
UKACM 2023 Conference, April 19-21, 2023, The University of Warwick, Coventry, UK

AN INVESTIGATION INTO THE METHODS FOR MODELLING
PRE-EXISTING CRACKS IN PHASE FIELD PROBLEMS

Bradley Sims1∗, Robert E. Bird1, Stefano Giani1, William M. Coombs1

1 Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK.
bradley.sims@durham.ac.uk

Abstract. Phase field (PF) models are an increasingly popular method of numerically modelling fracture
problems. While research has focused on the practical applications and computational efficiency of PF
methods, little discussion exists around the merits of different methods of prescribing initial cracks in PF
fracture problems. This paper presents a comparison of three methods for modelling pre-existing cracks,
through Dirichlet-type PF boundary conditions, an initial strain history term, and through physical dis-
continuities in the mesh. The comparison is made using the load-displacement responses for a common
tensile benchmark fracture problem.

Key words: fracture; phase field; finite element method

1 Introduction

Phase field (PF) models are an example of a diffused approach to fracture simulation, which have gained
popularity in recent years. This method is made possible by Francfort and Marigo [1] revisiting Griffith’s
energy-based fracture theory [2] and reforming it as an energy minimisation problem. The subsequent
regularisation of this approach by [3] and [4] has allowed for the development of PF models for brit-
tle fracture which allow fracture problems to be solved numerically, typically using the finite element
method (FEM), with accurate models for crack propagation, nucleation and branching.

Much of PF research has focused on practical applications and reducing the computational expense of
such simulations. In literature, benchmark problems presented often include initial cracks which then
propagate during the simulation. In order to prescribe the initial cracks in these problems, different
approaches have been used. Some prescribe a PF value at the crack, some use an initial strain history
field to represent the crack, and others prescribe the crack through the geometry of the mesh [4, 5].
While these methods exist, there is little discussion in the literature as to the impact of the methods on
the accuracy and efficiency of simulations. In this paper, an investigation into the effect of the different
methods of prescribing initial cracks is presented.

2 Phase Field (PF) Fracture

An arbitrary domain Ω ⊂ Rn where n ∈ {1,2,3} with the boundary ∂Ω is considered, on which a cou-
pled elasticity and fracture problem is solved. This section focuses only on the solution to the fracture
problem. The boundary is subject to Neumann or Dirichlet boundary conditions on ∂ΩN and ∂ΩD re-
spectively, where ∂ΩN ∪ ∂ΩD = ∂Ω and ∂ΩN ∩ ∂ΩD = /0. The fracture surface can be considered an
internal discontinuity boundary Γ.

In Griffith’s theory [2], for a quasi-static brittle fracture process, the elastic strain energy released during
fracture growth must be balanced by the energy required to generate new fracture surfaces. Following
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the work of Francfort and Marigo [1], this can be stated in variational form

Π =
∫

Ω

ψ(εεε)dV +
∫

Γ

Gc dΓ (1)

where Π is the total potential energy functional of the body, which should be minimised to solve for
the fracture path. ψ(εεε) is the elastic strain energy density, εεε the strain tensor and Gc is the rate of
energy required per incremental increase in crack surface area. It is however challenging to minimise the
functional Π in its current state due to the difficulty in tracking and integrating over the evolving fracture
surface Γ. A scalar phase field variable φ is therefore introduced to diffuse the discrete crack over an
approximate volume, where φ = 0 represents intact material, and φ = 1 for fully cracked material.

A monotonically decreasing function g(φ) = (1−φ)2 is used to degrade the material’s stiffness as in [4].
The energy functional is therefore reformed as

Πl =
∫

Ω

(1−φ)2
ψ(εεε) dV +Gc

∫
Ω

1
2l

φ
2 +

l
2
|∇φ|2 dV (2)

where l is the length scale which influences the regularisation of the crack surface and ∇φ corresponds
to the spatial gradient of the PF value.

Following the approach of [6], differences in fracture propagation in tensile and compressive loading
are accounted for by decomposing the strain energy density into tensile ψ+(εεε) and compressive ψ−(εεε)
components through spectral decomposition of the strain tensor. To ensure damage irreversibility a strain
history term H is introduced which tracks the maximum tensile strain energy density over time or quasi-
time t such that H = maxt∈T (ψ

+
t (εεε)) where T denotes the total time domain. Substituting H for ψ+(εεε)

in (2), the Euler-Lagrange equations are used to obtain the strong form equations for the PF(
2H + Gc

l

)
φ−Gcl∆φ = 2H in Ω

∇φ ·n = 0 on ∂ΩN

φ = gD on ∂ΩD

(3)

where n is the outward normal to the boundary ∂Ω, gD is the imposed PF value on the Dirichlet boundary
and ∆φ is the Laplacian of the PF. The discretised weak form of these equations and the coupled elasticity
equations are solved using standard FEM with a staggered scheme as in [6].

3 Prescribing Initial Cracks

The three methods that have been used in literature to prescribe initial cracks in PF problems are de-
scribed in this section. The first option is through imposed Dirichlet-type boundary conditions for the PF
along the initial crack surface, as described in [4]. Here, a value of φ = 1 is imposed along Γ.

The second method uses an initial strain history field H0 to model initial cracks as described in [5].
Taking L to represent the line of the discrete initial crack, the function d(x,L) represents the distance
from x to L, where x represents a position in the domain Ω. Through substitution of ∆φ = 0 and φ ≈ 1
into equation (3)1 and considering the history term to linearly decay with distance from the crack, H0 is
obtained.

H0 =C

{
Gc
2l

(
1− d(x,L)

l

)
d(x,L)≤ l

0 d(x,L)> l
(4)
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The constant C = ( 1
φ
−1)−1. φ must be chosen as close to, but not equal to 1 to avoid division by 0. In

this paper it is chosen that φ = 0.999.

The final option is to prescribe initial cracks through a physical crack or discontinuity in the mesh.

4 Results and Discussion

The three methods described above are applied to a benchmark problem of a unit square specimen with
an initial single edge crack as in Figure 1, based on the test in [4, 6]. The specimen is tested subject to
tensile loading with the upper side displaced by u = 6× 10−3mm over 1500 load steps, where the first
500 load steps apply displacement increments of ∆u = 1× 10−5mm and in the subsequent load steps
∆u = 1× 10−6mm. Linear triangular elements are used to mesh the domain, with an element size of
h = 0.01mm. The length scale is set as l = 0.02mm, satisfying the condition h ≤ l/2 as in [4]. The
load-displacement response of the specimens with the three methods is shown in Figure 2.

The load-displacement responses are significantly different across the three methods. The PF boundary
condition produces a response which is initially too stiff, as although φ = 1 at the crack, the Gauss points
adjacent to the crack are not fully damaged, resulting in incomplete degradation of the material stiffness.
Once the Gauss points become fully damaged as load is applied, a drop in stiffness occurs. This effect is
highly dependent on the length scale relative to the mesh size - length scales much larger than the mesh
size are required to eliminate the erroneously high initial stiffness. This either reduces the accuracy
or increases the computational expense, depending on if the length scale is increased or the mesh size
reduced. The method also requires the initial crack to coincide with the mesh nodes, and is therefore
more difficult to implement with complex crack geometries.

The initial history field and mesh discontinuity methods produce more realistic results. However, the
mesh discontinuity method produces a stiffer response and one that more closely matches the reference
solution for this problem in [6]. This is due to the fact that the initial history field method smoothes the
initial crack, thus producing what is effectively a wider notch in the material. To approach a discrete
crack with close to zero thickness, this method therefore requires a smaller length scale and hence a finer
mesh, increasing computational expense. The advantage of the initial history field over the mesh method
is, however, that this allows initial cracks to be specified without reference to the mesh, meaning complex
crack geometries can be specified more easily.

5 Conclusions

A comparison of the impact of using different methods for prescribing initial cracks for a simple PF
problem has been presented. Given the same mesh size and length scale, prescribing cracks through
physical discontinuities in the mesh gives the most accurate result. Using an initial history field to model
pre-existing cracks gives reasonable results and has the advantage of being the most straightforward to
implement with complex crack geometries. However, it requires finer meshes and smaller length scales to
give the same accuracy as the mesh discontinuity method, and therefore comes at greater computational
expense. Using a Dirichlet-type boundary condition for the PF value performs poorly and is difficult to
implement with complex crack geometries.
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Figure 1: Geometry and boundary con-
ditions for single edge notched tension
test.

Figure 2: Load-displacement responses of single
edge notched tension test.
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