node k resulting from additional
baseload, EV charging and DG is given by:

Vk,3ϕ = |V 3ϕ
k |+W+

k,j ×
(
P t
EVch,j

+BLt
∆j

)
+W−

k,j ×
(
P t
batdis,j

+ P t
DGcons,j

)
∀j ∈ K

(14)

Similarly, the line currents at line segment l are given by:

Il,3ϕ = |I3ϕl |+ L+
l,j ×

(
P t
EVch,j

+BLt
∆j

)
+ L−

l,j ×
(
P t
batdis,j

+ P t
DGcons,j

)
∀j ∈ K

(15)

The load on the transformer is given by:

Strans =

3∑
ϕ=1

|Vtrans3ϕ | · I1,3ϕ (16)

where V 3ϕ
k is the voltage at house k and I3ϕl is the current

at line l calculated from the initial power flow study, Vtrans3ϕ

is the transformer voltage and I1,3ϕ is the current in the first
line of the feeder at each phase.

The optimisation constraints are formulated as:

V
¯
≤ |Vk,ϕ| ≤ V̄ ∀k, ϕ (17)

|Il,ϕ| ≤ Imaxl,ϕ
∀l, ϕ (18)

Strans ≤ Stransmax (19)



where V
¯

and V̄ are the lower and upper voltage bounds of the
network, -6% and +10%, respectively, Imaxl,ϕ

is the maximum
current rating of line l, and the maximum power rating of the
transformer is Stransmax .

III. NETWORK IMPACT TOKEN APPROACH

While the Optimisation approach provides an accurate
method for calculating the maximum EV penetration in a dis-
tribution network, it is extremely slow to solve and performing
sufficient repeats of a Monte Carlo simulation to calculate
a reliable value for the maximum EV penetration can take
several days. Therefore, a faster approach is required to enable
DSOs to use this approach to quickly analyse the impact of
different loads and network hardware on the EV capacity.

Therefore, this novel Network Impact Token approach is
proposed which utilises the calculation of the capacity of
the network to accommodate additional load to speed up the
EV capacity calculation. Loads at each house have different
impacts on the amount of spare capacity remaining within
the network, based on its location in the network and phase
connection, termed here the house’s Network Impact Value
(NIV). Combined with the extra network capacity, the problem
can be reformulated in terms of these values, rather than the
network power constraints, while still ensuring the network
operates within its limits.

A. Calculating the Load Capacity of the Network

As with the Optimisation approach in Section II, an ini-
tialisation stage calculates the voltage and current sensitivity
matrices and the amount of load capacity in the network. A
new optimisation problem is solved to calculate the amount
of additional load each house can use without violating the
network constraints during each timestep:

max
LC

T∑
t=1

∑
k∈K

LCt
k (20)

where LCk,t is the amount of additional load capacity avail-
able to house k at time t. Constraining this problem by the
network’s voltage, current and power limits (17)-(19) moves
the complexity of ensuring that these limits are not violated
from the main problem of calculating the maximum EV
penetration to this initialisation phase, dramatically increasing
the speed with which the EV capacity can be calculated.

This optimisation problem calculates a value of the load
capacity for each house k at each timestep t, subsequently
referred to as the number of Network Impact Tokens (NITs)
available, denoted as NIT t

availk
. The total NIT capacity across

the entire network is then given by:

NIT t
capacity =

∑
k∈K

NIT t
availk

(21)

As with the voltage and current sensitivity matrices, the
same approach is used to find the change in NIT t

capacity

resulting from an increase and decrease in load at each house.
The two resulting values for each house are that house’s NIVs,
NIV +

k and NIV −
k , respectively. Solar power generation,

battery discharge and V2G can further increase the total
number of NITs available. Every load or power injection in
the network is equated to a number of NITs, given by (22)
and (23), respectively.

NITload,k = Pload,k ·NIV +
k (22)

NITgen,k = Pgen,k ·NIV −
k (23)

where NITload,k is the number of NITs required to accom-
modate a load of Pload,k kW and NITgen,k is the number
of NITs generated for the network as a result of generation
of Pgen,k kW. To calculate the maximum EV penetration, the
same optimisation problem is solved as presented in Section
II, but without the grid constraints in Section II-C5. To ensure
that the charging of EVs and use of other energy resources
does not violate any network limits, this new constraint is
added to the optimisation problem instead:

NIT t
capacity +

∑
k∈K

NIT t
gen,k ≥

∑
k∈K

NIT t
load,k (24)

IV. RESULTS AND DISCUSSION

With a DG penetration of 50% and the use of V2G, Figure 1
shows the distribution of the maximum EV penetration values
calculated from each of the 1000 repeats of the Monte Carlo
simulation for the Optimisation and Network Impact Token
approaches.

Fig. 1. Comparison of distribution of maximum EV penetration calculated
from both optimisation and Network Impact Token approaches

It can be seen that the results generated from the NIT
approach match those calculated through the Optimisation
approach with a high level of accuracy, confirming its validity
and reliability in calculating the maximum EV penetration.
Key statistics for the two sets of results confirms this - the
mean EV penetration is 75.2% and 75.1% for the Optimisation
and NIT approaches, respectively, and the 20th percentiles
are both 71%. The 20th percentile has been chosen as the



overall EV penetration value for subsequent results, providing
a conservative estimate for the maximum network capacity.

A major advantage of the NIT approach is the significant
decrease in computational time to run the Monte Carlo sim-
ulation. Table I gives the average time in seconds to solve a
single repeat of the Monte Carlo simulation, showing that the
NIT approach can be calculated between 50-90 times faster
than the Optimisation approach, enabling sufficient repeats to
be performed to capture the variations in load, EV behaviour
and solar generation.

TABLE I
Average computation time for single repeat of Monte Carlo simulation

No V2G With V2G
DG Pen Optimisation NIT Optimisation NIT

0% 319.5 s 7.4 s 1440.5 s 15.6 s
25% 1349.0 s 22.9 s 2300.1 s 23.4 s
50% 2401.8 s 33.1 s 3296.2 s 41.5 s
100% 3687.6 s 47.8 s 4484.5 s 53.4 s

One of the key contributions of this study is to analyse
how the penetration of distributed generation and battery
storage, along with the use of V2G, affects the maximum EV
penetration. Figure 2 shows the maximum penetration of EVs
in the network as the penetration of Solar DG increases, both
with and without the use of V2G. As would be expected, as the

Maximum EV Penetration with Varying Penetrations of Distributed Generation
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Fig. 2. Maximum EV penetration under different penetrations of solar PV
installation and V2G usage within the network

penetration of solar PV and battery storage increases, the EV
penetration also increases due to the additional power available
in the network. Compared with 0% DG, the maximum EV
penetration can be increased by 38% if every house is equipped
with DG. However, the inclusion of V2G has little impact on
the maximum EV penetration, with at most 1 additional EV
accommodated with V2G.

V. CONCLUSION

A novel approach for calculating the maximum penetration
of EVs in a low-voltage distribution network has been pre-

sented. The proposed approach offers great flexibility allowing
DSOs to evaluate EV capacity in any scenario, and assess the
impact of renewable energy generation, battery storage and
V2G technologies on the maximum EV capacity. It is shown
that full DG penetration can increase the EV hosting capacity
by 38%. The Network Impact Token method retains a high
level of accuracy but offers significant computational speed
increases, enabling it to be used in a Monte Carlo simulation
and provide useful results to DSOs.
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