
Improved Distributed Algorithms for the Lovász Local Lemma and Edge
Coloring

Peter Davies∗

Abstract
The Lovász Local Lemma is a classic result in probability theory that is often used to prove the

existence of combinatorial objects via the probabilistic method. In its simplest form, it states that if
we have n ‘bad events’, each of which occurs with probability at most p and is independent of all but d
other events, then under certain criteria on p and d, all of the bad events can be avoided with positive
probability.

While the original proof was existential, there has been much study on the algorithmic Lovász Local
Lemma: that is, designing an algorithm which finds an assignment of the underlying random variables
such that all the bad events are indeed avoided. Notably, the celebrated result of Moser and Tardos
[JACM ’10] also implied an efficient distributed algorithm for the problem, running in O(log2 n) rounds.
For instances with low d, this was improved to O(d2 + logO(1) log n) by Fischer and Ghaffari [DISC ’17],
a result that has proven highly important in distributed complexity theory (Chang and Pettie [SICOMP
’19]).

We give an improved algorithm for the Lovász Local Lemma, providing a trade-off between the
strength of the criterion relating p and d, and the distributed round complexity. In particular, in the same
regime as Fischer and Ghaffari’s algorithm, we improve the round complexity to O(d

log d
+ logO(1) log n).

At the other end of the trade-off, we obtain a logO(1) log n round complexity for a substantially wider
regime than previously known.

As our main application, we also give the first logO(1) log n-round distributed algorithm for the
problem of ∆ + o(∆)-edge coloring a graph of maximum degree ∆. This is an almost exponential
improvement over previous results: no prior logo(1) n-round algorithm was known even for 2∆ − 2-edge
coloring.

1 Introduction
Our main focus in this paper is on distributed algorithms for the the Lovász Local Lemma.

1.1 The Lovász Local Lemma The Lovász Local Lemma (LLL) is a classic result in probability theory,
often used to prove the existence of combinatorial objects by the probabilistic method. Its setup is as follows:

Consider a set V of independent random variables, and a family X of n (bad) events on these variables;
we wish to avoid satisfying any of these events. Each event A ∈ X depends on some subset V(A) ⊆ V of the
variables. Define the dependency graph GX = (X , {{A,B} | V(A) ∩ V(B) 6= ∅}), i.e. the node set is the set
of events, and events are connected by edges if they depend on at least one of the same random variables.
Let d denote the maximum degree in this graph: that is, each event A ∈ X shares variables with at most
d other events B ∈ X . Finally, define p = maxA∈X Pr [A], i.e., an upper bound on the probability of any
particular bad event occurring.

The (symmetric1) Lovász Local Lemma then states the following:

Theorem 1.1. (Lovász Local Lemma [14, 35]) If epd ≤ 1, then there exists an assignment of the
random variables that avoids all bad events.

∗Durham University. Email: peter.w.davies@durham.ac.uk
1The symmetric LLL is a special case of the more general aymmetric version, which allows for differing probabilities and

dependency degrees between events. In this paper we study only the symmetric LLL, and leave extension to the asymmetric
case for future work.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4273

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

peter.w.davies@durham.ac.uk

We will call such an solution a valid assignment. The condition epd ≤ 1 is known as the LLL criterion -
this particular version is due to Shearer [35], but other criteria are also studied (in particular, criteria with
more ‘slack’ often permit faster algorithms for finding the assignment, as we will discuss shortly). Note that
the existence of a valid assignment does not depend on the number of bad events n, only on the degree of
dependence d. So, the lemma is useful in situations when n > 1/p, in which case simply taking a union
bound over all events would not give a positive probability of avoiding all of them.

Since the Lovász Local Lemma is defined on a dependency graph, it makes sense to study the problem
of finding a valid assignment as a distributed graph algorithm. We will be concerned with algorithms in
the well-known LOCAL model of distributed computing, first introduced by Linial [25], and this is what we
will mean when referring to distributed algorithms (we will not consider other distributed models such as
CONGEST in this work).

1.2 The LOCAL Model of Distributed Computing The model is based on an undirected graph
G = (V,E). Nodes (also known as vertices) of the graph are allowed to perform unlimited computation on
information they possess; initially they see only their adjacent edges. We will denote n := |V | to be the
number of nodes in the graph, and ∆ to be the maximum node degree.

Algorithms proceed in synchronous communication rounds, in which nodes may send unlimited messages
to each of their neighbors. The goal is to minimize the number of communication rounds required to give a
correct output at each node.

We will work in the randomized model randLOCAL, in which nodes each have access to their own local
stream of random bits. We are concerned with designing algorithms that succeed with high probability
(w.h.p.) in n, i.e. with probability at least 1− n−c, for some c ≥ 1.

1.3 The Distributed Lovász Local Lemma In the LOCAL model is defined as follows. The underlying
input/communication graph is GX . This means that it is the bad events that are the nodes performing
the computation in the LOCAL model, and nodes can communicate directly iff their corresponding events
share dependent variables. We wish to design algorithms to find a valid assignment of variables, under the
conditions in which the Lovász Local Lemma guarantees that such an assignment exists. At the beginning of
the algorithm, nodes know only the details of their own bad event and dependent variables, and at the end
they must output values for all their dependent variables. These values must be consistent (i.e. all nodes
for events dependent on a particular variable must output the same value for that variable), and must avoid
satisfying any bad event.

We note that the details of how exactly an instance of the LLL is represented in the LOCAL model are
not generally very important; there are other reasonable ways to conduct this representation, but all are
equivalent up to a constant factor in algorithmic round complexities.

The distributed Lovász Local Lemma has proven to be key to the study of distributed complexity. For
locally-checkable labelling problems (LCLs), on constant-degree graphs, it is the canonical complete problem
for the class of problems with Θ(logn) deterministic complexity and logΘ(1) logn randomized complexity
[10]. It also has implications for derandomization [19], and for connections between the LOCAL model and
descriptive combinatorics [5].

The wide scope of implications for distributed LLL algorithms stem from their utility as meta-algorithms
for other problems. This is arrived at as follows: if a randomized distributed algorithm A for some other
problem P succeeds at each node with some probability that is

• sufficiently high with respect to the maximum degree ∆, but

• not high enough to take a union bound over all n nodes in the graph (i.e., not w.h.p. in n),

then the Lovász Local Lemma can be used to show that with positive probability the algorithm does indeed
succeed globally - that is, there exists an assignment of each node’s input randomness such that A produces
a correct output for P at every node. An LLL algorithm applied to this instance can then find such a
valid assignment of input randomness, and simulating A using this randomness solves P . In this way, LLL
algorithms can be used to amplify the success probability of other algorithms.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4274

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1.4 Distributed Edge Coloring Our main application of the LLL result we present will be to edge
coloring. Edge coloring is often cited as one of the four classic local distributed graph problems, along with
maximal independent set, maximal matching, and vertex coloring (e.g. [32, 16]). The goal is to assign colors
from a palette to all of the edges of the input graph, in such a way that no two edges which share an endpoint
are given the same color.

The size of the available palette greatly affects the difficulty of the problem. A sequential greedy
algorithm can color all edges using 2∆ − 1 colors, since any edge is adjacent to at most 2∆ − 2 others so
would always have a color available however its adjacent edges were colored. This property makes 2∆−1-edge
coloring particularly amenable to distributed algorithms. It is also a special case of ∆ + 1-vertex coloring,
since one can consider the problem as vertex coloring the line graph of the original input graph.

A poly(logn)-round deterministic LOCAL algorithm for 2∆ − 1-edge coloring was found by Fischer,
Ghaffari, and Kuhn [16], which, when combined with randomized algorithms of [13, 3], also implied a
poly(log logn)-round randomized round complexity. Unlike for ∆ + 1-vertex coloring, this came prior to the
network decomposition result of Rozhoň and Ghaffari [34], which implied poly(logn)-round deterministic
algorithms for many problems including the four listed above (a ∆ + 1-vertex coloring algorithm which does
not rely on network decomposition was, however, found later [20]).

A further difference from ∆ + 1-vertex coloring is that, while some graphs (namely cliques and odd
cycles) require ∆ + 1 colors to be properly vertex-colored, edge coloring can potentially be done using far
fewer than the 2∆ − 1 colors required by a greedy algorithm. Vizing’s classic theorem [36] states that all
graphs can be edge colored using only ∆ + 1 colors; however, such colorings are hard to find in a distributed
fashion (though a recent paper by Bernshteyn [6] gives a poly(∆, logn)-round deterministic algorithm for
doing so).

It remains a major open question to determine how close one can get to the optimal ∆ + 1 palette size
with an efficient distributed edge-coloring algorithm. Here, ‘efficient’ would most commonly mean poly(logn)
rounds for a deterministic algorithm and poly(log logn) rounds for a randomized algorithm, as for 2∆−1-edge
coloring, though round complexities parameterized by ∆ are also of interest.

2 Previous Work
In this section we discuss prior work on the Lovász Local Lemma and edge coloring.

2.1 Lovász Local Lemma The Lovász Local Lemma was first introduced and proven by Erdős and
Lovász [14]. Sequential algorithms to find valid solutions began with Beck [4], followed by a sequence of
improvements [1, 12, 27, 28], culminating in the celebrated result of Moser and Tardos [29].

Distributed Algorithms Moser and Tardos’s result [29] also implied the first distributed algorithm
for the problem, running in O(log2 n) rounds of randLOCAL for LLL criterion ep(d + 1) < 1 − ε (for any
constant ε > 0). However, the distributed LLL was not explicitly studied until the work of Chung, Pettie
and Su [11], which, using a similar approach, presented an O(log2 d log1/ep(d+1) n)-round algorithm for the
criterion ep(d + 1) < 1 (which was subsequently improved to O(log d log1/ep(d+1) n) rounds [17]), and an
O(log1/epd2 n)-round algorithm for the criterion epd2 < 1.

Taking a different algorithmic approach inspired by that of Molloy and Reed [27], Fischer and Ghaffari
[15] give improved algorithms for low-degree graphs, which were later extended by Ghaffari, Harris, and
Kuhn [19]. An implication of these two works, combined with the subsequent polylogarithmic network
decomposition of Rozhoň and Ghaffari [34], is an algorithm for the constructive Lovász Local Lemma taking
O(d2 + logO(1) logn) rounds, under the criterion p < d−c for some sufficiently large constant c. We will
call LLL criteria of this type polynomially-weakened, following [19]. Note that, for polynomially-weakened
criteria, the algorithm of Chung, Pettie and Su [11] requires only O(logd n) rounds, and so the overall
state-of-the-art round complexity is O(min{d2 + logO(1) logn, logd n}).

