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Abstract - With large-scale acceptance of solar and wind 

energy generation into electric grids, large energy 

storage is expected to provide sufficient flexibility for the 

safe, stable and economic operation of power systems 

under uncertainty. Active Network Management (ANM) 

allows this to happen without having to enlarge the 

system. This paper presents an ANM-based cost 

minimization and curtailment model for day-ahead 

operational planning of active distribution systems. 

Electric Vehicles (EVs) are managed by EV Aggregators 

for profit purposes under different parking 

characteristics in the Vehicle-to-grid mode. A pricing 

mechanism that defines interaction between the 

Distribution System Operator (DSO) and EV 

Aggregators is proposed. Uncertainty terms involve the 

wind power outputs, solar power outputs and the power 

demand. The stochastic optimization model created 27 

scenarios and solved the minimization problem which 

involves the grid supply point power, the non-firm 

power and the aggregator power. This is applied to 

IEEE-33 bus system and implemented in AIMMS. 

Results show how the impact of various aggregators’ 

availability profiles help to reduce network operating 

cost and curtailment of non-firm DGs and improve 

voltage profiles. 
Keywords— Stochastic, ANM, Aggregators, DSO, scenarios 

I.  INTRODUCTION 

In recent years, there has been a heightened penetration of 

distributed energy resources in electricity networks. For 

example, the global cumulative wind power capacity in 

2021 was 845GW [1] while that of solar PV was 942GW 

[2]. This massive deployment of clean and sustainable 

renewable energies into power networks is aimed at 

decarbonization of the economy as well as reduction of 

network operation costs as fossil fuel prices continue to rise 

[3]. 

Control and management of the emerging networks 

containing high renewable energies is achieved within 

network constraints utilizing advances in information and 

communication technologies of active network management 

schemes. This is a smart alternative to network 

reinforcement and maximizes hosting capacity [4]. In 

addition, the impact of electric vehicle (EV) fleet 

penetration in present-day distribution system is significant 

due to intermittency of generation. Distribution system 

operators (DSOs) deploy the aggregated energy storage 

capability of EV batteries to provide ancillary services (e.g., 

power grid regulation, spinning reserve, peak load shaving, 

load leveling and reactive power compensation) in electric 

grids through controlled charging and discharging in a 

Vehicle-to-Grid (V2G) mode [5],[6]. In the past, a major 

source of uncertainty in power system is inability to predict 

the outage of a system component [7]. As power systems 

evolve, there are uncertainties associated with integration of 

weather-dependent pattern of solar and wind energy sources, 

power consumption pattern of consumers (e.g. electric 

vehicles) and load growth and electricity price based on 

forces of demand and supply of electricity [8].  

A widespread concept in managing and controlling loads 

and energy storage and increasing renewable generation in 

active distribution networks with or without uncertainty in a 

secure and cost-effective way without necessarily upgrading 

the network infrastructure and within specified limits is the 

Active Network Management (ANM) [9],[10]. 

Previous works have addressed different aspects of 

optimization of ANM schemes. In [11], a deterministic 

dynamic OPF that classified available renewable DGs into 

firm and non-firm was formulated for the ANM scheme 

with the aim of maximizing the utilization of non-firm DGs 

(that is, curtailment reduction) and minimize cost of energy. 

[12] incorporated the stochastic nature of wind power, solar 

photovoltaic (PV) and small hydro generation into a 

modified IEEE-30 system modeled with appropriate 

probability density function (PDF) and solved using 

metaheuristic algorithm rather than classical OPF. [13] 

formulated 24-hr deterministic and stochastic optimization 

models with load and renewable curtailment control in both 

grid-connected and island operations. For the stochastic 

model, uncertainty in PV output was done for three 

scenarios. The study did not include EV control charging 

control and uncertainty in demand. 

[14] proposed a particle swarm optimization approach to 

consider uncertainty associated with PV and wind turbine 

(WT) output power using appropriate PDF. Rabiee et al in 

[15] applied information gap decision theory to model wind 

power generation uncertainty considering voltage stability 

constraints.  

