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ABSTRACT 

The target of this research is the performance-based diagnostics of a gas 

turbine for the online automated early detection of components malfunctions with 

the presence of measurements malfunctions. The research proposes a new 

combination of multiple methodologies for the performance-based diagnostics of 

single and multiple failures on a two-spool engine. The aim of this technique is to 

combine the strength of each methodology and provide a high rate of success for 

single and multiple failures with the presence of measurement malfunctions – 

measurement noise. A combination of Kalman Filter, Artificial Neural Network, 

Neuro-Fuzzy Logic and Fuzzy Logic is used in this research in order to improve 

the success rate, to increase the flexibility and the number of failures detected 

and to combine the strength of multiple methods to have a more robust solution. 

The Kalman Filter has in his strength the measurement failure treatment, the 

artificial neural network the simulation and prediction of reference and 

deteriorated performance profile, the neuro-fuzzy logic the estimation precision, 

used for the quantification and the fuzzy logic the categorization flexibility, which 

are used to classify the components failure. All contributors are also a valid 

technique for online diagnostics, which is a key objective of the methodology. In 

the area of gas turbine diagnostics, the multiple failures in combination with 

measurement issues and the utilization of multiple methods for a 2-spool 

industrial gas turbine engine has not been investigated extensively. 

This research investigates the key contribution of each component of the 

methodology and reaches a success rate for the component health estimation 

above 92.0% and a success rate for the failure type classification above 95.1%. 

The results are obtained with the first configuration, running with the reference 

random simulation of 203 points with different level of deterioration magnitude 

and different combinations of failures type. If a measurement noise 5 times higher 

than the nominal is considered, the component health estimation drop to a 

minimum of 70.1% (reference scheme 1) while the classification success rate 

remains above 88.9% (reference scheme 1). 
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Moreover, the speed of the data processing – minimum 0.23 s / maximum 1.7 

s per every single sample – proves the suitability of this methodology for online 

diagnostics. 

The methodology is extensively tested against components failure and 

measurement issues. The tests are repeated with constant simulations, random 

simulation and a deterioration schedule that is reproducing several months of 

engine operations.  
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1.0  Introduction 

1.1 Health monitoring from early stages to today 

The evolution of the engine health monitoring went through a few 

fundamental stages in the last few decades. Before any electrical device could 

be introduced and knowledge of the gas turbine was still not wide enough for 

the users, the maintenance was unplanned. The monitoring was limited to 

visual inspections and on the run to failure technique [1]. This policy is very 

risky and could not represent a solution especially for aero engines, implying 

a high degree of safety.  

The following step was the preventive maintenance that consists of 

scheduled maintenance intervals for a fixed number of operating hours. As 

reported by Marinai [2], in the early 50s the intervals of maintenance of 

reciprocating engines could be as low as 1000 operating hours, compared to 

the 30000 operating hours reported for the Solar Turbine Mars 90. Despite the 

increase of TBO, preventive maintenance has still margin for cost savings. 

Some replacements, in fact, might occur before the part is effectively at the 

end of its safe lifetime, and some replacements might occur too late, while the 

engine has already encountered an unplanned event.  

With the advent of the electric devices in the 70s, the health monitoring 

system was introduced first in the aero-engines. Volponi [3] reported that the 

system was introduced in the aircraft and the parameters could be recorded. 

In the beginning, only flight parameters could be recorded, but after some 

additional parameters of inlet and outlet condition of the compressor and the 

temperature became available. It is from the 80s, when the electronic made a 

step forward, that the monitoring enhanced its capabilities. In fact, the data 
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were recorded on the inflight monitoring system and set to the ground for 

further analysis and for the predictive maintenance. The predictive 

maintenance consists of the prediction of the health status of the engine based 

on its operating data. 

The advantages provided by the predictive maintenance are economical as 

reported in section 1.3, but also the safety can be significantly improved by 

interpreting early enough key information from the gas turbine.  

1.2 Maintenance costs present and future scenario 

The importance of health monitoring in the gas turbine industrial system 

and in the aero engines has grown in the last two decades. One of the 

motivations behind this growth is the economic advantage. As reported by 

Verbist et al. [4] in the last years, the technical enhancements of the gas 

turbines technology decreased fuel consumption. However, due to the fuel 

price increase over the same period of time, the fuel cost still counts for one-

third of the operating expenses. The authors clarify that to reduce the 

operating costs, the engines are demanded to operate longer and reduce 

maintenance costs.  

The contribution that health monitoring can attack is the maintenance cost 

of the engine, that represents an important portion of the operating costs. 

Looking at the civil aero engines, Marinai et al. [5] reported that the engines 

are responsible for the 26% of the operating costs and out of that the 

maintenance and overhaul count for 31%. The rest of the operating costs are 

coming from depreciation, 35% and from the fuel 34% (Figure 1). 
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Figure 1 Overall costs and maintenance cost on civil engines – Courtesy of [5] 

The same trend is seen in the industrial gas turbines where according to 

Grace [6] the planned maintenance costs on industrial gas turbines and 

combined cycle plants have a portion of 56% of the total O&M costs that 

represents the 7% of the overall project cash flow (Figure 2). The unplanned 

maintenance costs have been also quantified and they correspond to 8.3% of 

the total O&M costs (Figure 3). 

Figure 2 Distribution of project cash flow costs – Courtesy of [6] 
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Figure 3 Distribution of maintenance costs – Courtesy of [6] 

The main power plant components contributing to the cost considered by 

Grace in his publication [6] are the gas turbine, the HRSG and the steam 

turbine. The distribution of the outage time that they report is 79% for the gas 

turbine, which is by far the major contributor, 13% for the HRSG and 8% for 

the steam turbine.  

Still, on the unplanned events, Grace et al. [7] conducted statistic studies 

for 3000 E and F class engines over a 15 years period of time. The authors 

concluded that the unplanned maintenance cost can reach 8% of the O&M 

costs, or 2% of net revenue income and the loss of revenue can reach the 

15% of the O&M cost or 5% of net revenue income. 

Looking at the future trends, IATA [8] provides in his report the figures of 

the global maintenance repair and overhaul spent in 2016, the date of the 

report, and proposes a forecast for 2026. The figure shows that the MRO costs 

will increase by circa 50% in ten years and the engine will be responsible for 

41% of the total costs (Figure 4). It is clear from these numbers that the MRO 

is an increasing topic for the years to come and IATA also add that the big 

data analytics to support maintenance prediction, will be a growing topic. 
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Figure 4 Distribution of maintenance costs – Courtesy of [8] 

1.3 Benefits of engine health monitoring 

As confirmed by Volponi [3] the maintenance strategy running two decades 

ago, was based on scheduled maintenance. The rapid improvement of the 

monitoring and diagnostics capabilities provided the possibility to the industrial 

parties to move from the scheduled maintenance strategy to the maintenance 

performed conditions. The author is providing evidence for the airlines, but the 

same advantages can be considered for the industrial-scale gas turbines.  

The new capability supplied by the health monitoring systems is the 

provision of early information about the health status of the engine. The 

benefits of this information can be evaluated from different perspectives.  

 As clarified in section 1.2 the economic advantage is clearly an 

additional value. In this case, the earlier knowledge of the status of the 

gas turbine can reduce maintenance costs; 

 The efficiency costs related can be also optimized by better planning 

the engine components cleaning; 

 The safety can be increased by knowing the status of the engine before 

any fatal failure; 
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 The lifetime extension is a possible benefit if there is sufficient 

information from the monitoring system to neglect the original overhaul 

schedule. 

The benefits provided by each health monitoring techniques must be 

leveraged with the costs related to them. In fact, some of the techniques 

require additional signals that can come only from the installation, at a cost, 

of additional probes. The additional information provided must be interpreted 

in a manual or automated way. This step comes also with the cost of the 

monitoring system and of the specialist committed to do it.  
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2.0  Gas Turbine Diagnostics 

2.1 Diagnostics techniques 

2.1.1 Visual inspection 

The visual inspection consists of the examination of the gas turbine part 

with the aid of optical assistance boroscopes or with the unaided eyes. The 

first can be used to access small areas or to access the internal part of the 

machine without opening it. The second is used once the machine is open or 

to visualize external parts and might be indicated to detect visible failures like 

corrosion, part detachment and superficial fouling/erosion. 

2.1.2 Radiography 

The radiography makes use of X-ray to detect hidden failures on internal 

components. A common example of this application is the inspection of the 

aero gas turbine blades for the detection of defects in the cooling passages. 

This technique can be integrated with the visual inspection to combine the 

analysis of the surfacing and the detection of internal defects. 

2.1.3 Thermography analysis 

The thermography is the analysis of the temperature scale based on a 

colour scale. By making use of cameras, the image of the object under 

investigation is combined with temperature (Figure 5). This combination of 

information allows detecting internal and external parameters by analysing the 

external surface. A hot spot detected by the thermal camera could detect wear 

in some parts of the gas turbine or inadequate lubrication in a bearing.  
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Figure 5 Thermographic images – Courtesy of InfraTec available at 

https://www.infratec-infrared.com/thermography/industries-applications/thermal-

optimisation/ 

2.1.4 Vibration analysis 

The vibration analysis is one of the early techniques implemented on the 

rotating machinery for the diagnostics. As detailed in the book “Machinery 

vibration and rotordynamics” [9], the first dynamic problem that has been 

encountered was the critical speed, where the speed and the natural 

frequency of the rotor match, generating high vibration levels. This first 

challenge shown the forces a rotor is subjected to that have been later detailed 

by Rankine. The governing equation (1) that allowed Rankine to calculate the 

eigenfrequency of a rotor is: 

� = �
�

�
(1) 

Where ω is the eigenfrequency of the rotor, k is its stiffness and m is its 

mass. This equation is the foundation of the vibration analysis that checks 

which force is the cause of vibration. From the base equation, the only force 

involved the excitation is the mass of the system that while rotating generate 

a force at a certain frequency, the function of the rotational speed. Other forces 

are generated by unbalance, misalignment, torsional coupling, shaft bending, 
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shaft cracks, gear wear, rub, hydrodynamic forces, aerodynamic forces, 

component damage or looseness. These are causes of vibration and can be 

detected by the vibration analysis. 

The vibration manifests itself with amplitude, that defines the magnitude of 

the vibration, the phase, that defines when the vibration occurs relative to 

another or to a reference and the frequency, that define the repetition rate of 

the vibration. The amplitude can be measured in terms of displacement, 

velocity or acceleration and for each of these measurements, a different type 

of sensor will be used. Once the information is available throughout a 

monitoring system, the root cause can be determined by analysing the 

magnitude of the vibration, its frequency and the phase. 

2.1.5 Lube oil analysis 

The lube oil analysis found its principle on the observation of the wear 

particles raised by the use of the gas turbine or by some additional 

malfunctions. The foundation is that the wear particles would deposit in the 

machine and later collected by the lubrication system. Once the sample is 

collected, the characteristics of the debris and the lube oil system can be 

determined. 

A typical example described in the “Handbook of condition monitoring” [10] 

reports a case of gas turbine lube oil monitoring. The turbine is reported to 

have large plain white metal journal bearings. The spectrographic analysis 

used to evaluate the wear debris detect an increasing level of lead metal and 

copper. This is reported to be a clear indication of the white metal wear and 

its detection allow to prevent additional damages of the rotor shaft.  
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Figure 6 Debris collection in the lubricating system – Courtesy of [10] 

2.1.6 Performance monitoring 

The methods detailed before are mostly focused on the detection of the gas 

turbine components failure that is remarked by signals or information provided 

by the machine or by the monitoring system. However, a gas turbine is already 

able to provide signals and information that can be used to draw conclusions 

on the status of the machine. For instance, the parameters already measured 

on a gas turbine are the pressure, the temperature, the fuel mass flow, the 

thrust in case of aero engines and the power for industrial gas turbines. 

Combining these parameters in a thermodynamic model, it is possible to 

derive additional information such as efficiency. Comparing the calculated 

results with the reference model, it is possible to calculate a delta from the 

reference values and determine the health status of each component.  

While acting on internal parameters, this technique is able to provide 

information about the component status well before the failure. By comparing 

the physical model with the reference one, in fact, it is possible to draw the 

deterioration profile, from the new installation up to the latest recorded sample. 

For this reason, the performance evaluation is not only used for the diagnostic 

evaluation, but also for the economic evaluation of the maintenance feasibility. 

The available existing techniques, together with their advantages and 

drawbacks are well listed and explained by Marinai et al. [5]. Each of the 

options explained has his own advantage and drawback but no one of them 



11 

alone is able to solve all the problems the gas path analysis should deal with. 

To analyse them in detailed a dedicated section will follow (section 3.3). 
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3.0  Contribution to knowledge 

3.1 Introduction 

Before clarifying the additional knowledge, this thesis aims to give, it is 

important to remark the motivation behind the growing interest around the 

performance-based diagnostics and behind the data analytics in general. 

The first reason to be mentioned is economical. As exposed in section 1.2 

in-fact, the growing cost of the fuel, together with the cost competitiveness, 

the engines are expected to run longer, to reduce the costs of exercise and to 

reduce the maintenance costs. To accomplish to this requirement the 

diagnostics moved throughout the years from preventive diagnostics 

techniques, where the maintenance is scheduled based on a fixed number of 

operating hours, to the predictive diagnostics, where the status of the engine 

can be predicted based on the data recorded. This transition is justified by the 

trade-off between cost and number of failures. In fact, preventive maintenance 

can anticipate many failures but is causing additional maintenance costs. On 

the other hand, reactive maintenance has high costs due to the increasing 

amount of failures. Therefore, the optimum falls into the predictive 

maintenance technique (Figure 7). 
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Figure 7 Cost vs failure trade-off generic graph – Courtesy of CBM services, available 

at https://ivctechnologies.com/2017/08/29/reactive-preventive-predictive-

maintenance/reactive-preventative-predictive-maintenance/ 

The same conclusion can be drawn by looking at the cost of repair vs time, 

where knowing in advance the failure decreases the final price (Figure 8). 

Figure 8 Cost vs failure trade-off generic graph – Courtesy of Presenso, available at 

https://www.presenso.com/single-post/2017/05/24/the-economics-of-the-smart-

factory-how-does-machine-learning-lower-the-cost-of-asset-maintenance-part-1/ 

The key facilitators who allowed this technology to gain interest are the 

computational capability, that has been exponentially growing over the last 

few decades and the increasing amount of data from the engine acquired and 

recorded by the monitoring systems. With the available techniques exposed 

in section 2.1 it is then possible to conceive a robust combination, suitable for: 
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 online monitoring and diagnostics, for predictive maintenance of 

components and sensors failures. 

The availability of new data and the availability of additional computation 

power increased the potential of the gas turbine diagnostics. If the target from 

the initial stages was to have an early warning of the status of the machine, in 

the upcoming years the target has been the diagnostics of multiple failures. 

Moreover, the target has grown also in terms of accuracy meaning the correct 

the detection of the type of failure and the correct quantification of it. The last 

few years have seen also a growing interest in the investigation of the gas 

turbine failures together with the measurements failures. These topics have 

been often studied separately, also for the specificity of the arguments, but 

few papers started to propose solutions for that. Starting from the existing 

background, a new methodology should then target at least: 

a. Diagnostics of single and multiple failures of gas turbine components; 

b. Diagnostics of the gas turbine also with the presence of measurement 

issues; 

c. Speed to be suitable for online monitoring. 

3.2 The way to gas path analysis 

The performance-based gas path analysis is a topic that has been studied 

in the last 40 years since Urban [11] defined the possibility of making 

diagnostics on the gas turbines components, based on the performance 

parameters. In his concept, the health status of a gas turbine could be 

reflected by its key performance parameters like for example the efficiency of 

the compressor or of the turbine. By this means, he was trying to anticipate 

the detection of a certain event, before any catastrophic failure could cause a 

forced shut down of the machine. Before Urban and its newly introduced gas 

path analysis the other consolidated techniques that had taken place were: 

a. Visual inspection; 

b. Radiography; 
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c. Thermography analysis; 

d. Vibration analysis; 

e. Lube oil analysis. 

The visual inspection, the radiography and the thermography are certainly 

not suitable for online monitoring and they might not be so effective for the 

predictive analysis of gas turbine components. Due to their nature, they would 

be more suitable for preventive maintenance or for analysis after failure 

events. 

The vibration analysis can be used for the predictive maintenance, but as 

described in section 2.1.4 the indication of malfunction may come once the 

component is already deteriorated. Moreover, by keeping the information from 

the bearings, it might not be possible to isolate the status of a single 

component. 

A similar conclusion can be drawn by the lube oil analysis who is able to 

provide indications once the engine is starting to experience wear and collect 

debris in the lube oil circuit and might also not be able to isolate the 

deterioration of the components (Figure 9). 

Figure 9 P-F (potential failure, functional failure) diagram for diagnostics techniques – 

Courtesy of bearing news available at https://www.bearing-news.com/mechanical-

remote-monitoring-with-ultrasound 
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The performance-based diagnostics proposes to detect loss of 

performances and malfunctions from the early stages of operation with several 

clear advantages:  

a. identify which part of the engine is subjected to shortages and plan 

the outage accordingly; 

b. identify the delta from the baseline and evaluate the magnitude of 

the component shortage; 

c. prevent unplanned outages; 

d. extend the lifetime of certain components. 

The advantages listed might not be obvious from outside, but they are from 

the user perspective. For instance, once an engine starts to show vibrations 

toward the limits, or its lube oil is showing a growing amount of debris, it would 

be an indication that some additional inspections and or replacement are 

needed. In such a case, knowing which part of the engine has failed, can be 

crucial information to get the right parts and to save unnecessary 

transportation of other parts. 

Looking at the aero engines, it is a common thing that the deterioration of 

the engines is different among the planes. It is then important, in order to know 

how to manage the fleet schedule, which engine is performing better and what 

is the cause of the shortage. If this is known the user or the contractor, have 

the possibility to optimize the flight schedule. 

Even if the unplanned shut down are now reduced compared to a decade 

ago, it is always an undesired and expensive event. Therefore, every measure 

might result as convenient to be used to prevent it as much as possible. 

Talking about the engine operation it can be that a certain engine utilize 

can affect more one or another component. With the vibration diagnostics and 

with the lube oil analysis it is difficult to make a connection between the 

component shortage and the engine operation. However, this is possible with 

the performance-based diagnostics. 
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3.3 Open points for single techniques 

Due to the lack of computational resources and to the novelty of the topic, 

the gas path analysis started investigating the single techniques. The first one 

has been the linear gas path analysis, considered by Urban [11] in one of his 

early publications and all the others followed. Applying a single technique 

offers the advantage of keeping the methodology lean and simple in terms of 

performance/execution time and in terms of set up. However, each 

methodology has limitations, that causes restrictions in the gas path analysis 

capabilities. Bechini [1] provided a comprehensive rank of the potential of 

each methodology, while challenged with the detection of single failure and 

multiple failures, that has been updated considering the last years of research 

on this topic Table 1. The capabilities evaluated during the assessment are 

the accuracy, the speed, the reliability with noise or with few measurements 

available, the possibility of data fusion and the flexibility. The rank is based on 

an overall research overview and can be taken as a high-level indication for 

pros and cons. A fundamental element is the speed that is a key enabler for 

the online monitoring system. The accuracy is also crucial as the analysis 

must show alerts if a component is experiencing a malfunction, and they must 

avoid false alarms that could trigger unnecessary actions. The reliability has 

been evaluated against noise in the measurements and with the presence of 

few measurements, meaning a few information about the engine status. The 

characteristic of a technique, instead of another, should be able to overcome 

the lack of missing data or the decreased quality of it. This is a clear advantage 

in a real situation where noise and measurement errors can be common. 

Looking at the growth of data availability, fusing data can represent a strong 

feature to make the information more robust. Finally, the flexibility is always a 

desired characteristic especially thinking about the possible expansion of the 

methodology capabilities – e.g. diagnostics of a new type of failures – or to 

the combination with other methods. 
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Accuracy Speed 
Reliability Data 

Fusion 
Flexibility 

Noise Few Meas 

LGPA 1.5 5 1.5 1.5 1.5 5 

NLGPA 2 5 1.5 1.5 1.5 5 

KF 3 5 2.5 3 4 3 

EKF 3.5 4 3.5 3 4 2 

ANN 2 4 3.5 4 3.5 1.5 

BB 1.5 2.5 4 4 4.5 2.5 

GA 3 1.5 4 4 3.5 3 

FL 3 3 3.5 4 4 5 

Table 1 Rank of suitable methodologies for gas path analysis for accuracy, speed, 

reliability, data fusion, and flexibility. 0 minimum or non-performing, 5 maximum or 

perfectly performing – Main sources from [1] 

Combining the information from literature, it is possible to draw the 

advantages and disadvantages of each methodology in order to get a clear 

picture of what is the potential and what are the limitations of every single 

method. 

3.3.1 Linear gas path analysis and non-linear gas path analysis 

The linear gas path analysis consists of a linear relationship between the 

gas turbine parameters and the gas turbine health parameters. The governing 

equation (2) of this relation is: 

∆� = � ∙ ∆� (2) 

Where x is the matrix reflecting the physical changes, z is the key 

diagnostics indicator and H is the exchange rate. Being the gas turbine 

behaviour mostly nonlinear, the linear gas path analysis is an approximation 

that can result in a loss of information or to non-accurate results.  

The linear gas path analysis can be applied for the detection of single and 

multiple failures and can still be used in combination with other techniques to 

identify a part of a more complex problem. 

The linear gas path analysis is the technique used by Urban [11] while 

proposing this methodology for predictive maintenance. In that frame, he has 
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shown the potential of the methodology with the tools of that time. By now, 

since more powerful techniques are available, and the computational power 

is increased, the linear gas path analysis is not precise enough on the 

approximation of nonlinear problems. 

The non-linear approach instead reduces the residual error by introducing 

non-linear equations to simulate the cause-effect relationships among the 

measurements and the gas turbine health parameters. It has been presented 

by Escher [12] in the frame of his PhD thesis at Cranfield University and 

described by Ogaji [13]. The graphical illustration is reported in Figure 10 and 

shows a higher accuracy if compared to the linear approach.  

Figure 10 Simplified comparison of linear and non-linear approaches – Courtesy of 

[13] 

However, as reported by Escher [12] the deviations cannot be distinguished 

from a possible measurement discrepancy. Within measurement discrepancy, 

it can be included the noise, especially if it has value comparable to the 

modelling error, and the bias that would cause false conclusions. 
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Strengths 

 Easy to set up; 

 Suitable for isolation of single and multiple failures; 

 Can quantify the performance loss of each component. 

Limitations 

 Not accurate as it is approximating the problem to a linear one; 

 The low accuracy can prevent the detection of certain types of failures; 

 Not capable to deal with measurements noise and bias. 

3.3.2 Kalman filter 

As well described in the book “Kalman Filter, theory and practice using 

Matlab” [14] the KF has been called the linear least mean squares estimator 

because it minimizes the mean-squared estimation error for a linear stochastic 

system using noisy linear sensors. It has also been called the linear quadratic 

estimator because it minimizes a quadratic function of estimation error for a 

linear dynamic system with white measurement and disturbance noise. It can 

be used to better estimate a dynamic system, therefore, is suitable to many 

physical applications. The governing equations of the KF are: 

���
� =̇ �(�����,����) (3) 

Where u is the control vector and xk- is the a-priori state estimation. 

���
� =̇ ������ + ���� (4) 

Where A is the state Jacobian gain, ω is a white noise process covariance 

and Q being the model noise covariance. 

��
� =̇ ������

� + � (5) 
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��� + �) (6) 
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�� (7) 
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�� =̇ (1 − �� �)��
� (8) 

Where P- is the predicted error covariance, K is the Kalman gain, xk is the 

updated state estimation calculated using the Kalman gain multiplied by the 

difference between the a-priori state estimation xk
- and the measurement zk. 

H is the observation model and R the covariance of the observation noise. 

Among the most common applications, one is the signal estimation with 

Gaussian distributed noise around the signal. Applied in the field of GPA, the 

KF is used to estimate the difference between the predicted value and the 

measured one or to estimate any measurement error. 

Kerr et al. [15] used the KF for online estimation of deterioration techniques 

on the gas turbine components. The authors built a methodology able to 

reproduce the gas turbine key parameters. These parameters are then 

compared with the baseline for deterioration comparison. The model can 

predict the parameters with a deviation between 2% and 15% recorded during 

a rapid deviation. The methodology is also able to deal with measurement 

errors with 2% order of magnitude but is not able to handle the higher error 

and consistent bias that the authors say are not likely to be encountered due 

to the redundant measurements. Compared to the non-linear model, this 

paper is an enhancement in terms of accuracy but is not able to provide 

accurate diagnostics on the components failure, the failure is quantified in 

terms of delta, but the data have to be post processed by a user, the success 

rate is not proved and the methodology is not able to deal with bias in the 

measurements. 

Kobayashi et al. [16] proposed a bank of KF to detect and correct sensor 

and actuator measurements errors. The scheme is named bank because one 

KF is dedicated to each individual measurement. Applying this methodology, 

the authors are able to correct bias in the measurements and detect the effect 

of foreign object damage. The detection of the foreign object damage with 

measurement bias result being correct as of the simulation after the filter 
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collapse on the unbiased line. This result indirectly shows the potential of the 

KF for the measurement noise and bias estimation and correction. The filter 

in-fact is fast and reliable and is suitable for online applications. However, the 

authors report, the smearing effect has been encountered during the 

simulation as far as measurement errors have been transmitted also to 

unbiased measurements. 

Looking at the KF applied to data estimation and filtering Simon [17] 

compared different types of approaches for data filtering applied to the aircraft 

engine health estimation. The author processed three types of KF: LKF, UKF 

and EKF and compared the estimation accuracy while measurement noise 

and bias were also present. The results showed that the health estimation, 

performed after with a dedicated tool, consistently improved with the 

application of the KF and in particular with the EKF. This type of filter end also 

being the best compromise in terms of computational effort vs performance. 