A lower bound of Ω(logd logn) rounds is known [7], even for the much weaker criterion p ≤ 2−d, while the
best algorithmic round complexity for that criterion remains the O(min{d2 + logO(1) logn, logn

d }) given by
the algorithms mentioned above [11, 15, 19, 34]. However, Brandt, Grunau and Rozhoň[8] demonstrated that

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4275

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

weakening the criterion any further makes the problem substantially more tractable, giving an O(d2+log∗ n)-
round deterministic algorithm for the criterion p < 2−d.

2.2 Edge Coloring As mentioned, the ability to color greedily makes 2∆ − 1 edge coloring particularly
amenable to distributed algorithms, and a randomized procedure of Elkin, Pettie and Schneider [13] combined
with a deterministic algorithm of Fischer, Ghaffari, and Kuhn [16] yielded the first poly-log-logarithmic
randomized round complexity of O(log9 logn) for the problem. This round complexity was later improved to
O(log6 logn) [19] and then to Õ(log3 logn) [23]. Very recently, a poly(log ∆)+O(log∗ n)-round deterministic
algorithm was also given for the problem [2].

With fewer colors, however, the complexity is less straightforward. The leading work is a beautiful
result by Chang et al. [9], who give an algorithm for (1+ε)∆-edge coloring (for any function ε = ω(log2.5 ∆√

∆
))

based on the Lovász Local Lemma, with a round complexity of O(log 1/ε · TLLL(n, d, p) + logO(1) logn).
Here, TLLL(n, d, p) is the time required for a randomized LLL algorithm with parameters n, d = ∆O(1), and
p = exp(−ε2∆/ log4+o(1) ∆). This bound has a wide variety of implications dependent on the parameters
and LLL algorithm used, but we point out three regions of particular interest to us:

• When using Fischer and Ghaffari’s LLL algorithm [15], the round complexity is poly(∆, log logn).

• When using Chung, Pettie, and Su’s LLL algorithm [11] (or indeed Moser and Tardos’s [29]), the round
complexity is poly(logn).

• When ε = Ω(log3 n√
∆

), no LLL algorithm is required (since all bad events are avoided with high probability
under initial sampling), and the overall round complexity is O(log(1/ε) + log∗ n). However, this only
improves over a greedy coloring (i.e. uses fewer than 2∆− 1 colors) when ∆ = Ω(log6 n).2

If our aim is an edge coloring with fewer than 2∆ − 1 colors in poly(log logn) randLOCAL complexity,
results are known only for when ∆ is either logO(1) logn (using [15]) or logΩ(1) n (setting ε = log−O(1) n such
that no LLL algorithm is needed). That is, there is a range of ∆ between logω(1) logn and logO(1) n for
which no logO(1) logn-round algorithm exists for edge coloring using even 2∆− 2 colors. It is this range of
∆ for which the distributed LLL is most difficult, and on which this work is focused.

Regarding deterministic algorithms for edge coloring with fewer than 2∆− 1 colors, Ghaffari et al. [21]
gave poly(logn)-round deterministic algorithms for 3∆/2 edge coloring, and for ∆+o(∆) edge coloring when
∆ = Ω̃(logn). As a consequence of [19, 34], the algorithm of Chang et al. [9] can be derandomized in LOCAL
at a polylogarithmic overhead, and therefore gives deterministic (1 + ε)∆-edge coloring (for ε = ω(log2.5 ∆√

∆
))

in poly(logn) rounds (using the LLL algorithm of [11] or [29]).
On the lower bound side, Chang et al. [9] also show an Ω(log∆ logn)-round randomized lower bound and

an Ω(log∆ n)-round deterministic lower bound for 2∆−2 edge coloring, while for 2∆−1 edge coloring only a
Ω(log∗ n)-round lower bound is known [26, 30], further demonstrating the sharp increase in the difficulty of
the problem when using fewer than 2∆−1 colors. For an excellent tabular overview on the prior work for both
distributed LLL and edge coloring, see Chang et al. [9] (though note that the subsequent polylogarithmic
network decomposition result [34] improved some of the stated bounds).

3 Our Results and Approach
In this section we outline our main results, and the ideas needed to attain them.

3.1 Results Our main result is an improved randomized algorithm for the distributed Lovász Local
Lemma. In a slightly simplified form, the result is the following:

2These illustrative parameters are chosen for clarity rather than optimality, and so this threshold for ∆ can be reduced
somewhat, but is still necessarily above log n.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4276

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Theorem 3.1. (Simplified version of Theorem 7.1) There is some constant c such for 1 ≤ r ≤ d
log d ,

LLL with criterion p ≤ 2−cdr can be solved in O(r+ logO(1) logn) rounds of randLOCAL, succeeding with high
probability in n.

This result is a trade-off between LLL criterion strength and round complexity, and improves round
complexities over a wide range of criteria. For the commonly-studied regime of polynomially-weakened LLL
criteria, this improves the round complexity from the O(d2 + logO(1) logn) of Fischer and Ghaffari [15] to
O(d

log d + logO(1) logn). At the other end of the spectrum, it provides a logO(1) logn-round algorithm for

LLL with the criterion p ≤ min{d−c, 2
−d

logO(1) logn } (for some constant c), improving substantially over prior
results and coming within a polynomial factor of the Ω(log logn)-round lower bound of Brandt. et al. [7].

As our main application, we use our LLL algorithm to improve the complexity of edge coloring using
fewer than 2∆− 1 colors:

Theorem 3.2. Let ε = ω(log2.5 ∆√
∆

) be a function of ∆. There is an algorithm for (1 + ε)∆-edge coloring
taking poly(1/ε, log logn) rounds of randLOCAL, succeeding with high probability in n.

The exact landscape of round complexities for (1 + ε)∆-edge coloring is complex, with different results
taking precedence at different regimes of n, ∆, and ε. The most important regime in which Theorem
3.2 improves over previous results is when whenever ∆ is between logω(1) logn and log1−Ω(1) n, which was
previously the hardest case. This improvement implies an efficient randomized algorithm for ∆ + o(∆)-edge
coloring across the whole range of ∆ (as a function of n):

Corollary 3.1. ∆+o(∆)-edge coloring can be performed in logO(1) logn rounds of randLOCAL, succeeding
with high probability in n.

Previously no such result was known for ∆ between logω(1) logn and log1−Ω(1) n. Indeed, for ∆ = logδ n,
with constant δ ∈ (0, 1), no prior logo(1) n-round algorithm was known even for 2∆− 2-edge coloring.

3.2 Approach We next discuss the new techniques our algorithms employ to attain the improved round
complexities.

LLL Algorithm for Resilient Instances Let us first consider the LLL algorithm of Fischer and
Ghaffari [15], which consists of an O(d2 + log∗ n)-round randomized procedure to shatter the graph into
small pieces, followed by a logO(1) logn-round deterministic post-shattering procedure. It proceeds by first
computing an O(d2)-vertex coloring of the square of the LLL graph; that is, it assigns colors to the vertices
of GX such that no vertices within distance 2 share the same color. Then, the color classes are iterated
through. Nodes in the active color class sample their unsampled dependent variables one-by-one (recall that
nodes in a distributed LLL instance correspond to bad events, which are dependent on some subset of the
set V of underlying variables). If sampling a variable causes one of its dependent events to become dangerous
(informally, too likely to occur), then this is detected by the sampling node, which reverts that variable.
All the remaining unsampled dependent variables of a dangerous event are frozen, meaning they will not be
sampled during the randomized procedure and are instead left to the deterministic procedure.3

The distance-2 coloring ensures that, at any point, each event only has at most one of its dependent
variables sampled at a time (since at most one of its neighboring nodes can be active). This allows the
analysis to constrain how much damage any particular variable sampling can do, and ensure that the instance
always remains satisfiable using the already-sampled values (minus the ones that were reverted). After the

3The version of Fischer and Ghaffari’s algorithm described here is the preprint version (https://arxiv.org/abs/1705.04840),
since this version is closest to our own algorithm and provides the best intuition for our changes. However, it contains a minor
error in the analysis of events with reverted variables, inherited from [27] (see discussion in [31]). As a result, the corrected
published version of [15] no longer reverts variables. We remark, though, that a correct version that still reverts variables
is possible, for example by freezing the dependent variables of any event that has a variable reverted, rather than just the
dangerous event that caused the variable to be reverted.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4277

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/1705.04840

randomized procedure, it is shown that most nodes have all of their variables sampled, and the remaining
graph (induced by nodes who still have unsampled variables) shatters into small pieces of size poly(d) logn.
Then, a deterministic algorithm can be used to fix values for these remaining variables in logO(1) logn rounds.
We detail this shattering and deterministic process in Section 4.

We wish to improve over the O(d2) term, which means we cannot afford to iterate through a distance-2
coloring. Instead, we assume we are equipped with a partition of the vertices into fewer than d2 parts (in
fact, we will always use at most O(d

log d)), and iterate through the parts of that instead. We also assume we
have an allocation of variables to one of their dependent events - this event will be responsible for sampling
that variable (we can always use an arbitrary allocation, but in some cases one with better properties may
be clear).

The problem with iterating through this partition rather than a distance-2 coloring is that nodes no
longer have only one of their dependent variables sampled at a time - in fact, all of their neighbors in one
part of the partition will sample all of their allocated variables at once. This can cause bad events to rapidly
become too likely, especially when variables are reverted. One of the changes we make to combat this is that,
rather than reverting individual variables, active events must revert all of their allocated variables if one
causes a neighboring event to become dangerous. This limits the amount of possible reversion combinations
we must consider.

To analyze this, we adapt the definition of an event becoming dangerous, and introduce a property that
we call resilience to quantify whether an LLL instance can withstand multiple events sampling and reverting
their allocated variables simultaneously. This concept of resilience can be seen as an extension of that of
fragility in [19]. The resilience of an LLL instance depends on the event partition chosen. Therefore, to show
a result for the general LLL, we must first show how to find good partitions.

We note that the result for resilient instances is stronger than that for the general LLL, and may be of
independent interest since in some applications it may give better results when used directly.

General LLL Algorithm The property we want from a good partition is simple: we just require that
any node has few neighbors in each part of the partition, since again this will help limit the number of
possible reversion combinations. We call such a partition a ‘light partition’. In an interesting ‘bootstrapping’
fashion, we can find such a light partition by framing the problem as a resilient LLL instance, and solving
it with our algorithm for resilient LLL.

Our algorithm for general LLL is then simply the algorithm for resilient instances, equipped with a light
partition. The difficulty is in proving that general instances are resilient using such a partition (and the
parameters of the partition depend on the criterion of the general LLL instance). We do so by essentially
taking a union bound over all possible variable reversion combinations, to show that with sufficiently high
probability an event would be able to withstand any of them.

Defective Colorings and ∆ + o(∆)-Edge Coloring The first applications we show of our LLL
algorithm are for defective colorings. Defective vertex coloring is a classic application of the LLL: it is a
relaxation of proper coloring in which nodes are merely required to have few (rather than no) neighbors of
their own color. We get improved results for both this and an edge coloring variant, the latter of which is
crucial to our main application of (proper) ∆ + o(∆)-edge coloring.

Specifically, by first employing a defective edge coloring to divide edges into buckets (and also evenly
dividing the colors in the palette among these buckets), we can reduce a (1 + ε)∆-edge coloring instance
(where ε = ω(log2.5 ∆√

∆
); this condition comes from [9]) into a collection of edge-disjoint instances that can be

solved in parallel (since their palettes are also disjoint). These instances have poly(1/ε) maximum degree,
and we use the properties of our defective edge coloring to show that they still have sufficient palette size to
be solvable. Then, the main result follows by applying the existing edge coloring algorithm of [9], equipped
with our general LLL algorithm (or that of [15]), to these smaller instances.

3.3 Concurrent Work Concurrently with our work, Halldórsson, Maus and Nolin [22] present results on
distributed vertex splitting problems, which are related to the distributed LLL. While their work focuses on
the CONGEST model and does not give results for the LLL, some techniques and applications are similar to
those here. In particular, they also give a logO(1) logn-round distributed algorithm for (1+ε)∆-edge coloring

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4278

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

(though only for constant ε > 0, rather than for ∆ + o(∆)-edge coloring).

3.4 Paper Structure The structure of the paper is as follows:

• In Section 4, we discuss the shattering framework that is used as the second part of our (and Fischer
and Ghaffari’s [15]) LLL algorithm.

• In Section 5, we define the concept of resilience, and present and analyze our LLL algorithm for resilient
instances.

• In Section 6, we define the light partitions that we wish to employ in the general LLL algorithm, and
show how to compute them using the LLL algorithm for resilient instances.

• In Section 7 we show how our algorithm, equipped with these light partitions, solves general LLL
instances.

• In Section 8 we apply the general LLL result to find improved defective colorings and edge colorings.

• In Section 9 we use these defective edge colorings to solve (proper) ∆ + o(∆)-edge coloring.

4 Lovász Local Lemma on Shattered Graphs
In this section, we outline the shattering framework that is used for sublogarithmic distributed LLL
algorithms. The idea is that, if we can employ a fast randomized process to fix some of the variable values,
in such a way that the LLL instance remains solvable and the residual LLL graph is shattered into small
components, then these remaining small components can be finished off using a deterministic algorithm.
This approach is, by now, well understood and utilized in many LOCAL algorithms; the following lemma is
implied by a combination of recent results [15, 19, 34], but we formally state it here and sketch a proof for
completeness.

Lemma 4.1. Consider an LLL instance on n vertices (bad events) with maximum degree d. Suppose we have
performed some random process which fixes the value of some variables, such that:

• the probability that a vertex v does not have all its dependent variables fixed is at most (ed)−4c, for
some constant c ≥ 1, and this bound holds even for adversarial choices of the random bits outside the
c-hop neighborhood of v;

• conditioned on the values of fixed variables, the probability (over sampling remaining variables from
their distributions) that any bad event v is satisfied is at most 1

ed2.1 .

Then, with high probability (over the randomness of this initial random process), the remaining variables
can be fixed in logO(1) logn rounds by a deterministic algorithm in such a way that no bad event is satisfied,
solving the LLL instance,

Proof. By Theorem V.1 of [19], the induced graph on residual vertices (those which do not have all variables
fixed) shatters into connected components of size at most O(d2c logn) w.h.p. (and we denote by N such an
upper bound on this size). Setting p = 1

ed2.1 , we now have a new LLL instance satisfying epd2.1 ≤ 1 on the
residual graph. The randomized LLL algorithm of [11] would solve this instance in O(logdN) = O(log logn)
rounds (with each connected component succeeding with high probability in N). Furthermore, we can obtain
an (O(log logn), O(log logn))-network decomposition of the residual graph in logO(1) logn rounds by [34] or
[18] (this is not entirely straightforward - we must first contract nodes into clusters to reduce the size of
connected components to O(logn), as in [15]).

The derandomization framework of [19], applied to the LLL algorithm of [11] and armed with the
(O(logn), O(logn))-network decomposition, then gives a deterministic algorithm to fix the remaining
variables, running in logO(1) logn rounds.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4279

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

For our subsequent LLL algorithms, the challenge is now to provide a fast randomized process meeting
the criteria of Lemma 4.1; from there, the lemma can be applied to reach the final output.

5 Lovász Local Lemma on Resilient Instances
In this section, we will present our LLL algorithm (Algorithm 1), and analyze it on instances with a property
we will call resilience. This property requires instances to be equipped with a partition Φ of the event set
X as input. Later on, in Section 7, we will show how to find partitions for which we can show resilience
for the standard general LLL problem, thereby turning Algorithm 1 into a general LLL algorithm. In some
applications, though, stronger results may be obtainable by using the version for resilient instances, and
proving resilience for the application directly.

5.1 Variable Allocation and the Allocated LLL Graph To reach our definition of resilience, we must
first define concept of an allocation of variables to events. This is a mapping of events to subsets of their
dependent variables, in such a way that we partition the entire space of variables.

Definition 5.1. An allocation of variables α is a function X → 2V such that for all A ∈ X , α(A) ⊆ V(A),
and for all v ∈ V, there is exactly one A ∈ X with v ∈ α(A).

We phrase an allocation as a function from events to subsets of variables since this will provide cleaner
notation in calculations, but it is easier to think of as a mapping of variables to one of their dependent events.
The purpose of the allocation is to fix which node (corresponding to an event) is responsible for sampling
each variable: our algorithm will only ever allow variables to be sampled by their allocated event.

In the analysis of our subsequent LLL algorithm, we will sometimes consider a restricted version of the
LLL graph, which we call the allocated LLL graph GXα . In this graph, we place an edge between events A
to B iff B depends on one of A’s allocated variables, or vice versa. That is, the edge {A,B} is in E(GXα) iff
(α(A) ∩ V(B)) ∪ (α(B) ∩ V(A)) 6= ∅. We will denote by dα the maximum degree in the graph. Note that
that dα ≤ d, since the edges in GXα are a subset of those in GX . Furthermore, any pair of adjacent events in
Gents are at distance at most 2 in GXα , since they are both adjacent to some event with an allocated variable
in V(A) ∩ V(B). Therefore, dα ≤ d ≤ dα2 + dα < 2dα2.

In the worst case, we can always use an arbitrary variable allocation (allocating variables to any event
which is dependent on them), and then dα can be as large as d. However, many applications of the distributed
LLL have natural allocations that provide better properties. For example, in vertex coloring problems, both
events and variables are associated with particular vertices of the input graph, and so we can allocate each
variable to the event for the corresponding input vertex. It therefore transpires to give us stronger bounds
for the eventual general LLL result and applications to use dα rather than d.

5.2 Description of LLL Algorithm Our algorithm will work as follows: we proceed in r rounds. In
round i, the nodes in part Φi of the partition will sample their allocated variables. This may make some
events dangerous (too likely to be satisfied; the formal definition is given in the algorithm). Any node in Φi
(i.e. that has just sampled its allocated variable values) which is within 1 hop (in GX) of a newly dangerous
node becomes reverted (joins set Ri+1). This means that is ‘undoes’ its choice of allocated variable values,
leaving those variables to be chosen later by the algorithm for shattered graphs (Lemma 4.1). The other
nodes in Φi are fixed (joining set Fi+1) - their allocated variables will use the sampled values in the ultimate
solution. We will refer to the allocated variables of fixed and reverted events as fixed and reverted variables
respectively.

Reverting variables in this way can increase the probabilities of events which depend upon these variables.
The formal definition of being dangerous is designed to ensure that we will still be able to avoid satisfying these
events with reverted dependent variables. However, we cannot risk sampling any more of their dependent
variables at this stage. So, any node within 2 hops (in GX) of a reverted event which has not already sampled
its allocated variables (i.e. is in some part Φj with j > i) becomes deferred (joining set Di+1). This means
that it will not sample its allocated variables in round j, and these variables will instead be chosen later by
the algorithm for shattered graphs (Lemma 4.1). We call the allocated variables of deferred events deferred

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4280

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

variables. By deferring events within 2 hops of reverted events, we ensure that events dependent on reverted
variables have no further dependent variables sampled in this stage of the algorithm (i.e. until the algorithm
for shattered graphs is applied later).

For the purposes of our analysis, we will use the perspective of a randomness table: imagine a table
with a column for each variable, and in which each row contains a value for that variable, sampled from
its distribution. To begin with these all values are hidden; when our algorithm calls for a variable to be
sampled, we reveal the next hidden entry in that variable’s column. We will only need the first two rows
of the table for the analysis of our algorithm. For a set S of variables, we will denote their first sampled
values (the first row in the randomness table) by S1, and the second by S2. The first sampled values of the
allocated variables of fixed nodes will be used in the ultimate solution. The second sampled values are just
considered for the sake of analysis - all other variables will actually have their values chosen by the algorithm
of Lemma 4.1.

5.3 Resilience To reason about the probabilities of events being satisfied during the analysis of our
algorithm (and also to define the resilience property we use to quantify the hardness of LLL instances), we
will need the following notation:

Notation 1. For an event A and a set of events S ∈ X , denote by AS the event that A is satisfied when
the allocated variables of events in S (denoted α(S)) take their second sampled value, and all others take
their first.

Notice that for any S, Pr [AS] = Pr [A]; however, specifying which sampled values are taken by variables
affects the correlation between events. In particular, our analysis will deal with the probabilities of such
events conditioned on some of the variables having their first values revealed already.

We then define resilience as follows:

Definition 5.2. Given an LLL instance, equipped with variable allocation α and event partition Φ =
{Φ1, . . . ,Φr}, for each event A ∈ X let A′ be the following event (determined by a given assignment to
the random variables V1):

A′ :=
⋃
i≤r,
S⊆Φi

{
PrV2 [AS] ≥ d−2.5} .

We call the instance Φ-resilient if for each event A,

PrV1 [A′] ≤ d−27 .

We call an instance r-resilient, for r ∈ N, if there exists some event r-partition Φ (i.e. with |Φ| = r) for
which the instance is Φ-resilient.

Intuitively, A′ is the event that, when some set of events S within a single part of the partition revert
their allocated variables, A becomes too likely to occur. A′ is an event defined on the variable values V1;
to evaluate whether A′ occurs we need to know these values (but the values V2 are still to be drawn from
their distributions). Φ-resilience then says, roughly, that each event remains unlikely to occur even if some
adversarially chosen subset of the events in any one particular part of Φ revert their allocated variables.

As mentioned, this definition is related to the concept of ‘fragility’ in [19]: in particular, fragility is
essentially equivalent in power to 1-resilience, i.e., when the partition Φ = {V}, and so the entire variable
set is considered at once. As we will show, our extension to use nontrivial partitions and r > 1 will greatly
increase the scope of applications.

5.4 Statement and Analysis of Algorithm 1 Our algorithm for the Lovász Local Lemma (currently
equipped with a partition Φ for which it is resilient, but we will later show how to choose such a partition
for the general case) is as follows (Algorithm 1):

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4281

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm 1 LLL(Φ)
Initialize F1, R1, D1 ← ∅
for i = 1 to r do

Initialize Fi+1 ← Fi, Ri+1 ← Ri, Di+1 ← Di

Each A ∈ Φi \Di samples allocated variables’ first values α(A)1 from their distributions
Any A ∈ X is dangerous if Pr(V\α(Fi∪Φi\Di))1

[
A′ | α(Fi ∪ Φi \Di)1] ≥ d−2.5

Any A ∈ Φi \Di within one hop of a dangerous event becomes reverted; Ri+1 ← Ri+1 ∪ {A}
Otherwise, A ∈ Φi \Di is fixed: Fi+1 ← Fi+1 ∪ {A}
All A ∈ Φj for j > i within 2 hops of a reverted event are deferred: Di+1 ← Di+1 ∪ {A}.

end for
Variables α(Fr) are fixed as their first sampled values α(Fr)1

Remaining variable values are chosen using algorithm for shattered graphs (Lemma 4.1)

It is clear that upon completion of the first stage of the algorithm (by which we mean all lines except the
final call to Lemma 4.1), all events are either fixed, reverted, or deferred. This first stage also clearly takes
O(r) rounds in LOCAL. It therefore remains to show that this first stage meets the conditions of Lemma 4.1.
Then, Lemma 4.1 will fix the remaining variable values to reach a valid solution in O(r+ logO(1) logn) total
rounds.

We analyze the algorithm as follows: fix an event A to consider. By our assumption of resilience, we
have PrV1 [A′] ≤ d−27 (where A′ is as in the definition of resilience).

In the following proofs, we will use N(A) to denote the inclusive neighborhood of event A in GX , that
is:

N(A) := {A} ∪ {B ∈ X : {A,B} ∈ E(GX)} .

Similarly, we denote by Nα(A) the inclusive neighborhood of A in GXα .
For each i, let Ei be the event that Pr(V\α(Fi))1 [A′ | α(Fi)1] ≥ d−2.5, and let E = ∪i≤rEi. Intuitively,

Ei is the event that, conditioned on the fixed variable values up to round i, A′ becomes too likely. E is
then the event that A′ becomes too likely at any point during the algorithm. We wish to upper-bound the
probability of E:

Lemma 5.1. Pr [E] ≤ d−24.5.

Proof. We denote E∗j to be the event that Ej is the first of the Ei to occur, i.e. E∗j = Ej ∩
⋂
i<j Ēi (where

Ēi denotes the complement of Ei). Then, we can rewrite E as the disjoint union of the E∗j (E =
⋃̇
j≤rE

∗
j).

Consequently,

Pr[E] =
∑
j≤r

Pr
[
E∗j
]

=
∑
j≤r

Pr[A′ ∩ E∗j]
Pr
[
A′ | E∗j

] ≤∑
j≤r

Pr[A′ ∩ E∗j]
d−2.5

= d2.5
∑
j≤r

Pr[A′ ∩ E∗j] ≤ d2.5Pr [A′] ≤ d2.5−27 = d−24.5 .

(Here, for ease of notation, the probabilities are over all V1, but note that the events Ei and E∗i depend
only on the values of α(Fi)1, and treat the remaining variables as unfixed.)

We can use this bound to upper-bound the probability of an event becoming dangerous, and thereby
also upper-bound the probability that an event has any of its dependent variables frozen or reverted.

Lemma 5.2. For any event A, the probability A has any deferred or reverted variables in V(A) by the end
of Algorithm 1 is at most 2d−20.5, even if random choices outside A’s 5-hop neighborhood in GX are chosen
adversarially.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4282

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Proof. By Lemma 5.1, with probability at least 1 − d−24.5, E does not hold. We show that in this case, A
cannot become dangerous during the algorithm.

Assume, for the sake of contradiction, that A first becomes dangerous in round i. Then, if none of A’s
dependent variables have been reverted prior to round i, we have Fi+1 ∩N(A) = (Fi ∪Φi \Di)∩N(A), and
so Ēi+1 implies precisely that A does not become dangerous. If, on the other hand, some of A’s dependent
variables have been reverted, then all of A’s remaining dependent variables are deferred, so in round i no
variable in V(A) is sampled and A therefore cannot become dangerous.

So, any event A becomes dangerous with probability at most d−24.5, even if randomness outside its 1-hop
neighborhood is chosen adversarially (since the occurrence of E is dependent only on the sampled values
of V(A)). Dangerous events cause events up to 4-hops away4 (of which there are fewer than 2d4) to have
deferred dependent variables, and so the probability that A has any deferred dependent variables is at most
2d−20.5, even if randomness outside its 5-hop neighborhood is adversarial.

Lemma 5.2 will be sufficient to give us one of the important properties we need to apply Lemma 4.1:
most events will have all their dependent variables fixed by the first stage of the algorithm, and will no longer
need to participate. The induced graph on events that still have unfixed variables will shatter into small
pieces, as we desired. The remaining thing to show before we can apply Lemma 4.1 is that the residual LLL
instance remaining after this shattering prcess is still solvable:

Lemma 5.3. After Algorithm 1, i.e. after fixing the values for α(Fr+1 ∪Rr+1)1, all events A have

PrV\α(Fr+1∪Rr+1)1
[
ARr+1 |α(Fr+1 ∪Rr+1)1] ≤ 2d−2.5 .

Proof. We analyze three possible cases:
Case 1: A has no reverted dependent variables. In this case, we have

(Fr+1 ∪Rr+1) ∩N(A) = Fr+1 ∩N(A) = (Fr ∪ Φr \Dr) ∩N(A).

Since A was not dangerous in round r, we have

Pr(V\α(Fr∪Φr\Dr))1
[
A′ | α(Fr ∪ Φr \Dr)1] < d−2.5,

i.e.,
Pr(V\α(Fr+1∪Rr+1))1

[
A′ | α(Fr+1 ∪Rr+1)1] < d−2.5.

From the definition of A′, it is a superset of the event
{

PrV2
[
ARr+1

]
≥ d−2.5}. So,

Pr(V\α(Fr+1∪Rr+1))1
[{

PrV2
[
ARr+1

]
≥ d−2.5} | α(Fr+1 ∪Rr+1)1] < d−2.5.

Then,

PrV\α(Fr+1∪Rr+1)1
[
ARr+1 |α(Fr+1 ∪Rr+1)1] = E(V\α(Fr+1∪Rr+1))1

[
PrV2

[
ARr+1

]
|α(Fr+1 ∪Rr+1)1]

≤ Pr(V\α(Fr+1∪Rr+1))1
[{

PrV2
[
ARr+1

]
≥ d−2.5} |α(Fr+1 ∪Rr+1)1]+ d−2.5 < 2d−2.5 .

Case 2: A has reverted dependent variables but did not become dangerous. Let i be the round
in which A had dependent variables reverted (this can only happen in at most one round, since subsequently
all of A’s remaining dependent variables are deferred). All of A’s dependent variables that were sampled in
round i were either fixed or reverted, and all subsequent dependent variables were deferred, so we have

(Fi ∪ Φi \Di) ∩N(A) = (Fr+1 ∪Rr+1) ∩N(A) .

4The 4-hop distance here is because dangerous events cause events 1-hop away to revert, reverted events cause events 2-hops
away to defer, and events 1-hop away from deferred events can therefore have deferred dependent variables.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4283

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Since A did not become dangerous in round i, we have

Pr(V\α(Fi∪Φi\Di))1
[
A′ | α(Fi ∪ Φi \Di)1] < d−2.5,

i.e.,
Pr(V\α(Fr+1∪Rr+1))1

[
A′ | α(Fr+1 ∪Rr+1)1] < d−2.5.

From this point we can follow an identical argument to Case 1 to reach:

PrV\α(Fr+1∪Rr+1)1
[
ARr+1 |α(Fr+1 ∪Rr+1)1] < 2d−2.5 .

Case 3: A became dangerous. Let i be the round in which A became dangerous. We have

(Fr+1 ∪Rr+1) ∩N(A) = (Fi ∪ Φi \Di) ∩N(A).

Since A was not dangerous in round i− 1, we have

Pr(V\α(Fi−1∪Φi−1\Di−1))1
[
A′ | α(Fi−1 ∪ Φi−1 \Di−1)1] < d−2.5.

Since A became dangerous in round i, it must have had no reverted neighbors in round i − 1 (since this
would have resulted in all of its remaining dependent variables being deferred, and none would have been
sampled in round i to make A dangerous). Furthermore, no neighbors of A are fixed in rounds i onwards:
they are all either reverted or deferred. So, (Fi−1 ∪ Φi−1 \Di−1) ∩N(A) = Fi ∩N(A) = Fr+1 ∩N(A), i.e.,

Pr(V\α(Fr+1))1
[
A′ | α(Fr+1)1] < d−2.5.

As before, A′ is a superset of the event
{

PrV2
[
ARr+1

]
≥ d−2.5}. So,

Pr(V\α(Fr+1))1
[{

PrV2
[
ARr+1

]
≥ d−2.5} | α(Fr+1)1] < d−2.5.

By its definition, the event ARr+1 is entirely independent of the values of α(Rr+1)1 (it depends only on
the second sampled values of α(Rr+1), and the first sampled values of the other variables). So,

Pr(V\α(Fr+1∪Rr+1))1
[{

PrV2
[
ARr+1

]
≥ d−2.5} | α(Fr+1 ∪Rr+1)1] < d−2.5.

As in the final step of Case 1, we therefore reach:

PrV\α(Fr+1∪Rr+1)1
[
ARr+1 |α(Fr+1 ∪Rr+1)1] < 2d−2.5 .

This is sufficient to show that the residual post-shattering LLL instance is solvable, and thereby complete
the analysis for Algorithm 1:

Theorem 5.1. Any r-resilient LLL instance, provided with an r-partition Φ for which it is Φ-resilient, can
be solved in O(r + logO(1) logn) rounds in randLOCAL, succeeding with high probability.

Proof. The first stage of Algorithm 1, taking O(r) rounds, finds the first sampled values of some of the
variables, specifically, α(Fr+1 ∪ Rr+1)1. For α(Fr+1), we fix these as the final values; the other variables
remain unfixed. We now have a new LLL instance, consisting of only the unfixed variables, and the events
which are dependent on them.

By Lemma 5.1, the probability that any event A does not have all its dependent variables fixed is at
most 2d−20.5 < (ed)−20, even if random choices outside A’s 5-hop neighborhood are chosen adversarially.
By Lemma 5.3, the probability (over sampling unfixed variables) of each event A occuring is at most
2d−2.5 < 1

ed2.1 .
So, the conditions for Lemma 4.1 are met, and the call to the corresponding algorithm fixes the remaining

variables in such a way that no bad event is satisfied, in logO(1) logn rounds, with high probability.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4284

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

6 Light Partitions
To effectively use Theorem 5.1 for applications, we must show a variable allocation and event partition such
that we reach an r-resilient LLL instance, for as low an r as possible. The choice of allocation is generally
clear from the application; in this section, we will show how to obtain a good partition.

The property we want for our partition is that each node has few neighbors in each part of the partition.
In our LLL algorithm, this will mean that a node can have only few of its variables reverted, which will make
it easier to satisfy resilience. The formal definition we will use is the following:

Definition 6.1. An x-light partition of a graph G of maximum degree ∆ is a partition of nodes into ∆
x

parts such that each node has O(x) neighbors in each part.

This definition is very similar to the concept of a frugal coloring, a classic application of the LLL
introduced by Hind, Molloy and Reed [24]. The only difference is that a frugal coloring is, under most
definitions, required to be a proper coloring (i.e. to have no monochromatic edges), which we do not require
from a light partition. This weakening of the definition is important, since frugal colorings using fewer than
∆ colors do not, in general, exist, while we will be concerned with light partitions using o(∆) parts.

To find such a partition, we will use our LLL algorithm for resilient instances, equipped with the trivial
1-partition (all events in the same part). The resulting light partitions can then be used for our subsequent
applications (including the general LLL result), in a ‘bootstrapping’ fashion.

We will prove the following lemma:

Lemma 6.1. A log ∆-light partition can be found in logO(1) logn rounds in randLOCAL, succeeding with high
probability.

We will show how to formulate the problem as a 1-resilient LLL instance; the lemma then follows from
Theorem 5.1.5 The LLL instance will be based on the following very simple random process: each vertex
picks one of the ∆/ log ∆ parts uniformly at random. Consequently, our LLL graph GX is constructed as
follows:

• The vertex set corresponds to that of the input graph (X = {vA : v ∈ V }).

• The set of variables V will consist of one variable part(v) for each v ∈ V , and this variable will be
allocated to vA (i.e. α(vA) = {part(v)}).

• These variables part(v) are each uniformly distributed in [∆/ log ∆].

• The bad event vA is that v has more than 99 log ∆ neighbors in some part (so avoiding all bad events
would imply a log ∆-light partition).

• We therefore have the edge {vA, wA} in E(GXα) iff edge {v, w} is in E(V), i.e. dα = ∆.

• Events vA 6= wA are adjacent in GX iff distG(v, w) ≤ 2 (i.e. d < 2∆2).

• The trivial 1-partition Φ is {{X}}.

We will show that this LLL instance is 1-resilient. To do so, we must meet the following definition
(Definition 5.2, simplified for r = 1):

Definition 6.2. Given an LLL instance, equipped with variable allocation α for each event A ∈ X let A′
be the event that ⋃

S⊆X

{
PrV2

[
Aα(S)

]
≥ d−2.5} .

5In fact, since 1-resilience is equivalent in power to fragility from [19], one could alternatively employ Theorem I.7 of [19].
However, this proof will serve as a useful introductory ‘warm-up’ to the use of Theorem 5.1, which we will need for all of our
later applications since they will be r-resilient only for r = ω(1).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4285

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

We call the instance 1-resilient if for each event A,

PrV1
[
A′ | V1] ≤ d−27 .

For each vA, we define vA
∗ to be the event that v has at most 49 log ∆ neighbors in some part, under

the values (part assignment) V1.
We will now prove an upper bound on the probabilities of the vA∗, and then prove that vA∗ is a superset

of vA′ (and hence the upper bound on probability also applies to the vA′).

Lemma 6.2. For any v, PrV1 [vA∗] < d−27.

Proof. For each part i in [∆/ log ∆], denote by e(i) the number of neighbors of v taking part i under V1,
and by µ its expectation: we have µ ≤ log ∆. By a standard Chernoff bound, for δ ≥ 1,

Pr [e(i) ≥ δµ] ≤ e(3−δ)µ .

We will set δ = 49 log ∆/µ. Then (assuming ∆ is at least a sufficiently large constant, since otherwise
the lemma is trivial):

Pr [e(i) ≥ 49 log ∆] ≤ e3µ−49 log ∆ ≤ e−46 log ∆ < ∆−66 < d−30 .

Taking a union bound over all ∆/ log ∆ parts, PrV1 [vA∗] < d−27.

Lemma 6.3. For any A, PrV1
[
A′ | V1] < d−27.

Proof. By the same argument as above, the probability that v has at least 49 log ∆ neighbors in any one
part under variables’ second sampled values V2 is at most d−27. If this does not occur, then for any set
S, replacing the values α(S)1 by α(S)2 cannot increase the number of v’s neighbors in a particular part by
more than 49 log ∆.

Now, if we take any assignment of V1 which satisfies vA′, we know (by definition of vA′) that for any
S ⊆ X , PrV2

[
vAα(S)

]
≥ d−2.5. So, we know that under V1, v has at least 99 log ∆ − 49 log ∆ = 50 log ∆

neighbors in some part (since otherwise we would have PrV2
[
vAα(S)

]
< d−27). Then, V1 satisfies A∗, so

A′ ⊆ A∗. This means that PrV1 [A′] ≤ PrV1 [A∗] < d−27 by Lemma 6.2.

We have now met the condition of 1-resilience, which is sufficient to prove Lemma 6.1:

Proof. [Proof of Lemma 6.1] Our LLL instance for log ∆-light partition is 1-resilient, so by Theorem 5.1 can
be solved in logO(1) logm rounds of randLOCAL (succeeding with high probability in n).

Note that a log ∆-light partition implies an x-light partition for any x ≥ log ∆:

Corollary 6.1. For any x ≥ log ∆, an x-light partition can be computed in logO(1) logn rounds in
randLOCAL, succeeding with high probability.

Proof. Compute a log ∆-light partition using Lemma 6.1, and then lexicographically group the ∆
log ∆ parts

into ∆
x superparts as equally as possible (i.e., with either b x

log ∆c or d
x

log ∆e parts in each superpart). Each
vertex now has at most O(log ∆) · d x

log ∆e = O(x) neighbors in each superpart, constituting an x-light
partition.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4286

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

7 General Lovász Local Lemma
Recall that in general LLL instances, we are given an LLL graph GX as our input (and communication
graph), in which each node represents a bad event which occurs with probability at most p, and events
sharing dependent variables are joined with edges. The maximum degree in GX is denoted d.

In our case, we also assume that we have a variable allocation α - a specific allocation with good
properties may be apparent from applications; if not, we can take an arbitrary allocation. This defines the
allocated LLL graph GXα , a subgraph of GX , with maximum degree at most dα (and recall further that
dα ≤ d < 2dα2).

In this section we prove the following result for the general LLL:

Theorem 7.1. There is some constant c such for 1 ≤ r ≤ dα
log dα , LLL with criterion p ≤ 2

−cdα
r can be

solved in O(r + logO(1) logn) rounds of randLOCAL, succeeding with high probability in n.

Note that this statement involves dα rather than d (as in the statement of Theorem 3.1); since dα can
be significantly lower than d in some applications, this makes the statement stronger (and is crucial in our
applications to defective coloring and edge coloring later). In cases where one does not have an allocation
with good properties, and so dα is not significantly lower than d, Theorem 3.1 can be used for simplicity. We
may assume throughout that d and dα are at least sufficiently large constants, since otherwise the theorem
follows from Fischer and Ghaffari [15].

Proof. Our aim will be to show that an LLL instance with criterion p ≤ 2
−cdα
r is r-resilient. To do so, we will

first compute a dα
r -light partition of GXα to use as our event partition, which can be done in O(logO(1) logn)

rounds by Corollary 6.1. Φ therefore has r parts, and any event A has O(dαr) neighbors in any Φi. We will
need to reason about the constant in this O() notation, so let γ be a sufficiently large constant that any A
has fewer than γdα

r neighbors (in GXα) from any Φi, i.e.

∀A ∈ X , i ∈ [r], : |Nα(A) ∩ Φi| ≤
γdα
r

.

Recall that, for any A, A′ is defined to be the event:⋃
i≤r,
S⊆Φi

{
PrV2

[
Aα(S)

]
≥ d−2.5} .

We must now show that the instance is r-resilient, i.e., for each event A, PrV1
[
A′ | V1] ≤ d−27.

To do so, we simply take a union bound over all i and S ∩Nα(A):

PrV1

 ⋃
i≤r,
S⊆Φi

{
PrV2

[
Aα(S)

]
≥ d−2.5} | V1

 ≤ ∑
i≤r,

S⊆(Φi∩Nα(A))

PrV1
[{

PrV2
[
Aα(S)

]
≥ d−2.5} | V1]

≤
∑
i≤r,

S⊆(Φi∩Nα(A))

Pr [A]
d−2.5

≤ r · 2
γdα
r · pd2.5

≤ dα · 2
γdα
r · 2

−cdα
r d2.5 .

We set c = γ + 80, and use d < 2dα2:

PrV1
[
A′ | V1] ≤ dα · 2−80dα

r d2.5 ≤ dα · dα−80d2.5 = dα
−79d2.5 ≤ d−27 .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4287

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

We have thus proven r-resilience. The theorem then follows by Theorem 5.1.

Theorem 7.1 gives us a trade-off between the LLL criterion and the round complexity. To illustrate the
two end-points of this trade-off, we give the following corollaries:

Corollary 7.1. There is some constant c such that LLL with p ≤ d−c can be solved in O(dα
log dα +

logO(1) logn) rounds of randLOCAL, succeeding with high probability.

This result is for LLL with polynomially-weakened LLL criterion, and improves the O(d2 +logO(1) logn)
bound of Fischer and Ghaffari’s algorithm [15, 19, 34] to O(d

log d + logO(1) logn) (with worst-case allocation;
the improvement may be larger if dα < d). Note also that Chung, Pettie, and Su’s LLL algorithm [11]
solves such instances in O(logd n) rounds, so the overall complexity upper bound is now O(min{ dα

log dα +
logO(1) logn, logn

log logn}).

Corollary 7.2. There is some constant c such that LLL with p ≤ min{dα−c, 2
−dα

logO(1) logn } can be solved in
logO(1) logn rounds of randLOCAL, succeeding with high probability.

This result gives logO(1) logn-round LLL for a substantially wider regime than previously known.
Previously, such a round complexity required d = logO(1) logn [15, 19, 34] or p ≤ 2−

logn
logO(1) logn [11] (and

note that once p ≤ n−2, LLL is trivially 0-round solvable). Furthermore, this round complexity is within a
polynomial factor of optimality, since the lower bound of Brandt et al. [7] demonstrates that LLL requires
Ω(log logn) rounds of randLOCAL even in constant-degree graphs and under the weaker criterion p ≤ 2d.

8 Defective Vertex and Edge Coloring
Our first application of Theorem 7.1 will be for defective (vertex) coloring. We will then apply a very similar
argument to an edge coloring variant of the problem, which will be used in our final application to ∆ + o(∆)
edge coloring in Section 9.

8.1 Defective Vertex Coloring Defective coloring is a relaxation of proper coloring, in which vertices
are required to have few (rather than no) neighbors of the same color as themselves. The specific version we
will solve is the following:

Definition 8.1. An (x, q)-defective coloring of a graph G with maximum degree ∆ is a ∆
x -coloring of nodes

such that each node has fewer than x+ x/q neighbors of its own color.

This definition is phrased in a slightly non-standard way, for ease of notation in our applications. Our
(x, q)-defective coloring definition corresponds to a ‘∆x -coloring of defect x+ x/q’ in more standard terms.

We will first find a defective coloring with two colors, and then iterate to increase the number of colors:

Lemma 8.1. For any q = o(
√

∆
log3 ∆), a (∆

2 , 2q log ∆)-defective coloring can be found in O((q log ∆)2 +

logO(1) logn) rounds of randLOCAL, succeeding with high probability in n.

Proof. A (∆
2 , q log ∆)-defective coloring is a coloring using only 2 colors, such that every node has fewer than

∆
2 + ∆

4q log ∆ neighbors of its own color. We set up an LLL instance for defective coloring very similarly to
that for light partition previously:

• The vertex set corresponds to that of the input graph (X = {vA : v ∈ V }).

• The set of variables V will consist of one variable color(v) for each v ∈ V , and this variable will be
allocated to vA (i.e. α(vA) = {color(v)}).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4288

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

• These variables color(v) are each uniformly distributed in {0, 1}.

• The bad event vA is that v has at least ∆
2 + ∆

4q log ∆ neighbors of its own color (so avoiding all bad
events would imply a (∆

2 , 2q log ∆)-defective coloring).

• Events vA 6= wA are therefore adjacent in GXα iff v and w are adjacent in G (i.e. dα = ∆).

• Events vA 6= wA are adjacent in GX iff distG(v, w) ≤ 2 (i.e. d < 2∆2).

Let zv denote the number of neighbors of v that choose the same color as v when the variables are
sampled. The expectation of zv is µ := deg(v)/2 ≤ ∆/2. By a Chernoff bound, we obtain an upper bound
p on the probability of a bad event:

Pr
[
zv ≥

∆
2 + ∆

4q log ∆

]
≤ Pr

[
zv ≥ (1 + ∆

4qµ log ∆)µ
]

≤ e−
∆2µ

3(4qµ log ∆)2 = e
− ∆2

48µ(q log ∆)2

≤ e−
∆

24(q log ∆)2 .

So, our LLL instance has p = e
− ∆

24(q log ∆)2 and dα = ∆. By Theorem 7.1, therefore, it can be solved in
O((q log ∆)2 + logO(1) logn) rounds, so long as (q log ∆)2 = o(∆

log ∆), i.e. q = o(
√

∆
log3 ∆).

To color using more colors, we simply iterate this 2-coloring procedure to iteratively subdivide the color
classes.

Lemma 8.2. For any q ≤
√

∆
log4 ∆ , a (Θ(q2 log4 q), q)-defective coloring can be found in O(q2 log3 ∆ +

log ∆ logO(1) logn) rounds of randLOCAL, succeeding with high probability in n.

Proof. We iterate log ∆− log(q2 log4 q) times (our reason for requiring q ≤
√

∆
log4 ∆ is so that this is positive).

In each iteration, we use Lemma 8.1 to split each color class into two new color classes, resulting eventually
in 2log ∆−log(q2 log4 q) = ∆

q2 log4 q
colors (as required for a (q2 log4 q, q)-defective coloring). We run the LLL

instances for each of the current color classes simultaneously. This can be done since their induced graphs
are entirely disjoint, and do not affect each other (no two nodes in different color classes can ever be colored
the same color later).

We will prove the following by induction: after i iterations of Lemma 8.1 in this way, the resulting
coloring is a (∆

2i ,
1
i q log ∆)-defective coloring.

As a base case, this claim is clearly true for i = 1 since it is weaker than the statement of Lemma 8.1.
To prove the inductive step, in iteration i, we start with a (∆

2i−1 ,
1
i−1q log ∆)-defective coloring and

apply Lemma 8.1 on each of the induced graphs of the current color classes. However, by the definition
of an (∆

2i−1 ,
1
i−1q log ∆)-defective coloring, the maximum degree within these induced graphs is ∆i :=

∆
2i−1 + ∆(i−1)

2i−1q log ∆ , so we can use this quantity in place of ∆ as the maximum degree in Lemma 8.1. Note that
for any i ≤ log ∆− log(q2 log4 q), we have ∆i ≥ 2q2 log4 q, and therefore we indeed have q = o(

√
∆i

log3 ∆′
i
) as

required in Lemma 8.1.
So, in iteration i, Lemma 8.1 divides each color class into two (giving 2i total colors) in such a way that

every node has at most ∆i

2 + ∆i

4q log ∆ neighbors of its color. Since

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4289

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

∆i

2 + ∆i

4q log ∆ =
∆

2i−1 + ∆(i−1)
2i−1q log ∆

2 +
∆

2i−1 + ∆(i−1)
2i−1q log ∆

4q log ∆

= ∆
2i + ∆(i− 1)

2iq log ∆ + ∆
2i+1q log ∆ + ∆(i− 1)

2i+1(q log ∆)2

≤ ∆
2i + ∆(i− 1)

2iq log ∆ + ∆
2iq log ∆

= ∆
2i + ∆i

2iq log ∆ ,

this meets the criterion of a (∆
2i ,

1
i q log ∆)-defective coloring, proving the claim by induction.

So, after log ∆− log(q2 log4 q) iterations, we have a (q2 log4 q, 1
log ∆−log(q2 log4 q)q log ∆)-defective coloring.

This is therefore a (q2 log4 q, q)-defective coloring (since decreasing the second parameter weakens the
requirement). Note that we have been assuming that the number of iterations log ∆ − log(q2 log4 q) was
an integer; if not, we simply round it, and this is what causes the statement of the lemma to give a
(Θ(q2 log4 q), q)-defective coloring rather than (q2 log4 q, q).

We have run fewer than log ∆ iterations, each taking O((q log ∆)2+logO(1) logn) rounds of randLOCALby
Lemma 8.1. The total round complexity is therefore log ∆ · O((q log ∆)2 + logO(1) logn) = O(q2 log3 ∆ +
log ∆ logO(1) logn). Each of these iterations succeeds with high probability in n, and therefore by taking a
union bound over the failure probability in all iterations, we achieve high probability overall success.

8.2 Defective Edge Coloring A very similar application is that of defective edge coloring. A defective
(vertex) coloring can be thought of as a vertex coloring such that the degree of the graph induced by each
color class is low. We can similarly aim to color the edges such that the degree of the graph induced by each
color class is low:

Definition 8.2. An (x, q)-defective edge coloring of a graph G with maximum degree ∆ is a ∆
x -coloring of

edges such that each node has fewer than x+ x/q adjacent edges of any color.

Again, we first find a defective edge coloring with two colors, and then iterate to increase the number of
colors:

Lemma 8.3. For any q = o(
√

∆
log3 ∆), a (∆

2 , 2q log ∆)-defective edge coloring can be found in O((q log ∆)2 +

logO(1) logn) rounds of randLOCAL, succeeding with high probability in n.

Proof. A (∆
2 , q log ∆)-defective edge coloring is an edge coloring using only 2 colors, such that every node has

fewer than ∆
2 + ∆

4q log ∆ adjacent edges of any color. We set up an LLL instance for defective edge coloring:

• The vertex set corresponds to the edge set of the input graph (X = {eA : e ∈ E}).

• The set of variables V will consist of one variable color(e) for each e ∈ E, and this variable will be
allocated to eA (i.e. α(eA) = {color(e)}).

• These variables color(e) are each uniformly distributed in {0, 1}.

• The bad event eA is that either endpoint of e has at least ∆
2 + ∆

4q log ∆ adjacent edges of e’s color (so
avoiding all bad events would imply a (∆

2 , 2q log ∆)-defective edge coloring).

• Events eA 6= fA are therefore adjacent in GXα iff e and f are adjacent in G (i.e. dα = 2∆− 1).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4290

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

• Events eA 6= fA are adjacent in GX iff distG(e, f) ≤ 2 (i.e. d < 4∆2).

Fix an edge e = {v, u} and a particular endpoint v of e to consider. Let ze denote the number of (other)
adjacent edges of v that choose the same color as e when the variables are sampled. The expectation of zv
is µ ≤ ∆/2. By a Chernoff bound, we obtain an upper bound p on the probability that v has more than
∆
2 + ∆

5q log ∆ adjacent edges sharing e’s color:

Pr
[
zv ≥

∆
2 + ∆

5q log ∆

]
≤ Pr

[
zv ≥ (1 + ∆

5qµ log ∆)µ
]

≤ e−
∆2µ

3(5qµ log ∆)2 = e
− ∆2

75µ(q log ∆)2

≤ e−
∆

38(q log ∆)2 .

Therefore, with probability least 1−e−
∆

38(q log ∆)2 , v has fewer than ∆
2 + ∆

5q log ∆ adjacent edges other than
e sharing e’s color, and so fewer than ∆

2 + ∆
5q log ∆ + 1 < ∆

2 + ∆
4q log ∆ including e itself. The same applies

without loss of generality to the other endpoint u of e. So, the total probability of the bad event eA is at
most 2e−

∆
38(q log ∆)2 .

Then, our LLL instance has p = 2e−
∆

38(q log ∆)2 and dα = 2∆− 1 = O(∆). By Theorem 7.1, therefore, it
can be solved in O((q log ∆)2 + logO(1) logn) rounds, so long as (q log ∆)2 = o(∆

log ∆), i.e. q = o(
√

∆
log3 ∆).

To reach the defective edge coloring we require for our subsequent application to ∆+o(∆) edge coloring,
we iterate this 2-coloring in the same way as for defective vertex coloring.

Lemma 8.4. For any q ≤
√

∆
log4 ∆ , a (Θ(q2 log4 q), q)-defective edge coloring can be found in O(q2 log3 ∆ +

log ∆ logO(1) logn) rounds of randLOCAL, succeeding with high probability in n.

Proof. We again iterate log ∆−log(q2 log4 q) times as in proof of Lemma 8.4. In each iteration, we use Lemma
8.1 to split each color class into two new color classes, resulting eventually in 2log ∆−log(q2 log4 q) = ∆

q2 log4 q
colors. We run the LLL instances for each of the current color classes simultaneously. This can be done
since their induced graphs are entirely disjoint, and do not affect each other (no two edges in different color
classes can ever be colored the same color later, and therefore the bad event at each edge depends only on
the variables of edges in its current color class).

We will prove the following by induction: after i iterations of Lemma 8.3 in this way, the resulting
coloring is a (∆

2i ,
1
i q log ∆)-defective edge coloring.

As a base case, this claim is clearly true for i = 1 since it is weaker than the statement of Lemma 8.3.
To prove the inductive step, in iteration i, we start with a (∆

2i−1 ,
1
i−1q log ∆)-defective edge coloring

and apply Lemma 8.1 on each of the induced graphs of the current color classes. However, by the
definition of an (∆

2i−1 ,
1
i−1q log ∆)-defective edge coloring, the maximum degree within these induced graphs

is ∆i := ∆
2i−1 + ∆(i−1)

2i−1q log ∆ , so we can use this quantity in place of ∆ as the maximum degree in Lemma
8.1. Note that for any i ≤ log ∆ − log(q2 log4 q), we have ∆i ≥ 2q2 log4 q, and therefore we indeed have
q = o(

√
∆i

log3 ∆′
i
) as required in Lemma 8.1.

So, in iteration i, Lemma 8.3 divides each color class into two (giving 2i total colors) in such a way that
every node has at most ∆i

2 + ∆i

4q log ∆ adjacent edges of each color. Since

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4291

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

∆i

2 + ∆i

4q log ∆ =
∆

2i−1 + ∆(i−1)
2i−1q log ∆

2 +
∆

2i−1 + ∆(i−1)
2i−1q log ∆

4q log ∆

= ∆
2i + ∆(i− 1)

2iq log ∆ + ∆
2i+1q log ∆ + ∆(i− 1)

2i+1(q log ∆)2

≤ ∆
2i + ∆(i− 1)

2iq log ∆ + ∆
2iq log ∆

= ∆
2i + ∆i

2iq log ∆ ,

this meets the criterion of a (∆
2i ,

1
i q log ∆)-defective edge coloring, proving the claim by induction.

So, after log ∆ − log(q2 log4 q) iterations, we have a (q2 log4 q, 1
log ∆−log(q2 log4 q)q log ∆)-defective edge

coloring. This is therefore a (q2 log4 q, q)-defective edge coloring (since decreasing the second parameter
weakens the requirement). Again, the lemma statement is weakened to a (Θ(q2 log4 q), q)-defective edge
coloring since log ∆− log(q2 log4 q) may not have been an integer.

We have run fewer than log ∆ iterations, each taking O((q log ∆)2+logO(1) logn) rounds of randLOCALby
Lemma 8.3. The total round complexity is therefore log ∆ · O((q log ∆)2 + logO(1) logn) = O(q2 log3 ∆ +
log ∆ logO(1) logn). Each of these iterations succeeds with high probability in n, and therefore by taking a
union bound over the failure probability in all iterations, we achieve high probability overall success.

9 ∆ + o(∆) Edge Coloring
We now reach our final application: edge coloring a graph using fewer colors than required by a greedy
algorithm, as stated in Theorem 3.2.

Proof. [Proof of Theorem 3.2] Our aim is to employ the edge coloring algorithm of Chang et al. [9], which
solves the problem using a series of LLL calls to carefully control certain properties while coloring. Using
existing LLL algorithms, though, results in round complexities that are either poly(∆, log logn) (Fischer and
Ghaffari’s algorithm [15]), or poly(logn) (Chung, Pettie, and Su’s algorithm [11]). To combat this, we will
apply our defective edge coloring result to reduce to instances with poly(1/ε) maximum degree, to which
applying [9] armed with our LLL algorithm (or indeed that of [15]) then takes only poly(1/ε, log logn) rounds
complexity. This yields an improvement in overall round complexity for the most difficult regime when ∆ is
between roughly log logn and logn.

Firstly, note that the algorithm of Chang et al. [9] equipped with Fischer and Ghaffari’s LLL algorithm
[15] (or our own Theorem 7.1) already achieves poly(1/ε, log logn) round complexity when 1/ε = ∆Ω(1),
since the resulting poly(∆, log logn) round complexity is poly(1/ε, log logn). Secondly, the bound is also
already met when 1/ε = ∆o(1) and ∆ ≥ log2 n: in this case, the bad events occur with probability at
most exp(−ε2∆/ log4+o(1) ∆) = n−ω(1), and therefore all are avoided with high probability in n upon
initially sampling the variables, with no LLL algorithm required. The round complexity of [9] is then
O(log(1/ε) + log∗ n), which is much lower than poly(1/ε, log logn). So, it remains to prove the theorem for
when ∆ < log2 n and 1/ε = ∆o(1), which we will henceforth assume.

We first employ a defective edge coloring in order to reduce the degree of the instances we need
to consider. Using Lemma 8.4, we obtain (cq2 log4 q, q)-defective edge coloring (for some constant c) of
the input graph G, with q = ε−2 (noting that q = ∆o(1) ≤

√
∆

log4 ∆ as required). This takes only
poly(1/ε, log ∆, log logn) = poly(1/ε, log logn) rounds of randLOCAL. We call the resulting color classes
buckets (in order to avoid confusion with the final output coloring). The (1 + ε)∆ colors in the palette are
divided lexicographically among the ∆

cq2 log4 q
buckets, as equally as possible (i.e. with each bucket receiving

either the floor or ceiling of (1 + ε)∆ · cq
2 log4 q

∆ colors). Each edge in E(G) will be colored with one of the

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4292

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

colors in its bucket in the final output. This means that, from now on, we can treat the buckets separately
and solve concurrently on their induced graphs, since no vertices in different buckets will ever cause a coloring
conflict.

By the property of a defective coloring, the maximum degree within each bucket is now ∆′ :=
cq2 log4 q + cq log4 q. We define ε′ := ε

2 . The number of colors in each bucket is at least

(1 + ε)∆ · cq
2 log4 q

∆ − 1 = cq2 log4 q + εcq2 log4 q − 1

= cq2 log4 q + cq1.5 log4 q − 1

≥ cq2 log4 q + 1
2cq

1.5 log4 q + cq log4 q + 1
2cq

0.5 log4 q

= (1 + ε

2)(cq2 log4 q + cq log4 q)

= (1 + ε′)∆′ .

We have now reduced the edge coloring instance to a collection of new instances with distinct
palettes, each of which can therefore be solved concurrently. The maximum degree of each instance is
∆′ = Θ(q2 log4 q) = poly(1/ε), and the number of colors available is (1 + ε′)∆′, where ε′ = q−1/2/2 =
ω(log2.5 ∆′√

∆′
). So, we can apply the edge coloring algorithm of Chang et al. [9], again equipped with

the LLL algorithm of Theorem 7.1 or Fischer and Ghaffari [15], to solve each instance concurrently in
poly(∆′, log logn) = poly(1/ε, log logn) rounds. The total round complexity is therefore poly(1/ε, log logn).

Theorem 3.2 clearly implies Corollary 3.1, though it only gives the best number of colors known for ∆
up to around logn; for higher ∆, edge colorings with fewer colors were already known by using [9] either
with the LLL algorithm of [11] or setting ε such that no LLL algorithm is required.

Proof. [Proof of Corollary 3.1] When ∆ ≤ log8 n, (1 + ε)∆ edge coloring can be performed in logO(1) logn
rounds for any ε which is both ω(log2.5 ∆√

∆
) and log−O(1) logn, by Theorem 3.2. When ∆ > log8 n,

(1 + ε)∆ edge coloring with any ε which is both log−O(1) n and at least ∆−1/8 can be performed using
the algorithm of Chang et al. [9] directly, since this is again in the regime where all bad events are
avoided with high probability, with no LLL algorithm required. Then, the round complexity of [9] is
O(log(1/ε) + log∗ n) = O(log logn).

This shows that ∆ + o(∆) edge coloring can be performed in O(log logn) rounds over all ranges of ∆.
The best number of colors purely as a function of ∆ that we obtain in this round complexity is ∆ + ∆

logO(1) ∆ ,
though the bottleneck is only when ∆ = logΘ(1) n, and for ∆ outside this range fewer colors can be used.

10 Conclusions and Open Questions
We have shown improved algorithms for the Lovász Local Lemma, and an application to edge coloring,
demonstration that graphs of maximum degree ∆ can be ∆ + o(∆) edge colored in logO(1) logn rounds of
randLOCAL. There well may be other applications of our results: in particular, the leading algorithm for
o(∆)-coloring triangle-free graphs [33] is similarly built on repeated calls to the Lovász Local Lemma. We
expect that adapting the problem to apply our LLL algorithm for resilient instances would improve the
round complexity, and aim to do so in future work.

Many questions regarding the LLL still remain open. On graphs with d = logω(1) logn, there is still a
large gap between upper and lower bounds. LLL with polynomially-weakened criterion, for example, appears
to become more difficult as d increases (at least up to log1−Ω(1) n), but the Ω(log logn)-round lower bound
of Brandt et al. [7] is proven on constant-degree graphs and does not increase with d. One can also ask for
how strong an LLL criterion can we find a logO(1) logn-round distributed algorithm over the whole range of

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4293

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

∆. We have shown that the criterion p ≤ min{d−c, 2
−d

logO(1) logn } suffices (for some constant c), and it was
already known [11] that p ≤ 1

ed2 · 2
− logn

logO(1) logn } also suffices. However, these criteria are a long way from the
strongest criteria under which the LLL is solvable, and no logω(1) logn-round lower bound is known for any
solvable criterion.

The picture for edge coloring is also far from complete: there remain large gaps between upper and
lower bounds on distributed complexity for most palette size regimes. For 2∆ − 1-coloring, logO(1) logn-
round algorithms are known [16, 19, 23], but the only lower bound is Ω(log∗ n) [26, 30]. Below 2∆−1 colors,
there is an Ω(log∆ logn)-round lower bound [9], and Corollary 3.1 closes the corresponding upper bound to
only a polynomial gap for some ∆ + o(∆) number of colors6. For even fewer colors, though, there is again a
wide gap, with the best upper bound being the poly(∆, logn)-round deterministic algorithm of Bernshteyn
[6] for ∆ + 1 edge coloring.

11 Acknowledgements
The author would like to thank Merav Parter and Artur Czumaj for illuminating discussions regarding the
Lovász Local Lemma.

References

[1] N. Alon, A parallel algorithmic version of the local lemma, Proceedings 32nd Annual Symposium of Foundations
of Computer Science (FOCS), (1991).

[2] A. Balliu, S. Brandt, F. Kuhn, and D. Olivetti, Distributed edge coloring in time polylogarithmic in ∆,
arXiv preprint arXiv:2206.00976, (2022).

[3] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, The locality of distributed symmetry breaking, J.
ACM, 63 (2016).

[4] J. Beck, An algorithmic approach to the Lovász local lemma., Random Structures & Algorithms, 2 (1991),
pp. 343–365.

[5] A. Bernshteyn, Probabilistic constructions in continuous combinatorics and a bridge to distributed algorithms,
arXiv preprint arXiv:2102.08797, (2021).

[6] A. Bernshteyn, A fast distributed algorithm for (∆+1)-edge-coloring, Journal of Combinatorial Theory, Series
B, 152 (2022), pp. 319–352.

[7] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and
J. Uitto, A lower bound for the distributed Lovász local lemma, in Proceedings of the Forty-Eighth Annual
ACM Symposium on Theory of Computing (STOC), New York, NY, USA, 2016, Association for Computing
Machinery, p. 479–488.

[8] S. Brandt, C. Grunau, and V. Rozhoň, Generalizing the sharp threshold phenomenon for the distributed
complexity of the Lovász local lemma, in Proceedings of the 39th Symposium on Principles of Distributed
Computing, 2020, pp. 329–338.

[9] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto, Distributed edge coloring and a special case of the
constructive Lovász local lemma, ACM Trans. Algorithms, 16 (2019).

[10] Y.-J. Chang and S. Pettie, A time hierarchy theorem for the local model, SIAM Journal on Computing, 48
(2019), pp. 33–69.

[11] K.-M. Chung, S. Pettie, and H.-H. Su, Distributed algorithms for the Lovász local lemma and graph coloring,
Distributed Computing, 30 (2017), pp. 261–280.

[12] A. Czumaj and C. Scheideler, A new algorithm approach to the general Lovász local lemma with applications
to scheduling and satisfiability problems (extended abstract), Proceedings of the thirty-second annual ACM
symposium on theory of computing (STOC), (2000).

[13] M. Elkin, S. Pettie, and H.-H. Su, (2∆ − 1)-edge-coloring is much easier than maximal matching in the
distributed setting, in Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 355–370.

[14] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Coll.
Math. Soc. J Bolyai, 10 (1974).

6The precise amount depends on how ∆ relates to n; see the proof of Corollary 3.1

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4294

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

[15] M. Fischer and M. Ghaffari, Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity
hierarchy, in 31st International Symposium on Distributed Computing (DISC 2017), vol. 91 of Leibniz
International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2017, pp. 18:1–18:16.

[16] M. Fischer, M. Ghaffari, and F. Kuhn, Deterministic distributed edge-coloring via hypergraph maximal
matching, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), 2017, pp. 180–
191.

[17] M. Ghaffari, An improved distributed algorithm for maximal independent set, Proceedings of the 2016 ACM-
SIAM Symposium on Discrete Algorithms (SODA), USA, 2016, Society for Industrial and Applied Mathematics,
p. 270–277.

[18] M. Ghaffari, C. Grunau, and V. Rozhoň, Improved deterministic network decomposition, in Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021.

[19] M. Ghaffari, D. G. Harris, and F. Kuhn, On derandomizing local distributed algorithms, in Proceedings of
the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), 2018, pp. 662–673.

[20] M. Ghaffari and F. Kuhn, Deterministic distributed vertex coloring: Simpler, faster, and without network
decomposition, in 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE,
2022, pp. 1009–1020.

[21] M. Ghaffari, F. Kuhn, Y. Maus, and J. Uitto, Deterministic distributed edge-coloring with fewer colors, in
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing(STOC), 2018, pp. 418–430.

[22] M. M. Halldórsson, Y. Maus, and A. Nolin, Fast distributed vertex splitting with applications, in 36th
International Symposium on Distributed Computing (DISC 2022), 2022.

[23] D. G. Harris, Distributed local approximation algorithms for maximum matching in graphs and hypergraphs,
in 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2019, pp. 700–724.

[24] H. Hind, M. Molloy, and B. Reed, Colouring a graph frugally, Combinatorica, 17 (1997), pp. 469–482.
[25] N. Linial, Distributive graph algorithms global solutions from local data, in 28th Annual Symposium on

Foundations of Computer Science (FOCS), 1987, pp. 331–335.
[26] , Locality in distributed graph algorithms, SIAM Journal on computing, 21 (1992), pp. 193–201.
[27] M. Molloy and B. Reed, Further algorithmic aspects of the local lemma, Proceedings of the thirtieth annual

ACM symposium on Theory of computing (STOC), (1998).
[28] R. A. Moser, A constructive proof of the Lovász local lemma, in Proceedings of the Forty-First Annual

ACM Symposium on Theory of Computing (STOC), New York, NY, USA, 2009, Association for Computing
Machinery, p. 343–350.

[29] R. A. Moser and G. Tardos, A constructive proof of the general Lovász local lemma, Journal of the ACM,
57 (2010), p. 1–15.

[30] M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM Journal on Discrete
Mathematics, 4 (1991), pp. 409–412.

[31] J. Pach and G. Tardos, Conflict-free colourings of graphs and hypergraphs, Combinatorics, Probability and
Computing, 18 (2009), pp. 819–834.

[32] A. Panconesi and R. Rizzi, Some simple distributed algorithms for sparse networks, Distributed computing,
14 (2001), pp. 97–100.

[33] S. Pettie and H.-H. Su, Distributed coloring algorithms for triangle-free graphs, Information and Computation,
243 (2015), pp. 263–280.

[34] V. Rozhoň and M. Ghaffari, Polylogarithmic-time deterministic network decomposition and distributed
derandomization, in Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC), New York, NY, USA, 2020, Association for Computing Machinery, p. 350–363.

[35] J. B. Shearer, On a problem of Spencer, Combinatorica, 5 (1985), pp. 241–245.
[36] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Discret Analiz, 3 (1964), pp. 25–30.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4295

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 8

7.
11

5.
74

.9
9

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	The Lovász Local Lemma
	The LOCAL Model of Distributed Computing
	The Distributed Lovász Local Lemma
	Distributed Edge Coloring

	Previous Work
	Lovász Local Lemma
	Edge Coloring

	Our Results and Approach
	Results
	Approach
	Concurrent Work
	Paper Structure

	Lovász Local Lemma on Shattered Graphs
	Lovász Local Lemma on Resilient Instances
	Variable Allocation and the Allocated LLL Graph
	Description of LLL Algorithm
	Resilience
	Statement and Analysis of Algorithm 1

	Light Partitions
	General Lovász Local Lemma
	Defective Vertex and Edge Coloring
	Defective Vertex Coloring
	Defective Edge Coloring

	+o() Edge Coloring
	Conclusions and Open Questions
	Acknowledgements