In [16], a scenario-based approach was used to model 

uncertainties in wind power generation in the presence of 

EVs to demonstrate its impact on voltage stability. Silva et 

al in [17] proposed a model that considered uncertainties in 

demands, renewable generation, and voltage reference at the 

point of common coupling (PCC). Several uncertainty 

modeling methods have been adopted in literature. Some of 

these are information gap decision theory [15], scenario-

based modeling [16], adaptive fuzzy logic [18], robust 

optimization and probabilistic methods. 

Effects of uncertainties in decision-making should be 

properly examined and traditional deterministic approach 

which evaluates a single specific scenario is insufficient to 

achieve this aim. In this paper, we intend to design an 
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optimized ANM scheme that minimizes DSO cost of 

operation and energy curtailment by studying characteristics 

of different aggregators, their charging/discharging control 

and how they impact the system. We intend to develop 

scenario-based multi-period stochastic models that 

incorporate uncertainties in solar and wind generation and 

power consumption (demand) pattern including penalty 

costs. 

The remainder of this report/paper is organized thus: 

Section II: describes the ANM scheme and the embedded 

technologies (curtailment, EV aggregators, interaction 

among major players in the ANM scheme); Section III: 

Problem Formulation for stochastic models; Section IV: 

Implementation; Section V: result discussion and Section 

VI: Conclusion. 

II.  ACTIVE NETWORK MANAGEMENT FRAMEWORK 

Secure and optimal operation of active distribution systems 

(ADS) is the responsibility of DSOs. Due to increasing 

operational complexity of modern ADS, their roles continue 

to grow from conventional (which include connection and 

disconnection of distributed energy resources (DERs), 

management of outages, planning and maintenance of 

networks) to emerging/future (peak load management, 

network congestion management, reactive power support to 

Transmission System Operators (TSOs), participation in 

electricity market and voltage support) [19]. In addition, 

DSOs are expected to develop new models and approaches 

to account for uncertainty associated with certain parameters 

in the system [20]. 

The objective of this work is to minimize the day-ahead 

operational cost and maximize the use of renewable DGs in 

the system for efficient and stable services. To achieve this, 

we propose a framework where the DSO takes charge of the 

day-ahead operational scheduling of its network by 

managing curtailment of DG, provision of charging and 

discharging schedule for EV aggregators and estimating the 

impact of uncertainty in the system. This requires the DSO 

to actively enter into commercial agreements with a variety 

of stakeholders whose behaviour are influenced by the 

electricity market [21]. 

A. Distributed Generation Curtailment 

It is possible that variable generation from renewable 

sources are oversupplied at certain times thereby leading to 

imbalance between power supplied and power demanded in 

the power grid. The amount of renewable energy output that 

can be absorbed into the system is also limited by thermal 

line limits or bus voltage limits [11][22]. Consequently, 

excess generation is curtailed. Curtailment reduction 

strategies in use include introduction of energy storage 

devices and flexible/controllable loads and use of grid 

policies that require utilities to compensate DG owners for 

curtailed output [22] and network reconfiguration. In the 

proposed framework, the DSO agrees to compensate non-

firm DG owners for any curtailment of day-ahead scheduled 

generation. 

B. EV Aggregators 

EVs are expected to increase significantly in the coming 

years as the campaign for net-zero emission increase. This is 

expected to constitute high charging load on electrical 

networks [23]. EVs combine the features of energy storage 

and flexible loads useful for curtailment management and 

have the tendency of limiting curtailment payments and 

minimizing cost of operation on the DSO. The aggregator 

also acts as interface between the EV owners and the DSO 

[24].  

The proposed framework considers a number of aggregators 

including owners of parking infrastructure either at office 

building, public areas or LongStay car parks where vehicles 

are left for multiple days (e.g., airports, train stations).  

With the intention of offering fair rates to aggregators and 

allowing DSOs perform energy arbitrage, a system is 

proposed in which day-ahead MW prices are agreed 

between the DSO and aggregators. In this framework, these 

are buy price (price of buying power from aggregator) and 

sell price (price of selling power to aggregator). Buy price is 

higher than sell price to allow compensation paid to EV 

owner for degradation costs caused by additional battery 

cycling during EV discharge. 

C. Framework Description 

Fig. 1. shows the structure of the proposed price-based 

energy management framework and illustrates how different 

actors involved in the system interact.  