The limitation outlined by the author is the incorrect estimation of the 

parameters with large biases. 

Still, on the measurement noise, Lu et al. [18] studied the information fusion 

of different Kalman Filters in order to increase the robustness of the 

diagnostics in case of measurements failure. The authors state that the KF 

fusion is capable of isolating the measurement noise and bias. The best 

technique the authors found is the UKF with information fusion that is 

outperforming the EKF and the LKF. The authors report that the time of 

processing is in the order of seconds which makes the technique suitable for 

online diagnostics. This time remains at low values also thanks to the fusing 

technique implemented, preferred to the slower bank of KF. This paper sets 

the possibility and the convenience of making use of different measurements 

for the isolation of the measurements noise and bias. On the other hand, it 

remarks again the limit of a single technique, even in this detailed architecture, 

to fulfil all the objectives pretended from a performance-based diagnostics 

technique. In fact, the multiple failure components diagnostics is not 

investigated, and the quantification is yet not feasible.  
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An information fusion performed with the KF has been studied by Sun et al. 

[19] who presented a methodology to combine the information of multiple 

sensors and reduce the level of disturbance related to each probe. 

Strengths 

 Can deal with measurement noise; 

 Its speed is acceptable for online monitoring; 

 Prior knowledge can be included to improve the power of the 

recursiveness. 

Limitations 

 Requires a fine-tuning and prior information to do that properly; 

 The smearing effect of the error over other components; 

 The solution is accurate only if the system of equations is correctly set 

up. 

3.3.3 Artificial neural network 

The artificial neural network principle is inspired by brain connections in the 

human head. The human brain, in fact, works with a large number of 

connected elements called neurons, passing information to each other. The 

communication within the neuron works with four sub-elements: the dendrites, 

the axon, the cell body and the synapse (Figure 11). Their arrangement within 

the neuron and the strength of the synapse determines the response within 

the brain. Some of the connections are established at born age and are part 

of the basic functions. Instead many of other connections are modified with 

time within the learning process with the experience each individual face in 

life. Looking at the human brain, it is noticeable that the learning process is 

much faster in the earlier stages of life, possibly because all the synapses are 

very flexible and there is a large margin of additional education. In the later 

stages, instead, the learning process is slower as many connections are 

established. In this case, the additional learning requires a bigger effort as it 

must add new information on strong established connections.  



24 

Figure 11 Drawing of human neuron – Courtesy of [20] 

As mentioned at the beginning of the section, the aim of the artificial neural 

network is not exactly replicate the human brain behaviour but is to take 

inspiration out of its mechanism. In particular, what is meant to be used is its 

efficiency on operating parallel neurons at the same time.  

Based on this premise, the mathematical equation base of the artificial 

neural network is set as: 

� = �(��� − �) (9) 

Considering a scalar input p, the neuron output can be calculated by tuning 

the weight w and the bias b. The weight can be associated with the strength 

of the synapse, the cell body is reflected by the sum of the transfer function 

and the result n can be related to the signal on the axon. The transfer function 

can be linear or not linear according to the problem the artificial neural network 

is exposed to. An artificial neural network built in this way is called “single 

input”. This type of structure does not make use of the parallel problem 

solving, that has been described as a clear advantage of the human brain. To 

perform a parallel calculation the weight is converted to a matrix W as: 
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WTP is the result of the sum of the weights times the input scalar. This type 

of structure is a multi-input neuron.  

The artificial neural network cannot only expand vertically, meaning in 

parallel but also horizontally, meaning in series. In this case, the WTP + p is 

reproduced in series according to: 

� = ��
��(��

�� − ��) + �� (11) 

Once supplied with data the artificial neural network can be trained. In this 

phase, the weights and the bias are tuned to match the results provided. The 

minimization technique can also vary in order to optimize the convergence 

and the match. Once the artificial neural network is trained it is able to provide 

the response based on the scalar input p.  

The artificial neural network is a very practical technique used to make 

estimation instead of a physical model. In the frame of gas path analysis is 

often used to predict the calculated GT parameters like the efficiency of the 

components. An example of usage for GT parameters prediction for gas path 

analysis comes from Joly et al. [21]. Their final scope was to evaluate the 

effectiveness of the ANN on the prediction of the efficiency and mass flow 

capacity for single and double failure. Their conclusion was that the ANN is 

capable of correctly predicting the single failure but is subjected to higher 

deviations while two components are failing. Additionally, the authors mention 

that a higher number of components failure would further increase the 

uncertainty. There are several open points or opportunities left on this paper. 

One already mentioned is the detection of multiple failures with more than two 

components. The engine health estimation is another open point. In fact, if the 

efficiency decay can be predicted, the status of the component is not defined. 

Moreover, there’s no mention of the measurement issues, that could be part 

of the engine normal run. 
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In a more recent paper, Asgari et al. [22] compared various ANN variants 

in order to establish the best fit for a one spool engine. The ANN prediction 

was satisfactory on several variants confirming the robustness of the 

technique. 

Vatani et al. [23] proposed the ANN for the prognostic degradation trend of 

non-linear dynamics of a single spool aircraft engine. This study investigated 

the possibility of estimating the lifetime of the engine, provided the actual 

status and the historical trend. Despite the limitation to the one spool engine, 

this paper confirms the role of the ANN in predictive maintenance.  

Strengths 

 It is able to build a model starting from data only; 

 The speed is suitable for online monitoring in the prediction mode; 

 It is suitable for problems with measurement noise included. 

Limitations 

 It requires data for the training and time to analyse all of them; 

 The model might not be reliable if the prediction is done outside the 

range of training; 

 If the prediction is unexpected the reason can be looked on the result 

only as the model could be hardly investigated. 

3.3.4 Bayesian belief network 

The Bayesian belief network is based on probabilistic knowledge for a 

failure or an event to come. It bases its prediction on previous knowledge from 

where it is able to create a network. This knowledge is stored into probability 

tables built during the set-up phase. 

The nodes reflect the variables invoked by the problem. On one side there 

are the causes of an event and on the other side the effect or evidence of this 

cause. Cause and effect are connected by the arcs that represent the casual 
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relationship. Supposed the cause is a measurement change in the GT, and 

the effect is the deterioration of one or more components, a change in one 

measurement can be reflected in one or more GT components (Figure 12). 

The peculiarity of the BBN is the capability of evaluating the probability of 

measurable changes to be caused by a certain type of event.  

Figure 12 Typical BBN layout for gas path analysis – courtesy of [24] 

The evaluation of the probability is based on the Bayes theorem for 

conditional probability: 

� �
�

�
� =

�(�)�(
�
�

)

�(�)
(12) 

Where x represents the independent variable and z the dependent vector. 

The applications of the BBN are also several due to the capability of relating 

event changes with possible causes, situation ideal to detect GT failures 

based on measurements variations. 

Looking at a single methodology with Bayesian belief network one 

interesting work from Pu et al. [25] was reported. In this paper, a single spool 

industrial gas turbine was investigated for single failure together with 
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measurement bias. The challenge that the authors overcame is the 

diagnostics of failures together with measurement issues, however, the paper 

did not go beyond the single failure due to the possible interaction between 

measurement failure and the effect of the deterioration on the measurements. 

However, the authors could reach a success rate of 97.1% for the specified 

case. 

In a similar way, Kestner et al. [26] established one way, based on Bayesian 

belief network helped by a thermodynamic reference model, to detect the 

deterioration of the gas turbine components – the focus is on the compressor 

– together with a measurement bias. The methodology is able to detect both 

the deterioration and the measurement bias while offline. The open points 

identified by the authors are the increase of the accuracy also for other types 

of failures and to set up a base to further testing the methodology out of real 

cases. Other points, independent from the paper as such but related to the 

methodology are the possibility of detection of this type of failures for online 

points and the detection of multiple failures. 

Strengths 

 Engine model hardware changes can be easily introduced; 

 It can deal with multiple failures; 

 It accepts different types of data – discrete, continuous, qualitative. 

Limitations 

 Cannot deal with sensor bias or there’s no evidence yet; 

 Long set up required; 

 It requires high computational capabilities to deal with multiple failures 

and might result in inappropriate for online monitoring. 

3.3.5 Genetic algorithms 

The genetic algorithm is one of the most common techniques used in 

computational science since decades to find a solution within complex 
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problems. The process of the GA mimics the species evolution process 

selecting the most “fit” one at each step. With the first step, a sufficiently large 

population is created. The selection is random and covers a certain range. 

The solutions are evaluated and ranked according to their fitness and filtered 

for the next step. A mutation is also considered to allow other solutions to raise 

and to avoid local minima. The governing objective function can be reported 

as: 

�(�) = �
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Where z is the signals or measurements, h is the corresponding simulated 

value, zobj is the reference value and σ is the standard deviation. 

The GA is an excellent technique for probabilistic estimation and is suitable 

for a wide variety of problems. However, its main drawback is that it requires 

a long computational process. Therefore, it is not suitable for online data 

processing rather for offline data processing. The most recent scientific 

publications confirm this conclusion while reporting analysis of gas turbine 

deterioration offline (post processing of data). It is the case of the paper 

proposed by Mo et al. [27] whose focus is the correct estimation of the 

maintenance time based on performance indexes. To do so, the authors 

evaluated a GA combined with a SA and compared the results with the 

condition-based maintenance and the proactive maintenance schedule. The 

evaluation has been done for the whole machine but considers the 

contribution of the component deterioration and the measurement 

deterioration. 

Another relevant paper about GA has been presented by Qingcai et al. [28] 

who analysed the effect of deterioration on a three-shaft industrial gas turbine 

at full and part load. The paper shows that the GA was able to correctly 

capture the loss of efficiency but also the variation of the physical parameters. 

The information provided by the GA constitute a base for the component 

health estimation, however, they also tell that the GA cannot do it on his own 
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since the deviations should be further worked out to provide an indication of 

the status of each component. 

Strengths 

 It uses probabilistic rules rather than deterministic allowing running on 

almost all the problems; 

 The method uses a global search procedure, therefore, does not stop 

on local minima; 

 It can deal with single and multiple failures with a limited number of 

information. 

Limitations 

 The estimation time makes it unsuitable for online diagnostics purposes; 

 The set-up is demanding and requires an experienced person; 

 The speed can limit the capability of fusing big amount of data. 

3.3.6 Fuzzy logic 

The fuzzy logic is a rule-based approach, founded on the formulation of 

novel algebra, enable decision making processes to be performed. The fuzzy 

logic relies on the formulation of the fuzzy algebra that is based on a new 

definition of fuzzy sets and logical operators. To define all the rules that will 

compose the fuzzy logic elements must be defined:  

 input and output fuzzy sets, that defines the sets of rules that will be 

defined; 

 fuzzy rules, that defines the relation between the input and the output;  

 membership function, that defines how the value is mapped in the 

definition space.  

At this step for a certain set of inputs, rules are defined and it has to be 

defined how the output should be processed (Figure 13). The steps making it 

are: 
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 fuzzification, that process the inputs in the fuzzies; 

 application, that apply the fuzzy operators; 

 implication, that decides how the output from the application are 

merged; 

 aggregation, that decides how all the rules are merged together 

 defuzzification, that provides that final output of the entire set of rules. 

Due to its possibility on combining rules together, but also on the flexibility 

of allowing complex structures, it is used in the gas path analysis to isolate the 

types of failure in the frame of multiple failure detection. 

Figure 13 Fuzzy logic scheme – Courtesy of [1] 

The fuzzy logic can be used in the performance-based diagnostics for the 

fault isolation and for the components health estimation. Ogaji et al. [29] used 

the fuzzy logic on a three spool aero gas turbine to isolate the components 

failure while a non-better specified measurement noise was included. Their 

work was able to show the feasibility of the detection of the efficiency deviation 

and the flow capacity deviation. However, the authors did not make use of the 
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FL for the component health estimation and focused their attention on single 

component failure. 

In a more recent paper, Barbosa et al. [30] set up a methodology based on 

FL for the failure isolation. The engine evaluated by the authors is a one spool 

industrial gas turbine. The authors focused on two types of failure that are the 

compressor surge and the clogged filter. By looking at the deviations of the 

internal parameters the authors have been able to provide a severity reflecting 

the status of the type of failure and the deviation from the physical parameter. 

This paper also outlined that there’s the need for a dedicated FL for each type 

of failure which means that additional types of failure can be included by 

increasing and incorporating other FL. 

In another publication, Eustace [31] used the FL to isolate the faults of an 

aero engine. The types of fault considered in the paper are 17 and they are 

all related to the hardware, excluding any measurement implication. The 

author assigns a probability of a specific failure to happen and sort them by 

magnitude. The first failure is the most likely to happen, while the following are 

less likely. The failures are categorized from identified to eliminated, passing 

through other steps like possible and unlikely. Despite there’s a severity 

reported, the authors do not explicitly assign a health status to the component 

or to the specific failure. On the overall, this paper shows the flexibility and the 

capability of the FL of detecting and isolating several types of failure. 

Strengths 

 It is suitable when there’s no precise model describing the system; 

 It is very flexible, and they can be used for approximation of different 

types of models; 

 The setup and prediction phase is fast and suitable for online 

monitoring. 

Limitations 

 The fact that can be model-free can affect the robustness of the method; 
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 The set up is demanding and requires an experienced person; 

 The prediction lack in precision outside the range of training. 

3.4 Open points on combined techniques 

As reported in section 3.3, the use of a single methodology is not enough to 

fulfil the detection of multiple failures, together with measurements failure, with 

sufficient speed for an online diagnostic and with the capability of correctly 

interpret the difference against the baseline. The major difficulty is to have a 

single methodology flexible enough to isolate the measurement failures and 

gas turbine failures. Another type of limitation is the computational time, that 

cannot increase at the point of compromising the online detection capability. 

In addition to that, several authors comply that the detection of a deviation 

parameter is not a univocal sign of failure, but it has to be addressed and 

quantified to reflect the type and the magnitude of the failure detected. Since 

for each methodology, open points remain, the research moved to the 

combination of techniques, with the objective of merging the strength of each 

contributor and expand their capabilities. 

The paper published by Sampath et al. [32] described how to detect multiple 

failures including measurement noise and bias. The methodology was built 

with an auto-associative neural network used to isolate the bias and a 

combined genetic algorithm, artificial neural network, employed to detect 

multiple failures. The authors reported that GA is the most accurate for the 

detection of the failure but is requiring hours to reach the conclusions. In the 

attempt of reducing the working time, a pre-layer of auto-associative neural 

network has been established. The layer has been able to isolate gas turbine 

failures (single and multiple) and measurements issues. The GA has been 

used in sequence to refine the detection. The authors support that the result 

is efficient in terms of detection accuracy, that is above 90%, but the amount 

of time required is still not suitable for online applications. In addition to that, 

the quantification does not provide a clear interpretation of the failure but is 

limited to the detection of the efficiency delta with respect to the base case. 
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Viharos et al. [33] proposed a comparison of different neuro-fuzzy solutions 

and their applications. This paper, not related to the GT diagnostics, is cited 

here because it shows how a discrepancy from a baseline, can be isolated 

and quantified to reflect a failure magnitude. For instance, the neural network 

is used to establish the transfer function between the inputs, that can be the 

deviation from the baseline and the output that can be the quantification of the 

failure or its category. The authors found that the combination of the neural 

network learning, together with the fuzzy logic, reduces the setup time and 

improves the quality of the detection. In addition to that, fuzzy logic can be 

manually implemented to include some user-based rules.  

In another paper, Wang et al. [34] introduced a series of fuzzy logic, which 

is coupled with the TOPSIS methodology. The fuzzy logic is used in two layers 

to create the decision-making rules and to set and calculate the weights 

associated to each contributor. The TOPSIS is used to make the overall 

performance assessment and take the final decision. One of the peculiar 

things about the methodology is that is making use not only of the performance 

evaluation but is also considering other information like lube oil analysis, 

vibration analysis and boroscope inspection. It is obvious that making use of 

information that can provide information later in time Figure 9, delay also the 

potential of the performance-based diagnostics. On the other hand, it might 

be an added value for certain types of failure. The result achieved by the 

authors is a quantification of the engine health in a relative scale 0 to 1 and 

an indication of the actions to take Figure 14.  
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Figure 14 Health index assessment – Courtesy of [34] 

Despite being relevant, the work does not consider the health status of 

single components of the gas turbine and omit that analysis of the gas turbine 

in the presence of measurement issues or, in the specific case, wrong data 

from boroscope, vibration analysis or lube oil analysis.  

The paper published by Dewallef et al. [35] proposes a combination of 

Bayesian Belief with KF in order to benefit from their mutual advantages. The 

Bayesian Belief is used to improve the information the KF is using for the 

prediction of the failure in the presence of measurement uncertainties within 

3σ. The results are proposed for the single methodologies separated and for 

the combined methodology and they show that the combination is reducing 

false alarms and improving the health parameter prediction. The detection 

focuses on the single component failure and on the health parameters value. 

Moreover, the open point highlighted by the authors is the missing information 

fusion that could further improve the prediction. It must also be highlighted, 

that some deviations from the nominal value are still present, even with the 

combination applied. 

Within the paper [36] the fuzzy logic has been coupled with the backward 

elimination not only for the diagnostics but also for the remaining lifetime 

estimation. This paper does not investigate in detail the multiple failure 

scenarios, but it provides a cue for the need of exact modelling for the lifetime 
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estimation. On top of that, it offers a proposal on how to quantify the 

convenience of maintenance intervention.  

A recent paper, taking advantage of the increasing knowledge and power of 

the neural network Yang et al. [37] applied it to the diagnostics of a gas turbine. 

In particular the Quantum-Behaved Particle Swarm Optimization – QPSO – is 

used to optimize the weights and the bias of the neural network. The result is 

then used for the failure classification. The authors compared different 

solutions and found that the combination of QPSO and the extreme learning 

machine – ELM – is outperforming the others. This confirms the great potential 

of ELM and overcomes, the authors add, the ill condition problems because 

of wrong selection of weights and bias. The performance reached on the 

classification is 92% on the single failure and below 88% on the multiple 

failures (Figure 15). This result sets a target for the multiple failure 

classification and the potential of the ELM. It has to be remarked that 

measurements errors are not included in the study and the quantification of 

the failure is not explicitly mentioned. 

Figure 15 Mean classification accuracy for SF (left) and MF (right) – Extract courtesy 

of [37] 

Finally, Li et al. [38] coupled neural network with support vector machine for 

the quantification and classification of the gas turbine failures with standard 
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white noise. The authors set a back-propagation artificial neural network for 

the performance deviation from the baseline estimation. This information has 

been used by the authors as a base for the quantification of the component's 

failure. In sequence to that, the authors introduced an SVM, a variant of 

machine learning for the classification of the gas turbine failure types. The 

SVM has the peculiarity of being characterized by a multi-kernel that the 

authors found to be more robust. To test this methodology, the authors 

collected the EGT, the FF and N2 speed available data from the CFM56 

engine. Based on that they have been able to classify multiple failures. The 

success rate ranges from 57% to 90% depending on the type of failure. The 

authors claim that a higher number of signals considered could improve the 

detection rate. On top of that, it has to be added that the research does not 

consider any measurement failure in addition to the normal noise that the 

source data can have. Additionally, despite the failure is classified, there is no 

health status set up or detected. 

A key topic to consider in the review of the scientific publications is the 

methodology proof against real data and/or simulated data. As reported by the 

NASA [39] the gas turbine engines deteriorate while being in service. This 

deterioration varies from engine to engine and in a few cases, it might 

experience a failure. The type of failure can also vary from engine to engine 

according to many factors – manufacturing, ambient conditions, how the 

engine has been operated. Provided this environment, it appears unfeasible 

to validate an EHM (engine health monitoring) methodology only based on 

real engine data. For this reason, Simon et al. [39] created a platform, called 

C-MAPSS simulating an aero gas turbine engine, offered to benchmark the 

EHM technique and to challenge the diagnostics methodology to correctly 

detect the available failure. The types of failure that have been included are 

single component failures and measurements issues. This platform has been 

used by Simon et al. [40] to test four different methodologies provided by a 

pool of research institutes and universities working on the EHM. The 

methodologies have been tested against the data provided for single failure 

and measurement issues and reached a maximum correct classification rate 
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of 46.7%. The user feedback is written in the paper conclusion remark that the 

data should include more realistic measurement noise covariance values and 

different outlier. On top of that, and based on the other literature review, the 

missing point outlined in the paper is the multiple failure simulation. 

3.5 Summary of research gaps from the literature 

The literature review detailed in section 3.3 and section 3.4 described what 

has been done in literature from the early stages of the research in the gas 

path analysis. The objectives explored in the literature that coincide with the 

potential of the gas path analysis are: 

 Detection of single failure: detect the failure of a single gas turbine 

component and do not raise false alarms on the others; 

 Detection single and multiple failures: detect the failure of single 

component and of multiple components failing at the same time; 

 Classification of different types of failure: distinguish between different 

failures type ranging from fouling, erosion, corrosion, tip clearance, 

foreign object damage, cooling leakage, burner failures; 

 Quantification of the failures and remaining lifetime estimation: 

associate the failure magnitude to remaining lifetime for maintenance 

schedule (health estimation); 

 Isolation of measurements failure: isolate the noise and the failure of 

one or more signals that could lead to false failure detection; 

 Online diagnostics: each sample processing time should be adequate 

for online diagnostics; 

 Methodology proving against real data: test the methodology against 

real data or against proved and realistic simulated data; 

 Data fusion: fuse information from multiple measurements or from 

multiple sources to reinforce the overall detection. 

The achievements reached in literature are quite exhaustive, however, as 

outlined in section 3.4 there are still few open points in each paper giving 
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opportunities for additional research. The main missing points from the 

literature are: 

 Detection of multiple failures together with measurements issues: the 

methodologies are focusing either on the detection of measurements 

failure or in the detection of components failure. The combination of 

objectives has been found only in one paper [32] which was not suitable 

for online diagnostics; 

 Combine the detection of multiple failures with the health state 

estimation: the health state estimation has been investigated by Wang 

et al. [34] but focusing only on overall failure and omitting the presence 

of measurement noise and bias. 

The study of the scientific papers allowed to draw up a list of most suitable 

techniques for each module of the methodology. The conclusions of that are: 

 Kalman filter: several works remarked the power of the KF for data 

analytics including data fusion. The results are accurate, and the 

execution time is suitable for online applications; 

 Artificial neural network: it is very accurate on learning the gas turbine 

performance behaviour and on predicting it based on the inputs; 

 Fuzzy logic: it has been used to determine the health status of the gas 

turbine components or of the overall gas turbine. Its set up can be 

coupled with the artificial neural network leading to a neuro-fuzzy 

system. On the other side, its flexibility can be used to add rules for 

additional failures. 

It is implicit that a technique should couple the strength of multiple 

methodologies. Therefore three candidates are selected here for the 

execution of three different scopes. While specifying that, another missing 

point from literature can be described: 

 The combination of KF, artificial neural network and fuzzy logic has not 

been investigated yet in literature in the gas path analysis environment. 
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Its interest, as said, resides in the combination of multiple 

methodologies to mutually compensate the failing of each contributor 

and expand the capabilities of the methodology as a whole. 

3.6 Objectives 

A methodology is intended to offer an easy way to detect the components 

deterioration or failure [3]. The final set up for health monitoring should include 

the features remarked by the experts in this field [84]: 

 interface with the increasing amount of data available from the 

engines; integrate new sensor suites and capabilities;  

 precise modelling of the baseload and part load conditions; leverage 

all available information including user-specific inputs;  

 have a practical design. What is meant to be detected is the 

deterioration of every single component – single failure – and the 

combination of components deterioration – multiple failures; 

 measurements failure shall also be part of the simulation as they are 

relevant in any working engine.  

Combining the intent of the methodology with the open points not 

investigated yet from literature, the established objectives are: 

a. Detection of single and multiple failures also in the presence of 

measurement failures. The measurement issue established is the 

noise that is one of the most common failure encountered in the GT 

measurement package and generally in the probes. To declare the 

objective fully reached, a minimum success rate of 90% has been 

established. This rate is in line with the levels proposed by the 

literature review in particular with the papers dealing with multiple 

failures scenario [37]; 

b. Combine the component failure isolation – single and multiple 

failures – with the component health estimation. The methodology 
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should not only isolate the deterioration of the single component but 

account for the mutual impact of one component on another and 

establish the health status of every single component; 

c. Establish a methodology able to deal with multiple failures and 

measurement issues while working online. The target to reach in 

terms of time is in the order of seconds per sample processed; 

d. Fuse the multiple measurements available for each location. This 

opportunity is most suitable for industrial gas turbine, where 

redundant measurements are available; 

e. Test the methodology against different situations to prove its 

robustness. The testbed should include different types of failure, 

different levels of deterioration, single multiple and no failures and 

measurements errors. 
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4.0  Methodology 

As defined in section 3.6 the technique established is focused on 

enhancing the scientific understanding of multiple components failure of gas 

turbines together with the measurements failure. While doing that it has to 

treat the incoming data for noise, predict the efficiency and the main gas 

turbine parameters and offer a health status of each component of the engine.  

The steps used to determine the selected technique are divided into three 

phases: 

a. Selection: the study of the methodologies and the selection of the 

contributors;  

b. Implementation: the process and methodology constructions within a 

coding environment;  

c. Testing: the creation of a testing procedure for the established 

methodology. 

Selection 

 Define the most promising techniques to be used among all the 

possibilities. This step is obtained analysing the potential of each 

technique based on the dedicated literature review and if necessary, 

testing it. This step has to consider also the fact the methodology 

should be capable to operate online; 

 Select the combinations able to compensate for all the weak points. 

The selection is done analysing the strength and weaknesses of each 

technique and merging them while compensating the weaknesses. 
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Implementation

 Implement a process flow able to achieve the expected results while 

combining techniques. For example, two techniques could be made 

acting in series to process the data one after the other or in parallel to 

process the data at the same time. 

Testing

 Define the inputs data able to simulate the real engine failures 

(compressor fouling, turbine fouling, turbine erosion) and test the 

methodology against it until the results are consistent with the 

expectations; 

 Test the methodology against random inputs to prove the robustness 

of the results; 

 Test the methodology with measurement noise to verify the viability of 

the noise isolation block; 

 Test the methodology against the simulation of a real schedule to verify 

how the methodology could react in a real environment; 

 Iterate the process until the results are consolidated. 

Among all the possible solutions, the combination that has been selected 

is the Kalman filter in combination with the artificial neural network, the neuro-

fuzzy logic and the fuzzy logic. 

The KF module has been introduced upfront to filter the data and make the 

diagnostics precise and accurate. The KF has been selected to compensate 

for measurements noise. As reported by Simon [17] in fact, it is successful in 

GT applications providing good results both for noise reduction and moderate 

bias compensation. Moreover, it is offered and studied in many variants and 

for many applications. Among others, the possibility of fusing multiple signals, 

which is one of the objectives outlined in section 3.6. 
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The ANN has been considered because of its high strength and potential 

with multiple failures, high dimensional cases that make it applicable to 

complex problems and flexible to deal with different hardware. As outline by 

Fentaye et al. [82] in fact, it is widely used in the latest researches, to 

overcome the drawbacks of the model-based methodologies. Compared to 

those, in fact, the ANN can work also with a limited number of sensors, it is 

extremely fast and can easily adapt to any type of engine. The disadvantage 

mentioned by Bechini [1] of possible unreliability out of the training range, can 

be bypassed with an extensive training available from simulated data provided 

by the physical model.  

The NFL, instead, has been considered for its precision, as also confirmed 

by Viharos et al. [33], that allow an accurate relation of input variation with 

output quantification compensating, in the same time, the disadvantage of 

poor precision of the ANN. Moreover, the ANFIS variant makes the set up very 

fast and easily adaptable to every engine architecture. 

Finally, the FL will be used to classify the types of failure and it has been 

selected because of its flexibility. As reported by Meher et al. [76] in fact, there 

are several typologies of failures that an engine can encounter, and the KF 

allow integrating them once the key parameters are known and set. Moreover, 

the flexibility of the KF leave also space to some user experience rules, that 

may engine or case-specific. 

The final scheme selected is then composed by KF, ANN, NFL and FL. 

The structure behind the methodology drawn so far is divided into two main 

sections, preparation and prediction, and driven by Matlab (Figure 16). 
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Figure 16 Structure of the methodology 

The preparation section includes the performance calculation and the ANN 

training phase (Figure 17). 

Figure 17 Preparation of the database for the ANN training and base for the 

simulation and storage of the ANN for future prediction 

The first part of the preparation section is the performance calculation done 

with Turbomatch. Turbomatch is a gas turbine cycle modeller solver and is 

based on a code able to simulate engine blocks (i.e. compressor, combustor 

and turbine) and to simulate the deterioration of the components singularly or 

separately. Turbomatch code is transferred in Matlab and executed from its 

workspace. The output data are then available in the Matlab environment for 

the additional phases. The data coming out from Turbomatch are based on 

assumptions on reduced mass flow, and efficiency variation is taken from the 

literature ([42] - [50]) that are expected to represent the real behaviour of the 

engine while subjected to the compressors and turbines failure (deterioration 
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values in Figure 16). For example, the effect of compressor fouling is the 

reduction of reference mass flow and efficiency. The effect of turbine erosion 

is the increase in reduced mass flow and the reduction of efficiency. Once the 

code is filled with input data, Matlab calls Turbomatch that runs the input files 

generating two sets of outputs:  

 Defective input data X: results of deteriorated or malfunctioning points 

at a certain imposed ambient condition; 

 Reference input data Xref: reference of non-deteriorated points for the 

same ambient condition imposed. 

The data produced to represent the behaviour of the gas turbine under 

several circumstances from new conditions, to single failure and to multiple 

failures. In the second part these data are used in two areas: 

 As training base to initially train the ANN-based on the full set up of 

failures; 

 As a non-deteriorated reference to calculate the difference between the 

values predicted by the ANN and the engine at the new status. 

The second part of the preparation section is the ANN training. The input 

of this section is the data from the simulation on the deteriorated engine, that 

are used to train the network. The range of input points is optimized with the 

design of experiments in a way to provide reliable results with an acceptable 

computational effort. The network is a cascade forward neural network that 

has the same structure of the better-known feed-forward back propagation 

neural network, with an additional channel from the nth input to the n+2 

channel. The architecture of the network is MISO for the efficiency estimation 

(multiple inputs/single output) that shown to be the most precise in the 

prediction phase and MIMO (multiple inputs/multiple outputs) for the reference 

deterioration estimation. The inputs considered for the ANN structure are of 

two types and lead to two possible variants: 
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a. Considering the power as possible measurement: in this case, the 

power measurement is actively included in the ANN; 

b. Excluding power. This second option will lead to scheme 3. 

The two variants are considered to provide the methodology with the 

necessary flexibility to work on configurations where the power is not 

available, or cannot be directly linked to the GT output. 

The prediction section is the core of the methodology and includes the data 

analytics, where the noise n is removed or at least reduced (rn is the reduced 

noise) from the measurements values, the ANN prediction, where the 

efficiency values are predicted and the quantification and classification of the 

failure (Figure 18). 

Figure 18 Flow chart representing the concept behind the diagnostics tool – 

Turbomatch used as reference (Scheme 1 - Scheme 3) – Where X are the 

measurements, n is the noise, rn is the remaining noise, dEta and dX are the delta 

efficiency and measurement, Amb are the ambient conditions and ref is the reference 

of the non deteriorated engine 

The first part of the prediction section is the data filtering that is done with 

the Kalman filter. This block is based on a linear KF and is used to reduce the 

measurement noise.  
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The second part is the artificial neural network prediction. Based on the 

measured inputs, typically pressure and temperature at the main sections and 

power (if used), the trained network is able to calculate the efficiencies of the 

components. Practically the network is replacing Turbomatch but in addition, 

it can predict the output of a deteriorated engine, without needing the 

deterioration grade to be specified. The reference data instead can be 

calculated in two ways: 

 With Turbomatch taking the ambient conditions as input and the 

deterioration factors as 1 (with 1 corresponding to the new engine 

conditions); 

 With the ANN itself that, starting from the internal measurements, can 

be used to predict the deteriorated values and the associated 

undeteriorated reference. 

The first option has the advantage of being more precise as the source 

model is used to calculate. However, the risk is to include erratic ambient 

measurements that can mislead the reference. The second option has the 

advantage of not using the ambient conditions but as it’s an approximation of 

the physical model, it has less precision. These two options lead to two 

possible schemes that can be set up. 

The third part is the component of health estimation. This part takes as 

input the differences between the calculated reference of a non-deteriorated 

engine and the results coming from the artificial neural network. The 

differences are calculated for the physical measurable parameters – pressure 

and temperature dX – and for the calculated parameters – efficiencies dEta – 

and this is done for each component of the gas turbine. The difference 

determines the level of malfunction of a component. For example, if the 

pressure and the temperature at the compressor exit vary from the nominal 

level, the compressor is most likely affected by deterioration. On the same 

way the turbine pressure and temperature, and the combustor fuel mass flow 

would be affected by the compressor behaviour even if perfectly working. 
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However, the training behind the neuro-fuzzy logic would account for this and 

would calculate the efficiency of the components as non-deteriorated. The 

differences of each component are used as input for the neuro-fuzzy logic that 

finally quantifies the malfunction level. The quantification is based on a 

severity scale that goes from 0 (no deterioration or perfect component health) 

to 100 (maximum deterioration or bad component health). The relationship 

between the alarm level and the deterioration is established via a cause-effect 

association within the fuzzy logic technique. The value of the maximum 

deterioration is related to the higher range that has been found in literature, 

but the ultimate goal is to relate the maximum value with what is predicted to 

be the lifetime limit for that particular component. Details about the 

quantification are reported in the paper submitted to the ISABE 2017 [41]. 

After the quantification is done, the classification is performed via fuzzy logic. 

In this section, the alarm points coming from the quantification are taken and 

categorized. The categorization is done through two boxes: one for the 

compressor fouling, turbine fouling; another for the turbine erosion. These two 

boxes are proposed for each component in the gas turbine. 

Based on the possible options listed above there are three possible 

schemes, for this methodology, that can be used: 

a. Scheme 1: the first scheme is composed by the Kalman filter placed at 

the beginning to filter for noise; after it comes the ANN used to predict 

the performance parameters; the values from Turbomatch are used as 

reference to calculate the difference that will be used by the fuzzy logic 

to make the quantification first and the classification after (Figure 18). 

This scheme is considered as the baseline for this methodology 

whereas the others are considered variants; 

b. Scheme 2: the second scheme uses the Kalman filter at the beginning 

as per scheme 1; after it also comes the ANN that is used to predict the 

performance values of the deteriorated engine and to predict the 

performance reference of the new engine as well; the difference is then 

calculated among the two ANN values and passed to the fuzzy logic for 
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the quantification and classification phase (Figure 19). This scheme has 

the advantage of being faster, since Turbomatch must not be called 

from the routine, and is not using the ambient conditions; 

c. Scheme 3: the third scheme starts also from the Kalman filter that is 

used upfront; the second part, the ANN is built without the power 

measurement. The scheme as such does not change, but the block is 

different. The prediction of the deteriorated engine performance is done 

with the ANN while the reference is from Turbomatch as per scheme 1. 

The difference is then used for quantification and classification via the 

fuzzy logic (Figure 18). This scheme is necessary to give the 

methodology the flexibility to operate with engines with power available 

as measurement and engines with power not available. 

Figure 19 Flow chart representing the concept behind the diagnostics tool – ANN 

used as reference (Scheme 2) – Where X are the measurements, n is the noise, rn is 

the remaining noise, dEta and dX are the delta efficiency and measurement, Amb are 

the ambient conditions and ref is the reference of the non deteriorated engine 
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4.1 Gas turbine performance modelling 

The gas turbine considered is a 2 spool industrial gas turbine of small size 

providing 11.9 MWe power output with a pressure ratio of 17. The gas turbine 

has two compressors, one LP and one HP, two turbines, one HP and one LP 

one burner and one extraction for the cooling system. The efficiency values of 

the compressor and of the turbine are taken from [75] that proposes values of 

an engine with a pressure ratio of 17. The overall values are taken from the 

freely published values of an engine of that size. In particular, the pressure 

ratio is 17, the power is 11.9 MWe, the exhaust temperature is 485°C and the 

inlet mass flow is 41.6 kg/s. The cooling is modelled with one extraction after 

the HP compressor. The amount of cooling air at each pressure level has been 

tuned to match the exhaust gas temperature. The performance values are 

modelled in Turbomatch the thermodynamic cycle modeller built and 

maintained in Cranfield [77]. 

The gas turbine is modelled at reference load and ISA ambient conditions 

(15°C, 1.013 bar, 60% RH). In fact, the control concept of the gas turbine is 

not modelled with this simulation, as the information is not available in the 

open literature and they would be anyhow engine specific. The modelling type 

used by Turbomatch is based on components maps. Imposed the reference 

efficiency, the curves are taken to fit the gas turbine pressure ratio and are 

selected from the generic available. A better representation would be with 

engine specific curves, but this will no longer be necessary when the gas 

turbine data will feed the diagnostics system. 

4.2 Deterioration profile simulation 

As clarified in the objectives, a key point to prove the validity of the EHM is 

testing against real data or simulated data. However, as reported by Simon, 

et. al [39], the reliability reached by the engines as per today makes unlikely 
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for a gas turbine to experience multiple failures. Therefore, it is challenging to 

have a sufficient palette of real data including distinguished failures for testing. 

It is because of it, that a simulation of gas turbine malfunctions has been taken 

into account. The types of deterioration considered are the compressor 

fouling, the turbine fouling and the turbine erosion and this is applicable for a 

total of four components. The combinations of the types of failures and the 

number of components lead to a certain number of combinations and among 

those 24 have been selected for this simulation (Table 2). The combinations 

include no failure, meaning that the engine performs as per design, failure of 

single components and failure of multiple components.  

LP 
comp 
fouling 

HP 
comp 
fouling 

HP 
turbine 
fouling 

HP 
turbine 
erosion 

LP 
turbine 
fouling 

LP 
turbine 
erosion 

Case-0 
Case-1 X 
Case-2 X 
Case-3 X 
Case-4 X 
Case-5 X 
Case-6 X 
Case-7 X X 
Case-8 X X 
Case-9 X X 

Case-10 X X 
Case-11 X X 
Case-12 X X 
Case-13 X X 
Case-14 X X 
Case-15 X X 
Case-16 X X 
Case-17 X X 
Case-18 X X X 
Case-19 X X X 
Case-20 X X X 
Case 21 X X X X 
Case 22 X X X X 
Case 23 X X X X 
Case 24 X X X X 

Table 2 Deterioration combination: the deterioration is simulated in all the 

components taking into account the ratio reported in the literature to make the 

simulation realistic [50]. Based on the overall literature review [42] to [74], the ratio of 

efficiency decay and mass flow degradation is 1 to 2 (Table 3). 

To have a simulation close to reality, the open-source data has been 

investigated. The goal is finding the ratio between the flow capacity and the 
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efficiency that has to be included in the model while simulating the 

deterioration. Looking at the compressor side and at the fouling type of failure, 

there is not a unique answer on the ratio Fentaye et al. [82] summarize several 

papers and report a ratio A/B that ranges from 1:2 to 1:3, where A is the 

efficiency and B is the flow capacity. In line with that and looking at industrial 

gas turbines Qingcai et al. [28] report a ratio of 1:3 for the compressor fouling 

and of 1:2 for the compressor erosion. On the same page, Hepperle et al. [66] 

report data whose ratio is 1:2. Finally, looking at aero-engine data, Verbist et 

al. [62] report a ratio of 1:2. Looking a the turbine fouling, the same ratio of 1:2 

is supported with engine tests by Stromberg [78] and is also confirmed by 

Verbist et al. [62] who are reporting the data of the compressor together with 

the turbine. For the turbine erosion, the main difference resides in the flow 

capacity change which is increasing instead of decreasing. However, as 

confirmed by Qingcai et al. [28], the ratio remains 1:2. Based on this portion 

of the literature review, it is assumed in the simulation that the ratio between 

the efficiency and flow capacity is 1:2 (Table 3). Qingcai et al. [28] also 

reported that the deterioration magnitude of the erosion is less aggressive 

than the deterioration caused by the fouling. It is unlikely to define what the 

ratio could be, since this is very much dependent upon the type of engine and 

the conditions it is experiencing, therefore, for this engine the ratio is set as 

1:2, meaning that the fouling is causing twice as much deterioration as the 

erosion. 

Δƞ (A) ΔΓc (B) Relation 
A/B 

Compressor fouling ↓ ↓ 1:2 

Turbine fouling ↓ ↓ 1:2 

Turbine erosion ↓ ↑ 1:2 

Table 3 Deterioration ratio 

The range of deterioration that is taken into account is between 0.0% and 

7.7% to give room to the ANN to cover all possible conditions. The 

deterioration levels that are reported from the literature in fact rarely go 

beyond 5.0%. The worst-case scenario is necessary to make sure that the 
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EHM will be able to perform in an environment it has been tested to. To reflect 

this deterioration conditions, Turbomatch deterioration parameters reported in 

Table 79 in the appendix has been set. 

To test the robustness of the methodology dedicated tests have been 

conducted. The base for the test is the simulated engine described in section 

4.1. The main variants that are considered to validate the methodology are:  

a. Failure of one or multiple components; 

b. Variation of the degradation magnitude; 

c. Variation of the level of noise applied to the measurements. 

To consider all these aspects, three sets of tests have been set: 

a. Constant deterioration, on a single case over x number of points; 

b. Random deterioration including different magnitude and different 

combinations over x numbers of points; 

c. Deterioration scenario over a period of time, simulating a close to the 

real behaviour of a gas turbine over an x period of time. 

The first option is a constant deterioration and is performed in a case with 

4 failures. The type of failure on the compressor is the fouling and on the 

turbine is the erosion. This type of simulation is used as a preliminary check 

for the Kalman Filter to observe its efficacy in the presence of measurement 

noise. Being the deterioration constant, it is known what the detection should 

provide and only a measurement error could cause a discrepancy to that. For 

this case is preferable having higher values of deterioration to be able to still 

distinguish between the deterioration and the measurement influence. 

Therefore, the magnitude of 7.4% is selected because is close to the edge of 

the maximum available values.  

The second option is the random deterioration that is used to prove the 

robustness of the methodology. In this case, at every point, the magnitude 

varies, so the type of failure. The reference magnitude is allowed to vary 

between 0.15% to 7.4%, while the failure type can be one of the 24 pre-
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established in the modelling (Table 2). This scenario is not likely to happen in 

reality but is exclusively set up to test the robustness of the methodology.  

The third option is a deterioration scenario over a period. The intent is to 

replicate, starting from the information collected in literature, the gradual 

deterioration of the gas turbine. To set up this type of deterioration, the open 

literature has been revised looking for long term deterioration profiles of 

industrial gas turbines. The deterioration proposed by the researchers varies 

consistently according to the type of engine considered and the condition 

encountered by the gas turbine. For instance, Bakken et al. [59] report a 

deterioration of 2% efficiency on the compressor over 800 OH. Hepperle et al. 

[66] instead report a compressor deterioration of 1.5% over nine months of 

time and Kurz et al. [67] write about a deterioration of 2% over 3000 OH. 

These papers represent the extreme on one side, and the normal deterioration 

– gradual – on the other. To account for all of these possible conditions three 

deterioration magnitude have been considered – low L1, medium L2 and high 

L3. The different deterioration levels are applied to all the components in a 

sequence (Table 4) where the deterioration level is gradually increased while 

proceeding with the samples. The ratio among the efficiency and capacity is 

kept as 1:2 as in all the other previous simulations. Moreover, even if the 

deterioration data are explicitly referring to the compressor, it is assumed that 

the levels of deterioration are the same both in the compressor and in the 

turbine. 
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LP comp HP comp HP turb LP turb Samples 

1 L1 L1 L1 L1 500 

2 L1 L1 L1 L2 500 

3 L1 L1 L2 L2 500 

4 L1 L2 L2 L2 500 

5 L2 L2 L2 L2 500 

6 L2 L2 L2 L3 500 

7 L2 L2 L3 L3 500 

8 L2 L3 L3 L3 1000 

9 L3 L3 L3 L3 500 

Table 4 Deterioration sequence for the deterioration scenario over a period of time 

In respect to the pre-established sequence, the resulting deterioration 

profile is shown in Figure 20. The resulting most deteriorated component is 

the LP turbine as it’s the one increasing its deterioration first and the level of 

reference deterioration reached is 6.5% absolute. The resulting deterioration 

is multiple failures of all the components and the type of failure that is imposed 

is the compressor and turbine fouling. 

Figure 20 Deterioration reference for the gas turbine components 
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The scope of this profile is to approach the real profile of the gas turbine 

and to observe if the methodology is able to correctly quantify and classify this 

behaviour, according to the imposed exchange rate on the fuzzy logic. There 

are several points to take into account for this test. The first is the data 

selection used for the training that can be chosen between the random 

simulation as per and the random selection plus the dedicated deterioration 

as per Figure 20. The second is to effectively see how the methodology is 

behaving under a standard deterioration profile. 

4.3 Measurement selection 

A key point for the performance-based diagnostics is the measurement 

selection. The measurements need to reflect the status of the engine, to be 

sufficiently accurate and to have a frequency response high enough to 

describe the malfunction the engine is subjected to. The selection of the 

measurements varies from engine to engine according to the technical limits 

– e.g. the maximum temperature a probe can be subjected to – the costs and 

the application of the engine – typically industrial engine for power production 

or aero engine. The maximum temperature has an influence on the location 

of the probes. The cost has an influence on the number of measurements 

installed. The type of engine finally, has a big influence on the selection due 

to largely different technical limitations, to the different type of application and 

to a different environment.  

The typical measurement equipment for an industrial gas turbine has been 

described by Jiang et al. [79] and it includes: 

a. ambient conditions 

 pressure, temperature and relative humidity 

b. intake 

 pressure loss, temperature 

c. compressor 
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 inlet pressure and temperature and outlet pressure and 

temperature 

 inlet guide vane position 

d. combustion 

 fuel mass flow, fuel temperature and fuel dynamics 

e. turbine 

 wheel space temperature and speed 

f. exhaust 

 temperature and pressure loss 

g. generator 

 power output, frequency and power factor 

The measurements types and locations are summarized in Table 5.  

Measurements

LP compressor inlet pressure p1

LP compressor inlet temperature T1

LP compressor inlet relative humidity RH1

LP compressor exhaust pressure p2

LP compressor exhaust temperature T2

HP compressor exhaust pressure p3

HP compressor exhaust temperature T3

Mass flow rate mf 

HP turbine exhaust pressure p5

HP turbine exhaust temperature T5

LP turbine exhaust pressure p6

LP turbine exhaust temperature T6

Power P 

Rotational speed spool 1 N1 

Rotational speed spool 2 N2 

Table 5 Set of typical measurements of a two-spool industrial engine [79] 

It is also foreseen that for some configurations of the industrial scale gas 

turbines, the power measurement is not available. In this case, the set of 

measurements remain the same, but the power is excluded.  

The number of measurements can vary depending on the engine type. 

According to the literature references [80] the amount can vary between 1 and 
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5 for each location. In addition to that, the literature reports that at the exhaust 

location the number of probes can raise up to 18 [81].  

Based on what previously reported, the set of measurements can be 

summarized in Figure 21. 

Figure 21 Set of measurements of a two-spool industrial gas turbine 

4.4 Measurement uncertainty 

In order to build a set of data close to reality, the measurement uncertainty 

has to be selected to be representative of the real values of the field engines. 

An exhaustive summary has been presented by Joly et al. [21] (Table 6). This 

summary refers to an aviation gas turbine. 

Pressure 
Temperature 
Rel Humidity 

Compressor Burner Turbine 

1 2 4 6 3 5 

Pressure
Temperature

Pressure
Temperature

Mass Flow
Pressure
Temperature

Power 
N1 
N2

Pressure
Temperature
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Engine 
parameter 

Description 
Noise (± % 

range) 

N1 LP relative spool-speed 0.03 

N2 IP relative spool-speed 0.03 

N3 HP relative spool-speed 0.02 

P3 Fan’s exit total-pressure (bar) 0.10 

P5 LPC’s exit total-pressure (bar) 0.10 

T3 Fan’s exit total-temperature (K) 0.40 

T5 LPC’s exit total-temperature(K) 0.40 

T10 LPT’s inlet-temperature(K) 0.40 

T12 IPT’s inlet-temperature (K) 0.40 

T13 HPT’s inlet-temperature (K 0.40 

Wf Fuel flow (kg/s) 0.40 

Table 6 Noise associated with the sensors – reference to Joly et al. [21] 

The level of noise has to be adequate as a too high value might 

unnecessarily penalize the EHM system, while a too low value might result in 

not being representative of the real world. Considered that, the level of 

uncertainty considered in the simulation is 0.4% for the temperature and 0.1% 

for the pressure. However, for simplicity, the level of noise will be referred to 

0.4% while it’ll be implicit that the relationship between pressure noise and 

temperature noise is 1:4. 

As the intention of this work is also to detect the measurements failure, a 

set of measurements failure has been established. Verbist et al. [4] 

considered, for testing purposes, a set of measurement noise of 0.5%, 1.0%, 

2.0% and 4.0%. Based on this reference, the measurement noise considered 

varies between 0.4% and 2.0% (an increase of 5 times of the nominal value) 

with increments of 0.4%.  

4.5 Kalman filter set up for data analytics 

The KF is set up to filter for the measurement noise on the probes. This 

module makes use of multiple values and makes linear KF self-iteration based 

on multiple measurements. The number of measurements considered for 

each location of the gas turbine (location 1 to 6 in Figure 21) is 5 ([80]) for 
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each measurement except for Power, T6 and the mass flow. The 

measurements are 1 for the power, not shown in Figure 21, 18 for the exhaust 

temperature T6 as per [81] and 1 for the fuel mass flow. This structure allows 

the methodology to be flexible for industrial gas turbines, where multiple 

measurements are normally available. It must be remarked that, since the KF 

is set up for multiple measurements, it is not applied to single measurements 

like the fuel flow and power. 

The type of KF used for the data filtering is the LKF and it can be detailed 

as follows: 

���
� =̇ ������ + ���� (14) 

Where ω is a white noise process covariance with spectral density Q(t) with 

Q being the model noise covariance. 
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The LKF has been selected because the iteration is among multiple 

measurements of the same quantities, therefore the linear estimation is the 

most appropriate. Within the architecture, the LKF comes as the first element 

and has the objective of filtering the measurement noise and combine the 

information of multiple signals. 

The parameters tuned to obtain the best filtration of the KF are the model 

noise covariance, Q and the observation model covariance R. 

The data processing is proposed in two ways – multiple-layer Kalman filter 

and single layer Kalman filter - according to the scheme shown in Figure 22 

and Figure 23. The initial set up consists of five measurements that have to 

be fused in a single output. With the multiple layer KF the measurements are 
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divided in three sets: [1,2,3]; [3,4,5] and [5,3,1]. The iteration is done first on 

each set of measurements, considering the first information of the set to be 

the initial estimate and after for all the samples taken. Once the first iteration 

is completed, three new inputs are available for the second layer. Again, the 

iteration starts, and a unique output is computed. Being the first information 

the starting point and the last the endpoint, the first and last information are 

different among the three cases. This is necessary to avoid giving the priority 

to one or another measurement signal. The scheme is slightly different at the 

TET where 18 measurements are planned [81]. The change is on the sets of 

the first layer that are divided in three as: [1,…,6], [7,…,12], [13,…,18].  

Figure 22 Multiple layer linear KF set up. The dashed lines show the measurement 

that is used for previous state estimation – Meas 1, Meas 3 and Meas 5 in the first 

layer, xk1 in the second layer 

With the SLKF one level is removed and the iteration is done fusing all the 

five measurements at once. Again, with TET the scheme is different than the 

one presented in Figure 23 as 18 measurements are used instead of 5. 

Meas 1

Meas 2

Meas 3

Meas 3

Meas 4

Meas 5

Meas 5

Meas 3

Meas 1

xk1

xk2

xk3

xk

MLKF 
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Figure 23 Single layer linear KF set up. The dashed line shows the measurement used 

for previous state estimation – Meas 1 

The KF has been tested for a constant reduction of 7.4% of the efficiency 

on each component with over 203 samples, varying the level of reference 

noise from 0% to 2%. The maximum level of noise is 5 times higher than the 

reference noise that is set to 0.4% according to [21]. The type of failure 

injected in the compressor is the fouling and the erosion in the turbine (Table 

7). 

Fouling Erosion Noise [%] 

LPC 7.4% - 0.0;0.4;0.8;1.2;1.6;2.0 

HPC 7.4% - 0.0;0.4;0.8;1.2;1.6;2.0 

HPT - 3.7% 0.0;0.4;0.8;1.2;1.6;2.0 

LPT - 3.7% 0.0;0.4;0.8;1.2;1.6;2.0 

Table 7 Failure characterization 

According to the charts shown in Figure 24 referring to the temperature, the 

MLKF leads to a maximum reduction of 83% of the standard deviation. The 

reduction moves to 76% if the SLKF is used meaning that the second layer of 

the KF is worth 7%. The maximum reduction is 32% for MLKF and 36% for 

SLKF if the pressure is considered instead (Figure 25). This means that for 

the pressure the SLKF results in a higher reduction of the noise. However, the 

MLKF is better on overall for all the measurements and at different noise 

levels.

Meas 1

Meas 2

Meas 3

Meas 4

Meas 5

xk

SLKF 
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Figure 24 Temperature standard deviation for different noise levels [0-2%] – MLKF vs 

SLKF vs None 

Figure 25 Pressure standard deviations for different noise levels [0-2%] – MLKF vs 

SLKF vs None 

It is implicit that both the MLKF and SLKF require multiple measurements, 

therefore they are not applied to the power and to the mf measurements, 

where the probes per location are set to 1. 
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4.6 Artificial neural network for performance prediction 

The ANN is used to predict the key performance parameters based on the 

inputs received. The base equations and a practical application are well 

described by Tengeleng in his publication about cascade forward 

backpropagation neural networks for estimating rain parameters with raindrop 

size distribution [83].  

The equations governing the artificial neural network are: 

� = ����

�

���

∙ �� − � = ��� − � (19) 

Where W is the weight matrix containing the input of each neuron and P is 

the vector. b is the bias assigned to each neuron. Once the output of the 

integrator n is calculated, the output of the neuron is given by: 

� = �(�) = �(��� − �) (20) 

The learning process of each neuron of the ANN is calculated as: 

∆���(�) = ���(� + �) − ���(�) (21) 

Where wij(t) is the weight connecting the neuron i at the entry j at the time 

t. The wij(t+1) stands for the next entry and the difference between the two is 

the weight update during the learning process.  

The feed-forward back propagation neural network is built with M number 

of layers (Figure 26). Starting from the output of one neuron, the equation can 

be modified as: 

� = ��������� − ��� � = �:� (22) 
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Figure 26 Three layers feed-forward neural network built-in Matlab® – Source 

Matlab® 

The backpropagation takes place if a combination of entries and output are 

present. In this problem, the entries are the measurements selected in Table 

8 and the output are the efficiencies and the deterioration reference 

parameters calculated with Turbomatch and it can be expressed as: 

{(�� ,��)�, � = 1:� (23) 

Where Pd are the entry and dq are the output. At each instant t, a vector 

P(t) can be backpropagated to obtain an output vector a(t). Within the learning 

process the error between the output a(t) and the desired output d(t) is 

generally minimized through the root mean square function: 

�(�) = �[��(�) ∙ �(�)] (24) 

Where e is the error, E is the mean of values grouping the sets of weights 

and bias and X is the vector grouping the sets of weights and bias. The 

parameter X can be optimized with the steepest falling gradient equation for 

the weight: 

∆���(�) = −ƞ
���

����
� (25) 

And for the bias: 

∆��(�) = −ƞ
���

���
�

(26) 
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Back to the governing equation of the ANN the expression is: 

��
� = � ���

�

����

���

��
��� − ��

� (27) 

Defining the sensitivity ��
� of �� of the neuron i of the layer k as: 

��
� = −ƞ

���

���
�

(28) 

The final expression of the variation of the weight is: 

∆��(�) = −���(�)(����)�(�) (29) 

For the bias the equation is: 

∆��(�) = ���(�) (30) 

The type of ANN selected for this study is the cascade forward neural 

network (Figure 27) that is working in a similar as the feed-forward back 

propagation neural network but is adding a connection between the input and 

the n+1 layer. Both layouts have been tested, but the second one provided on 

overall better results.  

Figure 27 Cascade forward neural network with 3 hidden layers – Source Matlab® 

The neural network is set up in three hidden layers that proved to be 

effective while keeping the computational time reasonable. The most time 

demanding phase is the learning where the bias and weights are adjusted 

according to the inputs and the output provided. It must be reminded that this 

phase is done offline and once the ANN is trained it can be used for the online 
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prediction. The measurements available and used for the ANN are listed in 

Table 5 and they include all the locations of the gas turbine and the power. 

Among the excluded measurements, the exhaust pressure p6 is not used 

because of its uncertainty, also generated after the Kalman Filtering Figure 

25. The fuel mass flow is a key parameter for the heat balance of the gas 

turbine but it has been excluded for its uncertainty and the high dependability 

on other parameters like the composition, the temperature and the pressure, 

that might affect the ANN prediction. Finally, the ambient conditions have been 

excluded because of the difficulty in correcting them against measurement 

issues and the consequent possibility of prediction errors in the case of 

measurement failures. The pressure instead, is considered in the scheme 1 

and scheme 2 but excluded in scheme 3. The resulting set of measurements 

used is reported in Table 8. 

Scheme1 Scheme2 Scheme3 

LP compressor inlet pressure p1 No No No 

LP compressor inlet temperature T1 No No No 

LP compressor inlet relative humidity RH1 No No No 

LP compressor exhaust pressure p2 Yes Yes Yes 

LP compressor exhaust temperature T2 Yes Yes Yes 

HP compressor exhaust pressure p3 Yes Yes Yes 

HP compressor exhaust temperature T3 Yes Yes Yes 

Mass flow rate mf No No No 

HP turbine exhaust pressure p5 Yes Yes Yes 

HP turbine exhaust temperature T5 Yes Yes Yes 

LP turbine exhaust pressure p6 No No No 

LP turbine exhaust temperature T6 Yes Yes Yes 

Power P Yes Yes No 

Table 8 Set of measurements included in the ANN 

As specified in section 4.3, the power measurement is included in the ANN 

if available, while is not included in the other cases. The output of the first four 

ANN is the efficiencies of each component. Whereas scheme 1 and 3 includes 

the deteriorated efficiency only, scheme 2 includes also the reference 

efficiency, that will replace the reference mode. Instead, the output of the last 
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two ANN is the deterioration factors related to compressor and turbine 

components. For instance, the pressure loss, the efficiency decay and the 

mass flow reduction (Table 9). The optimal set up has been calculated with a 

specific ANN for each efficiency, therefore for each component. Differently, it 

has been observed that the deterioration parameters can be grouped. 

Therefore, there are two ANN, one for the compressors and another for the 

turbines.  

ANN id Scheme 1/Scheme 3 Scheme 2 

1 LP compressor efficiency 
LP compressor efficiency 

LP compressor efficiency reference 

2 HP compressor efficiency 
HP compressor efficiency 

HP compressor efficiency reference 

3 LP turbine efficiency 
LP turbine efficiency 

LP turbine efficiency reference 

4 HP turbine efficiency 
HP turbine efficiency 

HP turbine efficiency reference 

5 

LP Comp Efficiency deterioration LP Comp Efficiency deterioration 

LP Comp Massflow deterioration LP Comp Massflow deterioration 

LP Comp Pressure Ratio deterioration LP Comp Pressure Ratio deterioration 

HP Comp Efficiency deterioration HP Comp Efficiency deterioration 

HP Comp Massflow deterioration HP Comp Massflow deterioration 

HP Comp Pressure Ratio deterioration HP Comp Pressure Ratio deterioration 

6 

HP Turb Efficiency deterioration HP Turb Efficiency deterioration 

HP Turb Massflow deterioration HP Turb Massflow deterioration 

HP Turb dh/T deterioration HP Turb dh/T deterioration 

LP Turb Efficiency deterioration LP Turb Efficiency deterioration 

LP Turb Massflow deterioration LP Turb Massflow deterioration 

LP Turb dh/T deterioration LP Turb dh/T deterioration 

Table 9 Set of ANN for the parameter prediction 

The inputs provided to the ANN, in the absence of real data, need to come 

from the model described in section 4.1. To have a good prediction, the data 

needs to necessarily cover the operating range of the engine and all its 

possible deterioration. Among the limitations of the ANN, in fact, there’s the 

inability of making reliable prediction outside the range of training. To avoid 

this problem the cases considered for the deterioration include all the possible 

failures and a maximum level of the deterioration higher than the maximum 

reachable.  
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The type of deterioration selected is gradual, meaning that the simulation 

of the degradation goes from zero to the minimum value with a certain number 

of points. The number of points has an influence on the quality of the 

prediction, but they have also an influence on the speed of ANN training. The 

combination of the right amount of points, the gradual deterioration and the 

reproduction of all the cases should have the intention to provide the proper 

set of data to avoid overfitting and underfitting. 

To check the prediction of the ANN with a different number of points per 

case a test has been performed. The number of points considered is 

20;50;100;150;200 for a total of 5 tests. The results show that the standard 

deviation reaches its minimum at 150 samples (Figure 28). It has also to be 

remarked that the deviation increases at 200 samples meaning that an 

increase in the number of samples is no more beneficial. This trend is 

particularly emphasised in the LP compressor efficiency, but it is also valid for 

the other predictions.  

Figure 28 Standard deviation of the efficiency prediction of the gas turbine 

components 

The second factor to consider while varying the number of points is the 

training time. It is true that the training is mainly done offline, but it should not 

be unnecessarily high. To evaluate it the highest time is set as reference 
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(100%) and the other results are scaled on that value. From the results 

obtained, it is clear that after 100 points, the ANN training time is consistently 

increasing moving from 14% relative time at 100 points to 100% at 150 points 

(Figure 29). Interestingly the training time at 200 points is 76%, so lower than 

the time at 150 points. This means that the ANN converged faster but looking 

at the standard deviation it converged not exactly at the optimal solution.  

Considered these results, the number of samples recommended for this 

case is 100. The growing computational time, in fact, does not justify the minor 

improvements in the standard deviation. 

Figure 29 Relative ANN training time vs number of points per failure 

The same test has to be repeated with the ANN excluding the power. The 

number of samples used is the same as the preceding case, but the power is 

excluded from ANN as available measurement. The resulting standard 

deviation produces results very close to those obtained with the power 

included in the measurements (Figure 30). Similarly, to the case with power, 

one deviation diverges at 200 samples to a value of 1.2E-2. This time the 

diverging parameter is the turbine efficiency. 



72 

Figure 30 Standard deviation of the efficiency prediction of the gas turbine 

components 

The computational time has also a similar behaviour moving from 20% at 

100 points to 100% at 150 points. In this case, the difference between the 

case with 150 points and the case with 200 points is less pronounced (Figure 

31). 

Figure 31 Relative ANN training time vs number of points per failure 

With the input set up with 100 points per failure type and the failure 

characterization of Table 10, a test on the ANN prediction has been 



73 

performed. The predicted points instead are 200 to provide a sufficiently large 

population of the statistical evaluations. 

Fouling Erosion Noise [%] Points 

LPC 7.4% - 0.0;0.4;0.8;1.2;1.6;2.0 200 

HPC 7.4% - 0.0;0.4;0.8;1.2;1.6;2.0 200 

HPT - 3.7% 0.0;0.4;0.8;1.2;1.6;2.0 200 

LPT - 3.7% 0.0;0.4;0.8;1.2;1.6;2.0 200 

Table 10 Failure characterization for the ANN deviation testing 

The test has been repeated with two instrumentation configurations: with 

the power measurement included in the set of measurements, with the power 

measurement excluded from the set of measurements. The results of the 

simulation including the power measurement (Figure 32) report a maximum 

standard deviation of 1.0E-2 absolute on the LP turbine. This value is 

achieved at 2.0% reference measurement error while at the reference noise 

level the standard deviation decreases by one order.  

Figure 32 Standard deviation of the efficiency prediction of the gas turbine 

components – Power included in the measurements 

If the power is excluded from the measurements, the efficiency standard 

deviation at 2.0% reference measurement noise reaches a maximum of 3.5E-
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2 on the HP compressor (Figure 33). This deviation has the potential to affect 

the results of the diagnostics that will be investigated in the Results chapter. 

Figure 33 Standard deviation of the efficiency prediction of the gas turbine 

components – Power excluded from the measurements 

4.7 Neuro-Fuzzy logic failure quantification 

The first scope of a robust performance-based diagnostics is the correct 

quantification of the component failure. Correct quantification means precisely 

relate the severity of an event, as fouling for example, to the engine health 

status. This is a prerogative of the intelligent engines as reported by Volponi 

[3]. With this methodology, the scale varies from 0 to 100 where 0 means no 

deterioration detected on the component and 100 means maximum 

deterioration detected on the component. To judge the methodology 

successful, no false alarm should be raised. False alarm, in fact, could mislead 

the final user leading to excessive maintenance or to a decrease of thrust on 

the methodology. 

The range of efficiency variation will be between 0.0% to 7.7% component 

deterioration as per literature review [42] - [74]. This range varies from no 

alarm (0.0%) to an extreme deterioration (7.7%). The minimum level of the 
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scale – 0 - should alert but not alarm the user while the maximum level on the 

scale – 100 - should alarm the user and drive him to immediate actions. This 

scale would ideally be related with the EH, however being the data taken from 

open literature and being this knowledge engine specific, this remains an open 

point to be investigated with real data or mechanical simulations. Moreover, 

the scale may vary within the tests to prove the flexibility of the methodology 

on a different understanding of the EH or on different engine scenario. 

The quantification match is done via ANFIS (adaptive-network-based fuzzy 

inference system) that couples the Tagaki-Sugeno-Kang fuzzy logic structure 

and the artificial neural network training and prediction capabilities. This 

methodology is widely used and as confirmed by Viharos [33] is among the 

most precise solutions. As shown in Figure 34 the structure is MISO providing 

one single output for multiple inputs.  

Figure 34 ANFIS structure [33] 

The data used for the fuzzy logic set up via the ANFIS tuner is the 

combination of a single failure, multiple failures and no failures. The use of the 

ANFIS allows the tuning across all the possible scenarios and a better overall 

result. 
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4.8 Fuzzy logic failure classification 

The failure classification is the sorting of the component failures into sub-

categories. For instance, once the component failure has been quantified, the 

category of the deterioration is assessed. This part of the research has been 

already studied by Eustace [31] and Ogaji et al. [29] and defined to be the 

future trend of the gas path analysis by Volponi [3]. The approach used by the 

mentioned researches and considered here is the bank of fuzzy logic, that is 

nothing but a pile of fuzzy logic, driving the diagnosed points into the correct 

subcategories. The starting point for the bank of fuzzy logic construction is the 

analysis of the effect of the deterioration on the single physical parameter [42] 

- [50]. The effect on the measurements and on the calculated parameters is 

briefed in Table 12, considering 8 deterioration types listed in Table 11. From 

the effect shown it can be seen that the deterioration on the compressor is 

affecting the turbine, so the deterioration on the turbine is affecting the 

compressor and the single effect has to be isolated by the fuzzy logic. 

Table 11 Types of deterioration considered for the thermodynamic value change 

The structure selected for the isolation of the failures starts from the 

quantified values, taken from the neuro-fuzzy logic. After the bank of fuzzy 

logic is addressing the failure to the proper location and so classify it (Figure 

35). 

LP comp 

foul ing

HP comp 

foul ing

HP turb 

foul ing

HP turb 

eros ion

LP turb 

foul ing

LP turb 

eros ion

1 X

2 X

3 X

4 X

5 X

6 X

7 X X X X

8 X X X X



77 

Table 12 Effect of deterioration on physical components of single parameters (ref 

7.4% deterioration) - - ↑↓ Variation above-below 2% relative; ↗↘ variation above-

below 1% relative; → variation within ± 1% relative 

Figure 35 Classification scheme 

To graphically pack the engine health estimation, a chart including colour 

code – for the severity estimation – and categories – for the failure 

classification – has been created (Figure 36).  

The severity estimation is based on a chromatic scale that immediately 

reflects the magnitude of the failure. The scale is built to range from 0 to 100 

as per section 4.7 where 0 is no deterioration and 100 is 7.7% of the 

component deterioration. However, to consider a hypothetical deterioration 

higher than 7.7% or quantification higher than 100, the represented scale is 

extended to 150. The colour coding is built with the traffic light concept moving 

from green at zero magnitudes, to red at 150. This colour coding is not 
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necessarily related to a status of the GT component, since the mechanical 

severity of the failure is not available, however, referring to the deterioration 

section 4.2 7.7% is on the extreme limit seen in literature, therefore, should 

raise a critical alarm coded as red. 

The classification is divided into three main areas. On the left-hand side 

compressor fouling, erosion and corrosion together with turbine fouling and 

corrosion are located. Referring to Table 12 and to the literature review, in 

fact, they are leading to similar physical effects. The simulation though will 

include only the compressor and turbine fouling, excluding the compressor 

and turbine corrosion which remains an open point. On the right-hand side, 

turbine erosion is placed. The central area is free for other types of failure like 

for example the measurement errors classification. However, this area is just 

conceptually free since nothing is programmed from the code to be there yet. 

This chart is still available in the simulation process but could be replaced with 

the GUI, that is built with a similar concept. 

Figure 36 Classification chart 
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5.0  Results with the reference engine

The reference engine used as a test base for the methodology described 

in chapter 4.0 is a two-spool industrial engine shown in Figure 37, providing a 

power of 11.9 MWe. The simulated components are the LP and HP 

compressor, the HP and LP turbine, the burner and the cooling system, while 

the diagnostics focus on the LP and HP compressor and on the HP and LP 

turbine. 

Figure 37 Gas turbine layout and reference numbering 

As reported in section 4.2, the methodology will be tested with three 

different scenarios.  

The first scenario is the constant deterioration with 7.4% degradation on 

the compressor (fouling) and 3.7% degradation on the turbine (erosion); 

multiple failures (LP compressor fouling, HP compressor fouling, HP turbine 

erosion, LP turbine erosion); variation of the noise level (Table 10). In this 

case, the test is combined with measurement noise. The measurements noise 

cases considered varies from 0.0% to 2.0% with discrete steps of 0.4%.  

Compressor Burner Turbine 

1 2 4 5 7 3 6 
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The second scenario is the random deterioration with degradation within 

0.15% - 7.4%; single, multiple and no failures. This test will provide evidence 

of the robustness of the methodology since it is, as mentioned in section 4.2 

the stress test. In this case, the measurement noise is also included. Since 

the main focus of this test is not the KF and the data filtering section only two 

extreme noise level have been included: the nominal - 0.4% - and the 

maximum - 2.0%.  

The third and final scenario is the deterioration profile of several months. In 

this case, multiple failures (LP compressor fouling, HP compressor fouling, 

HP turbine fouling, LP turbine fouling). With this case, the noise set at the 

nominal value of 0.4%. This test will be performed with another set of NFL, 

trained to include the deterioration schedule, in coherence with the ANN 

combined training. This choice is done to simulate a different understanding 

of the component health estimation and to prove the flexibility of the NFL on 

different values set up. 

The output of the tests is the success rate. For the quantification, the 

simulated point is counted if it lies within 3σ standard deviation and for the 

classification is counted if classified in the right category (also if the 

quantification is outside the 3σ standard deviation). The standard deviation 1σ 

is calculated from a dry run with nominal noise (0.4%) and constant 

deterioration of multiple components. The calculated value is ±2.06 for 1σ and 

therefore, ±6.18 for 3σ. Since this acceptance range is set, the quantification 

plots are also adapted with a lower threshold of 5. The value 5 is nothing but 

the rounding of the 3σ calculated value. 
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There are several assumptions to be considered before the results are 

presented that can be summarized here as follows in Table 13 

# Assumption 
Test case/scheme of 

application 

1 
The noise is normally distributed around the mean 

value 

All cases 

All schemes 

2 The first 7 points of the simulation are not considered 
All cases 

All schemes 

3 

During the classification success rate evaluation, the 
points are considered if the quantification is above the 

threshold value of 2, corresponding to the min 
deterioration rate of 0.15% 

All cases 

All schemes 

Table 13 Assumptions for the test cases 

On top of the assumptions, there are also remarks about the set of scheme 

components (Table 14). 

# Remarks 
Test case/scheme of 

application 

1 

The configuration without KF is set with one 
measurement per location. The configurations with the 
SLKF and MLKF combine the multiple measurements 

at each location when available 

All cases 

All schemes 

2 
The LKF is tuned according to the type of test that is 

performed 

All cases 

All schemes 

3 
The FL for the classification of the failure is 

unchanged for all the cases 

All cases 

All schemes 

4 
The neuro FL for the quantification of the failures is 

common for the test cases 1 and 2 but is dedicated for 
the test case 3 

All cases 

All schemes 

Table 14 Remarks for the test cases 
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5.1 Scheme 1 

Scheme 1 (Figure 18) uses Turbomatch model as reference and includes 

the power in the measurements package. 

5.1.1 Constant deterioration 

5.1.1.1 Measurements noise 

The constant deterioration leads to a decrease of the efficiency on all the 

components and on all the 203 simulated points. The reference decreases, as 

said in chapter 5.0 is 7.4% on the compressor and 3.7% on the turbine, but 

the impact has a different magnitude after the LP compressor (Figure 38). The 

efficiency is obtained with the ANN module, using the simulated measurement 

values as input. 

Figure 38 Deterioration imposed on the gas turbine components – 0.4% noise 
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In the first test, as briefed in all the components are subjected to a constant 

deterioration (fouling on the compressors and erosion on the turbines). 

Meanwhile, increasing measurement noise is implanted to verify if the 

methodology can address it and correctly quantify and classify the failures in 

that situation. As mentioned before, the points analysed will be considered 

successful only if within 3σ standard deviation and if correctly allocated in the 

right failure type. Therefore, being the deterioration set to 7.4% for the 

compressor fouling and 3.7% for the turbine erosion, all the points will have to 

have a corresponding quantification of 96. On the other side, the compressor 

points will have to end in the fouling category and the turbine points in the 

erosion field. The results obtained with the first combination considered – 

without KF applied – show a constant value around 96 for all the points that 

are in line with the expectations (Figure 39). 

Figure 39 Quantification of the gas turbine failure – 0.4% noise no pre-filtering 

The results are then grouped in a single graph that quantifies, giving a 

component health status, and classify, defining the type of failure. Considered 
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that the type of failure is kept constant for this first simulation, the values 

should end in the same section of the graph. The results obtained confirm that 

the values are correctly quantified, and all the samples are classified in the 

appropriate category (Figure 40). 

As the magnitude of the deterioration is constant, and the parameter that 

varies is the measurement noise, the component that makes the difference in 

this phase is the KF that, as shown in section 4.5, is reducing the 

measurement noise. The effect takes place starting from the nominal noise of 

0.4%. With this level of noise, the gas turbine malfunction is still correctly 

quantified and classified (Figure 40 and Figure 41). 

Figure 40 Quantification and classification of the compressor – 0.4% noise no pre-

filtering 
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Figure 41 Quantification and classification of the turbine – 0.4% noise no pre-filtering 

However, if the level of noise increases, there is a clear disturbance on the 

quantification and of the classification. Taking into account the 2.0% 

measurement noise, for example, the quantification instead of being around 

96, ranges between 50 and 140 where 50 corresponds to a medium averaged 

engine health status and 140 corresponds to an extremely highly deteriorated 

engine (Figure 42 and Figure 43). The reason behind this increase is 

obviously driven by the noise, that is causing oscillation of the physical value 

and of the predicted value around its average. Translated this means that the 

health status is underestimated in one case, leading to slower reaction on the 

maintenance actions, while is overestimated in another case leading to faster 

reactions. The classification instead, leads to several false categorizations as 

some samples fall into the wrong category. This is valid especially for the 

turbine fouling/erosion since the KF has to distinguish between the two. This 

result is also related to the measurement noise that causes the delta mass 

flow reference deterioration used for the failure classification (Table 81), to 



86 

diverge from its exact value, misleading the KF. In this case, the maintenance 

would be addressed on a wrong action.  

Figure 42 Quantification and classification of the compressor – 2.0% noise no pre-

filtering 
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Figure 43 Quantification and classification of the turbine – 2.0% noise no pre-filtering 

The module dedicated to the data analytics/data filtering is the KF 

described in section 4.5. The variants studied in this thesis are the SLKF and 

the MLKF. Looking at the results including the SLKF with 2.0% measurement 

noise, the spread of the magnitude is decreased, leading to more robust 

diagnostics. On the compressor side the spread head between 80 and 110 

with only one point at 50 (Figure 44). The worst situation is on the LP turbine, 

where the spread is still within 40 and 110 (Figure 45). 
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Figure 44 Quantification and classification of the compressor – 2.0% noise SLKF 

Figure 45 Quantification and classification of the turbine – 2.0% noise SLKF 
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Looking at the success rate (calculated points within 3σ compared to the 

reference points), the overall results of the first test show a rate with all the 

combinations above 99.5%, both for 0.0% noise and for the nominal noise of 

0.4%. This result shows that this technique is capable of correctly detecting 

the multiple failures on almost all the samples.  

While the level of noise is increasing, the data analysis and correction starts 

to become more important. At 0.8% reference noise in-fact, the success rate 

on the quantification decrease to 95.0% if no KF is applied. With the maximum 

noise level of 2.0%, the rate of success is decreased to 58.8% without the KF 

block. The rate increases to 72.4% if also the MLKF is employed and to 73.4% 

if the SLKF is used with the SLKF having a higher minimum (Table 15). 

However, it must be noticed that the MLKF is performing better on overall 

reaching a maximum quantification success rate – with 2.0% reference 

measurement noise - of 91.0%. 

These results confirm that the KF block can reduce the noise, as already 

seen in section 4.5 and improve the success rate up to 23.6% absolute delta 

(ref MLKF HP comp). It must be remarked that this delta does not match with 

the relative delta improvement on the measurement noise since the other 

blocks such as the ANN and the FL are involved. 

Noise 0.0% 0.4% 0.8% 1.2% 1.6% 2.0% 

None 

LP comp 100% 100% 100% 95.5% 79.9% 76.9% 
HP comp 100% 100% 95.0% 84.9% 69.3% 58.8% 
HP turb 100% 100% 100% 95.5% 77.4% 66.3% 
LP turb 100% 100% 98.0% 86.4% 65.3% 63.3% 

SLKF 

LP comp 99.5% 99.5% 98.5% 97.0% 89.4% 82.4% 
HP comp 99.5% 99.5% 98.0% 96.0% 88.4% 75.4% 
HP turb 99.5% 99.5% 99.5% 98.0% 94.0% 83.9% 
LP turb 99.5% 99.5% 99.0% 94.0% 85.4% 73.4% 

MLKF 

LP comp 99.5% 99.5% 99.0% 94.5% 92.5% 86.4% 
HP comp 99.5% 99.5% 98.5% 94.0% 90.5% 82.4% 
HP turb 99.5% 99.5% 99.5% 97.0% 96.0% 91.0% 
LP turb 99.5% 99.5% 99.0% 92.5% 91.5% 72.4% 

Table 15 Success rate for the failure quantification 

Looking at the graphs instead, it can be observed that the success rate is 

above 90% for the MLKF combination at noise up to 1.6%. After, the 
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component with a lower success rate is the LP turbine (Figure 48). With the 

SLKF the 90% level is kept up to 1.2% measurement noise (Figure 47). 

Without filters instead, the 90% rate can be achieved only up to 0.8% 

reference noise (Figure 46). This means that the methodology can deal with 

noise up to 1.6% while providing the component health estimation 

(quantification) with a success rate above 90% (ref. MLKF). 

Figure 46 Success rate for the failure quantification – Combination No KF 

Figure 47 Success rate for the failure quantification – Combination 

SLKF+ANN+NFL+FL 
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Figure 48 Success rate for the failure quantification – Combination 

MLKF+ANN+NFL+FL 

The results of the classification with nominal noise show a success rate 

above 93.0% without filtering and at 100% with MLKF. With the maximum 

noise, the success rate decreases to 86.0% if no filtering is used and 

increases again to 92.4% with MLKF. Remarkable results are also achieved 

with SLKF, where the minimum success rate is 90.9% with 2.0% reference 

measurement noise (Table 16).  

These results confirm that the methodology can deal with noise up to 2.0% 

while providing a classification with rates above 90% (ref. SLKF and MLKF). 

Moreover, the KF has shown to be a key contributor since is improving the 

success rate up to 7.4% (ref. MLKF LP turbine).  

On the overall, the methodology is capable of correctly quantify and classify 

a GT multi failure also with the presence of measurement noise. However, the 

methodology can deal with noise up to 1.6% while keeping the success rate 

above 90% both for quantification and classification. 
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Noise 0.0% 0.4% 0.8% 1.2% 1.6% 2.0% 

None 

LP comp 100% 100% 100% 100% 100% 99.0%
HP comp 100% 93.0% 93.0% 94.5% 98.0% 97.0%
HP turb 100% 100% 100% 99.5% 95.5% 94.0%
LP turb 100% 100% 100% 99.0% 92.5% 86.0%

SLKF 

LP comp 100% 100% 100% 100% 100% 100%
HP comp 100% 100% 96.0% 90.4% 92.9% 94.9%
HP turb 100% 100% 100% 100% 99.5% 92.9%
LP turb 100% 100% 100% 100% 99.0% 90.9%

MLKF 

LP comp 100% 100% 100% 100% 100% 100%
HP comp 100% 100% 98.5% 96.0% 97.5% 92.4%
HP turb 100% 100% 100% 99.5% 98.5% 92.9%
LP turb 100% 100% 100% 99.5% 98.5% 93.4%

Table 16 Success rate for the failure classification 

It must be noticed that the classification is less affected by the noise 

compared to the quantification. The minimum rate in-fact is 86.0% at 2.0% 

measurement noise, compared to the 58.8% for the quantification. These 

results are justified by the higher threshold of the classification FL that is less 

compromised by the noise (Figure 49). While the quantification must relate 

each point to a quantity, in fact, the classification has to place the point in the 

right category. However, the classification rate is also benefitting from the data 

filtering either SLKF or MLKF. Additionally, the HP compressor rate with SLKF 

shows a decay at 1.2% measurement noise (Figure 50). The effect is lower if 

the MLKF is used (Figure 51). The reason for this decay resides in a higher 

uncertainty of the HP compressor efficiency that, even if the noise is lower, 

peaked up. This effect is more pronounced at 1.2% noise and is then slowly 

resolved.  
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Figure 49 Success rate for the failure classification – Combination No KF 

Figure 50 Success rate for the failure classification – Combination 

SLKF+ANN+NFL+FL 

Figure 51 Success rate for the failure classification – Combination 

MLKF+ANN+NFL+FL 
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5.1.2 Random deterioration 

The random deterioration consists of 203 points with deterioration level 

between 0.15% and 7.4% (Figure 52). As described in chapter 5.0 this is the 

stress test of the methodology and its scope is the validation of the 

methodology under severe conditions. The failure type, in fact, will change 

from one sample to the other moving from single failure to multiple failures, 

changing the failures types and varying the failure magnitude between 0.15% 

and 7.4%. This case is much worse than what could happen in reality and 

that’s why a success rate above the target with this test represents a strong 

proof and achievement for the methodology.  

Figure 52 Deterioration imposed on the gas turbine components – 0.4% noise 

5.1.2.1 No pre-filtering 

The first case to be tested is the one without filtering. This case includes 

the structure with the ANN+FL but excludes the KF for the measurement noise 

isolation and for the multiple measurements processing. The level of noise for 

this test is the nominal of 0.4% as the aim is to isolate the robustness of the 
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methodology with random deterioration. The aspects to be tested are the 

components health estimation (quantification) while the magnitude of the 

failure varies randomly and the classification of single and multiple 

components failure together with different types of failure. The classification, 

in this section, becomes the most relevant to be tested as the types of failure 

are augmented to 6 (including LP compressor fouling, HP compressor fouling, 

HP turbine fouling, HP turbine erosion, LP turbine fouling and LP turbine 

erosion) and the number of combinations increases from 1 to 24. 

The results of the quantification (Figure 53) show the range of variation of 

the quantification between 5 and 96. The lowest value, 5, is selected as a 

threshold to avoid a superposition of plot between the noisy results and 

meaningful results. The value 5 corresponds to the lower rounding of the 3σ 

value calculated during the dry run. 

Figure 53 Quantification chart in the case of random deterioration – 0.4% noise no 

pre-filtering 
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Looking at the numbers obtained, the quantification success rate ranges 

from a minimum of 96.5% on the HP compressor to a maximum of 100% on 

the HP turbine (Table 17). 

Component Success rate 
LP comp 99.0% 
HP comp 96.5% 
HP turb 100% 
LP turb 98.0% 

Table 17 Success rate for the failure quantification for random simulation – 0.4% 

noise no pre-filtering 

The classification rate instead, ranges from 95.5% for the LP turbine to the 

100% on the HP turbine fouling and erosion and on the LP turbine fouling 

(Table 18). It must be specified that the success rate includes single and 

multiple failures. 

Failure type Success rate 
LP comp fouling 97.1% 
HP comp fouling 96.8% 
HP turb fouling 100% 
HP turb erosion 100% 
LP turb fouling 100% 
LP turb erosion 95.5% 

Table 18 Success rate for the failure classification for random simulation – 0.4% 

noise no pre-filtering 

The same test has been repeated for a different level of noise that in this 

case has been selected to be 2.0%. This level of noise is chosen as it is the 

maximum value among those tested in section 5.1.1 and, therefore, 

represents the worst case for the random simulation. In this case, the spread 

of the malfunction quantification is increased from the expected range 5-96 to 

a range of 5-140 (Figure 54) and this gives a sign that the quantification is 

deviating from the expected rate. 
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Figure 54 Quantification chart in the case of random deterioration – 2.0% noise no 

pre-filtering 

The consequence of this deviation from the exact quantification is a 

decrease of the success rate that ranges, in this case, from 56.2% on the HP 

compressor to 74.1% on the LP turbine (Table 19). 

Component Success rate 
LP comp 56.7% 
HP comp 56.2% 
HP turb 59.2% 
LP turb 74.1% 

Table 19 Success rate for the failure quantification for random simulation – 2.0% 

noise no pre-filtering 

This reduction on the success rate is also reflected in an increasing number 

of deviation spots (Figure 55). The deviation from the reference value is in 

both directions since the noise is acting randomly around the mean parameter. 
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Figure 55 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise no pre-filtering 

The classification rate instead, ranges from 86.5% for the HP turbine 

erosion to the 100% on the HP compressor and HP turbine fouling (Table 20). 

Compared to the quantification the impact on the success rate is lower, but 

the impact can reach a maximum of 13.5%. The lesser effect is justified by the 

higher threshold the classification KF has, as already mentioned in section 

5.1.1.1. 



99 

Failure type Success rate 
LP comp fouling 99.1% 
HP comp fouling 100% 
HP turb fouling 100% 
HP turb erosion 86.5% 
LP turb fouling 100.0% 
LP turb erosion 88.3% 

Table 20 Success rate for the failure classification for random simulation – 2.0% 

noise no pre-filtering 

The results obtained confirm the capability of the methodology of 

quantifying the failure magnitude and classifying the type of failure with a 

random simulation of single and multiple failures with varying magnitude and 

nominal noise of 0.4%. The results above the 90% target set are not achieved 

instead, if the level of noise increases to 2.0%, confirming the necessity of a 

section for the measurement filtering (KF).  

5.1.2.2 Single Linear Kalman Filter and measurement fusion 

During this test, the KF is included before the diagnostics phase. Provided 

the improvement of the data over the constant case reported in section 4.5 an 

increase of the quantification and classification rate is expected. The set-up 

built around the KF allows the processing of multiple measurements placed at 

the same location in two ways: with a single layer and with multiple layers. 

The preliminary check described in section 4.5 shown better performances for 

the MLKF rather than the SLKF and these results must be checked also for 

the random deterioration case. The portion analysed in this section is the 

SLKF that consist of one layer devoted to combine all the information coming 

from every single measurement and to filter out the measurement noise.  

The results of the quantification repeat the same trend observed without 

pre-filtering ranging within 5 and 96 (Figure 56). It must be mentioned that as 

the points are selected randomly, the samples are not one to one comparable 

among the tests. 
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Figure 56 Quantification chart in the case of random deterioration – 0.4% noise SLKF 

The quantification success rate ranges from a minimum of 97.5% on the 

HP compressor to a maximum of 99.0% on the LP compressor (Table 21). 

Compared to the test without filtering there’s almost no difference. This is what 

it is expected since, with nominal noise, the reduction of measurement noise 

has been shown to be negligible section 4.5. 

Component Success rate 
LP comp 99.0% 
HP comp 97.5% 
HP turb 98.5% 
LP turb 98.5% 

Table 21 Success rate for the failure quantification for random simulation – 0.4% 

noise SLKF 

The classification rate instead, ranges from 94.3% for the LP compressor 

fouling to the 100% on HP turbine fouling and LP turbine fouling. The results 

are in line with the case without the filter (Table 22) with a small worsening on 

the LP compressor fouling and on the HP turbine erosion. 
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Failure type Success rate 
LP comp fouling 94.3% 
HP comp fouling 96.7% 
HP turb fouling 100% 
HP turb erosion 96.6% 
LP turb fouling 100% 
LP turb erosion 95.3% 

Table 22 success rate for the failure classification for random simulation – 0.4% noise 

SLKF 

Moving to the case with 2.0% reference noise, the quantification ranges 

between 5 and 130 (Figure 57). Considering that the expected quantification 

is from 5 to 96, a consequence of the quantification success rate is expected. 

Figure 57 Quantification chart in the case of random deterioration – 2.0% noise SLKF 

The resulting quantification success rate varies, from 69.0% on the HP 

compressor to 87.6% on the LP turbine with an improvement on all the 

components compared to the case without filtering (Table 23). These results 

confirm the improvement seen with the constant deterioration 5.1.1 while 

introducing the SLKF. However, as reported for the case with constant 

deterioration, the target is not reached. 
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Component Success rate 
LP comp 73.1% 
HP comp 69.2% 
HP turb 70.6% 
LP turb 87.6% 

Table 23 Success rate for the failure quantification for random simulation – 2.0% 

noise SLKF 

This reduction on the success rate can be also observed in the graph 

comparing the reference with the predicted value, that is showing an 

increasing number of deviation spots (Figure 58).  

Figure 58 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise SLKF 

The classification rate instead, ranges from 89.5% for the LP turbine 

erosion to the 100% on the HP compressor fouling, HP turbine fouling and LP 

turbine fouling (Table 24). The weakest results are on the turbine erosion that 
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is relying on the mass flow reference deterioration only, that while challenged 

with this high noise lead to errors on some points. The other results are above 

the target confirming the higher robustness of the classification module. 

The results shown in this section, say that the methodology can perform 

multiple component health estimation and detect among them the specific 

type of failure. The success rate though is above the targeted 90% only for 

the case with nominal noise while with a 2.0% noise the target is reached on 

the classification side only (provided 0.5% gap on the LP turbine erosion). 

Some work has to be done on the component health estimation that does not 

reach the target at 2.0% measurement noise. 

Failure type Success rate 
LP comp fouling 97.1% 
HP comp fouling 100% 
HP turb fouling 100% 
HP turb erosion 92.5% 
LP turb fouling 100% 
LP turb erosion 89.5% 

Table 24 Success rate for the failure classification for random simulation – 2.0% 

noise SLKF 

5.1.2.3 Multiple Layer Kalman Filter and measurement fusion 

The other scheme analysed in this section is the MLKF that consist of two 

layers devoted to combine all the information coming from every single 

measurement and to filter out the measurement noise. The aim of the second 

layer is to further make use of the filtered information to improve the final 

result. 

The first results of the quantification performed with the nominal noise of 

0.4% repeat the same trend observed without pre-filtering ranging within 5 and 

96 (Figure 59). As for the case with the SLKF, no improvements are expected 

since the filtering effect on the measurement noise is negligible at this stage. 
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Figure 59 Quantification chart in the case of random deterioration – 0.4% noise MLKF 

The quantification success rate instead, ranges from a minimum of 92.0% 

on the HP compressor to a maximum of 99.5% on the LP turbine (Table 25). 

Again, compared to the test without filtering there’s almost no difference 

except for a small decay on the HP compressor rate.  

Component Success rate 
LP comp 97.0% 
HP comp 92.0% 
HP turb 98.5% 
LP turb 99.0% 

Table 25 Success rate for the failure quantification for random simulation – 0.4% 

noise MLKF 

The classification rate instead, ranges from 95.1% for the HP turbine 

erosion to the 100% on the HP turbine fouling and LP turbine fouling (Table 

26). The results are in line with the cases without KF and with the SLKF. 
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Failure type Success rate 
LP comp fouling 98.3% 
HP comp fouling 97.9% 
HP turb fouling 100% 
HP turb erosion 95.1% 
LP turb fouling 100% 
LP turb erosion 96.9% 

Table 26 Success rate for the failure classification for random simulation – 0.4% 

noise MLKF 

Looking at the case with 2.0% noise level instead, the quantification ranges 

between 5 and 105 (Figure 60), which is already a sign of improvement, also 

seen with the SLKF. 

Figure 60 Quantification chart in the case of random deterioration – 2.0% noise MLKF 

The resulting success rate varies, from 70.1% on the HP turbine to 83.3% 

on the LP turbine with an improvement on all the components compared to 

the case without filtering (Table 27). 
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Component Success rate 
LP comp 76.1% 
HP comp 73.6% 
HP turb 70.1% 
LP turb 83.1% 

Table 27 Success rate for the failure quantification for random simulation – 2.0% 

noise MLKF 

The improvement in the success rate for the failure quantification is also 

reflected in the decrease of deviations spots (Figure 61).  

Figure 61 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise MLKF 

The classification rate ranges from 88.9% for the LP turbine erosion to 

100% on the HP compressor fouling and LP turbine fouling (Table 28). The 

improvement seen here is in line with the case with SLKF applied even if the 

classification success rate is already better placed also without filtering. 
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Failure type Success rate 
LP comp fouling 97.7% 
HP comp fouling 100% 
HP turb fouling 96.0% 
HP turb erosion 90.7% 
LP turb fouling 100% 
LP turb erosion 88.9% 

Table 28 Success rate for the failure classification for random simulation – 2.0% 

noise MLKF 

The results shown in this section, confirm that the methodology can perform 

multiple component health estimation (quantification) and can detect among 

them the specific type of failure (classification). This achievement is in line 

with ultimate goal foreseen by Volponi [3] in his past, present and future 

analysis which is the automated detection of the gas turbine components 

health. It must be remarked that the prefixed target can be achieved only for 

the case with 0.4% noise, while is missed for the case with 2.0% noise. In this 

case, even if the improvement is clearly visible, some additional work has to 

be done. Nevertheless, considered the challenge of this test, the results are 

still remarkable.  

5.1.3 Deterioration schedule 

After having checked the methodology against a constant deterioration with 

measurement noise and against a random deterioration with different levels 

of noise, the methodology is tested against a deterioration schedule. This 

schedule has been already described in section 4.2 and out of the initial profile 

with 5000 points, 203 samples reflecting the deterioration between 0% and 

75% of maximum magnitude have been extracted. For instance, the final 

reference deterioration on the LP compressor is 3.3% while is 5.1% on the LP 

turbine. Since the deterioration is meant to represent a possible real 

degradation over months of the gas turbine, the aim here is to see how the 

methodology is reacting in such conditions. The entire simulation is carried 

over with the reference noise of 0.4% 

The numerical data provided by the deterioration schedule mimic the gas 

turbine behaviour, therefore, the extracted points represent the 
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measurements coming from it (Figure 21). This means that only pressure, 

temperature and power values are available.  

5.1.3.1 Combined training 

The combined training is made up by the random simulation and by the 

deterioration schedule. The random simulation consists of the 24 

combinations described in section 4.2 and reported in Table 2. The 

deterioration schedule consists of the 5000 points reflecting a period of time 

of the gas turbine behaviour.  

The necessity of the data combination comes from the unsatisfactory 

results obtained with the use of the 24 combinations only (Figure 62). This 

combination in-fact is made up of 100 points for each deterioration type and 

cannot be sufficient to predict points among the 5000 foresee in the 

deterioration schedule. On the other hand, the increase of the number of 

points among the 24 combinations is leading to memory issues, so the final 

solution is the merge of the 24 combinations, together with the deterioration 

schedule in the ANN training. 

Figure 62 Reference (red line) vs prediction (blue line) of components efficiency 
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The result of this merge is an increased number of points available to the 

ANN. The consequence is an increased number of data available that could 

improve the ANN quality prediction but could also cause overfitting on some 

points that could reduce the quality of the prediction. 

As a single type of multiple failures has been implemented (fouling on all 

the components), it is possible to observe its effect on the efficiency of the 

components.  

The impact on the efficiency is very clear and it is a decrease in all the 

components (Figure 63). It is worth to mention that the most affected 

component is the LP compressor which is suffering from the deterioration of 

the compressor itself and from the deterioration of the upcoming components. 

On the other hand, it is also worth to notice that the HP compressor efficiency 

is remaining almost constant and decreases a bit more only in the last part 

when the deterioration is more pronounced. It has also to be remarked that 

the deterioration profile imposed (Figure 20) is not exactly reflected onto the 

efficiency profiles due to the mutual interaction of the components. From that, 

it is clear that the delta efficiency from the reference values cannot be used to 

represent the health status of each component. For instance, judging the 

health status from the HP compressor efficiency delta would lead to a much 

less impacted component. Instead, judging it from the LP compressor would 

lead to a much higher impact. In reality, the deterioration profile is identical at 

the beginning and diverges only at the end by 0.5% reference deterioration. 
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Figure 63 Deterioration imposed on the gas turbine components starting from the 

deterioration schedule 

Once the efficiencies and physical values deviations are processed by the 

fuzzy logic, they deal with the quantification described in section 4.7. Based 

on the deterioration profile imposed in Figure 20, the expectation is a growing 

quantification magnitude trend starting from the LP compressor moving to the 

LP turbine. Based on the deterioration selected for this problem - 3.3% on the 

LP compressor and 5.1% on the LP turbine - the prediction is to have an alarm 

level of 43 on the LP compressor and 66 on the LP turbine (Figure 64).  
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Figure 64 Quantification chart in the case of scheduled deterioration 

The quantification is exactly matched as reflected in the resulting 

quantification success rate, whose result is 100% for all the components 

(Table 29). 

Component Success rate 
LP comp 100% 
HP comp 100% 
HP turb 100% 
LP turb 100% 

Table 29 Success rate for the failure quantification for scheduled simulation – Noise 

is set to 0.4% 

These perfect results are also reflected in the small deviation between the 

component health estimation (quantification) and its reference (Figure 65). It 

must be remarked that a residual deviation is present in the HP compressor 

especially between sample 50 and sample 120. There, an additional turning 

of the NFL could further improve the results. 
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Figure 65 Absolute quantification and deviation from the reference for compressor 

and turbine components – 0.4% noise MLKF 

The next step to be tested is the classification which is easier in this case 

as the type of failure remains the same for the entire simulation – compressor 

and turbine fouling on all the components (Figure 66 and Figure 67). The 

resulting success rate ranges from 89.1% on the HP turbine to 97.0% on the 

HP compressor (Table 30). Despite the easiness of the problem, the target is 

not fully met therefore some additional tuning could be done in the FL to better 

match these points.  
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Figure 66 Classification chart for the compressor 

Figure 67 Classification chart for the turbine 
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Failure type Success rate 
LP comp fouling 93.6% 
HP comp fouling 97.0% 
HP turb fouling 89.1% 
LP turb fouling 93.6% 

Table 30 Success rate for the failure classification for scheduled simulation – 0.4% 

noise MLKF 

These results confirm that the data combination is a necessary step in order 

to let the ANN make the right prediction of the efficiency and to let the rest of 

the methodology make an accurate prediction. Moreover, they confirm one of 

the weaknesses of the ANN outlined in section 4.6, which is the high 

uncertainty of the ANN while predicting outside the trained path. Additionally, 

the results confirm the feasibility of the failure characterization also with a 

normal deterioration run of several months, even if some additional turning is 

required on the HP compressor fouling. 

As reported at the beginning of the chapter, this simulation makes use of 

the full deterioration profile as input during the ANN training phase and of a 

sample of it during the prediction phase. Therefore, it can be said that the 

prediction is done among data used in the ANN training phase. However, it is 

not always realistic to know beforehand the deterioration profile of the gas 

turbine. In this case, the real data of the deterioration schedule should be 

manually processed and integrated offline into the ANN training. The fact that 

the ANN can predict only within points provided during the training is a 

limitation already stated by Bechini [1] in its analysis.  
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5.2 Scheme 2 

The difference introduced by the second scheme is on the reference value 

of the non-deteriorated engine that is not provided by the thermodynamic 

model made with Turbomatch but rather by the ANN. This way the ambient 

temperature reference is no more necessary, so the Turbomatch calculation. 

The advantage is an even faster calculation, and the use of internal 

measurements only. The disadvantage is a possible reduction of accuracy in 

the reference model, since it is coming from the ANN and not from the official 

thermodynamic model. The block subjected to this change is the ANN that is 

trained in the first part including the deteriorated engine and the reference 

engine. The new scheme is affecting the delta calculated as the difference 

between the reference value and the deteriorated value: 

∆� = ���� − �������������

Where x is the physical parameter under investigation. The parameter 

changed with this scheme is xref which is not coming from the calculated 

Turbomatch reference, but is predicted, together with the xdeteriorated, by the 

ANN. 

5.2.1 Constant deterioration 

5.2.1.1 Measurements noise 

The constant deterioration has identical characteristics as for scheme 1 – 

section 5.1. The scope of this test is to see how this scheme is reacting to the 

noise and if the reference provided by the ANN, instead of Turbomatch, is 

causing any uncertainty. 

The first parameter to check with this scheme is the quantification, that 

should end at the level of 96 for each gas turbine component. The result 
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obtained is very close to that seen with scheme 1 therefore in line with the 

prediction (Figure 68). 

Figure 68 Quantification of the gas turbine failure – 0.4% noise no pre-filtering 

The cumulative graph, proposing the quantification and the classification, 

shows that the types of failure are correctly classified as compressor fouling 

and turbine erosion (Figure 69 and Figure 70). 
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Figure 69 Quantification and classification of the compressor – 0.4% noise no pre-

filtering 

Figure 70 Quantification and classification of the turbine – 0.4% noise no pre-filtering 
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With the level of measurement noise set to 2.0%, the quantification is 

affected by spreading between 20 and 140 on the compressor and between 

10 and 130 on the turbine (Figure 71 and Figure 72). The classification instead 

looks correct on the compressor but shows some false alarms on the turbine. 

This behaviour is similar to what seen with scheme 1 and the turbine 

classification looks having less false alarms. 

Figure 71 Quantification and classification of the compressor – 2.0% noise no pre-

filtering 
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Figure 72 Quantification and classification of the turbine – 2.0% noise no pre-filtering 

The next item to be compared is the scheme 2 with the data filtering module 

that, as per section 5.1.1.1, are the SLKF and the MLKF. The most interesting 

condition to be compared is with 2.0% measurement noise. In that case, the 

quantification ranges between 20 and 110 on the compressor and between 

30 and 110 on the turbine. The reason behind it, as described for scheme 1, 

is the increase of the noise, that is directly reflected in the component health 

estimation. This means that the quantification is not as much overestimated 

as in the case without the KF, but there are still some samples not correctly 

quantified (Figure 73 and Figure 74). On the classification side instead, some 

false alarms remain. 
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Figure 73 Quantification and classification of the compressor – 2.0% noise MLKF 

Figure 74 Quantification and classification of the turbine – 2.0% noise MLKF 
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The overall results of the first test show a quantification success rate of 

100% for 0.0% and 0.4% noise in all the component and with all combinations. 

This is in line with what obtained for the scheme 1 – 99.5% - and confirms the 

capability of this methodology on classifying multiple failures while providing 

the correct health estimation also without the use of the Turbomatch 

reference.  

While the level of noise is increasing, the trend tends to be similar to what 

seen for scheme 1. At 0.8% reference noise in-fact, the quantification success 

level decreases to 96.0% if no KF is applied. With the maximum noise level of 

2.0%, the success rate is decreased to 51.7% without the KF block. The 

success rate though increases to 72.6% if also the SLKF is employed and to 

70.6% if the MLKF is used (Table 31). 

Noise 0.0% 0.4% 0.8% 1.2% 1.6% 2.0% 

None 

LP comp 100% 100% 100% 93.5% 76.6 59.7 
HP comp 100% 100% 99.0% 89.6% 67.7% 51.7% 
HP turb 100% 100% 100% 96.5% 91.5% 79.6% 
LP turb 100% 100% 96.0% 84.6% 64.2% 54.2% 

SLKF 

LP comp 100% 100% 100% 96.5% 84.6% 82.6% 
HP comp 100% 100% 100% 94.0% 78.1% 72.6% 
HP turb 100% 100% 100% 100% 99.0% 97.0% 
LP turb 100% 100% 100% 97.0% 92.0% 78.1% 

MLKF 

LP comp 100% 100% 100% 98.5% 89.6% 78.1% 
HP comp 100% 100% 99.5% 95.0% 84.6% 70.6% 
HP turb 100% 100% 100% 100% 99.5% 97.5% 
LP turb 100% 100% 100% 98.0% 89.6% 80.1% 

Table 31 Success rate for the failure quantification 

Looking at the same values reported in the graphs instead it can be seen, 

once again, that the quantification success rate decreases starting from 0.8% 

(Figure 75). At 1.2% reference noise level, the success rate without KF is 

already below 90% and decreases to 51.7% with 2.0% reference noise level. 

The SLKF and MLKF improve this trend and the success rate remains above 

90% until 1.2% reference noise level. The success rate starts then to decrease 

but remains above 70.6% at 2.0% reference noise level (Figure 76 and Figure 

77). Compared to scheme 1 the result is slightly worse since the 90% success 
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rate was granted up to 1.6% noise. This result remarks that while flexibility is 

possible, the results might not be as accurate. 

Figure 75 Success rate for the failure quantification – Combination No KF 

Figure 76 Success rate for the failure quantification – Combination 

SLKF+ANN+NFL+FL 
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Figure 77 Success rate for the failure quantification – Combination 

MLKF+ANN+NFL+FL 

The results of the classification with 0.4% noise show a success rate above 

93.6% without filtering and at 100% with MLKF. With the maximum noise of 

2.0%, the success rate decreases to 91.1% if no filtering is used and increases 

again to 94.0% with MLKF. The results of the SLKF are in line with the MLKF, 

as the minimum success rate is 94.0% for both (Table 32). 

Noise 0.0% 0.4% 0.8% 1.2% 1.6% 2.0% 

None 

LP comp 100% 100% 100% 100% 100% 100% 
HP comp 100% 93.6 93.1% 94.6% 97.5% 97.0% 
HP turb 100% 100% 100% 99.5% 97.5% 91.1% 
LP turb 100% 100% 100% 99.5% 96.6% 91.1% 

SLKF 

LP comp 100% 100% 100% 100% 100% 100% 
HP comp 100% 100% 96.5% 92.0% 95.5% 94.0% 
HP turb 100% 100% 100% 100% 99.5% 97.5% 
LP turb 100% 100% 100% 100% 98.5% 97.5% 

MLKF 

LP comp 100% 100% 100% 100% 100% 100% 
HP comp 100% 100% 96.0% 93.5% 88.6% 94.0% 
HP turb 100% 100% 100% 100% 99.0% 98.0% 
LP turb 100% 100% 100% 100% 98.5% 97.0% 

Table 32 Success rate for the failure classification 

Like the scheme 1, the classification is less affected by the noise compared 

to the quantification (Figure 78). The minimum rate in-fact is 91.1% at 2.0% 

measurement noise, compared to the 51.7% for the quantification. The decay 

on the HP compressor success rate for the SLKF instead, is also seen here, 

where the minimum classification rate is at 1.6% measurement noise with a 
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value of 92.0% (Figure 79). A similar effect is also seen on the MLKF scheme, 

but the minimum success rate is 88.6% at 1.6% measurement noise (Figure 

80). The root cause of this decay, as explained for scheme 1, is an increase 

of the uncertainty on the HP compressor efficiency. 

The overall results obtained confirm that is possible to correctly quantify 

and classify a GT multi failure also with the presence of measurement noise, 

by using the ANN both for the reference and for the deteriorated values 

prediction. However, the methodology can deal with noise up to 1.2% while 

keeping the success rate above 90% both for quantification and classification. 

Figure 78 Success rate for the failure classification – Combination No KF 

Figure 79 Success rate for the failure classification – Combination 

SLKF+ANN+NFL+FL 
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Figure 80 Success rate for the failure classification – Combination 

MLKF+ANN+NFL+FL 

5.2.2 Random deterioration 

The random deterioration consists of 203 points with a deterioration level 

between 0.15% and 7.4% and is identical to what presented with the scheme 

1 section 5.1.2 (Figure 81). However, the problem might be different as the 

samples are selected randomly within the defined range.  

Figure 81 Deterioration imposed on the gas turbine components – 0.4% noise 
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5.2.2.1 No pre-filtering 

The case without the pre-filtering includes the ANN+FL and excludes the 

KF processing. In this case, in fact, only one measurement per position is 

considered.  

The results of the quantification (Figure 82) are visually very close to the 

one seen for the scheme 1 section 5.1.2.1 as the range of variation of the 

quantification is within 5 and 96 (Figure 82).  

Figure 82 Quantification chart in the case of random deterioration – 0.4% noise no 

pre-filtering 

The quantification success rate ranges from a minimum of 93.5% on the 

HP turbine to a maximum of 99.0% on the LP compressor (Table 33). 
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Component Success rate 
LP comp 99.0% 
HP comp 96.0% 
HP turb 93.5% 
LP turb 98.5% 

Table 33 Success rate for the failure quantification for random simulation – 0.4% 

noise no pre-filtering 

The classification rate instead, ranges between 93.8% on the HP turbine 

erosion to the 100% on the HP and LP turbine fouling (Table 34).  

Failure type Success rate 
LP comp fouling 93.9% 
HP comp fouling 97.1% 
HP turb fouling 100% 
HP turb erosion 93.8% 
LP turb fouling 100% 
LP turb erosion 96.7% 

Table 34 Success rate for the failure classification for random simulation – 0.4% 

noise no pre-filtering 

The same test repeated for the noise level at 2.0% shows a quantification 

range between 5 and 200 instead of the 5 to 96 foreseen (Figure 83).  

Figure 83 Quantification chart in the case of random deterioration – 2.0% noise no 

pre-filtering 
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The consequence of this deviation is reflected in the quantification rate that 

decreases down to 56.7% on the HP turbine. The best result instead is 

achieved on the LP turbine where the success rate is 72.6% (Table 35). 

Component Success rate 
LP comp 58.7% 
HP comp 62.7% 
HP turb 56.7% 
LP turb 72.6% 

Table 35 Success rate for the failure quantification for random simulation – 2.0% 

noise no pre-filtering 

This reduction on the success rate can be also observed in the graphs that 

are showing an increasing number of deviation spots (Figure 84). The 

deviation from the reference value is in both directions since the noise is acting 

randomly around the mean parameter. 
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Figure 84 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise no pre-filtering 

The classification rate with 2.0% reference noise instead, ranges from 

94.4% for the LP compressor fouling to the 100% on the LP turbine fouling 

(Table 36). The results are better than scheme 1, where the minimum success 

rate sets at 86.5% on the HP turbine erosion. 

Failure type Success rate 
LP comp fouling 94.4% 
HP comp fouling 97.8% 
HP turb fouling 100% 
HP turb erosion 94.7% 
LP turb fouling 100% 
LP turb erosion 96.0% 

Table 36 Success rate for the failure classification for random simulation – 2.0% 

noise no pre-filtering 
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5.2.2.2 Single Linear Kalman Filter and measurement fusion 

As already seen in section 5.1.2.2, the SLKF is applied before the ANN and 

the FL to filter for measurement noise.  

The results of the quantification repeat the same trend observed in the case 

without pre-filtering ranging within 0 and 96 (Figure 85). It must be mentioned 

that as the points are selected randomly, the samples are not directly 

comparable among the tests. 

Figure 85 Quantification chart in the case of random deterioration – 0.4% noise SLKF 

The quantification success rate ranges from a minimum of 98.0% on the 

HP compressor and LP turbine to a maximum of 99.0% on the LP compressor 

(Table 37). This result is in line with what obtained with scheme 1 and is an 

improvement compared to the case without filter, where the minimum success 

rate was 93.5% on the HP turbine. 
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Component Success rate 
LP comp 99.0% 
HP comp 98.0% 
HP turb 98.5% 
LP turb 98.0% 

Table 37 Success rate for the failure quantification for random simulation – 0.4% 

noise SLKF 

The classification rate instead, ranges from 89.1% for the LP turbine 

erosion to the 100% on the HP and LP turbine fouling (Table 38). This result 

is slightly below the target of 90% set for this work and is up to 6% worse than 

its homologous in scheme 1. 

Failure type Success rate 
LP comp fouling 98.6% 
HP comp fouling 97.1% 
HP turb fouling 100% 
HP turb erosion 89.8% 
LP turb fouling 100% 
LP turb erosion 89.1% 

Table 38 Success rate for the failure classification for random simulation – 0.4% 

noise SLKF 

Looking at the case with 2.0% measurement noise, the quantification 

ranges between 5 and 105 (Figure 86). 
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Figure 86 Quantification chart in the case of random deterioration – 2.0% noise SLKF 

The resulting success rate varies, between 70.1% on the HP compressor 

to 78.6% on the LP turbine with an improvement on all the components 

compared to the case without filtering (Table 39). 

Component Success rate 
LP comp 73.6% 
HP comp 70.1% 
HP turb 73.6% 
LP turb 78.6% 

Table 39 Success rate for the failure quantification for random simulation – 2.0% 

noise SLKF 

This reduction on the success rate can be also observed in the graph that 

is showing an increasing number of deviation spots (Figure 87).  
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Figure 87 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise SLKF 

The classification rate ranges between 86.0% for the LP turbine erosion to 

100% on the LP and HP turbine fouling (Table 40). 

Failure type Success rate 
LP comp fouling 95.8% 
HP comp fouling 97.1% 
HP turb fouling 100% 
HP turb erosion 93.8% 
LP turb fouling 100% 
LP turb erosion 86.0% 

Table 40 Success rate for the failure classification for random simulation – 2.0% 

noise SLKF 
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5.2.2.3 Multiple Layer Kalman Filter and measurement fusion 

The other scheme analysed in this section is the MLKF that consist of two 

layers devoted to merge all the information coming from every single 

measurement and to filter out the measurement noise. The aim of the second 

layer is to further make use of the filtered information to improve the final 

result. 

The results of the quantification with 0.4% reference noise, repeat the same 

trend observed in the case without pre-filtering ranging within 5 and 96 (Figure 

88). 

Figure 88 Quantification chart in the case of random deterioration – 0.4% noise MLKF 

The quantification success rate ranges from a minimum of 97.5% on the 

HP and LP turbine to a maximum of 100% on the LP compressor (Table 41). 

Compared to the case without a filter, there is already an improvement but 

compared to the case with SLKF there is almost no change. 



135 

Component Success rate 
LP comp 100% 
HP comp 98.5% 
HP turb 97.5% 
LP turb 97.5% 

Table 41 Success rate for the failure quantification for random simulation – 0.4% 

noise MLKF 

The classification rate instead, ranges from 93.2% for the LP turbine 

erosion to 100% on the HP turbine fouling (Table 42). This result is in line with 

scheme 1 and with the configuration with SLKF and scheme 2.  

Failure type Success rate 
LP comp fouling 93.7% 
HP comp fouling 98.2% 
HP turb fouling 100% 
HP turb erosion 98.2% 
LP turb fouling 100% 
LP turb erosion 93.2% 

Table 42 Success rate for the failure classification for random simulation – 0.4% 

noise MLKF 

Looking at the case with 2.0% reference noise, the quantification ranges 

between 5 and 105 (Figure 89), result in line with the case with SLKF. 
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Figure 89 Quantification chart in the case of random deterioration – 2.0% noise MLKF 

The resulting success rate varies, from 65.7% on the HP turbine to 78.6% 

on the LP turbine (Table 43). Compared to scheme 1, the success rate has a 

worsening in all the components. Compared with the SLKF seen before, there 

are variations on the LP compressor, where the success rate increased by 3% 

and on the HP turbine where the success rate surprisingly decreases by 

almost 8%. 

Component Success rate 
LP comp 76.1% 
HP comp 70.1% 
HP turb 65.7% 
LP turb 78.6% 

Table 43 Success rate for the failure quantification for random simulation – 2.0% 

noise MLKF 

The lower rate seen in the HP turbine is also reflected in the higher 

deviations from the reference quantification value (Figure 90). 
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Figure 90 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise MLKF 

The classification rate instead, ranges between 91.7% for the HP turbine 

erosion to the 100% on the HP and LP turbine fouling (Table 44).  

Failure type Success rate 
LP comp fouling 98.6% 
HP comp fouling 98.5% 
HP turb fouling 100% 
HP turb erosion 91.7% 
LP turb fouling 100% 
LP turb erosion 93.9% 

Table 44 Success rate for the failure classification for random simulation – 2.0% 

noise MLKF 

The analysis of the random section confirms that the methodology can 

perform the multiple components of health estimation while classifying 

different type of failures, also without the use of Turbomatch. The 
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thermodynamic model instead is fully taken over by the ANN that calculates 

the reference value and the deteriorated value.  

5.2.3 Deterioration schedule 

The deterioration schedule consists of 203 samples with deterioration 

ranging from 0.0% to 5.1%. The schedule of the deterioration is identical to 

the one presented in section 5.1.3.1. The simulation, as in scheme 1, is carried 

over with 0.4% measurement noise. 

5.2.3.1 Combined training 

The combined training is made up by the random simulation and by the 

deterioration schedule. The result of this merge is an increased number of 

points available to the ANN. As already remarked in section 5.1.3.1 the 

consequence can be an increased number of data available that could 

improve the ANN quality prediction but could also be overfitting on some 

points that could worsen the prediction. With this scheme, it is important to 

check the reaction of the ANN while predicting the deteriorated values and 

their references. 

Once the efficiencies and physical values deviations are processed by the 

fuzzy logic, they deal with the quantification described in section 4.7. Based 

on the deterioration selected for this problem, 3.3% on the LP compressor and 

5.1% on the LP turbine, the prediction is to have 43 as alarm level on the LP 

compressor and 66 on the LP turbine (Figure 91). Comparing the graphs with 

the predicted numbers, they look closely with the prediction and in line with 

scheme 1. 
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Figure 91 Quantification chart in the case of scheduled deterioration 

The resulting quantification success rate is 100% for all the components 

(Table 45). 

Component Success rate 
LP comp 100% 
HP comp 100% 
HP turb 100% 
LP turb 100% 

Table 45 Success rate for the failure quantification for scheduled simulation – 0.4% 

noise MLKF 

The very high success rate is also confirmed by the tight alignment between 

the predicted component health status and the reference (Figure 92). 

Moreover, the lines look even tighter than scheme 1, due to the better 

reference provided by the ANN. 
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Figure 92 Absolute quantification and deviation from the reference for compressor 

and turbine components – 0.4% noise MLKF 

The next step to be tested is classification. The resulting success rate 

ranges from 94.1% on the HP turbine to 95.5% on the HP compressor (Table 

46). Despite these results above the target, one dot is visible in the erosion 

section, a sign of false alarm (Figure 93 and Figure 94). 
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Figure 93 Classification chart for the compressor 

Figure 94 Classification chart for the turbine 
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Failure type Success rate 
LP comp fouling 94.6% 
HP comp fouling 95.5% 
HP turb fouling 94.1% 
LP turb fouling 94.6% 

Table 46 Success rate for the failure classification for scheduled simulation – 0.4% 

noise MLKF 

These results confirm the feasibility of the failure characterization with a 

deterioration schedule of several months and without the Turbomatch 

reference model. Moreover, scheme 2 outline that some uncertainties can be 

even improved by moving the prediction to the ANN instead of relying on the 

ambient based reference. 
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5.3 Scheme 3 

Scheme 3 uses Turbomatch model as a reference but excludes the power. 

The power, in fact, might not be available as a direct measurement of the GT 

output and a replacement would be needed. The noise is included as in all 

other measurements.  

5.3.1 Constant deterioration 

5.3.1.1 Measurements noise 

The constant deterioration has identical characteristics as for scheme 1 – 

section 5.1. 

The first parameter to check with this scheme is the quantification, that should 

end at the level of 96 for each gas turbine component. The quantification 

obtained with the first combination considered – without KF applied – is in line 

with the expectations and with the results of scheme 1 and scheme 2 (Figure 

95). It must be remarked that the LP turbine quantification has a higher 

variation with on-point reaching the level of 80 in some samples.  
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Figure 95 Quantification of the gas turbine failure – 0.4% noise no pre-filtering 

Considered that the given type of failure is fouling on the LP and HP 

compressor and erosion on the HP and LP turbine, the classification chart 

shows the correct classification being all samples of the compressor on the 

fouling side and all the samples of the turbine on the erosion side (Figure 96 

and Figure 97).  

The increased quantification variation outlined before is reflected also in 

the combined chart (Figure 97). 
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Figure 96 Quantification and classification of the compressor – 0.4% noise no pre-

filtering 

Figure 97 Quantification and classification of the turbine – 0.4% noise no pre-filtering 
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However, if the level of noise increases, there is a clear disturbance on the 

quantification and of the classification success rate. Taking into account the 

2.0% measurement noise example, the quantification instead of being around 

96, ranges from 40 to 150 where 40 corresponds to a medium deteriorated 

component and 150 corresponds to a highly deteriorated component (Figure 

98 and Figure 99). This reaction is directly related to the noise that while 

increasing, causes the measurement values to increase their standard 

deviation around the mean value. Translated this means that the health status 

is underestimated in one case, leading to slower reaction on the maintenance 

actions, while is overestimated in another case leading to faster reactions. The 

classification instead, leads to false categorizations as some samples fall into 

the wrong category. The reason is also related to the increased noise as 

clarified in scheme 1 section 5.1. In this case, the maintenance would be 

addressed on a wrong action. 

Figure 98 Quantification and classification of the compressor – 2.0% noise no pre-

filtering 
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Figure 99 Quantification and classification of the turbine – 2.0% noise no pre-filtering 

Looking at the results including the MLKF with 2.0% measurement noise, 

the spread of the magnitude is decreased to the range 50 – 110 (Figure 100 

and Figure 101). However, some false alarms persist on the turbine side 

(Figure 101).  
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Figure 100 Quantification and classification of the compressor – 2.0% noise MLKF 

Figure 101 Quantification and classification of the turbine – 2.0% noise MLKF 
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The overall results of the first test show a quantification success rate of 

100% for 0.0% noise and for the nominal noise of 0.4% with all the 

combinations. This result proves that this methodology can work also without 

power measurement. This achievement confirms that the methodology is 

applicable also where the power is not a variable for example in industrial gas 

turbines configurations that cannot measure the power produced by the gas 

turbine standalone.  

While the level of noise is increasing, the data analysis and correction starts 

to become more important. At 0.8% reference noise in-fact, the success level 

on the quantification decrease to 90.5% if no KF is applied. With the maximum 

noise level of 2.0%, the rate of success is decreased to 39.8% without the KF 

block. The rate increases to 78.6% if also the SLKF is employed and to 84.6% 

if the MLKF is used (Table 47). These rates are even better than obtained with 

scheme 1 and scheme 2. 

Noise 0.0% 0.4% 0.8% 1.2% 1.6% 2.0% 

None 

LP comp 100% 100% 97.0% 93.5% 83.6% 72.6% 
HP comp 100% 100% 99.5% 92.0% 79.1% 67.7% 
HP turb 100% 100% 97.0% 95.5% 87.1% 78.6% 
LP turb 100% 100% 90.5% 70.1% 58.2% 39.8% 

SLKF 

LP comp 100% 100% 100% 100% 97.5% 94.5% 
HP comp 100% 100% 100% 100% 98.0% 90.5% 
HP turb 100% 100% 100% 99.5% 97.5% 94.5% 
LP turb 100% 100% 100% 94.5% 90.5% 78.6% 

MLKF 

LP comp 100% 100% 100% 100% 99.5% 94.0% 
HP comp 100% 100% 100% 99.5% 96.5% 92.0% 
HP turb 100% 100% 100% 100% 97.5% 96.0% 
LP turb 100% 100% 99.0% 96.0% 89.1% 84.6% 

Table 47 Success rate for the failure quantification 

Looking at the graphs instead, it can be seen that the success rate is above 

90% for the SLKF combination at noise up to 1.6%. After, the component with 

a lower success rate is the LP turbine (Figure 103). The combination with 

MLKF falls below 90% at 1.6% reference noise (89.1%) but stays above 

84.6% at 2.0% reference noise (Figure 104). This result is not far from the 

90% target and is outperforming both scheme 1 and scheme 2. This means 

that the inclusion of power measurement can lead to higher uncertainties 
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especially because, being the power a single measurement, it cannot be 

treated into the KF section. Without filters, the 90% rate can be achieved only 

up to 0.8% reference noise (Figure 102). 

Figure 102 Success rate for the failure quantification – Combination No KF 

Figure 103 Success rate for the failure quantification – Combination 

SLKF+ANN+NFL+FL 
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Figure 104 Success rate for the failure quantification – Combination 

MLKF+ANN+NFL+FL 

The results of the classification with nominal noise show a success rate 

above 95.6% without filtering and at 100% with MLKF. With the maximum 

noise, the success rate decreases to 89.7% if no filtering is used and 

increases again to 89.6% with MLKF. Additionally, for this scheme, the MLKF 

classification success rate is better than the case without filter and with SLKF 

(Table 48). 

Noise 0.0% 0.4% 0.8% 1.2% 1.6% 2.0% 

None 

LP comp 100% 100% 100% 100% 100% 100% 
HP comp 100% 95.6% 93.6% 95.6% 95.6% 95.6% 
HP turb 100% 100% 100% 100% 99.0% 96.1% 
LP turb 100% 100% 100% 97.5% 94.1% 89.7% 

SLKF 

LP comp 100% 100% 100% 100% 100% 100% 
HP comp 100% 100% 100% 97.5% 95.5% 94.5% 
HP turb 100% 100% 100% 99.0% 98.5% 98.5% 
LP turb 100% 100% 99.0% 96.5% 93.5% 89.6% 

MLKF 

LP comp 100% 100% 100% 100% 100% 100% 
HP comp 100% 100% 100% 100% 100% 100% 
HP turb 100% 100% 100% 99.0% 99.5% 98.0% 
LP turb 100% 100% 100% 96.0% 94.5% 89.6% 

Table 48 Success rate for the failure classification 

It must be remarked that the classification is less affected by the noise 

compared to the quantification (Figure 105). The minimum rate in-fact is 

89.6% at 2.0% measurement noise, compared to the 39.8% for the 

quantification. Compared to scheme 1 and scheme 2, the local minimum at 
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1.2% measurement noise is not visible and the success rate decreases start 

from 1.2% and decrease gradually (Figure 106). 

The results of this scheme confirm the feasibility of the multiple components 

of health estimation with the presence of measurement noise, also without the 

power measurement included in the ANN training. Not only, but the results 

with the MLFK also provide an engine health estimation not fat from the target, 

with a success rate of 84.6% (Figure 107). On the other hand, the 

classification success rate is slightly worsened but is also very close to the 

target. 

Figure 105 Success rate for the failure classification – Combination No KF 

Figure 106 Success rate for the failure classification – Combination 

SLKF+ANN+NFL+FL 
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Figure 107 Success rate for the failure classification – Combination 

MLKF+ANN+NFL+FL 

5.3.2 Random deterioration 

The random deterioration consists of 203 points with deterioration level 

between 0.15% and 7.4% (Figure 108). The set-up of the deterioration is 

identical as the one set for scheme 1 and scheme 2 but the types and the 

sequences may differ due to the random nature of the selection.  

Figure 108 Deterioration imposed on the gas turbine components – 0.4% noise 
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5.3.2.1 No pre-filtering 

The first case to be tested is the one without filtering. This case includes 

the structure with the ANN+FL but excludes the KF for the measurement noise 

isolation with multiple measurements combination. The level of noise for this 

test is the nominal – 0.4% - and the maximum among those selected for the 

constant deterioration - 2.0%.  

The results of the quantification (Figure 109) show the range of variation of 

the quantification from 5 to 96 in line with the prediction and in line with 

scheme 1 and scheme 2. 

Figure 109 Quantification chart in the case of random deterioration - 0.4% noise no 

pre-filtering 

The quantification success rate ranges from a minimum of 96.5% on the 

HP compressor to a maximum of 98.0% on the LP compressor (Table 49). 
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Component Success rate 
LP comp 98.0% 
HP comp 96.5% 
HP turb 97.0% 
LP turb 97.5% 

Table 49 Success rate for the failure quantification for random simulation – 0.4% 

noise no pre-filtering 

The classification rate instead, ranges from 90.2% for the HP turbine 

erosion to the 100% on the HP and LP turbine fouling (Table 50). 

Failure type Success rate 
LP comp fouling 92.9% 
HP comp fouling 98.0% 
HP turb fouling 100% 
HP turb erosion 90.2% 
LP turb fouling 100% 
LP turb erosion 94.1% 

Table 50 Success rate for the failure classification for random simulation – 0.4% 

noise no pre-filtering 

The same test, repeated with 2.0% measurement noise, show a deviation 

from the expected range 5-96 as the samples range between 5 and 150 

(Figure 110). 
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Figure 110 Quantification chart in the case of random deterioration – 2.0% noise no 

pre-filtering  

The consequence of this deviation from the exact quantification is a 

decrease of the success rate that ranges, in this case, from 51.7% on the HP 

turbine to 64.7% on the LP turbine (Table 51). These rates are lower 

compared to scheme 1 and scheme 2 confirming the increasing sensitivity of 

the methodology once the number of signals available decrease. This 

conclusion is also in line with the results of the constant deterioration. 

Component Success rate 
LP comp 60.2% 
HP comp 53.2% 
HP turb 51.7% 
LP turb 64.7% 

Table 51 Success rate for the failure quantification for random simulation – 2.0% 

noise no pre-filtering 

This reduction on the success rate can be also observed in the graph that 

is showing an increasing number of deviation spots (Figure 111). 
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Figure 111 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise no pre-filtering 

The classification rate instead, ranges from 76.5% for the LP turbine 

erosion to 100% on the HP turbine fouling (Table 52). Compared to the 

quantification the impact on the success rate is lower, but the impact is still 

around 17%.  

Failure type Success rate 
LP comp fouling 99.0% 
HP comp fouling 97.8% 
HP turb fouling 100% 
HP turb erosion 87.0% 
LP turb fouling 97.7% 
LP turb erosion 76.5% 

Table 52 Success rate for the failure classification for random simulation – 2.0% 

noise no pre-filtering 
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The results obtained confirm that is possible to quantify and classify single 

and multiple failures with variable failure magnitude, also with a reduced 

number of probes, for instance without the power measurement. However, the 

uncertainty is a bit higher and some results have a lower success rate. 

Moreover, with 2.0% measurement noise, the target cannot be reached both 

for the quantification and for the classification, confirming the importance of 

the KF module. 

5.3.2.2 Single Linear Kalman Filter and measurement fusion 

The portion analysed in this section is the SLKF that consist of one layer 

devoted to combine all the information coming from every single measurement 

and to filter out the measurement noise.  

The results of the quantification repeat the same trend observed in the case 

without pre-filtering ranging within 5 and 96 (Figure 112).  

Figure 112 Quantification chart in the case of random deterioration – 0.4% noise 

SLKF 
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The quantification success rate ranges from a minimum of 95.0% on the 

HP turbine to a maximum of 98.5% on the LP turbine (Table 53). This result 

is in line with the previous simulation without the SLKF and is also in line with 

the other schemes. 

Component Success rate 
LP comp 97.5% 
HP comp 96.0% 
HP turb 95.0% 
LP turb 98.5% 

Table 53 Success rate for the failure quantification for random simulation – 0.4% 

noise SLKF 

The classification rate instead, ranges from 96.5% for the HP turbine 

erosion to 100% on all other failures, except for the LP turbine erosion (Table 

54).  

Failure type Success rate 
LP comp fouling 100% 
HP comp fouling 100% 
HP turb fouling 100% 
HP turb erosion 96.5% 
LP turb fouling 100% 
LP turb erosion 98.3% 

Table 54 Success rate for the failure classification for random simulation – 0.4% 

noise SLKF 

Looking at the case with 2.0% noise, the quantification range varies 

between 5 and 110 (Figure 113), which looks already deviating from 

expectations. 
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Figure 113 Quantification chart in the case of random deterioration – 2.0% noise 

SLKF 

The resulting success rate varies, from 64.7% on the HP compressor to 

73.1% on the LP turbine with an improvement on all the components 

compared to the case without filtering (Table 55). 

Component Success rate 
LP comp 65.7% 
HP comp 64.7% 
HP turb 67.7% 
LP turb 73.1% 

Table 55 Success rate for the failure quantification for random simulation – 2.0% 

noise SLKF 

The improvement in the success rate is also reflected in the reduction of 

the number of deviation spots in Figure 114.  
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Figure 114 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise SLKF 

The classification rate ranges from 83.0% for the LP turbine erosion to 

100% on the HP and LP turbine fouling (Table 56). This result is already an 

improvement compared to the case without KF, even if the target is missed 

for the LP turbine erosion.  

Failure type Success rate 
LP comp fouling 98.7% 
HP comp fouling 94.0% 
HP turb fouling 100% 
HP turb erosion 92.3% 
LP turb fouling 100% 
LP turb erosion 83.0% 

Table 56 Success rate for the failure classification for random simulation – 2.0% 

noise SLKF 
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5.3.2.3 Multiple Layer Kalman Filter and measurement fusion 

The other scheme analysed in this section is the MLKF that consists of two 

layers devoted to combine all the information coming from every single 

measurement and to filter out the measurement noise.  

The results of the quantification repeat the same trend observed in the case 

without pre-filtering ranging within 5 and 96 (Figure 115). As for the case with 

the SLKF, with the standard level of noise, no improvements are expected 

since the improvement of the measurement noise is negligible. 

Figure 115 Quantification chart in the case of random deterioration –0.4% noise MLKF 

The quantification success rate ranges from a minimum of 95.5% on the 

LP turbine to a maximum of 99.0% on the LP compressor and HP turbine 

(Table 57). These results are in line with scheme 1 and scheme 2.  
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Component Success rate 
LP comp 99.0% 
HP comp 97.0% 
HP turb 99.0% 
LP turb 95.5% 

Table 57 Success rate for the failure quantification for random simulation – 0.4% 

noise MLKF 

The classification rate instead, ranges from 95.0% for the HP turbine 

erosion to 100% on the HP turbine and LP turbine fouling (Table 58). This 

result is slightly better than the case without KF but is worse than the case 

without SLKF. However, considered the small variation among the two cases, 

the deviation can be imputable to the random nature of the problem. 

Failure type Success rate 
LP comp fouling 96.8% 
HP comp fouling 96.2% 
HP turb fouling 100% 
HP turb erosion 95.0% 
LP turb fouling 100% 
LP turb erosion 96.2% 

Table 58 Success rate for the failure classification for random simulation – 0.4% 

noise MLKF 

The quantification range with 2.0% noise level ranges between 5 and 105 

(Figure 116). This chart is not far from the target and looks in line with the 

other schemes. 



164 

Figure 116 Quantification chart in the case of random deterioration – 2.0% noise 

MLKF 

The resulting success rate varies, from 72.1% on the HP turbine to 80.1% 

on the LP turbine. This result is in line with scheme 1 and is better than the 

scheme 2 (Table 59). The message of the quantification, compared to the 

other schemes, is that the removal of the power measurement from the 

equation does not change the results. Moreover, the uncertainty introduced 

by the reference, that relies on the ambient conditions, looks very well 

compensated by the KF. In fact, scheme 2 has similar results than schemes 

1 and 3. 

Component Success rate 
LP comp 82.1% 
HP comp 74.1% 
HP turb 72.1% 
LP turb 80.1% 

Table 59 success rate for the failure quantification for random simulation – 2.0% 

noise MLKF 
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The related deviation is increased compared to the case with nominal noise 

(Figure 117).  

Figure 117 Absolute quantification and deviation from the reference for compressor 

and turbine components – 2.0% noise MLKF 

The classification rate ranges from 84.7% for the LP turbine erosion to 

100% on the HP and LP turbine fouling (Table 60). The success rate is in line 

with the case with SLKF, but worse than the other schemes especially the 

scheme 2 that has a success rate always above the target. 
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Failure type Success rate 
LP comp fouling 95.2% 
HP comp fouling 95.9% 
HP turb fouling 100% 
HP turb erosion 94.4% 
LP turb fouling 100% 
LP turb erosion 84.7% 

Table 60 Success rate for the failure classification for random simulation – 2.0% 

noise MLKF 

The results obtained in this section confirm that it is possible to perform the 

multiple component health estimation together with multiple failure estimation. 

In fact, even the removal of the power from the measurements may cause an 

increase of the uncertainty, the overall results are very close to the other 

schemes and in some cases even better. 

5.3.3 Deterioration schedule 

The deterioration schedule is also tested for scheme 3. Considered that the 

ANN is the most important point to be tested, this test is crucial to see if the 

accuracy is reliable also without the power measurement. As per scheme 1, 

out of 5000 samples 200 have been extracted until 75% of the entire 

deterioration. For instance, the reference deterioration on the LP compressor 

is 3.3% while is 5.1% on the LP turbine. 

5.3.3.1 Combined training 

The inputs of the combined training are identical to those used in scheme 

1 and they include the full combination of deterioration plus the schedule of 

5000 reflecting a possible normal operation of a gas turbine.  

Once the efficiencies and physical values deviations are processed by the 

fuzzy logic, they deal with the quantification described in section 4.7. Based 

on the deterioration selected for this problem, 3.3% on the LP compressor and 

5.1% on the LP turbine, the prediction is to have 43 as alarm level on the LP 

compressor and 66 on the LP turbine (Figure 118). The results obtained are 

in line with scheme 1 and scheme 2 and they confirm that a correct component 

health estimation without the power measurement is possible. 
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Figure 118 Quantification chart in the case of scheduled deterioration 

The resulting quantification success rate is 100% on all the components 

(Table 61). This last result is well above the target of 90% and is in line with 

the other schemes. 

Component Success rate 
LP comp 100% 
HP comp 100% 
HP turb 100% 
LP turb 100% 

Table 61 Success rate for the failure quantification for scheduled simulation – 0.4% 

noise MLKF 

The high success rate is confirmed by the small deviations between the 

predicted component health status and the reference value (Figure 119). 

Some more deviations are present on the first samples of the HP compressor 

where the failure magnitude is low and the measurement uncertainties, 

together with the prediction uncertainties play a bigger role. 
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Figure 119 Absolute quantification and deviation from the reference for compressor 

and turbine components – 0.4% noise MLKF 

The next step to be tested is classification. The resulting success rate 

ranges from 93.1% on the LP compressor to 95.5% on the HP turbine fouling 

(Table 62). Despite the very good results obtained, two points are incorrectly 

classified and visible in the HP turbine (Figure 120 and Figure 121). The root 

cause here is not easy to follow since there are no visible signs of deviations 

nor of uncertainties. However, since the points have low magnitude, the 

deviation can be caused by the measurement noise. 
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Figure 120 Classification chart for the compressor 

Figure 121 Classification chart for the turbine 



170 

Failure type Success rate 
LP comp fouling 93.1% 
HP comp fouling 94.1% 
HP turb fouling 95.5% 
LP turb fouling 95.0% 

Table 62 Success rate for the failure classification for scheduled simulation – 0.4% 

noise MLKF 

These results confirm the feasibility of the failure characterization also with 

scheme 3 without the power used as a measurement. Additionally, it is 

interesting to notice that the scheme 3 is performing slightly better than 

scheme 1, showing that the power measurement is not essential. 
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6.0  Results with the test engine 

The results reported so far try to stress as much as possible the 

methodology in order to validate it. However, the engine considered for all 

these tests is unique and the entire methodology is suited around it. Therefore, 

the methodology has been tested with one additional engine, whose data have 

been provided by the Cranfield power and propulsion department based on 

open-source information. The intent is to see if the methodology is robust 

enough to provide the same results quality with other engines, or if it’s only 

working for a single-engine.  

The engine code provided has the same architecture as the base engine 

used for the simulation, but it has a higher power output of circa 43 MWe and 

a different pressure ratio distribution. For this engine, three different tests are 

available: constant deterioration, random deterioration and deterioration 

schedule. However, the preferred deterioration that is selected for this test is 

random. In fact, the constant deterioration is mainly focused on the 

measurements error handling that is a peculiarity of the measurements rather 

than the engine as such. Opposite, the deterioration schedule is a good test 

to predict the long-term behaviour of an engine but is limited to a single type 

of failure and it does not provide a full picture. 

The schemes available for this additional engine are still three: scheme 1 

including the power among the possible measurements and using 

Turbomatch as reference model; scheme 2 using the ANN to predict both the 

reference values and the deteriorated values; scheme 3 excluding the power 

from the measurements and using Turbomatch as the reference model. It is 

decided to use all the schemes for the comparison to analyze the effect of 

these on a different engine. 
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The steps followed to reach the full detection of the multiple failures, starting 

from the engine code are similar to those used to set up the reference engine 

at the birth of the methodology and include tuning of all the methodology main 

components: 

a. Set up of the reference data used as training for the ANN. The number 

of cases included in the training is identical as these used for the 

reference engine. The main difference here is on the engine model; 

b. The KF section for the data filtering remained unchanged; 

c. The ANN has been re-trained with the new data. This is a must for every 

new engine since the prediction of the deteriorated data relies on the 

previously supplied data; 

d. The neuro-fuzzy logic for the data quantification has been re-trained 

since there are different mechanism between the deltas on efficiency 

and measurements and the severity of the failure. Moreover, to prove 

the flexibility of the NFL module and to test the engine on data closer to 

the possible reality, the ratio between the alarm level and the 

deterioration rate has been changed. In the case, 100 corresponds to 

5% fouling and 2.5% erosion; 

e. The fuzzy logic for the classification instead, remained unchanged since 

the characteristics of the type of the failure detected are identical among 

the two engines. 

The data filtering options selected for the validation of this engine is the 

MLKF which has demonstrated being the most promising with the reference 

engine. On the other hand, since all the schemes demonstrated having 

drawbacks and advantages compared to the others, they have been all 

selected and compared.  

The test used for the validation of the methodology against this other engine 

is the random deterioration which has demonstrated, with the reference 

engine, being the most demanding. As before, the number of points that will 

be detected is 203, taken randomly from the simulated values. The results 
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confirm what has been reached by the reference engine showing a success 

rate above the target for scheme 1 and scheme 2 and close to the target for 

scheme 3, where the minimum success rate is 88.1%. The best results are 

achieved with scheme 2, where the success rate is even above 93.0% (Table 

63). 

Quantification - Constant deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

MLKF 

LP comp 94.0% 93.0% 90.5% 
HP comp 98.5% 100% 94.5% 
HP turb 91.5% 95.5% 88.1% 
LP turb 97.0% 96.0% 91.5% 

Table 63 Quantification with constant deterioration, 0.4% measurement noise, MLKF 

The classification over the 203 random points over the 24 possible 

combinations, partly confirm the quality of the results reached in the 

quantification phase with results above 79.7%. The results, in fact, are above 

the target for the HP and LP compressor fouling and for the HP and LP turbine 

fouling. However, the turbine erosion falls below the target both on HP and 

LP, with the best result on scheme 3, where the success rate is above 85.0% 

(Table 64). Since the classification FL has not been changed, some additional 

tuning would further improve the status of the turbine erosion classification 

rate. 

Even if the target is not fully reached for the turbine fouling, this test 

confirms the capabilities of the methodology on detecting single and multiple 

failures and on estimating the health status of each component.  

Classification - Random deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

MLKF 

LP comp fouling 96.8% 91.7% 96.8% 
HP comp fouling 100% 100% 98.2% 
HP turb fouling 100% 100% 100% 
HP turb erosion 86.4% 86.4% 88.9% 
LP turb fouling 100% 100% 100% 
LP turb erosion 79.7% 81.4% 85.0% 

Table 64 Classification with constant deterioration, 0.4% measurement noise, MLKF
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7.0  Analysis of the results 

The previous chapters presented the results that the methodology was able 

to achieve under different conditions. The objective is to correctly quantify, 

establishing the component health, and classify assessing the type of failure, 

the malfunction of the gas turbine. To reach this goal a methodology 

composed by KF, ANN, NFL and FL has been established. This combination, 

together with the ambition and the flexibility pretended for this methodology, 

lead to three types of schemes: 

 Scheme 1: is the base methodology including the KF for the data 

filtering, the ANN for the component efficiency prediction, the 

Neuro-Fuzzy for the failure quantification and the engine health 

estimation and the FL for the failure classification. With this scheme, 

the reference for the delta is determined by the thermodynamic 

module calculated with Turbomatch; 

 Scheme 2: in scheme 2 the components and the sequence of the 

methodology are identical to the scheme 1. However, since 

Turbomatch wanted to be excluded from the diagnostics. The ANN 

then is providing the deteriorated value together with its reference; 

 Scheme 3: in scheme 3, the components of the methodology are 

the same as for scheme 1. In this case, the power measurement is 

excluded to make the methodology suitable for configurations 

where the power measurement is not available. 

The conditions established to test the robustness and the capabilities of the 

methodology are 3: constant deterioration, random deterioration and 

deterioration schedule. The objectives of each test are detailed in Table 65. 
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The objectives of each test

Constant deterioration 

Variation of measurement 
noise 

Random deterioration with 
measurement noise 

Deterioration schedule 

The capability of the 
methodology to quantify 

and classify the GT 
malfunctions 

Stress test to determine the 
robustness of the 

methodology on the 
quantification and 

classification 

Test the methodology with 
conditions close to reality 

See the capability to isolate 
the measurements noise 

See the capability to isolate 
the measurements noise 

Check the effect of the ANN 
training on the prediction 

Table 65 Objectives of each test 

The tests conducted with the constant deterioration and nominal noise, 

shown that it is possible to reach a quantification success rate of 100% with 

all the schemes. The best result is obtained with the configuration without the 

KF or with the SLKF while the configuration with MLKF has a success rate of 

99.5% with scheme 1 (Table 66).  

Quantification - Constant deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp 100% 100% 100% 
HP comp 100% 100% 100% 
HP turb 100% 100% 100% 
LP turb 100% 100% 100% 

SLKF 

LP comp 99.5% 100% 100% 
HP comp 99.5% 100% 100% 
HP turb 99.5% 100% 100% 
LP turb 99.5% 100% 100% 

MLKF 

LP comp 99.5% 100% 100% 
HP comp 99.5% 100% 100% 
HP turb 99.5% 100% 100% 
LP turb 99.5% 100% 100% 

Table 66 Quantification with constant deterioration and 0.4% measurement noise 

In the same way, the results of the classification shown that is possible to 

categorize the failures with a success rate of 100% with all the schemes. The 

best results are achieved with the SLKF and with the MLKF. Without the KF, 

the success rate is decreased on the HP compressor leading to a success 

rate of 93.0% with scheme 1, 93.6 with the scheme 2 and 95.6% with scheme 

3 (Table 67). 
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Classification - Constant deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp fouling 100% 100% 100% 
HP comp fouling 93.0% 93.6% 95.6% 
HP turb erosion 100% 100% 100% 
LP turb erosion 100% 100% 100% 

SLKF 

LP comp fouling 100% 100% 100% 
HP comp fouling 100% 100% 100% 
HP turb erosion 100% 100% 100% 
LP turb erosion 100% 100% 100% 

MLKF 

LP comp fouling 100% 100% 100% 
HP comp fouling 100% 100% 100% 
HP turb erosion 100% 100% 100% 
LP turb erosion 100% 100% 100% 

Table 67 Classification with constant deterioration and 0.4% measurement noise 

At this point, the methodology proved to be able to correctly estimate the 

engine health status and to correctly classify the type of failure imposed, that 

in this case was static. By increasing the level of noise, the results showed 

how the methodology has been capable of reacting. Provided the 2.0% noise 

level, the SLKF and the MLKF imply an increase of the success rate up to 39 

points. The scheme that is showing the best results is the scheme 3 with MLKF 

who is leading to a success rate between 84.6% and 94.0% (Table 68). 

However, the same scheme is reaching the lower success rate if no filter is 

applied, proving the influence of the power measurement for this methodology 

with and without the KF. If the power, in fact, is supporting on achieving better 

results without the KF, on the other hand, it reveals itself as a driver even after 

the filtering. Being the power a single measurement, in fact, it cannot be 

processed by the KF so established. 
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Quantification - Constant deterioration 2.0% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp 76.9% 59.7% 72.6% 
HP comp 58.8% 51.7% 67.7% 
HP turb 66.3% 79.6% 78.6% 
LP turb 63.3% 54.2% 39.8% 

SLKF 

LP comp 82.4% 82.6% 94.5% 
HP comp 75.4% 72.6% 90.5% 
HP turb 83.9% 97.0% 94.5% 
LP turb 73.4% 78.1% 78.6% 

MLKF 

LP comp 86.4% 78.1% 94.0% 
HP comp 82.4% 70.6% 92.0% 
HP turb 91.0% 97.5% 96.0% 
LP turb 72.4% 80.1% 84.6% 

Table 68 Quantification with constant deterioration and 2.0% measurement noise 

As already reported in the result section, the classification of this single 

failure does not show the full capability of the methodology but provides a 

good indication of the effect of the measurement noise on the success rate. 

With this environment, the configuration that is showing the best results is the 

scheme 2 with SLKF showing success rates from 94.0% to 100% above 

90.0% declared as the target (Table 69). This second section confirms the 

effectiveness of the methodology also with the presence of measurement 

issue – in this case, noise. The key contributor is the KF which is consistently 

improving the success rate. The results are still below the target of 90.0% in 

the quantification part, but above 90.0% on three components. Moreover, the 

results are above 90% until 1.6% reference noise. 
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Classification - Constant deterioration 2.0% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp fouling 99.0% 100% 100% 
HP comp fouling 97.0% 97.0% 95.6% 
HP turb erosion 94.0% 91.1% 96.1% 
LP turb erosion 86.0% 91.1% 89.7% 

SLKF 

LP comp fouling 100% 100% 100% 
HP comp fouling 94.9% 94.0% 94.5% 
HP turb erosion 92.9% 97.5% 98.5% 
LP turb erosion 90.9% 97.5% 89.6% 

MLKF 

LP comp fouling 100% 100% 100% 
HP comp fouling 92.4% 94.0% 100% 
HP turb erosion 92.9% 98.0% 98.0% 
LP turb erosion 93.4% 97.0% 89.6% 

Table 69 Classification with constant deterioration and 2.0% measurement noise 

Comparing the three schemes with the random deterioration and with 

nominal noise the quantification success rate is above the target with all the 

schemes. The best results are achieved by the cases with the KF, either SLKF 

or MLKF, but there is not a clear best combination among those since the 

success rate is overall very high (Table 70). 

Quantification - Random deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp 99.0% 99.0% 98.0% 
HP comp 96.5% 96.0% 96.5% 
HP turb 100% 93.5% 97.0% 
LP turb 98.0% 98.5% 97.5% 

SLKF 

LP comp 99.0% 99.0% 97.5% 
HP comp 97.5% 98.0% 96.0% 
HP turb 98.5% 98.5% 95.0% 
LP turb 98.5% 98.0% 98.5% 

MLKF 

LP comp 97.0% 100% 99.0% 
HP comp 92.0% 98.5% 97.0% 
HP turb 98.5% 97.5% 99.0% 
LP turb 99.0% 97.5% 95.5% 

Table 70 Quantification with random deterioration and 0.4% measurement noise 

Looking at the classification the results provided different answers among 

the schemes. One reason can be found in the nature of the test case, that 

does not allow to compare the three schemes directly, another one in the 

different characteristics of the schemes. The classification rate can fall below 

90% only with scheme 2 and, surprisingly, with the SLKF applied. This 

depends on the additional uncertainty created by the reference that moved 
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from Turbomatch to the ANN. However, with the scheme 1 the classification 

rate is above 95.1% for the MLKF and above 94.3% for the SLKF. Scheme 2 

instead, have a success rate above 93.2% when the MLKF is applied and also 

without any filter with a minimum success rate of 93.8% (Table 71). 

Classification - Random deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp fouling 97.1% 93.9% 92.9% 
HP comp fouling 96.8% 97.1% 98.0% 
HP turb fouling 100% 100% 100% 
HP turb erosion 100% 93.8% 90.2% 
LP turb fouling 100% 100% 100% 
LP turb erosion 95.5% 96.7% 94.1% 

SLKF 

LP comp fouling 94.3% 98.6% 100% 
HP comp fouling 96.7% 97.1% 100% 
HP turb fouling 100% 100% 100% 
HP turb erosion 96.6% 89.8% 96.5% 
LP turb fouling 100% 100% 100% 
LP turb erosion 95.3% 89.1% 98.3% 

MLKF 

LP comp fouling 98.3% 93.7% 96.8% 
HP comp fouling 97.9% 98.2% 96.2% 
HP turb fouling 100% 100% 100% 
HP turb erosion 95.1% 98.2% 95.0% 
LP turb fouling 100% 100% 100% 
LP turb erosion 96.9% 93.2% 96.2% 

Table 71 Classification with constant deterioration and 0.4% measurement noise 

The results with 2.0% reference noise and constant deterioration show that 

going from scheme 1 to scheme 3, the success rate gradually decreases. This 

means that the noise plays a bigger role, once the available information is less 

– power measurement removed in scheme 3 – or the uncertainty is higher – 

reference predicted by the ANN instead of calculated by the thermodynamic 

model in scheme 2. However, with the random simulation, there is no clear 

outstanding since the results are very close (Table 72). This depends on the 

nature of the problem, that being random, does not facilitate the direct 

comparison. Moreover, in absolute terms, the quantification success rate 

obtained with the random test is lower than the rate obtained with the constant 

deterioration. 

In the same way, the classification obtained with the SLKF and MLKF is 

worse compared to the constant case. The first reason is that the problem to 
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be solved is more severe and the KF ends up being less effective. The second 

reason is that, due to the random nature of the problem, both the SLKF and 

MLKF parameters have been modified to increase the response of the KF 

while moving from one sample to the other, at the price of a reduction of the 

measurement noise reduction capabilities. It is also interesting to notice that 

with the constant deterioration, scheme 3 is the top performer, while with the 

random simulation there’s no clear outstanding scheme. This message 

remarks the importance of an extended testing set, to make robust 

conclusions for a complete methodology or for variants of it. 

Quantification - Random deterioration 2.0% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp 56.7% 58.7% 60.2% 
HP comp 56.2% 62.7% 53.2% 
HP turb 59.2% 56.7% 51.7% 
LP turb 74.1% 72.6% 64.7% 

SLKF 

LP comp 73.1% 73.6% 65.7% 
HP comp 69.2% 70.1% 64.7% 
HP turb 70.6% 73.6% 67.7% 
LP turb 87.6% 78.6% 73.1% 

MLKF 

LP comp 76.1% 76.1% 82.1% 
HP comp 73.6% 70.1% 74.1% 
HP turb 70.1% 65.7% 72.1% 
LP turb 83.1% 78.6% 80.1% 

Table 72 Quantification with random deterioration and 2.0% measurement noise 

The classification success rate, as also observed for the constant 

deterioration case, is less affected by the measurement noise, compared to 

the quantification results. However, the success rate reaches 84.7% with 

scheme 3 if the MLKF is applied. This result is improved to 94.4% with scheme 

2 without the filter. Remarkable results, still with scheme 2, are also obtained 

with the MLKF where the success rate is above 91.7% (Table 73). Translated, 

this means that the classification section can reach the target also with the 

random simulation and 2.0% measurement noise. 

This section remarks that the methodology can quantify and classify the 24 

random deterioration, with 6 different types of failure and with variable 

deterioration magnitude with a success rate above 90% for the 0.4% reference 

measurement noise. The result is decreased to 70.1% (reference scheme 2) 
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in terms of quantification but can stay above 90.0% in terms of classification 

if 2.0% measurement noise is applied. This means that the goal is not fully 

achieved, but there is an improvement of more than 10% introduced by the 

KF module. 

Classification - Random deterioration 2.0% measurement noise
Scheme 1 Scheme 2 Scheme 3 

None 

LP comp fouling 99.1% 94.4% 99.0% 
HP comp fouling 100.0% 97.8% 97.8% 
HP turb fouling 100.0% 100% 100% 
HP turb erosion 86.5% 94.7% 87.0% 
LP turb fouling 100.0% 100% 97.7% 
LP turb erosion 88.3% 96.0% 76.5% 

SLKF 

LP comp fouling 97.1% 95.8% 98.7% 
HP comp fouling 100.0% 97.1% 94.0% 
HP turb fouling 100.0% 100% 100% 
HP turb erosion 92.5% 93.8% 92.3% 
LP turb fouling 100.0% 100% 100% 
LP turb erosion 89.5% 86.0% 83.0% 

MLKF 

LP comp fouling 97.7% 98.6% 95.2% 
HP comp fouling 100.0% 98.5% 95.9% 
HP turb fouling 96.0% 100% 100% 
HP turb erosion 90.7% 91.7% 94.4% 
LP turb fouling 100.0% 100% 100% 
LP turb erosion 88.9% 93.9% 84.7% 

Table 73 Classification with random deterioration and 2.0% measurement noise 

The random test, being the stress test, has also been taken as the base for 

the speed comparison among the schemes and in absolute terms. The values 

that are compared are per sample and divided into the contributors of the 

methodology: the KF section used to pre-process the data, the ANN used to 

predict the performance values of the GT, the calculation section done through 

Turbomatch used to determine the reference values and the FL block that 

includes the NFL for the component health estimation and the FL for the failure 

classification. The total time varies depending on the type of scheme used and 

on the configuration of the KF. Scheme 2, for instance, does not need the 

Turbomatch calculation as a reference and can process one sample in less 

than half a second while including the MLKF. The other schemes instead can 

process one point in a maximum of 1.7 s (Table 74). It can be noticed that the 

MLKF is taking a bit more time than the SLKF for instance around 0.44 s per 

sample vs 0.16 s per sample. Overall, the methodology shows that can 
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process one sample, depending on the option used and with the KF active, 

between 0.23 s and 1.7 s. This makes the methodology suitable for the online 

diagnostics as targeted. 

The execution time of the schemes – Time per sample

Scheme 1 Scheme 2 Scheme 3 

[s] [s] [s] 

None 

KF - - - 

ANN 1.8E-03 1.8E-03 1.0E-03 

Turbomatch 9.1E-01 - 9.0E-01 

FL 5.4E-02 5.8E-02 5.0E-02 

Total 9.7E-01 6.1E-02 9.5E-01

SLKF 

KF 1.6E-01 1.7E-01 2.1E-01 

ANN 1.7E-03 2.0E-03 1.2E-03 

Turbomatch 9.0E-01 - 9.0E-01 

FL 5.8E-02 5.8E-02 6.7E-02 

Total 1.1E+00 2.3E-01 1.2E+00

MLKF 

KF 4.4E-01 3.4E-01 3.5E-01 

ANN 1.7E-03 2.1E-03 1.0E-03 

Turbomatch 1.2E+00 - 1.0E+00 

FL 5.7E-02 5.9E-02 5.3E-02 

Total 1.7E+00 4.0E-01 1.4E+00

Table 74 Execution time of the schemes 

The last comparison from the result section is with the deterioration 

schedule that is done with the ANN training including the random data plus 

the deterioration profile. Comparing the three schemes instead it can be seen 

that the component health estimation is almost perfect with all the schemes 

(Table 75).  

In this section though, the block under investigation is the ANN and in 

particular the preparation phase. It is clear that having extra data would lead 

to a more detailed prediction, but there’s also a risk of overfitting if too many 

data on a single condition are given. On the other hand, the training with data 

integrated during the process and not properly treated may lead to a decrease 

of the prediction accuracy. In this case, it can be clearly seen that the 

architecture built is robust enough to provide data with good quality able to 

train the ANN to make correct predictions. 
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From this comparison, it is very clear how the ANN prediction is dependent 

upon the quality of the given data. In particular, dedicated training is always 

key for good diagnostics. This is also a clear demonstration that the 

methodology can be used in real cases, while data from a gas turbine are 

supplied, provided that all the necessary figures are previously integrated into 

the ANN training. 

Quantification – Deterioration schedule 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

Combined 
training 

LP comp 100% 100% 100% 
HP comp 100% 100% 100% 
HP turb 100% 100% 100% 
LP turb 100% 100% 100% 

Table 75 Quantification with scheduled deterioration and 0.4% measurement noise 

The second parameter to be tested is the classification success rate. In this 

case, the success rate is above the target and is very similar for all the 

configurations (Table 76). The only result below the target is recorded on the 

HP turbine fouling where the success rate falls at 89.1%. This result though is 

very close to the target. 

Classification – Deterioration schedule 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

Combined 
training 

LP comp fouling 93.6% 94.6% 93.1% 
HP comp fouling 97.0% 95.5% 94.1% 
HP turb fouling 89.1% 94.1% 95.5% 
LP turb fouling 93.6% 94.6% 95.0% 

Table 76 Classification with scheduled deterioration and 0.4% measurement noise 

This last point confirms that the methodology can reach the target of 90% 

success rate both for the quantification and for the classification also in a 

pseudo-real environment. 

Finally, the tests on another engine, support the goodness of the 

methodology that is capable of achieving the quantification success rate 

above 90%. The only small gap is present on scheme 3, where the success 

rate falls down to 88.1% on the HP turbine (Table 77). 
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Quantification - Random deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

MLKF 

LP comp 94.0% 93.0% 90.5% 
HP comp 98.5% 100% 94.5% 
HP turb 91.5% 95.5% 88.1% 
LP turb 97.0% 96.0% 91.5% 

Table 77 Quantification with constant deterioration and 0.4% measurement noise 

The same quality of the results has been achieved with the classification 

even if the success rate of the HP turbine erosion and of the LP turbine erosion 

falls below 90% (Table 78). There, a dedicated KF with additional tuning would 

certainly improve the results. This confirms, once again, that the methodology 

is suitable for the diagnostics of single and multiple failures. 

Classification - Random deterioration 0.4% measurement noise
Scheme 1 Scheme 2 Scheme 3 

MLKF 

LP comp fouling 96.8% 91.7% 96.8% 
HP comp fouling 100% 100% 98.2% 
HP turb fouling 100% 100% 100% 
HP turb erosion 86.4% 86.4% 88.9% 
LP turb fouling 100% 100% 100% 
LP turb erosion 79.7% 81.4% 85.0% 

Table 78 Classification with constant deterioration and 0.4% measurement noise 
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8.0  Summary and Conclusion 

8.1 The accomplishment of the objectives 

As already reported in section 3.6 the objectives set for the research are: 

a. Detection of single and multiple failures also in the presence of 

measurement issues with a success rate above 90%; 

b. Combine the component failure isolation – single and multiple 

failures – with the component health estimation; 

c. Establish a methodology able to deal with multiple failures and 

measurement issues while working online; 

d. Combine the multiple measurements available for each location; 

e. Test the methodology under different conditions to prove its 

robustness. 

It has to be reminded that the first objective is one of the main open points 

in literature since it is challenging to be able to detect multiple failures while 

the signals are disturbed by measurement issues. To achieve the first 

objective a methodology composed by KF, ANN, NFL and FL have been set 

up. Out of this scheme, three variances have been built and the results have 

been compared. The results with the nominal noise – 0.4% - shown that the 

methodology is capable of detecting among 24 different types of failure with a 

variable magnitude that can randomly vary between 0.15% and 7.4% with a 

success rate above the target both for the component health estimation, 

quantification, and the classification of the type of failure. The methodology 

proved also to be able to deal with measurement errors as it is capable of 

keeping the quantification and classification success rate above 90% with 

measurement noise up to 1.6%, four times more than the nominal one. Some 
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additional work and some improvements are necessary when the level of 

noise reaches 2.0%. In this case, in fact, the success rate falls below 90% 

settling to a minimum of 70.1% in the case of random simulation for the 

quantification (reference scheme 1). The situation is better on the 

classification side where a result of 88.9% is reached (reference scheme 1). 

It is implicit in the quantification success rate, that a component health 

estimation has been set up in the methodology. The dedicated section 

responsible for that is the neuro-fuzzy that relates the efficiency reduction to 

the component health status. The health status is set up in a range between 

0 and 100 where 0 correspond to a new component and 100 to the maximum 

established deterioration. The alarm level has been set up based on literature 

and does not necessarily correspond to the real health status of the engine, 

since every engine may react differently to the failure and since there is no 

engine specific data that justifies that. As already clarified in section 4.5 the 

neuro-fuzzy accounts for the mutual interaction of one component to another. 

For instance, in the single failure, it considers a 1 to 1 relationship among 

efficiency decay and component health estimation, while in the multiple 

failures it accounts for the effect of one component on another. To make this 

possible a dedicated neuro-fuzzy is set up at each component and tuned 

considering each of the 24 possible combinations. By quantifying with a 

success rate above 90% (reference scheme 1 with 0.4% reference noise 

tested against the random deterioration), the objective is fulfilled. Once the 

health level is established the methodology proved to correctly classify the 24 

combinations of failure and the 6 types of failure with a success rate above 

90% (reference scheme 1 with 0.4% reference noise tested against the 

random deterioration). Both results have been folded into a graph with traffic 

light colour code able to provide direct feedback to the user on the status of 

the engine component. The graph gives a clear indication and removes errors 

related to a possible wrong data interpretation. 

The next point targeted was is online processing of the data. The 

requirement is to keep the computational size in the order of a normal 
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computer or laptop and the processing time per point in the order of seconds. 

Provided that the current study is targeting baseload points only, the order of 

seconds is sufficient to capture all the points and mid fast changes due to 

components failures. The result obtained by the methodology presented is 1.7 

s with scheme 1 including MLKF for the data pre-filtering, ANN and FL. This 

result has been obtained on a normal laptop and is therefore reproducible on 

any common computer. This result is well within the target and confirms that 

the objective is fully achieved. As well explained within the chapters describing 

the contribution of each section of the methodology, each contributor has been 

specifically selected to deal with the specific topic while reacting in a time short 

enough for the online suitability. 

The combination of the multiple measurements available at each location 

has been studied in the dedicated section 4.5 and in the result chapter 5.0  

while comparing the results with and without KF. It has been calculated that 

the combination of the measurements, applied through the KF methodology, 

was able to reduce the measurement noise up to 83%. This result was 

reflected in a better quantification of the health of the component, moving the 

success rate above 90% from 0.8% (ref. no KF, scheme 1) to 1.6% (ref. MLKF, 

scheme 1). 

The last objective of the study is its testing. The ideal testing would be in a 

real environment, providing deteriorations, different types of failure on different 

conditions, with noise and errors on the measurements. However, as already 

remarked in section 4.2 the level or reliability of the gas turbines is such that 

is not possible to have data reproducing all the possible failures and engine 

could experience. Additionally, even if available, it is difficult to determine 

beforehand what type of failure a certain block of data can represent if the 

data are affected by measurement noise and or components failure. 

Therefore, it is always necessary to integrate the real data with simulated 

scenarios to prove the methodology against. In the present study, the decision 

went toward the full simulation of the data reflecting real deterioration status. 
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To make sure the methodology is proven under several conditions and the 

single faults contributors are isolated, the tests set up are 3: 

a. Constant deterioration; 

b. Random deterioration; 

c. Deterioration schedule. 

The constant deterioration has been established to check the effect of the 

noise within a type of failure that is known. In the case of the noise, the effect 

of the KF has been tested and proved that the MLKF is able to provide a 

significant improvement of the success rate and keep it above 90% until 1.6% 

reference noise. 

The random deterioration is the stress test for the methodology because it 

is including the deterioration magnitude varying between 0.15% and 7.4%, all 

the 24 possible combinations and all the 6 failures type. By showing a success 

rate both in terms of quantification and classification above 90%, it implies the 

methodology is reliable and can handle an extreme scenario. It must, in fact, 

be remarked that the selection is not gradual but can brutally move from a 

single failure with 0.15% deterioration to multiple failures with an extreme 

deterioration of 7.4%. The random deterioration has been coupled with the 

measurement noise in order to further prove how the methodology can react 

under two combined effects.  

The scheduled deterioration reproduces several months of a gas turbine 

regular deterioration. There are few peculiarities in this simulation: the 

schedule is based on open information from literature and includes, as per the 

random and constant deterioration, a ratio between efficiency and mass flow 

decay; the gradient of deterioration is changing with the time to verify if the 

methodology follows this trend; the gradient changes first on the LP turbine 

and last on the LP compressor ending with a higher degradation on the LP 

turbine; the nominal noise is included meaning that the signals reflect a real 

situation. These peculiarities allow establishing if the methodology is properly 

assessing the health of the single components over the established period of 
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time. The methodology resulted in a quantification success rate of 100% on 

all the schemes. The classification instead is above the target for all the 

components and schemes with an exception on the HP turbine fouling and 

scheme1 where the classification falls at 89.1%. In this case, the target is fully 

achieved for two schemes, and very close for scheme 1.  

8.2 Novelties of the methodology 

Chapter 3.0 clearly reported what are still open points from the literature 

review. The objectives described in section 3.6 mirrored them and expanded 

including additional points of interest of this research. However, focusing on 

the pure novelties brought by this work, the main points to mention are: 

a. Online detection of single and multiple failures with the presence 

of measurement issues; 

There is a clear research gap in the detection of the multiple failures, 

including measurements failures, and in the health estimation of the single 

components. The speed of detection (order of seconds per sample), combined 

with the precision of the component health estimation, fill this gap and open a 

research opportunity in that direction. 

b. Heath estimation of multiple components in a gas turbine while 

subjected to single failures, multiple failures and measurement 

issues; 

With this newly built technique, the failure is not only detected, but the 

health status of every single component is determined. This means that for 

every single component it would be possible to estimate its precise status and 

take predictive actions on it. Moreover, the technique can deal with 

measurements issues, while providing quality results. 
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c. The combination of KF for the data analysis, the ANN for the 

performance prediction and the FL/neuro Fuzzy logic for the 

quantification and the classification of the failures 

Looking at the methodology as such, this combination represents also a 

novelty not seen yet in literature. While most of the newly proposed techniques 

started to combine two contributors (e.g. ANN and GA), the combination of 

these methodologies – KF, ANN, NFL and FL – is not yet seen in the literature 

for GPA investigation. Moreover, this research motivates and outlines the 

advantages of this combination showing the contribution of each section. 

8.3 Further work recommended 

The current work provides a strong base for the GPA and components of 

health estimation, also with the presence of measurement issues, suitable for 

online diagnostics.  

One of the topics that could not be explored fully is testing. As described 

earlier, the methodology has been tested in an environment that is close to 

reality, but it does not represent it fully. Therefore, an important topic of 

additional work recommended, is the further testing of the methodology with 

real data, reflecting the deterioration of one or more components. Those data 

would ideally include measurements issues and should represent a long-term 

engine run in order to capture different scenarios. However, since it is unlikely 

to receive data clearly representing all the types of failure (as detailed in 

section 4.2 and reported by Simon et al. [39]), it would be interesting to blend 

simulated data and real data trying to find the correct mix between ANN and 

Neuro-Fuzzy training and the success rate. 

Still on the testing, the deterioration profile simulating several months of GT 

run provided successful results for the combined training, while the random 

training option, the efficiency prediction was unsatisfactory – section 5.1.3. 

However, due to memory limitations, it is currently not possible to consistently 

increase the number of samples. Therefore, it would be interesting to 
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investigate the effect of the increase of the number of samples, necessary to 

overcome the underfit seen without the combined training. The same should 

be applied both to the ANN and to the NFL. 

Looking at the methodology side in section 4.8 it has been reported that the 

Fuzzy Logic for failure classification has been selected for its flexibility, 

required for the implementation of different rules, for the detection of other 

failures. In the current work, the FL provided excellent results for the detection 

of compressor fouling and for the detection of turbine erosion. However, as 

reported by Meher et al. [76] there are several other failures that could be 

investigated like: tip clearance increase, the sealing degradation and the air 

leakage, the airfoil roughness, the inlet and outlet delta pressure increase. 

These failures should be modelled in the preparation phase, included in the 

KF and reported in the cumulative alarm level/failure type chart. Moreover, as 

implicitly set up in the cumulative alarm level/failure type chart, the non-

recoverable measurements failures could be also isolated and reported to 

make sure the diagnostics are not driven by an erratic signal. 

The current results reflect a full load status of the engine meaning that it is 

working at its full regime. On top of that, the variation of the ambient conditions 

does not go far from the ISA values. Additional work should include different 

ambient conditions and operating regimes in the training phase and try to 

make predictions and components health estimation also with these additional 

statuses.  

Looking at additional features that could even further complete this work it 

is the physical connection of the alarm level to the component health 

estimation. By this, the alarm level could be directly related to a component 

status. An additional step forward can be the lifetime estimation, that in the 

same way as per the component health estimation, is related to the connection 

to the component real status. 

This methodology has been conceived to be flexible enough to adapt to 

several types of engine. In this research, the focus went on industrial gas 
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turbines with two-spool in particular. However, the methodology can be 

expanded to analyse configurations with more components (e.g. three spools) 

or for different applications (e.g. aero engines). In these cases, the 

architecture will remain identical, but the single contributors will adapt to the 

new engine design. For instance, the KF will have to include the 

additional/different measurements, the ANN will be trained and adapted 

according to the measurements available. Additionally, the prediction will have 

to include the new components. Finally, the NFL and the FL will have to be 

structured to evaluate properly all the components and their mutual 

interaction.  



193 

REFERENCES 

[1]. G. Bechini (2007). Performance diagnostic and measurement selection for on-line 
monitoring of gas turbine engines. Ph.D. Thesis Cranfield University 

[2]. L. Marinai (2004). Gas-path diagnostics and prognostics for aero-engines using fuzzy 
logic and time series analysis. PhD Thesis Cranfield University 

[3]. Volponi, A. J. (2014). Gas turbine engine health management: Past, present, and 
future trends. Journal of Engineering for Gas Turbines and Power. 
https://doi.org/10.1115/1.4026126  

[4]. Verbist, M. L., Visser, W. P. J., Van Buijtenen, J. P., & Duivis, R. (2011). Gas path 
analysis on KLM in-flight engine data. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2011-45625  

[5]. Marinai, L., Probert, D., & Singh, R. (2004). Prospects for aero gas-turbine 
diagnostics: A review. Applied Energy. 
https://doi.org/10.1016/j.apenergy.2003.10.005  

[6]. Grace, Dale S. "Combined-Cycle Power Plant Maintenance Costs." Proceedings of 
the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 2: Controls, 
Diagnostics and Instrumentation; Cycle Innovations; Electric Power. Berlin, 
Germany. June 9–13, 2008. pp. 1007-1016. ASME.  

[7]. Grace, D., & Christiansen, T. (2012). Risk-based assessment of unplanned outage 
events and costs for combined-cycle-plants. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2012-68435 

[8]. Airline maintenance cost executive commentary, An Exclusive Benchmark Analysis 
(FY2016 data) - IATA’s Maintenance Cost Task Forceb. 
https://www.iata.org/whatwedo/workgroups/Documents/MCTF/MCTF-FY2016-
Report-Public.pdf

[9]. Vance, J., Zeidan, F., & Murphy, B. (2010). Machinery Vibration and Rotordynamics. 
In Machinery Vibration and Rotordynamics. https://doi.org/10.1002/9780470903704

[10]. Handbook of Condition Monitoring. (1998). In Handbook of Condition Monitoring. 
https://doi.org/10.1007/978-94-011-4924-2  

[11]. Urban, L. A. (1973). Gas path analysis applied to turbine engine condition 
monitoring. Journal of Aircraft. https://doi.org/10.2514/3.60240

[12]. Escher, P.C. (1995). Pythia: An Object-Oriented Gas-path Analysis Computer 
Program for General Applications. Ph.D. Thesis, Cranfield University 

[13]. S. Ogajiye (2003). Advanced Gas-path Fault Diagnostics for Stationary Gas 
Turbines. PhD Thesis Cranfield University 



194 

[14]. Grewal, M. S., & Andrews, A. P. (2001). Kalman Filtering : Theory and Practice 
Using MATLAB California State University at Fullerton. In Theory and Practice. 
https://doi.org/10.1002/0471266388

[15]. Kerr, L. J., Nemec, T. S., & Gallops, G. W. (1992). Real-time estimation of gas 
turbine engine damage using a control-based kalman filter algorithm. Journal of 
Engineering for Gas Turbines and Power. https://doi.org/10.1115/1.2906571

[16]. Kobayashi, T., & Simon, D. L. (2003). Application of a bank of Kalman filters for 
aircraft engine fault diagnostics. American Society of Mechanical Engineers, 
International Gas Turbine Institute, Turbo Expo (Publication) IGTI. 
https://doi.org/10.1115/GT2003-38550

[17]. Simon, D. (2008). A comparison of filtering approaches for aircraft engine health 
estimation. Aerospace Science and Technology. 
https://doi.org/10.1016/j.ast.2007.06.002  

[18]. Lu, F., Wang, Y., Huang, J., Huang, Y., & Qiu, X. (2018). Fusing unscented 
Kalman filter for performance monitoring and fault accommodation in gas turbine. 
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace 
Engineering. https://doi.org/10.1177/0954410016682269

[19]. Sun, S. L., & Deng, Z. L. (2004). Multi-sensor optimal information fusion Kalman 
filter. Automatica. https://doi.org/10.1016/j.automatica.2004.01.014

[20]. Chernyatin, A. N., & Ostroukhov, M. Y. (1968). Nural Network Design 2nd edition. 
Metallurgist. https://doi.org/10.1007/BF00738424  

[21]. Joly, R. B., Ogaji, S. O. T., Singh, R., & Probert, S. D. (2004). Gas-turbine 
diagnostics using artificial neural-networks for a high bypass ratio military turbofan 
engine. Applied Energy. https://doi.org/10.1016/j.apenergy.2003.10.002

[22]. Asgari, H., Chen, X., Menhaj, M. B., & Sainudiin, R. (2013). Artificial neural 
network-based system identification for a single-shaft gas turbine. Journal of 
Engineering for Gas Turbines and Power. https://doi.org/10.1115/1.4024735

[23]. Vatani, A., Khorasani, K., & Meskin, N. (2015). Health monitoring and 
degradation prognostics in gas turbine engines using dynamic neural networks. 
Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2015-44101

[24]. Kadamb A. (2003). Bayesian belief network for aero gas turbine module and 
system fault isolation – MSc thesis – Cranfield University  

[25]. Pu, X., Liu, S., Jiang, H., & Yu, D. (2013). Sparse bayesian learning for gas path 
diagnostics. