
IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, XXX 20XX 1 

Abstract—Due to the high-order model of photovoltaic and 
wind power generation systems, it is complicated to accurately 
establish the detailed state-space model of the multi-source 
renewable energy microgrid (MG) system. In addition, when the 
MGs are interconnected into microgrid clusters (MGCs), the 
difficulties of the control and stability analysis are greatly 
increased. However, the fast and slow dynamics of power 
electronic interface-based units may not be sufficiently separated 
on time-scale, which cannot directly follow the assumptions of the 
traditional model reduction method. This paper selects a typical 
grid-forming hybrid renewable energy MGC, where the multi-
timescale characteristics of the system considering detailed 
electromagnetic and electromechanical transient modes are 
analyzed. An identification method without trial-and-error 
searching for coupling dynamics is proposed under the non-
classical singular perturbation characteristics, which is 
unreported in previous studies and is different from the traditional 
power systems. Moreover, the reduced-order model can 
characterize multi-timescale while guaranteeing computational 
efficiency, which is able to further perform the key parameter 
optimization and stability analysis for the larger-scale MGCs. The 
theoretical analysis and the time-domain simulations verify the 
feasibility and the accuracy of the reduced-order model. 

Index Terms—Microgrid clusters, grid-forming, hybrid 
renewable energy, multi-timescale, reduced-order, non-classical 
singular perturbation, coupling dynamics. 

I. INTRODUCTION

HEORETICALLY, microgrid (MG) and microgrid clusters 
(MGCs) are not only conducive to the local consumption 

of renewable energy (RE), but also provide an effective solution 
for the voltage-source distributed generation mode in the high-
penetration RE system [1], [2]. The control and stability 
analysis of MGs and MGCs based on the state-space model 
have attracted much attention in recent years [3]-[5]. The state-
space model is able to describe the transient performance 
process of the system and is a general tool for describing the 
system dynamics [6], [7]. In fact, the difficulties of the system 
control and stability analysis problem are significantly 
increased when the MGs are interconnected into MGCs. 

Firstly, it is complicated to accurately establish the detailed 
state-space model of the multi-source RE system. The battery 
energy storage system (BESS) and the photovoltaic (PV) 
system model reach more than ten orders and the variable-speed 
wind turbine model considering multi-mass can reach more 
than 20 orders [4], [5], [8]. Including the networks, tie-lines and 
load models of the MG system, the integrated system model can 
reach hundreds of orders. Secondly, the number of power 
electronic devices in the system is huge, and the RE units with 
power electronic interfaces have wide time-scale characteristics 
ranging from microseconds to seconds. Therefore, the urgent 
need of small time-step and long-time simulation put forward 
higher requirements for the digital simulation of the MGCs, and 
the burden of analysis and calculation increases sharply. 

However, the appropriate model reduction can effectively 
simplify the system's complexity and reduce the computational 
burden of digital simulation. The classical singular perturbation 
(SP) theory is effectively applied to model simplification and 
order reduction, with the principle that the fast and slow 
dynamics are independent decoupling to a certain extent. 
Therefore, the state variables of the system can be divided into 
the fast and slow subsystems [9]. The SP theory has been 
successfully applied in traditional power systems based on 
synchronous generator (SG) for many years [10]. In [11] and 
[12], the traditional power system considers ignoring the fast 
electromagnetic transients in the electromechanical transient 
analysis of the SG, which the low-order simplified model of SG 
such as third-order and second-order model can be obtained. In 
the view of [13], the reduced-order mathematical basis of the 
traditional power system is that the SG dominated-power 
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system has excellent SP characteristics, which can be regarded 
as the dual time-scale system. It is reflected in the significant 
difference as well as relatively independent between the time-
scale of slow dynamics and fast dynamics, which is less 
interactive coupling [14]. 

In recent years, many studies have attempted to use SP 
method directly to the model reduction of grid-tie inverter or 
islanded inverter system, trying to describe the inverter-
interface units in power system. The model reduction of grid-
tied and islanded MG models is respectively carried out in [15]. 
Using the SP method, the low-order model improves the 
computation efficiency and recovers the original system 
response under dual time-scale analysis. In [16], the SP method 
is also adopted for model reduction of the islanded MG, while 
the coupling capacitors of the LCL filters are ignored in the 
modeling. This simplification has unacceptable modeling errors, 
especially when the inverter is used for the voltage and 
frequency regulation in autonomous system. The reduction of 
multi-inverters MG using grid-forming strategy is carried out in 
[17], which simply eliminated the fast dynamics such as 
network and coupling inductance step by step. It is further 
found that not all the inverters have the same contribution to the 
small-signal stability of MG. Therefore, the identification 
method of critical clusters in the system is proposed, which is 
helpful in obtaining accurate low-order models. Multiple 
reduced-order model comparisons of the inverter interfaced unit 
with droop control are examined in [18] and the Lyapunov 
stability analysis is given in [19]. They prove the accuracy as 
well as stability of system performance of the multiple low-
order model. Besides, some researches are also reported to 
conduct the stability analysis of reduced-order models. [20] 
directly uses the existing SP technique to ignore the internal fast 
dynamics for dynamic stability analysis of the reduced-order 
model. Moreover, [21] further investigates the convergence 
behavior of singularly perturbed inverter-based MG. And the 
effects of modeling uncertainty and different loading conditions 
on the effectiveness of the reduced-order model are also 
discussed. 

There are also other works that report to conduct the MG 
model reduction using other than SP method. The approximate 
Kron reduction for networks is presented in [22]. And the order 
reduction method that can identify significant lines and 
interaction modes is proposed in [23] for stability perspective. 
But they only focus on the electrical networks without 
considering the dynamics of the units. The aggregate model is 
proposed in [24] and the dynamic equivalent modeling method 
is presented for the MGC in [25]. The equivalence is to 
aggregate inverters with the same control loops. However, the 
interactions among different units cannot be explored. The 
dynamic phasors-based reduced-order model in [26] is applied 
for the inverter-based MG to predict the trend of the eigenvalue 
movement and the stability margins. Moreover, [27] uses 
balanced transformation, SP and pole clustering methods to 
compare the dynamic characteristics of the virtual synchronous 
generator and the droop-control inverters. 

In the study of the MGs or MGCs model reduction, it is 
essential to accurately characterize the system dynamics. In 

[15]-[21], the classical dual time-scale method is used to 
establish various inverter-based reduced-order models. 
However, the fast and slow dynamics of RE units based on the 
power electronic interface may not be sufficiently separated on 
time-scale. It presents the characteristics of coupling dynamics, 
even the coupling interaction between the fast and slow 
dynamics, which will lead to the significant difference of the 
time-scale characteristics between the RE-MGCs and the 
traditional power system. Therefore, the direct elimination of 
fast dynamics may lead to the disappearance of some system 
dynamics and significantly affect the modeling accuracy. [28] 
demonstrates that in the system with insufficient time-scale 
separation, some fast dynamics with small participation factors 
but interacting with slow dynamics cannot be discarded. The 
participation of these fast states needs to be restored in the slow 
sub-model. However, the research in [28] does not explicitly 
illustrate the characteristics of the coupling dynamics. 
Moreover, there is no identification method of coupling 
dynamics. Therefore, how to identify and even quantify the 
characteristics of the coupling interactions under the non-
classical SP characteristics has become the critical issue of 
model reduction for power-electronized power systems. 

Furthermore, the current researches on order reduction of 
MGs or MGCs in [15]-[28] are only limited to systems based 
on ideal BESS units, rather than the actual primary energy 
modeling of RE units like PV and wind turbine. In fact, in our 
previous studies, the DC-link dynamics of PV array are 
considered in [5] and the oscillations caused by the changes of 
DC-link dynamics are studied in [29]. Besides, the rotor speed
dynamics of wind turbine are considered in [30]. They both
illustrate that ignoring the dynamics of the primary sources and
assuming them as constant DC voltages for simplicity in
stability investigations of MGCs may lead to misleading
analytical results. Therefore, the modeling of primary energy is
essential to accurately describe the dynamic characteristics of
the RE-MGCs and to guarantee the accuracy of the reduced-
order model.

Therefore, with the detailed primary energy sources 
modeling of the RE generation units, the influence of the 
coupling interactions between the fast and slow dynamics on 
the MG/MGCs model reduction is still a research gap. In 
current literature [15]-[21], only using the dual time-scale 
classical SP method may affect the modeling accuracy; only 
simplifying to constant DC voltage may mislead the analytical 
results in [15]-[28]. 

Motivated by the aforementioned research gap, this paper 
uses non-classical SP characteristics and considers the addition 
of coupling dynamics to achieve the accurate system order 
reduction of the multi-source hybrid RE-MGC. The main 
contributions of this paper are summarized as follows: 

1) The primary energy dynamics are the critical element of
the full-order model. Different from traditional model reduction 
studies that ignore primary energy dynamics, in this paper, the 
multi-timescale characteristics of the grid-forming hybrid RE-
MGC system considering detailed electromagnetic and 
electromechanical transient modes are analyzed. 