 
Fig. 1. Structure of the Proposed Energy Management 

   Framework 

The day-ahead electricity price is used by the DSO to 

determine the cost of energy purchase from DG owners and 

aggregators by arbitrage. The DG owners submit their 

hourly day-ahead prediction of available DG output while 

EV aggregators present their storage capacity based on the 

number of available EVs (use pattern/availability profile), 

battery capacity, charger ratings, and charging/discharging 

efficiencies. 
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III. PROBLEM FORMUATION 

The stochastic multi-period OPF model which involves 

breaking of time-horizon into several time steps and 

scenarios is developed. During each time step and scenario, 

the network must obey typical OPF constraints 

independently [11][25]. 

A.  Objective Function 

The objective is to minimize the expected operational costs 

to the DSO (CDSO) by optimally scheduling energy 

exchanges with the aggregators and DG owners such that 

energy from non-firm DGs is optimally utilized thereby 

reducing curtailment.  

min  𝑬(𝑪𝑫𝑺𝑶) =  min  ∑ 𝜋𝑐
𝑁𝑠
𝑠=1 ∑ (𝐶𝑠,𝑡

𝑔𝑠𝑝
+ 𝐶𝑠,𝑡

𝑛𝑓
 +  𝐶𝑠,𝑡

𝑎𝑔𝑔
)𝑡 ∈𝑇  

    ∀𝑠 ∈  𝑁𝑠, ∀𝑡  ∈ 𝑇      (1) 

𝐶𝑠,𝑡
𝑔𝑠𝑝

, 𝐶𝑠,𝑡
𝑛𝑓

 and 𝐶𝑠,𝑡
𝑎𝑔𝑔

 represent cost of transactions with main 

grid, non-firm DGs and aggregators respectively, and 

   𝐶𝑠,𝑡
𝑔𝑠𝑝

=  𝜋(𝑡). 𝑃𝑠,𝑡
𝑔𝑠𝑝

. ∆𝑡           (2) 

𝐶𝑠,𝑡
𝑎𝑔𝑔

= ∑ ∑ {Π𝑠𝑒𝑙𝑙 . 𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑐ℎ

  
𝑁𝑎𝑔𝑔

𝑎𝑔𝑔=1 +  Π𝑏𝑢𝑦 . 𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑑𝑖𝑠

} Δ𝑡 
𝑁𝑏𝑢𝑠
𝑖=1

                  (3) 

𝐶𝑠,𝑡
𝑛𝑓

=  ∑ ∑ {𝜋(𝑡). 𝑃𝑖,𝑠,𝑡
𝑛𝑓

+ Π𝑐𝑢𝑟𝑡 . 𝑃𝑖,𝑠,𝑡
𝑐𝑢𝑟𝑡}Δ𝑡

𝑁𝑛𝑓

𝑛𝑓=1

𝑁𝑏𝑢𝑠
𝑖=1            (4) 

 

𝑁𝑏𝑢𝑠 =   Set of buses/nodes 

𝑁𝑎𝑔𝑔 =   Set of Aggregators 

𝑁𝑠   =   Set of scenarios 

𝑖, 𝑗   =   Index of buses 

𝜋(𝑡)      =  Hourly electricity Price (£/MWh) 

𝑃𝑠,𝑡
𝑔𝑠𝑝

     =  Active Power at gsp at time t at scenario s 

Π𝑠𝑒𝑙𝑙   =     Sell Price to Aggregator (£/MWh) 

Π𝑏𝑢𝑦   =      Buy Price from Aggregator (£/MWh) 

∆𝑡   =   Optimization time step 

 𝑃𝑖,𝑠,𝑡  
𝑎𝑔𝑔,𝑐ℎ

=  Charging Power of aggregator at bus i, 

   scenario s, at time t 

𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑑𝑖𝑠

=              Discharging Power of Aggregator at bus i, 

   scenario s, at time t 

Π𝑐𝑢𝑟𝑡       =  Curtailment penalty (£/MWh) 

𝑃𝑖,𝑠,𝑡
𝑐𝑢𝑟𝑡     =  Curtailed Power of non-firm DG at bus i, 

   scenario  s, at time t 

𝑃𝑖,𝑠,𝑡
𝑛𝑓

     =  Power output of non-firm DGs at bus i, 

   scenario s, at time t 

B.  Grid Supply Point (GSP) and Non-Firm DGs 

The DSO is connected to the main grid via the grid supply 

point (𝑔𝑠𝑝) [26]. DG connections to the distribution system 

are non-firm (index is 𝑛𝑓) connections. The non-firm DG 

resources are modeled as supplying real and reactive power 

within their maximum capacity at each time t according to 

their power factor, that is: 

0 ≤  𝑃𝑖,𝑠,𝑡
𝑛𝑓

 ≤  𝑃𝑖,𝑠,𝑡
𝑚𝑎𝑥        ∀𝑛𝑓 ∈  𝑁𝑛𝑓 , 𝑡 ∈ 𝑇                 (6) 

0 ≤  𝑄𝑖,𝑠,𝑡
𝑛𝑓

≤  𝑄𝑖,𝑠,𝑡
𝑚𝑎𝑥        ∀𝑛𝑓 ∈  𝑁𝑛𝑓 , 𝑡 ∈ 𝑇       (7) 

C.  Aggregators 

Some of EV roles include load shifting, balancing services, 

flexibility, decreasing marginal cost of power, optimizing 

investment in power infrastructure and other ancillary 

services [27]. EV aggregators modeling is achieved by 

modifying the model of fixed energy storage system (ESS) 

to reflect features of aggregation. Effects of self-discharge 

and temperature on the EV batteries are assumed to be 

negligible. The model used in this work is expressed as 

follows for  ∀𝑎𝑔𝑔 , ∀𝑖 , ∀𝑡 , ∀𝑠: 

𝑆𝑂𝐶𝑖,𝑠,𝑡
𝑎𝑔𝑔

=  𝑆𝑂𝐶𝑖,𝑠,𝑡−1
𝑎𝑔𝑔

−  (
𝜂𝑐ℎΔ𝑡

𝑛(𝑡) .𝐶𝑏
𝑃𝑖,𝑠,𝑡

𝑎𝑔𝑔,𝑐ℎ
+

 
Δ𝑡

𝜂𝑑𝑖𝑠.𝑛(𝑡).𝐶𝑏 
𝑃𝑖,𝑠,𝑡

𝑎𝑔𝑔,𝑑𝑖𝑠
)                    (8) 

𝑆𝑂𝐶𝑚𝑖𝑛
𝑎𝑔𝑔

  ≤  𝑆𝑂𝐶𝑖,𝑠,𝑡
𝑎𝑔𝑔

  ≤  𝑆𝑂𝐶𝑚𝑎𝑥
𝑎𝑔𝑔

                     (9) 

−𝑃𝑚𝑖𝑛,𝑡
𝑎𝑔𝑔

 ≤  𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑐ℎ

 ≤ 0      (10) 

        0 ≤  𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑑𝑖𝑠

 ≤ 𝑃𝑚𝑎𝑥,𝑡
𝑎𝑔𝑔

      (11) 

𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑛𝑒𝑡

=  𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑐ℎ

+  𝑃𝑖,𝑠,𝑡
𝑎𝑔𝑔,𝑑𝑖𝑠

                   (12) 

𝑃𝑚𝑎𝑥,𝑡
𝑎𝑔𝑔

  = 𝑛(𝑡) . 𝑃𝐸𝑉
𝑟𝑎𝑡𝑒𝑑  (𝑡)       (13) 

𝑛(𝑡) =  𝑁𝐸𝑉  . 𝛼(𝑡)       (14) 

𝑄𝑚𝑎𝑥,𝑡
𝑎𝑔𝑔

=  
𝑃𝑚𝑎𝑥,𝑡

𝑎𝑔𝑔
.√1− 𝑝𝑓2

𝑝𝑓
                    (15) 

𝑆𝑂𝐶𝑖,𝑠,𝑡−1
𝑎𝑔𝑔

=
𝑛(𝑡 − 1). 𝑆𝑂𝐶𝑖,𝑠,𝑡−1

𝑎𝑔𝑔
+ (𝑛(𝑡) − 𝑛(𝑡 − 1)). 𝑆𝑂�̂�

𝑛(𝑡)
 

           (16) 

(8) defines the 𝑆𝑂𝐶  as a function of the previous 𝑆𝑂𝐶  or 

initial 𝑆𝑂𝐶 , the charging/discharging efficiency, 

charging/discharging rates, and battery capacity. (9) defines 

the restriction of the 𝑆𝑂𝐶.  Constraints (10) and (11) limit 

the power that aggregators can charge/discharge according 

to the number of EVs available at any time t. (12) treats the 

net power of each aggregator as the combination of separate 

charging and discharging generators. The maximum power 

of each aggregator at each time t is defined by (13) where 

𝑃𝐸𝑉
𝑟𝑎𝑡𝑒𝑑(𝑡) is the EV’s rated charger power and 𝑛(𝑡) is the 

number of EVs connected at time t. 𝛼(𝑡) is 𝐸𝑉’𝑠 availability 

factor at time t. (15) defines the maximum reactive power 

limits as a function of maximum aggregator power and fixed 

power factor. Equation (16) modifies the previous 𝑆𝑂𝐶  in 

(8) to account for arriving EVs where 𝑆𝑂�̂� is the initial 𝑆𝑂𝐶 

of arriving vehicles when 𝑛(𝑡) > 𝑛(𝑡 − 1). 

Four different types of aggregators used in this work are 

Residential, LongStay, Office and Public. The availability 

profiles of the aggregators are presented later in this work. 

 

D.  System Constraints: Equality and Inequality 

This shall include real and reactive powers in the system, 

real and reactive power flows along the distribution line, 

voltage magnitude, real and reactive powers flowing in and 

out of the gsp and line limits [10].  

E.  Uncertainty Modeling and Scenario Generation 

Stochastic optimization model minimizes the expected total 

cost of operation by the DSO as in (1) by including the 

uncertainty models of the following random variables - DG 

sources (wind and solar) and load demand. Stochastic 

programming assumes that the probability density function 

(PDF) of uncertain variables is known and assigned to 

expected outcomes [28]. Probabilistic scenario-based 

method shall be utilized in this work for generating a set of 

scenarios as used in [17], [29] and [30]. Five-year historical 

data of wind speed and solar irradiance were modeled into 



their respective PDFs and three probabilities for each 

variable were obtained. These independent outcomes 

combine to form twenty-seven scenarios. Accordingly, the 

PDFs of various variables are presented here [12], [31]: 

a. Wind Energy Model: The Weibull probability 

density function (PDF) is used to describe 

uncertainties in wind speed. The Weibull PDF is 

expressed as: 

 

𝑓𝑣(𝑣) = (
𝛼

𝜆
) (

𝑣

𝜆
)

(𝛼−1)

𝑒𝑥𝑝 [−
𝑣

𝜆
]

𝛼

          0 ˂ 𝑣 ˂ ∞      (17) 

 

Where 𝛼 and 𝜆 represent the shape and scale parameter of 

Weibull distribution respectively and v is the wind. For this 

work, scale parameter = 8.042 while shape parameter = 

3.024. The output power of wind generating units is 

determined by wind speed. 

𝑃𝑤(𝑣) =  {

  0             𝑣 ≤  𝑣𝑖𝑛  𝑎𝑛𝑑 𝑣 >  𝑣𝑜𝑢𝑡

𝑃𝑤𝑟 (
𝑣− 𝑣𝑖𝑛

𝑣𝑟𝑎𝑡𝑒𝑑− 𝑣𝑖𝑛
)          𝑣𝑖𝑛  ≤ 𝑣 ≤  𝑣𝑟𝑎𝑡𝑒𝑑

𝑃𝑤𝑟                   𝑣𝑟𝑎𝑡𝑒𝑑  ≤ 𝑣 ≤  𝑣𝑜𝑢𝑡

     (18) 

where  𝑃𝑤(𝑣) is the output power of wind generator at speed 

v, 𝑣𝑖𝑛  is the cut-in wind speed, 𝑣𝑟𝑎𝑡𝑒𝑑  is the rated wind 

speed, 𝑣𝑜𝑢𝑡  is the cut-out power. These values are 4m/s, 

14m/s and 25m/s respectively with 𝑃𝑤𝑟 = 1𝑀𝑊. 

b. Solar/PV Energy Model: Solar output power is 

dependent on solar irradiance (G) which follows 

the normal PDF. The probability of solar irradiance 

with mean, 𝜇𝑠  and standard deviation 𝜎𝑠  can be 

written as: 

 

𝑓𝑝𝑣(𝐺) =  
1

√2𝜋𝜎
exp [−

(𝐺−𝜇𝑠)2

2𝜎𝑠
2 ]                   (19) 

 

The output power of solar PV as a function of solar 

irradiance is expressed as: 

𝑃𝑝𝑣(𝐺) =  {
𝑃𝑃𝑉𝑟 (

𝐺2

𝐺𝑠𝑡𝑑 𝑥 𝑅𝑐 
)         0 ≤ 𝐺 ≤  𝑅𝐶

𝑃𝑃𝑉𝑟 (
𝐺

𝐺𝑠𝑡𝑑
)           𝐺 ≥  𝑅𝐶

      (20) 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑃𝑉𝑟  is the rated output power of PV unit (1MW), 

𝐺𝑠𝑡𝑑  is solar irradiance in a standard environment 

(1000W/m2) and 𝑅𝐶  represents certain irradiance point 

(120W/m2). 

c. Load Model: Uncertainty in load demand can be 

modeled by normal PDF as: 

 

𝑃𝐷𝐹(𝑃𝑑) =  
1

𝜎𝑑√2𝜋
𝑒𝑥𝑝 [

−(𝑃𝑑− 𝜇𝑑)2

2𝜎𝑑
2 ]           𝐺 > 0      (21) 

 

Where 𝜇𝑑 is the mean value of load demand (and the 

forecast load value) and 𝜎𝑑  is the standard deviation. 

A set 27 scenarios are obtained using equations (17) and 

(19) by dividing 𝑓𝑣(𝑣) and 𝑓𝑝𝑣(𝐺) into a set of intervals as: 

𝜋𝑠 =  𝐹(𝐺𝑘 ≤ 𝐺 ≤  𝐺𝑚) = ∫ 𝑓𝑝𝑣(𝐺)𝑑𝑣
𝐺𝑚

𝐺𝑘
                     (22) 

𝜋𝑤 =  𝐹(𝑤𝑝 ≤ 𝑊 ≤  𝑤𝑞) = ∫ 𝑓𝑣(𝑣)𝑑𝑣
𝑤𝑞

𝑤𝑝
                     (23) 

Hence, the sum total of all scenarios’ probabilities is equal 

to 1 i.e.             ∑ 𝜋𝑐  = 1
𝑁𝑠
𝑐=1                                       (24) 

 

IV. IMPLEMENTATION AND CASE 

STUDIES  

Implemented in AIMMS [32], we have connected several 

non-firm DGs and aggregator types on a test system. The 

test system is a modified IEEE-33 Bus, 12.66kV radial 

distribution system (network parameters adapted from [33]). 

 

 Table 1: EV Aggregator Parameter 

Description Value 

Battery Capacity 30kWh 

Charger Power 6.6kW 

Charge efficiency 0.9 

Discharge Efficiency 0.9 

Initial SOC 0.65 

Minimum SOC 0.35 

Maximum SOC 0.95 

Power Factor 0.95 

Sell Price (to Aggregator) £233/MWh 

Buy Price (from Aggregator) £170/MWh 

Aggregator Size 200 

Curtailment Price £240/MWh 

 

V. DISCUSSION OF RESULTS 

The following four subcases are investigated as presented in 

Table 2. The table also presents the results for all 27 

scenarios in terms of cost and curtailment. 

 

Table 2: Sub-cases for Stochastic Cases 
Case  Non-

Firm 

DGs 

Aggregator Curtailment 

Penalty 

Minimum 

Expected 

Cost (£) 

Average 

Curtailment 

(MWh) 

1 Yes No Yes 13,576.36 19.05 

2 Yes Yes Yes 13,420.55 11.261 

3 Yes No No 13,244.23 904.069 

4 Yes Yes No 13,053.75 910.176 

 

A. Overall Costs and Curtailment 

Here, the aggregators used are public and residential. In the 

results in Table2, curtailment is only possible during peak 

hour generation times between 14:00 and 18:00. The 

network can fully accommodate production of energy 

during the other hours. Table 2 shows the minimum 

expected cost of operation incurred to the DSO in equation 

(1) across all 27 scenarios. As seen in Figure 1, DSO trades 

with DGs, aggregators and the TSO all at wholesale energy 

prices taken from Nordpool [34]. For cases 3 and 4, the 

DSO minimizes its cost by buying lower energy from the 

non-firm DG’s total 2385.37MWh for all scenarios. It is 

seen in Table 2 that for Case 2 having both the ability to 

transact with aggregators and maintain a curtailment penalty 

will result in maximizing utilization of DGs in the network. 

However, this needs not necessarily result in minimum 

expected operational costs for the DSO. DSO can further be 

incentivized with aggregators through more favourable 

pricing schemes. In this paper, DSO transacts with 

aggregators at the wholesale energy prices. 

 

 



B. Aggregator’s Impact Evaluation 

In this section, all four aggregators under each scheme are 

the same. We hereby present all four types of aggregator’s 

availability patterns:  

 
Figure 2: Availability Factors of EVs 

 

The impact of each set is then tested and results are 

presented. 

 

Table 3: Curtailment and Minimum Expected Cost of 

   Operation  

Case Office Public LongStay Residential 

Curtailment 

(MWh) 

8.04 8.99 12.21 14.77 

Cost(£) 13,359 13,421 13,473 13,437 

 

With reference to Table 3, residential aggregators had the 

least reduction of curtailment. The reason being that fewer 

EVs are connected at residential homes during afternoon 

peak hours of renewable generation. The LongStay 

aggregators do have maximum number of EVs available 

throughout the 24-hour optimization period, hence cannot 

charge during afternoon peak hours of maximum renewable 

generation. The office aggregator is the best in terms of 

curtailed power and operating cost. This is due to high 

availability of EVs during a period of peak renewable 

generation. In addition, a number of EVs are still available 

during evening peak demands to sell energy to the DSO at a 

lower market price. Finally, the public aggregator is second 

best after office. This result is very similar to Office’s case 

in which EVs are available for charging during peak 

generation hours, therefore non-firm curtailment is less.  

 

C.  Voltage Regulation 

EV aggregators usually balance the power system by buying 

(charging) electricity from the DSO during peak generation 

while keeping voltage within acceptable range and 

supplying (discharging) when there is shortage of supply. 

This price-induced balancing also leads to voltage 

regulation. We hereby present the three cases thus:  

1. Passive Distribution Network: No DGs and 

Aggregators applied to the network. Lowest 

voltages found at the end of feeders (bus 18 and 

33), as expected. 

 

 
Figure 3: Voltage profile without the Aggregators and 

DGs 

 

2. Active Distribution System with High 

Penetration of DGs: Integration of DGs results in 

higher voltages. There are significant reverse 

power flows in the network but all within 0.95 and 

1.05pu. 

 
Figure 4: Voltage Profile with only DGs 

 

3. Case (ii) above with aggregators: This contains 

DGs and aggregators and is also characterized by 

significant reverse power flows. At early hours 

when prices are low, the DSO imports more energy 

from the grid for aggregators to charge. Later in the 

day when market prices are high, the DSO uses the 

aggregator energy to meet electricity demands in 

the network, thereby keeping voltages within their 

limits. These voltage profiles demonstrate how 

price-controlled demand can be used to regulate 

bus voltages. 

 
        Figure 5: Voltage Profile with Aggregators and DGs 

 



VI. CONCLUSION  

This research has been able to optimally solve a developed 

stochastic model containing high levels of renewable energy 

and various aggregators for cost minimization and 

curtailment reduction. The stochastic model is a 27 

scenario-based, multi-period model that involve 

uncertainties in renewable energy generation and power 

demanded. The DSO, being guided by the day-ahead 

electricity price, is able to minimize expected operational 

cost by trading with the grid (TSO), DGs and the aggregator 

and scheduling curtailment of non-firm DGs in a cost-

effective way. Results show that Office aggregators where 

availability profiles closely match renewable generation are 

most effective in reducing both curtailment and expected 

cost of operation. Finally, the price-controlled demand was 

used to regulate voltage level. This is seen as the DSO 

imports more energy from the grid at low market prices and 

buys from the aggregator at high market prices.  
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