2) Due to the unpredictable characteristic of coupling
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dynamics hidden in fast and slow dynamics, all the dynamics 
that strongly associated to the dominant modes are only 
unconditionally reserved in the traditional method, simply 
considering them to be slow dynamics without identifying the 
coupling dynamics. A classification criterion of system 
dynamics and an identification method without trial-and-error 
searching for coupling dynamics are proposed under the system 
characteristics of non-classical singular perturbation, which is 
unreported in previous studies and is different from the 
traditional power systems. 

3) Based on the non-classical singular perturbation
characteristics, the model reduction of the typical grid-forming 
hybrid RE-MGC is conducted. The reduced-order model 
reserves the coupling dynamics as well as the global slow 
dominant dynamics, which can characterize multi-timescale 
while guaranteeing computational efficiency. 

This paper is organized as follows. Section II presents the 
multi-timescale identification analysis under the modeling of 
the studied MGC. Section III elaborates the non-classical SP 
characteristics and proposes the identification method of 
coupling dynamics as well as the generalized model reduction 
method. Section IV proposes the model reduction of multi-
source MGC and obtains a reduced-order model. Section V 
presents the time-domain simulation results of the model 
response. Finally, the conclusion is given in Section VI. 

II. MODELING AND MULTI-TIMESCALE ANALYSIS OF HYBRID
RENEWABLE ENERGY MICROGRID CLUSTERS

Under the consideration of the increasing penetration of

hybrid RE integrated into the distribution network, Fig. 1 shows 
the topology architecture of the studied hybrid renewable 
energy MGC. This autonomous MGC architecture can be 
specifically applied to the advanced distribution network 
operation or some remote area which is rich in solar energy and 
wind energy [5], [30]. In this scenario, power supply can be 
available for production, living, tourism, etc. In a single MG in 
Fig. 1, a DFIG unit, a PV unit and a supplementary BESS unit 
are implemented via resistive-inductive feeders for power 
supply to local loads. In the case of high-penetration RE 
operation, each unit of the system operates in a grid-forming 
strategy, which is also the islanded operation mode studied in 
this work. In this section, a unit-to-system modeling approach 
is adopted. 

A. Modeling of Grid-Forming Hybrid Renewable Energy
Units

In our previous research, we have proposed grid-forming 
control strategies for PV and wind power generations under 
weak grid conditions [5], [29], [30]. The grid-forming strategy 
enables RE units not to rely on precise phase-locking of strong 
power grids, most importantly, the RE units can participate in 
system frequency regulation and voltage support under weak 
grid conditions. 

As the widely used commercial wind power generator, DFIG 
has the advantage of small-capacity and low-cost power 
converters. It has the special structure that the stator of the 
asynchronous generator (AG) is connected to the MG bus, and 
the back-to-back (B2B) converters only transmit the slip power. 
Firstly, the wind turbine is connected to the AG via the speed-
increasing gear. The state-space model of the wheel-gear-rotor 
drive train shaft model and the AG can be given by: 

Fig. 2.  Grid-forming droop loop of DFIG, PV and BESS model. Fig. 3.  B2B converters control loops, AG and LCL filter of DFIG model. 

Fig. 1.   Topology architecture of the hybrid renewable energy microgrid clusters. 
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1 2SM SM SM SM sdq SM rdqx A x B i B i      


(1) 
*

1 2 3AG AG AG AG rdq AG odq AG rx A x B v B v B         


(2) 

In (1)-(2),  TSM wheel m rx T       ;  TAG sdq rdqx i i    .

,wheel mT   and r  are the state variables of wind wheel 
speed, output mechanical torque and rotor speed, respectively.

,sdq rdqi i   and rdqv  are the state variables of stator currents, 
rotor currents and rotor voltages of the AG, respectively. Note 
that , ,SM SM AGA B A  and AGB  can be found in the Appendix, 
which are derived from the ordinary differential equations 
(ODEs) in [30] representing the shaft model and AG of DFIG. 
Besides, the parameters of the AG are the same as [30]. 

Secondly, the grid-forming strategy is based on the dynamic 
droop loop, as shown in Fig. 2. The droop loop can provide the 
power angle and voltage reference for each unit in order to 
make them capable of participating in frequency regulation and 
voltage control in autonomous mode. The three units share the 
same droop loop, but the DFIG and PV have a supplemental 
maximum power point tracking (MPPT) controller attached to 
the droop loop, as presented in [5], [29], [30]. The control loop 
of the B2B converters (rotor-side converter (RSC) and grid-side 
converter (GSC)) and its controlled objects (i.e., AG and LCL 
filter) are shown in Fig. 3. In conclusion, the state-space model 
of the grid-forming DFIG in synchronous reference frame can 
be given as follows: 

DFIGi DFIG DFIGi DFIG bDQi comi comx A x B v B       


(3) 

TDFIG DFIG
DFIGi Droop SM AG LCL RSC GSCx x x x x x x            (4)

where DFIGx  are the state variables of each component and

 TDFIG
Droop r DFIG DFIG DFIGx P Q       . bDQv  are the 

connection point voltages in the synchronous reference frame 
of DFIG system and com  is an additional input signal of the 
frequency deviation between the local and synchronous 
reference frame. DFIGA  is the system matrix that combines all 
the components and control loops of the DFIG. And 

,DFIG DFIGA B  also can be derived from the ODEs in [30].  
PV and BESS share a similar voltage and current control loop 

and circuit configuration, as shown in Fig. 4. Besides, the DC 
link voltage dynamic of the PV is under consideration in Fig. 2, 
which is a supplemental MPPT controller like DFIG. Therefore, 
the state-space model of the grid-forming PV and BESS in the 
synchronous reference frame are developed in (5)-(8): 

PVi PV PVi PV bDQi comi comx A x B v B       


 (5) 
[ ]PV PV T

PVi Droop dc LCL vdq idqx x v x         (6) 

BESSi BESS BESSi BESS bDQi comi comx A x B v B       


(7) 
[ ]BESS BESS T

BESSi Droop LCL vdq idqx x x        (8) 

In (6) and (8),  TPV
Droop dc PV PV PVx P Q       and 

 TBESS
Droop BESS BESS BESSx P Q     . Note that ,BESS BESSA B  and 

comiB  are given in detail in [31]. PVA  and PVB  are the same 
structure with BESS and can be derived in [5] and the 
parameters of PV array are also identical to [5]. In addition, the 
other parameters of the MGC are given in Table I. 

B. The Full-Order Dynamic Model of Microgrid Clusters
According to the unit-to-system modeling method, the state-

space model of the network (i.e., feeders and tie-lines) and the 
load are established respectively, then the MGC modeling is 
realized according to the framework in Fig. 5. Now, combined 
with all the distributed generation units, network, loads, the 
integrated dynamic model of MGC in Fig. 1 can be and readily 
constructed as: 

MGC MGC MGCx A x  


(9) 


1

1 1 1 ][
MGj

MG

T
MGC BESS PV DFIG line load tie

xx

x x x x x x x


        
 (10) 

Fig. 5.   Modeling framework of MGC. 
Fig. 4.   Converters control loops and LCL filter of PV and BESS model. 

TABLE I 
SYSTEM PARAMETERS OF MICROGRID CLUSTERS 

Parameter Symbol Value 
Electrical parameters 

Tie-line and 
feeder 

1/2/3
11 33,TLZ Z   0.575 + j0.25 (Ω), 

0.115 + j0.05 (Ω) 

LCL filter 
/

/ /
, , ,

, ,

DFIG PV BESS DFIG
n n n
PV BESS DFIG PV BESS
n f f

L L C
C L L

4mH, 1.35mH, 50μF, 
50μF, 1mH, 0.75mH 

Control parameters 

MPPT loop , , ,p r i r pdc idck k k k   3e-3, 4e-3, 8e-4, 3e-3 

Droop loop 
/ / *

/ / *
, ,
,

DFIG PV BESS
p

DFIG PV BESS
Q

m
n V

  5.027e-5, 100π rad/s, 
1.267e-4, 380V 

Voltage loop / /
, , ,
, ,

DFIG RSC DFIG RSC DFIG GSC
pv iv pv
DFIG GSC PV BESS PV BESS
iv pv iv

k k k
k k k

  


0.1, 25, 0.3, 
6, 0.05, 390 

Current loop / /
, , ,
, ,

DFIG RSC DFIG RSC DFIG GSC
pi ii pi
DFIG GSC PV BESS PV BESS
ii pi ii

k k k
k k k

  


10, 500, 25, 

23, 10.5, 16e3 
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Based on the established small-signal model, the overview 
modes and dominant modes of the MGC can be obtained with 
a certain typical steady-state operating point, as shown in Fig. 
6. The nine pairs of complex-conjugate eigenvalues are divided
into three oscillation groups while the other negative real
eigenvalues are divided into two exponential decay (ED)
groups. In Fig. 6 (b), all the oscillation modes have the damping
ratios ( ) greater than 0.1 as recommended in [32], [33].

C. Analysis of System Multi-Timescale
The coexistence of dynamic processes in different time-scale

is a universal physical phenomenon. Fig. 7 shows the schematic 
diagram of the multi-timescale dynamic characteristics of the 
MGC system. Different from the traditional MG analysis in 
[28], [31], the hybrid RE unit considering the solar/wind 
primary energy will introduce the electromagnetic transient and 
electromechanical transient modes in the slower time-scale 
dynamics. On the other hand, the system includes resistive-
inductive networks, power electronic devices, mechanical 
components, etc., and has wide time-scale characteristics 
ranging from microseconds to milliseconds to seconds. The 
multi-timescale characteristics of the system are analyzed in 
this part. 
1) Dominant Slow Dynamics

The derived dynamic model in (9) is then adopted to evaluate
the small-signal stability of the MGC, which is shown in Fig. 6. 
The dimension of MGCx  described by state matrix MGCA  is 189. 
Except for the dominant oscillation modes of the system 
corresponding to the dominant eigenvalues, the remaining 
modes can be identified as high-frequency and high-damping 
oscillation modes with higher decay speeds. Therefore, only the 
low-frequency modes are identified as the dominant oscillation 
modes, which dominate the system performance and are the 

main focus of this study. The dominant modes are selected in 
Fig. 6 (b). To identify the correlation between system states and 
dominant modes, the participation factor (PF) analysis is carried 
out in Table II. In addition, the calculation method of the PF is 
detailed in [14], [31]. 

Furthermore, to study the system characteristics and 
dominant performance, it is necessary to focus on the complex-
conjugate eigenvalues. They affect system performance in the 
form of damped oscillations while the negative real eigenvalues 
are not the main focus. Fig. 8 illustrates the normalized state 
variables PF of the strongly associated states of each damped 
oscillations mode. The states strongly associated with the 
dominant modes can greatly affect the dynamic response of the 
system performance and they can be identified as globally 
dominant slow dynamics. The dominant slow dynamics mainly 
include the power controllers, wind and solar MPPT controllers, 
RSC voltage controllers, DC-link voltage and shaft model, 
proving that the slow dynamics are mainly affected by PV and 
DFIG. Moreover, the identified slow dynamics are marked in 
red font in the modeling diagram (i.e., Fig. 2-Fig. 4). 
2) Coupling Time-Scale

As seen in Fig. 7, under the action of the control loops and
the physical rotor structure, the electromechanical speed 
dynamics of the DFIG spanned from the electromagnetic 
transient to the electromechanical transient on time-scale. The 
characteristic of time-scale coupling reveals that there may be 
interactive coupling between the fast and slow dynamics. The 
PF results of Group 1-2 in Fig. 8 illustrate that the outer 
dynamic droop loops of the PV units, the shaft models and the 
RSC voltage controllers contribute to these dominant 
oscillation modes. Table III shows the average participation 

(a) 

(b) 
Fig. 6 (a). Overview modes of MGC.  (b) Dominant modes of MGC. 

Fig. 7.   Multi-timescale dynamic characteristics of the MGC system. 

TABLE II 
RESULTS OF PARTICIPATION FACTOR ANALYSIS OF DOMINANT MODES 

Modes Strongly 
associated units Strongly associated states 

Group 1 
Mode 1-3 PVs and DFIGs 

, , , , ,dc dc rP v      

, ,wheel m vdqT      
Group 2 

Mode 4-6 DFIGs and PVs , , , , ,dc r wheel mP v T       

Group 3 
Mode 7-9 DFIGs , , , ,DFIG r r wheel mT         

Exponential 
decay mode 1 DFIGs , , ,DFIG r r wheel      

Exponential 
decay mode 2 DFIGs , , ,r wheel m idqT       
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proportion of parts of DFIG/PV variables contributing to Group 
1-2. It is concluded that Mode 1-6 are almost dominated by PVs
and DFIGs, in which reasonable coupling of the power angle
due to the units’ autonomous operation in MGC. Besides, both
the DC-link dynamic of the PV and the electromechanical part
of the DFIG contribute to the same dominant oscillation mode,
revealing that it is possible for the PV and DFIG unit to interact
in a nearby time-scale. Moreover, in previous studies, the
voltage outer loop is considered as the fast dynamic with fast
decay. But in this study, the RSC voltage loops of DFIGs
occupy about a quarter of the participation proportion in Group
2 especially. Looking back to Fig. 2 and 3, the RSC voltage
controller is between the power controller and the current
controller, that is, the middle of the slow dynamic of the outer
loop and the fast dynamic of the inner loop, which is reasonable
to infer that these states have special time-scale. As shown in
Fig. 7, it can be temporarily inferred that both the
electromechanical speed dynamics and DC-link have the
characteristics of coupling dynamics. Therefore, different units
may have interactive coupling, and the coupling time-scale
represents the coupling of fast and dominant slow dynamics,
further demonstrating the coupling states existing in the system,
which is the crucial point in this study.
3) Fast Dynamics

The remaining modes with the high frequency and high
damping are mainly strongly associated with the states of 
currents of feeders, tie-lines and loads. Besides, some fast 
modes are associated with the PV/BESS current controllers, 
states variables of the LCL filters. These mentioned states have 
extremely small participation factors of dominant slow modes 
and they can be ignored in the analysis. Therefore, this sort of 
states only correlates with the fast modes, obviously identified 

as fast dynamics in dual time-scale systems, which exhibit 
extremely fast decay under disturbance compared with the slow 
dynamics. The fast states have negligible effects on the exact 
location of the dominant parts and they will be eliminated in the 
reduced-order model [9], [17]. It should be noted that in this 
paper, the slow dominant dynamics and the coupling dynamics 
are the focus of constructing reduced-order model, while fast 
dynamics contribute less. 

III. GENERALIZED MODEL REDUCTION METHOD OF NON-
CLASSICAL SINGULAR PERTURBATION SYSTEM

A. Dual Time-Scale Singular Perturbation Theory and
Reduced-Order Equivalence

The classical SP theory can be effectively used for model 
order reduction. The system represented by Equation (9) covers 
a wide range of time-scale and the theory of classical SP can be 
applied. Based on the appropriate selection of parameter  , the 
original coupling system can be described through various 
combinations: 

( , , )

( , , )
MGC s MGC f MGC s

MGC f MGC f MGC s

x f x x u

x g x x u



 







  


  

(11) 

where ,MGC s MGC fx x   are the dominant slow dynamics and fast 
dynamics, respectively. u  is the input of the system and   is 
the SP parameter, which is generally with small values such as 
stray inductance and capacitance. 

( , )MGC f MGC sx h x u    (12) 

[ , ( , ), ]MGC s MGC s MGC sx f x h x u u


    (13) 
Considering the decoupling of the original dual time-scale 

system, the fast dynamics can be treated as a boundary layer 
system by approximating   to zero in (11) and Equation (12) 
can be obtained [9]. Therefore, the full-order systems exhibiting 
dual time-scale can be reduced based on the SP theory in (13). 

B. Non-Classical Singular Perturbation Characteristics
In Section III-A, the SP method is used for dual time-scale

model reduction. However, model reduction should firstly 
identify the number of fast and slow dynamics, reserving slow 
states as state variables, simplifying the other states as 
intermediate variables and treating as the boundary layer. When 
applying the classical SP method for model reduction and 
equivalence, the following judgments should be satisfied: 

a) The dominant slow dynamics sx  should be strongly
associated with the slow eigenvalues (i.e., dominant slow 

TABLE III 
AVERAGE PARTICIPATION PROPORTION OF GROUP 1-2 

Average 
Participation 
Proportion 

PV ,dc dcv   DFIG SMx vdq

Group 1 
Mode 1-3 

7.44% 51.20% 13.85% 10.24% 6.01% 

PV in total: 62.30% DFIG in total: 35.04% 

Group 2 
Mode 4-6 

10.50% 14.10% 22.01% 7.27% 24.89% 

PV in total: 28.20% DFIG in total: 63.64% 

Fig. 8.   The normalized participation factors of strongly associated states of 
each damped oscillations mode. 
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modes), and the dimension of sx  equals to the number of slow 
modes. At the same time, the fast dynamic should only relate to 
the fast eigenvalues and the fast modes. 

b) The application of classical SP method cannot basically
affect the exact location of the system’s slow dominant modes 
after order reduction. Moreover, after confirming sx  , if sx  are 
eliminated as the constant value, the fast eigenvalues of the 
system can be calculated. Then it should be ensured that the 
calculated fast eigenvalues coincide with the original system. 

In conclusion, if the studied system does not strictly satisfy 
the above conditions, it is considered that the system exhibits 
non-classical SP characteristics. Therefore, the equivalence and 
order reduction of the system cannot only rely on the classical 
SP method because of the dual time-scale insufficient 
separation. 

C. Coupling Dynamics under Non-Classical Singular
Perturbation

As discussed above, the studied MGC system has different 
dynamics in a wide range of time-scales. As the basis of 
reduced-order modeling in Section III-A, the classical SP 
theory can be applied in a dual time-scale system for model 
equivalence. 

However, using the above judgments is not enough for model 
reduction of the power electronic interface-based unit. The fast 
and slow dynamics of the power electronic interface-based RE 
units may not be sufficiently separated or even have significant 
coupling interactions in the nearby time-scale. For example, 
some coupling dynamics may have both fast and slow dynamic 
components, and it is not necessarily a classical SP system.   

Typically, under non-classical SP characteristics, the number 
of slow states is not equal to the slow modes, which infers that 
some coupling dynamics may exhibit. If some of the coupling 
dynamics get the characteristics of both fast and slow dynamics, 
the number of slow dynamics will be larger than the slow modes. 
If the redundant coupling dynamics are ignored, it will affect 
the accuracy of the reduced-order model though it reflects the 
properties of the original boundary layer under the classical SP 
system. If the coupling dynamics are reserved, the accuracy can 
be ensured, but the remaining dynamics constituting the 
algebraic constraints are different from the original boundary 
layer [9], [34], [35]. It is necessary to separate the coupling 
dynamics from the slow dynamics by establishing the fast 
subsystem. Firstly, the slow dynamics are determined based on 
the correlation with the slow modes. Then, supposing the slow 
dynamics as input nearby the steady-state point, calculate the 
eigenvalues constraining by the remaining fast dynamics. If the 
eigenvalues calculated coincide with the original fast modes, 

the SP characteristics of the original system can be reflected. 
And the correctness of the selected slow and fast dynamics 
(without coupling dynamics) can be guaranteed as well. 

Furthermore, as a typical inverter-based system, MGC has a 
significant time-scale characteristics difference compared with 
traditional power systems. If applying classical SP, the direct 
elimination of fast dynamics may lead to the disappearance of 
some system dynamics and significantly affect the modeling 
accuracy. Therefore, in order to ensure the accuracy, it is 
particularly important first to identify and then reserve the 
coupling dynamics in the reduced-order model. 

D. Identification Method of Coupling Dynamics
If using the traditional judgment, the numbers of slow/fast

dynamics and slow eigenvalues need to be accurately calculated, 
and the excess parts can be determined as the number of 
coupling dynamics. However, for systems whose time-scale is 
not sufficiently separated, the calculations will be difficult. It is 
necessary to build an accurate and fast identification method 
without trial-and-error searching for the coupling dynamics. 

To more clearly identify the coupling dynamics, the existing 
dynamics of the system need to be classified and Fig. 9 carries 
out the classification. In coupled classification, fast/slow 
dynamics consist of global fast/slow dynamics and coupling 
dynamics, which can describe the coupling dynamics hidden in 
fast/slow dynamics or behaving as fast/slow dynamics in other 
words. In decoupled classification, the coupling dynamics are 
separated from the fast/slow dynamics and only global 
fast/slow dynamics are considered. The global fast dynamics 

f Gx   includes reducible fast dynamics f Rx   and the dominant 
dynamic of fast subsystem f Dx  . Note that while f Dx   belong 
to the fast dynamics according to the PF results, they are 
constrained by the system modeling framework (seen in Fig. 5), 
which can dominate fast subsystem and affect the modeling 
accuracy. For example, oDQii  in Fig. 5 represents the unit 

Fig. 9.   Classification of the system dynamics. 

Fig. 10.   The flowchart of identification method of coupling dynamics. 
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output current in the synchronous reference frame. As a 
medium between the RE unit and network model, it will lead to 
the failure of modeling if it is eliminated as the fast dynamics. 

Besides, because of the unpredictable characteristic of 
coupling dynamics hidden in fast/slow dynamics, CDx  may 
come from both fast and slow dynamics. The reducible fast 
dynamics f Rx   can be directly eliminated as boundary layer 
using the SP method. And the global slow dynamics s Gx   
should be directly reserved in the low-order model. In summary, 
the reserved dynamics include the ,s G f Dx x   and CDx . 

The identification method of coupling dynamics is shown in 
Fig. 10. Under the non-classical SP system, it needs to identify 
which coupling dynamics get the characteristics of fast or slow 
dynamics. The identification method is divided into two steps. 
The first is to figure out the coupling dynamics that behave as 
slow dynamics. Although the CD sx   originally needed to be 
reserved as the slow dynamics, identifying them is helpful for 
the coupling time-scale analysis of system modes. Firstly, 
fixing the selected global slow dynamics as constant value and 
establishing the fast subsystem. And the fast eigenvalues will 
not coincide with the original full-order model if any coupling 
dynamics are included in selected s Gx  . Then choose the 
dynamics of small PF as CD sx  , remove it and repeat the fast 
subsystem establishment until the fast modes coincide. So far, 
the CD sx   hidden in sx  can be confirmed. 

Secondly, focus on the dominant modes and identify the 
coupling dynamics that behave as fast dynamics. Based on the 
fast dynamics identified before, s Gx   and CD sx   are reserved for 
model reduction and the accuracy of the reduced-order 
dominant modes can be determined. Choosing the large PF of 

fx  as CD fx   and reserve them into the dominant modes again 
until the dominant modes coincide. In the end, the coupling 
dynamics can be confirmed, including CD fx   and CD sx  . 

In conclusion, the method can identify the system coupling 
dynamics with both fast and slow dynamic components without 
calculating the numbers of dynamics as well as trial-and-error 

searching. Therefore, the model reduction can be implemented 
quickly and accurately. 

E. Model Reduction Method for Characterizing Multi-
Timescale and Guaranteeing Computational Efficiency

To sum up, the generalized model reduction method of non-
classical singular perturbation system can be given in Fig. 11. 
Firstly, the multi-timescale should be identified by the PF 
analysis of the dominant modes. Then the slow dynamics and 
the global fast dynamics can be figured out by the analysis. 
Secondly, the network can be simplified by equivalent 
techniques and the system boundary layer can be constructed 
by the dual time-scale method. The construction of the 
boundary layer system in (11) and (12) can realize the linear 
preservation of the system’s fast dynamics. Then the fast 
dynamics are eliminated by the classical SP method in (13). 
Therefore, the first step of reduction can be confirmed. 

Thirdly, after determining the non-classical singular 
perturbation characteristics, the identification method in Fig. 10 
can be carried out. Then it can be considered to re-add the 
identified coupling dynamics to the first step reduced-order 
model. Finally, the final reduced-order model that characterizes 
multi-timescale and guarantees computational efficiency can be 
obtained under the proposed generalized reduction method. 

IV. MODEL REDUCTION OF MICROGRID CLUSTERS BASED ON 
NON-CLASSICAL SINGULAR PERTURBATION 

A. Equivalent Network Simplification
Based on the analysis in Section II-C, some fast modes are

mainly strongly associated with the states of currents of feeders, 
tie-lines and loads. Besides, before conducting the reduction 
study, the equivalence of the electrical network is first 
performed in order to reduce the number of nodes and simplify 
the system [17], [25]. In this study, the network of feeders can 
be simplified and combined with the inductance fL  of the LCL 
according to the Kirchhoff's current law under dq axis: 

oDQi lineDQii i     (14) 
Then, the equivalence of feeders can be given as: 

e
f linef

e
f f line

L L L
R R R

 



 

(15) 

In (14)-(15), lineDQii  are the currents of the feeders in dq axis. 

fL  and fR  are the output filter inductance and resistance. lineL

and lineR  are the feeder inductance and resistance. e
fL  and e

fR
are the output filter inductance and resistance after equivalence. 

In addition, the equivalence will lose some modes generated 
by the network, which are not the focus of this study because of 
the high-frequency and high-damping characteristics. It should 
be noted that, although the tie-lines belong to the network and 
associated with the fast modes, they are the important element 
of the power flow between MGs. So, the state variables of tie-
lines can be regarded as the dominant dynamics of the fast 
subsystem, which are the non-negligible part of the modeling 
framework and reserved in the reduced-order model. 

Fig. 11. The proposed generalized model reduction method of non-classical 
singular perturbation system. 
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B. System Boundary Layer Construction and Reduction
1) Reduction of the Load Model

Firstly, the load model can be represented in SP form:

1

2

load
loadDQ load loadDQ load com

load

load pccDQ

L i A i B
R

B v

     

 



(16) 

Note that the matrices loadA  and 1loadB  can be obtained the 
same in [31]. Besides, 2loadB  is related to the load node: 

2 1

2 2 2

2 3

0 0
0 0
0 0

load

load load

load

B
B B

B







 
 
 
 

while
1

2 1

0
0

load i

load i

R
load i

R
B 





 
   

and 1 1 3 3[ ]T
pccDQ pcc D pcc Q pcc D pcc Qv v v v v        . load iL   is the 

inductance of load i, and pccDQv  is the voltage of PCC in dq 
axis. 

To obtain the boundary layer composed of the load model, 
the SP parameter load  can be regarded as load loadL R  then 
the solution of loadDQi  can be obtained by solving the linear 
equation by gaussian elimination. Finally, the boundary layer 
composed of loads can be substituted back into the original 
system for order reduction. 
2) Reduction of PV/BESS Units

The PV and BESS units share the same structure of boundary
layer because they have the same fast dynamics. The boundary 
layers of the PV units are established for reduction, and the 
BESS units are similar. Conducting the appropriate selection of 
matrix  , the SP equation of power loop, voltage and current 
loop, LCL filter can be simultaneously combined as follows: 

1 2
PV PV PV PV PV

PV BL BL BL BL oDQ BLx A x B i B P       


 (17) 
[ ]PV T

BL PV vdq idq ldq odqx Q i v          (18) 

The matrices PV
BLA  and PV

BLB  can be derived from the ODEs 
representing the corresponding controllers or components of the 
boundary layer states PV

BLx . Then, the solution of fast dynamic 
can be obtained by solving the linear equation. With the 
boundary layer substituted into the original system, the 
remaining dynamics of the PV unit are: 

[ ]T
PV PV dc dc odqP v i        (19) 

Similarly, the remaining dynamics of the BESS unit are: 
[ ]T

BESS BESS odqP i   (20) 
3) Reduction of DFIG Units

Based on the above analysis, it is able to establish the
boundary layer composed of the DFIGs: 

1

2 3 4

DFIG DFIG DFIG DFIG
DFIG BL BL BL BL SM

DFIG DFIG DFIG
BL oDQ BL vdq BL

x A x B x
B i B B P




    
     



 (21) 

[
]

DFIG
BL DFIG idq dc idq dc

T
sdq rdq ldq odq

x Q u
i i i v

        
    (22) 

It is worth noting that this study focuses on complex-
conjugate eigenvalues manifesting as damped oscillations 
(transient performance) while negative real eigenvalues may 
affect the speed of the system reaching to steady-state (dynamic 
performance) after being perturbed [36]. Although the state 
variables idq  are only strongly associated with the two ED 
modes, they have little contribution to Mode 1-9. Besides, the 
ED modes have been truncated into two modes in the previous 
analysis. If the truncated modes can be reproduced in the 
reduced-order model, the dynamic performance of the original 
system can be reflected. Therefore, these states are out of 
consideration in model reduction and can be treated as fast 
dynamics using the SP method. The matrices DFIG

BLA  and DFIG
BLB  

can be derived from the ODEs representing the corresponding 
controllers or components of the boundary layer states DFIG

BLx . 
Then, solving the linear equation and obtaining the solution, the 
remaining dynamics of the DFIG unit are: 

[ ]
SM

T
DFIG DFIG r wheel m r vdq odq

x

P T i    


          (23) 

4) Reduced-Order Model under Dual Time-Scale System
After fully obtaining the boundary layer of the MGC system,

the SP method in dual time-scale can be applied for order 
reduction. Applying the network simplification and the 
boundary layer substituted into the original system, we can 
obtain the 65-order reduced model by Equation (24): 

65 65 65MGC MGC MGCx A x


     (24) 
Fig. 12 shows the comparison between the dominant modes 

of the full-order model and the 65-order model using the dual 
time-scale reduction model in [15]-[21]. Only the slow 
dynamics are reserved in this model without identifying the 
coupling dynamics, Group 1-2 have matching errors as seen in 
Fig. 12. The errors are reflected in the damping of each mode 
while the oscillation frequency basically coincides. The 
damping of the low-order model has become stronger, which 
cannot accurately reflect the transient performance of the 
original system. However, after reducing the dynamics by 66%, 
the 65-order model can also basically restore the dominant 
oscillation modes of the original system. 

C. Coupling Dynamics Identification of Microgrid Clusters
In Section III-D, the identification method of coupling

dynamics is proposed and it is applied for the studied MGC 
system in this part. The first is to separate the coupling 
dynamics from slow dynamics though they have been already 

Fig. 12.   Comparison between dominant modes of the full-order model and 65-
order model. 
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reserved in the 65-order model. The selected global slow 
dynamics s Gx   include all the slow dynamics reserved in 
Equation (24). According to the flowchart in Fig. 10, fixing 
them as constant values, it is able to establish the fast subsystem 
and calculate the remaining fast modes, as shown in Fig. 13. 
However, some fast modes marked by the dashed boundary 
have significant errors and the conclusion is negative for 
coincidence with the full-order model. 

In addition, in multi-timescale analysis, it can be found that 
the coupling time-scale characteristics of Group 1-2 are the 
most obvious. The participation factor analysis of Group 1-2 
carried out in Section II-C illustrates the shaft model SMx  as 
well as the voltage loop vdq  of RSC have slightly less 
contribution to the dominant modes than the other strongly 
associated states. However, SMx  are tended to be preserved as 
they are the slower mechanical components. Therefore, it is 
reasonable to choose vdq  as the coupling dynamics CD sx  . 
The fast eigenvalues can be recalculated, as also shown in Fig. 
13, indicating that the error has been eliminated and all the fast 
eigenvalues coincide with the original model. Only if the 
coupling dynamics are correctly selected, the fast eigenvalues 
can be consistent with the original model. It can be concluded 
that the state variables vdq  are the coupling dynamics 
behaving as slow dynamics. 

Secondly, it needs to separate the coupling dynamics from 
fast dynamics. When s Gx   and CD sx   are reserved, the 65-order 
model can be obtained as shown in Fig. 12, which shows that 
Group 1-2 cannot accurately locate and lose transient 
performance accuracy in this model. It is necessary to conduct 
the PF analysis among the dynamics being reduced in the 65-
order model and the states of Group 1-2 with large PF are shown 
in Fig. 14. It should be noted that the PF of the selected state 

variables Q  and vdq  is much lower than the other variables 
that have been reduced in the 65-order model. It is reasonable 
to speculate that the variables vdq  have the coupling time-
scale characteristics compared with vdq  under the above 
analysis. The selected coupling dynamics Q  and vdq  will 
be re-added to the 65-order model in the following work to 
verify the accuracy of the identification. 

D. Reduced-Order Model of Microgrid Clusters
Based on the 65-order model in (24), the coupling dynamics

behaving as fast dynamics should be re-added while the 
coupling dynamics that behaving as slow dynamics are already 
reserved in the model. Firstly, the variables Q  are added back 
into the reduced-order model as shown in Fig. 15 (74-order 
model) which illustrates the improved accuracy of the 
eigenvalues’ location of Group 1-2. Secondly, the re-adding of 
the PV and BESS voltage loop variables vdq  is also 
conducted in Fig. 15. The accuracy of the reduced-order model 
further improves, especially in Group 1-2 that have the coupling 
time-scale characteristics. In addition, the proposed model can 
accurately identify the interactions among different MGs in the 
clusters. In Modes 1, 6, and 9, the participation of the three MGs 
is almost the same, as shown in Fig. 8. It can be concluded that 
the interactions occur in three MGs in these modes. Moreover, 
Mode 3 is mainly associated with MG 1 and 3, while Mode 4 
and 7 are mainly associated with MG 2 and 3. Therefore, there 
is a wide range of interactions between the MGs in the dominant 
modes, especially the Group 1-2 that have the coupling time-
scale characteristics. Most importantly, the interactions can be 
investigated after reduction, especially the increased accuracy 
of coupling time-scale Group 1-2 after re-adding the coupling 
dynamics. It is noted that if the accuracy of the dominant modes 
of the reduced-order model can be guaranteed, the MGs 
interactions exhibited in the modes are also preserved in the 
proposed reduced-order model. 

Therefore, the re-adding can accurately restore the transient 
performance of the original system. The coupling dynamics are 
correctly identified for describing the coupling time-scale 

Fig. 13.   Comparison between fast eigenvalues of full-order model and the two 
fast subsystem models. 

Fig. 14.   Participation factor results of some reduced states of Mode 1-6. 

Fig. 15.   Comparison between dominant modes of the full-order model, 65-
order model, 74-order model and 86-order model. 
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characteristics of the model, which can obtain the 86-order 
reduced model with coupling dynamics: 

65 65
86 86

MGC MGC
MGC MGC

CD f CD f

x xx Ax x
          




 
 

 
(25) 

The reduced-order model in (25) can reduce the dynamics by 
54% and accurately restore the dominant oscillation modes of 
the original system. Besides, the ED modes can also be 
accurately truncated into two modes, reflecting the model 
reduction accuracy. In summary, the 86-order model can not 
only accurately describe the multi-timescale characteristics but 
also reduce the computational burden because of the lower-
order model. However, in order to more specifically 
demonstrate the improved computational efficiency in stability 
analysis of the proposed reduced-order model, further works 
need to be discussed. 

E. Discussions on Efficiency and Applicability of the
Reduced-Order Model Stability Computation

Actually, the full-order model is absolutely the most accurate 
in stability and dynamic characteristic analysis. However, it is 
complicated to accurately establish the full-order model of the 
large-scale MGC system. Besides, it suffers from the burden of 
numerical calculation of stability analysis as well as the burden 
of small-step or long-time simulation. 

On the other hand, the proposed reduced-order model of 
MGC can guarantee the accuracy of the dominant modes after 
re-adding the coupling dynamics. Moreover, Table IV shows 
the computation time comparisons of the eigenvalues of the 
full-order, 65-order and 86-order models. Noted that all the 
computations use Intel i7-10700 CPU and 32G RAM under 
MATLAB R2020b of Windows 11 environment and the results 
take the average of the three times computation. 

It can be seen that the full-order model takes a lot of time to 
calculate the eigenvalues, which is more than three times as 
much as the final proposed 86-order model. Besides, the time 
of 65-order model is slightly shorter than the final model, which 
is about 28% of the full-order model computation time. 
However, the 65-order model by the dual time-scale method 
loses accuracy and it will be out of consideration though it is a 
bit faster. Furthermore, the final 86-order model reduces the 
time by more than 67% and only needs one-third of the original 

model. 
In summary, the proposed generalized method can be applied 

for model reduction while retaining the necessary dynamics that 
dominate the system. The computation and simulation of the 
system can be more efficient, and the system dynamics can also 
be accurately characterized as well. Practically, the larger-scale 
system can be established and carried out the numerical 
calculation using the proposed reduced-order model based on 
the fundamental conclusion.  

V. REAL-TIME SIMULATION RESULTS

A. Real-Time Simulation Setup
RT-Lab is used to execute the full-order model in real-time

simulator OPAL-RT OP5600. As shown in Fig. 16, the full-
order model created in MATLAB/Simulink can be compiled in 
RT-Lab and imported into OP5600. The desired variables can 
be detected by connecting the oscilloscope to the real-time 
simulator. In addition, the proposed reduced-order model can 
be operated in the low-order small-signal model.  

B. Verification of Model Response
The simulation verification will compare the transient

performance of the full-order model and the proposed reduced-
order model under system disturbances. The real-time 
simulation is chosen instead of the full-order small-signal step 
response to make the results close to the practical real-life 
operation; thus, the accuracy and the feasibility of the reduced-
order model can be verified. 

A step load increase for 1kW in PCC 1 is applied in two 
models respectively and the comparison of the change of the 
variables for MG 1 is shown in Fig. 17. As can be seen in Fig. 
17 (a), the output power responses of the three units in MG 1 of 
the reduced-order model have similar performance with the 
full-order model of real-time simulation under load disturbance, 
which the magnitude of the steady state are the same. Moreover, 
for the full-order model and the proposed reduced-order model, 
the output frequencies of the three units have the same response 
in Fig. 17 (b). They have the same oscillation frequencies and 
magnitude of the steady-state. And the reactive power response 
of the proposed reduced-order model also matches the original 
model. Besides, the dq-axis voltage and current of PCC 1 have 
good performance in the response.  

Fig. 16.   Real-time simulation environment. 

TABLE IV 
THE COMPUTATION TIME COMPARISONS OF THE EIGENVALUES OF THE FULL-

ORDER, 65-ORDER AND 86-ORDER MODELS 

Model Accuracy Time Average 
time 

Time 
reduction 

percentage  

Full-order model Original 
benchmark 

85.11s 
85.25s Original 

benchmark 85.04s 
85.61s 

65-order model 
(The traditional 

model in [15]-[21]) 

Lose 
accuracy 

23.36s 
23.56s 72.36% 23.45s 

23.70s 

86-order model
(The proposed 

model) 

High 
accuracy 

27.36s 
27.69s 67.52% 28.00s 

27.72s 
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Under the load transition, the same steady-state value and the 
similar transition process as the full-order model can be 
achieved. It should be noted that the oscillations of the small-
signal model response curve have a faster decay speed than the 
real-time simulation, which is also shown in [31], though the 
model and practical test system have consistent dominant 
modes in the theoretical analysis. Although slight differences in 
the response exist in decay speed and overshoot values, the 
transient performance obtained from the reduced-order model 
matches with the practical full-order model from real-time 
simulation. However, the faster decay speed obtained and the 
differences will not affect the model stability in a large range. 
In other words, it proves that in numerical simulation, the 
proposed model has well performance. And compared with the 
original model, the reduced-order model has similar transient 
behavior to a certain extent. It can verify the feasibility and 

Fig. 17.   Comparison of the change of the variables for MG 1 in load step 
change. (a) Active power.  (b) Frequency.  (c) Reactive power.  (d) dq-axis 
voltage of PCC.  (e) dq-axis current of PCC.  
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accuracy of the proposed reduced-order model. 

C. Verification of Simulation Time
In order to further investigate the computational efficiency of

the proposed reduced-order model, it needs to conduct 
comparisons of the simulation time between the proposed 
reduced-order model and the original full-order model. 
Different from the real-time simulation environment, the two 
small-signal models are established in MATLAB for time 
verification to observe the response of system variables through 
the step disturbance as input. The results of the time 
comparisons of the most concerned power and frequency 
response are shown in Table V. Both the full-order model and 
the proposed reduced-order model are implemented in the same 
MATLAB environment and computer configuration as 
mentioned above. Besides, the verification tests simulate for 
one second and the step size is 0.001s.  

It can be seen that the proposed 86-order model has 
significant advantages in computational efficiency, which can 
reduce the time of the most concerned variables by half or more. 
The results show the reasonable practical application of the 
proposed model. Under the premise of ensuring the accuracy of 
the reduced-order model, it can not only accurately characterize 
the multi-timescale of the system, but also improve the 
computational efficiency. In conclusion, the proposed model 
can play an important role in stability analysis and numerical 
simulation of the MGC system. Furthermore, the proposed 

generalized method can also be applied for model reduction as 
an accurate and efficient analysis tool. 

VI. CONCLUSION

 The multi-timescale characteristics of multi-source hybrid 
renewable energy MGC system are analyzed in this paper. It is 
demonstrated that the electromagnetic and electromechanical 
transients time-scale of the studied system are interactively 
coupled; that is, the fast and slow dynamics are not sufficiently 
separated which presents the non-classical singular perturbation 
characteristics. In addition, the proposed dynamic classification 
criterion and the coupling dynamics identification method can 
effectively separate and identify the coupling dynamics from 
the fast and slow dynamics. Different from the traditional dual 
time-scale reduction method, the model reduction introduced in 
this paper is an effective tool for simplifying the stability 
analysis of hybrid renewable energy MGC under the non-
classical singular perturbation characteristics. It is not simply 
eliminating the fast dynamics but re-adding the coupling 
dynamics to restore the accurate dominant modes of the original 
system. In terms of the stability calculation, with high accuracy, 
the proposed model reduces the time by 67% compared with the 
full-order model. Furthermore, on the basis of restoring the 
dominant modes, the real-time simulations verify the accuracy 
of the transient performance of the proposed reduced-order 
model. In terms of the numerical simulation, the proposed 
model has advantages in computational efficiency. By 
simulating the most concern variables, it can reduce the time of 
the power response by 48% and frequency response by 61%. In 
conclusion, the proposed method and model can not only 
accurately characterize multi-timescale dynamics of the non-
classical singular perturbation system, but also guarantee 
computational efficiency. 

APPENDIX 

The matrices 1 2, ,SM SM SMA B B in Equation (1) can be 
described as (A1)-(A3). ,wheel gH H  represent the inertia 
constants of the wind wheel and AG, respectively; , ,tg tgF k D  
and geark  represent the viscous friction coefficient, mechanical 

 TABLE V 
THE SIMULATION TIME COMPARISONS OF THE POWER AND FREQUENCY 

RESPONSE OF THE FULL-ORDER AND 86-ORDER MODELS 

Model 
Power response Frequency response 

Time Average time Time Average time 

Full-order 
model 

88.18s 
88.10s 

50.83s 
51.22s 87.35s 51.74s 

88.76s 51.10s 

86-order model
(The proposed 

model) 

45.70s 
45.47s 

19.75s 
19.88s 45.69s 20.00s 

45.03s 19.88s 

Time reduction 
percentage 48.39% 61.19% 

 

__________________________________________________________________________________________________________________________________ 
2 3

2 2
0
2 3

2
0

1 0
24

1( )
2 2 24

0
2 2

p wheel wind

wheel gearwheel gear wheel

tg p wheel wind tg
SM tg gear tg tg

wheel g gwheel gear wheel

g g

C R v
H kH k

D C R v D pFpA k k D k
H H HH k

p pF
H H







 
  

 
 

     
 
  
 

  (A1) 

2 2

1 0 0

2 2

0 0

0 0

2 2

2 2

tg tg
SM m rq m rd

g g

m rq m rd
g g

D p D p
B L i L i

H H
p pL i L i
H H

 
 
 
 

  
 
 

 
 

   (A2)  
2 2

2 0 0

2 2

0 0

0 0

2 2

2 2

tg tg
SM m sq m sd

g g

m sq m sd
g g

D p D p
B L i L i

H H
p pL i L i
H H

 
 
 
 

  
 
 
 
 

 (A3) 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior 
to final publication. Citation information: DOI10.1109/tsg.2023.3297451



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, XXX 20XX 14 

stiffness, damping coefficient and gearbox ratio, respectively; 
, , ,wheel pp R C and windv  represent the poles of pairs, air density, 

blade length, performance coefficient of wind wheel and wind 
speed; 0wheel  is the steady-state value of wind wheel speed. 

The matrices 1 2 3, , ,AG AG AG AGA B B B  in Equation (2) can be 
described as (A4)-(A7). , , , ,r r s s mR L R L L  represent the rotor 
resistance and inductance, stator resistance and inductance, 
mutual inductance, respectively; 21 ( )m s rD L L L  ; 

0 0 0 0, , ,sdq rdq ri i    represent the steady-state value of the stator 
dq currents, rotor dq currents, voltage frequency and rotor speed, 
respectively. 

REFERENCES 
[1] R. H. Lasseter, "Smart Distribution: Coupled Microgrids," Proceedings 

of the IEEE, vol. 99, no. 6, pp. 1074-1082, June 2011. 
[2] Viktor Sebestyén, "Renewable and Sustainable Energy Reviews: 

Environmental impact networks of renewable energy power plants," 
Renewable and Sustainable Energy Reviews, vol. 151, 111626, Nov. 2021. 

[3] R. Wang, Q. Sun, D. Ma and Z. Liu, "The Small-Signal Stability Analysis 
of the Droop-Controlled Converter in Electromagnetic Timescale," IEEE 
Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1459-1469, July 
2019. 

[4] M. Rasheduzzaman, J. A. Mueller and J. W. Kimball, "An Accurate 
Small-Signal Model of Inverter- Dominated Islanded Microgrids Using 
dq Reference Frame," IEEE Journal of Emerging and Selected Topics in 
Power Electronics, vol. 2, no. 4, pp. 1070-1080, Dec. 2014. 

[5] Z. Zhao, P. Yang, Y. Wang, Z. Xu and J. M. Guerrero, "Dynamic 
Characteristics Analysis and Stabilization of PV-Based Multiple 
Microgrid Clusters," IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 
805-818, Jan. 2019. 

[6] Y. Peng, Z. Shuai, L. Che, M. Lyu and Z. J. Shen, "Dynamic Stability 
Improvement and Accurate Power Regulation of Single-Phase Virtual 
Oscillator Based Microgrids," IEEE Transactions on Sustainable Energy, 
vol. 13, no. 1, pp. 277-289, Jan. 2022. 

[7] A. Aderibole, H. H. Zeineldin and M. Al Hosani, "A Critical Assessment 
of Oscillatory Modes in Multi-Microgrids Comprising of Synchronous 
and Inverter-Based Distributed Generation," IEEE Transactions on Smart 
Grid, vol. 10, no. 3, pp. 3320-3330, May 2019. 

[8] Y. Xu, H. Nian and L. Chen, "Small-Signal Modeling and Analysis of 
DC-Link Dynamics in Type-IV Wind Turbine System," IEEE 
Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1423-1433, Feb. 
2021. 

[9] J. K. Kevorkian, J. D. Cole, Multiple Scale and Singular Perturbation 
Methods, Berlin: Springer, 2012. 

[10] X. Xu, R. M. Mathur, J. Jiang, G. J. Rogers and P. Kundur, "Modeling of 
Generators and Their Controls in Power System Simulations Using 
Singular Perturbations," IEEE Transactions on Power Systems, vol. 13, 
no. 1, pp. 109-114, Feb. 1998. 

[11] O. Ajala, A. Domínguez-García, P. Sauer and D. Liberzon, "A Library of 
Second-Order Models for Synchronous Machines," IEEE Transactions on 
Power Systems, vol. 35, no. 6, pp. 4803-4814, Nov. 2020. 

[12] S. Ahmed-Zaid, P. Sauer, M. Pai and M. Sarioglu, "Reduced Order 
Modeling of Synchronous Machines Using Singular Perturbation," IEEE 

Transactions on Circuits and Systems, vol. 29, no. 11, pp. 782-786, 
November 1982. 

[13] R. K. Varma, R. M. Mathur, G. J. Rogers and P. Kundur, "Modeling 
Effects of System Frequency Variation in Long-Term Stability Studies," 
IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 827-832, May 
1996. 

[14] P. Kundur, Power System Stability and Control, New York, USA: 
McGraw-hill, 1994. 

[15] M. Rasheduzzaman, J. A. Mueller and J. W. Kimball, "Reduced-Order 
Small-Signal Model of Microgrid Systems," IEEE Transactions on
Sustainable Energy, vol. 6, no. 4, pp. 1292-1305, Oct. 2015. 

[16] L. Luo and S. V. Dhople, "Spatiotemporal Model Reduction of Inverter-
Based Islanded Microgrids," IEEE Transactions on Energy Conversion, 
vol. 29, no. 4, pp. 823-832, Dec. 2014. 

[17] I. P. Nikolakakos, H. H. Zeineldin, M. S. El-Moursi and N. D. 
Hatziargyriou, "Stability Evaluation of Interconnected Multi-Inverter 
Microgrids Through Critical Clusters," IEEE Transactions on Power 
Systems, vol. 31, no. 4, pp. 3060-3072, July 2016. 

[18] I. P. Nikolakakos, H. H. Zeineldin, M. S. El-Moursi and J. L. Kirtley, 
"Reduced-Order Model for Inter-Inverter Oscillations in Islanded Droop-
Controlled Microgrids," IEEE Transactions on Smart Grid, vol. 9, no. 5, 
pp. 4953-4963, Sept. 2018. 

[19] M. Kabalan, P. Singh and D. Niebur, "Nonlinear Lyapunov Stability 
Analysis of Seven Models of a DC/AC Droop Controlled Inverter
Connected to an Infinite Bus," IEEE Transactions on Smart Grid, vol. 10, 
no. 1, pp. 772-781, Jan. 2019. 

[20] Y. Han et al., "Reduced-Order Model for Dynamic Stability Analysis of 
Single-Phase Islanded Microgrid With BPF-Based Droop Control 
Scheme," IEEE Access, vol. 7, pp. 157859-157872, 2019. 

[21] A. Nayak, M. M. Rayguru, S. Mishra and M. J. Hossain, "A Quantitative 
Approach for Convergence Analysis of a Singularly Perturbed Inverter-
Based Microgrid," IEEE Transactions on Energy Conversion, vol. 36, no. 
4, pp. 3016-3030, Dec. 2021. 

[22] A. Floriduz, M. Tucci, S. Riverso and G. Ferrari-Trecate, "Approximate 
Kron Reduction Methods for Electrical Networks with Applications to 
Plug-and-Play Control of AC Islanded Microgrids," IEEE Transactions 
on Control Systems Technology, vol. 27, no. 6, pp. 2403-2416, Nov. 2019.

[23] G. Grdenić, M. Delimar and J. Beerten, "AC Grid Model Order Reduction 
Based on Interaction Modes Identification in Converter-Based Power 
Systems," IEEE Transactions on Power Systems, vol. 38, no. 3, pp. 2388-
2397, May 2023. 

[24] V. Purba, B. B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo and S. V. 
Dhople, "Reduced-Order Aggregate Model for Parallel-Connected 
Single-Phase Inverters," IEEE Transactions on Energy Conversion, vol. 
34, no. 2, pp. 824-837, June 2019. 

[25] Z. Shuai, Y. Peng, X. Liu, Z. Li, J. M. Guerrero and Z. J. Shen, "Dynamic 
Equivalent Modeling for Multi-Microgrid Based on Structure 
Preservation Method," IEEE Transactions on Smart Grid, vol. 10, no. 4, 
pp. 3929-3942, July 2019. 

[26] X. Guo, Z. Lu, B. Wang, X. Sun, L. Wang and J. M. Guerrero, "Dynamic 
Phasors-Based Modeling and Stability Analysis of Droop-Controlled 
Inverters for Microgrid Applications," IEEE Transactions on Smart Grid, 
vol. 5, no. 6, pp. 2980-2987, Nov. 2014. 

[27] W. Hu, Z. Wu and V. Dinavahi, "Dynamic Analysis and Model Order
Reduction of Virtual Synchronous Machine Based Microgrid," IEEE
Access, vol. 8, pp. 106585-106600, 2020. 

[28] Y. Gu, N. Bottrell and T. C. Green, "Reduced-Order Models for
Representing Converters in Power System Studies," IEEE Transactions 
on Power Electronics, vol. 33, no. 4, pp. 3644-3654, April 2018. 

2 2
0 0 0

2 2
0 0 0

2
0 0 0

2
0 0 0

( )
( )

( )
( )

s r m s r r m r m r m r

m s r r m s r r m r r m
AG

s m r m s r s m s r r s r

r m s s m m s r r s r r s

R L L L L p L R L p L L
L L L p L R L p L L R LA D

R L p L L R L L L L p L L
p L L R L L L L p L L R L

  
  

  
  

    
     

   
      

   (A4)

1

0
0

0
0

m

m
AG

s

s

L
LB D L
L

 
 

   
 

 (A5)  2

0
0

0
0

r

r
AG

m

m

L
LB D L

L

 
    
 

 (A6)  

2
0 0

2
0 0

3
0 0

0 0

m sq m r rq

m sd m r rd
AG

s m sq s r rq

s m sd s r rd

L i L L i
L i L L iB Dp
L L i L L i
L L i L L i

  
   

 
   

  (A7) 

__________________________________________________________________________________________________________________________________ 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior 
to final publication. Citation information: DOI10.1109/tsg.2023.3297451



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, XXX 20XX 15 

[29] Z. Zhao, J. Xie, S. Gong, X. Luo, Y. Wang, C. S. Lai, P. Yang, L. L. Lai 
and J. M. Guerrero, "Modeling, Oscillation Analysis and Distributed 
Stabilization Control of Autonomous PV-based Microgrids," CSEE 
Journal of Power and Energy Systems, vol. 9, no. 3, pp. 921-936, May 
2023. 

[30] Z. Zhao, X. Luo, J. Xie, S. Gong, J. Guo, Q. Ni, C. S. Lai, P. Yang, L. L. 
Lai and J. M. Guerrero, "Decentralized Grid-Forming Control Strategy 
and Dynamic Characteristics Analysis of High-Penetration Wind Power 
Microgrids," IEEE Transactions on Sustainable Energy, vol. 13, no. 4, pp. 
2211-2225, Oct. 2022. 

[31] N. Pogaku, M. Prodanovic and T. C. Green, "Modeling, Analysis and 
Testing of Autonomous Operation of an Inverter-Based Microgrid," IEEE 
Transactions on Power Electronics, vol. 22, no. 2, pp. 613-625, March 
2007. 

[32] B. Pal and B. Chaudhuri, Robust Control in Power Systems. New York, 
NY, USA: Springer, 2005. 

[33] R. Farmer, "Power Systems Dynamics and Stability," The Electric Power 
Engineering Handbook, L. Grigsby, Ed. Boca Raton, FL, USA: CRC 
Press, 2001. 

[34] V. R. Saksena, J. O'Reilly, and P. V. Kokotovic. "Singular Perturbations 
and Time-Scale Methods in Control Theory: Survey 1976-1983,"
Automatica, vol. 20, no. 3, pp. 279-293, May 1984. 

[35] J. R. Winkelman, J. H. Chow, J. J. Allemong, P. V. Kokotovic. "Multi-
Time-Scale Analysis of a Power System," Automatica, vol. 16, no. 1, pp. 
35-43, Jan. 1980. 

[36] A. Aderibole, H. H. Zeineldin and M. Al Hosani, "A Critical Assessment 
of Oscillatory Modes in Multi-Microgrids Comprising of Synchronous 
and Inverter-Based Distributed Generation," IEEE Transactions on Smart 
Grid, vol. 10, no. 3, pp. 3320-3330, May 2019. 

Zhuoli Zhao (Member, IEEE) received 
the Ph.D. degree in electrical engineering 
from South China University of 
Technology, Guangzhou, China, in 2017. 
From October 2014 to December 2015, 
he was a Joint Ph.D. Student and 
Sponsored Researcher with the Control 
and Power Research Group, Department 
of Electrical and Electronic Engineering, 

Imperial College London, London, U.K. From 2017 to 2018, he 
was a Research Associate with the Smart Grid Research 
Laboratory, Electric Power Research Institute, China Southern 
Power Grid, Guangzhou, China. He is currently an Associate 
Professor with the School of Automation, Guangdong 
University of Technology, Guangzhou, China. His research 
interests include microgrid control and energy management, 
renewable power generation control and grid-connected 
operation, modeling, analysis and control of power-
electronized power systems and smart grids. He is an Associate 
Editor of the Protection and Control of Modern Power Systems. 

Xi Luo received the M.S. degree in 
electrical engineering from Guangdong 
University of Technology, Guangzhou, 
China, in 2023. He is currently working 
toward the Ph.D. degree with the 
Sustainable Energy and Environment 
Thrust, The Hong Kong University of 
Science and Technology (Guangzhou), 
Guangzhou, China. His research interests 

include microgrid control and operation, control of wind power 
generation and power electronic converters. 

Junhua Wu received the B.E. degree from 
Guangdong Ocean University Cunjin 
College, Zhanjiang, China, in 2020. He is 
currently working toward the master 
degree in electrical engineering with the 
School of Automation, Guangdong 
University of Technology, Guangzhou, 
China. His research interests include the 

modeling and stability analysis of microgrids. 

Jindian Xie received the B.E. degree from 
Dongguan University of Technology, 
Dongguan, China, in 2020, and the M.E. 
degree in electrical engineering from the 
School of Automation, Guangdong 
University of Technology, Guangzhou, 
China, in 2023. His research interests 
include the stability analysis and control of 

microgrid. 

Shaoqing Gong received the B.E. degree 
from Changchun University of Science 
and Technology, Changchun, China, in 
2020, and the M.S. degree in electrical 
engineering from the School of 
Automation, Guangdong University of 
Technology, Guangzhou, China, in 2023. 
His research interests include control of 
microgrid and renewable energy system. 

Qiang Ni received the M.Sc. and Ph.D. 
degrees in electrical engineering from 
Southwest Jiaotong University, Chengdu, 
China, in 2013 and 2018, respectively. He 
is currently a Lecturer with the Guangdong 
University of Technology, Guangzhou, 
China. His research interests include 
forecasting and control technology for 
multi-energy system, intelligent fault 

diagnosis and health management of the power electronic 
system. 

Chun Sing Lai (S’11, M’19, SM’20) 
received the B.Eng. (First Class Hons.) in 
electrical and electronic engineering from 
Brunel University London, London, UK, 
in 2013, and the D.Phil. degree in 
engineering science from the University 
of Oxford, Oxford, UK, in 2019.  

He is currently a Lecturer with the 
Department of Electronic and Electrical 

Engineering and Course Director of MSc Electric Vehicle 
Systems at Brunel University London. His current research 
interests are in power system optimization and electric vehicle 
systems. Dr.  Lai was a Technical Program Co-Chair for 2022 
IEEE International Smart Cities Conference. He is the Vice-
Chair of the IEEE Smart Cities Publications Committee. He is 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior 
to final publication. Citation information: DOI10.1109/tsg.2023.3297451



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, XXX 20XX 16 

an Associate Editor for IEEE Transactions on Systems, Man, 
and Cybernetics: Systems, IEEE Transactions on Consumer 
Electronics and IET Energy Conversion and Economics. He is 
the Working Group Chair for IEEE P2814 and P3166 
Standards, an Associate Vice President, Systems Science and 
Engineering of the IEEE Systems, Man, and Cybernetics 
Society (IEEE/SMCS) and Co-Chair of the IEEE SMC 
Intelligent Power and Energy Systems Technical Committee. 
He is a recipient of the 2022 Meritorious Service Award from 
the IEEE SMC Society for "meritorious and significant service 
to IEEE SMC Society technical activities and standards 
development". He is an IET Member, Chartered Engineer, and 
Fellow of the Higher Education Academy. 

Loi Lei Lai (Life Fellow, IEEE) received 
the B.Sc. (First Class Hons.), Ph.D., and 
D.Sc. degrees in electrical and electronic
engineering from the University of Aston,
Birmingham, UK, and City, University of
London, London, UK, in 1980, 1984, and
2005, respectively. Professor Lai is
currently a University Distinguished
Professor with Guangdong University of

Technology, Guangzhou, China. He was a Pao Yue Kong Chair 
Professor with Zhejiang University, Hangzhou, China, and the 
Professor and Chair of Electrical Engineering with City, 
University of London. His current research areas are in smart 
cities and smart grid. Professor Lai was awarded an IEEE Third 
Millennium Medal, the IEEE Power and Energy Society 
(IEEE/PES) UKRI Power Chapter Outstanding Engineer 
Award in 2000, the IEEE/PES Energy Development and Power 
Generation Committee Prize Paper in 2006 and 2009, the IEEE 
Systems, Man, and Cybernetics Society (IEEE/SMCS) 
Outstanding Contribution Award in 2013 and 2014, the Most 
Active Technical Committee Award in 2016, and his research 
team has received a Best Paper Award in the IEEE International 
Smart Cities Conference in October 2020. Professor Lai is an 
Associate Editor of the IEEE Transactions on Systems, Man, 
and Cybernetics: Systems, Editor-in-Chief of the IEEE Smart 
Cities Newsletter, a member of the IEEE Smart Cities Steering 
Committee and the Chair of IEEE/SMCS Standards 
Committee. He was a member of the IEEE Smart Grid Steering 
Committee; the Director of Research and Development Center, 
State Grid Energy Research Institute, China; a Vice President 
for Membership and Student Activities of IEEE/SMCS; and a 
Fellow Committee Evaluator for the IEEE Industrial 
Electronics Society. He is a Fellow of IET. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior 
to final publication. Citation information: DOI10.1109/tsg.2023.3297451




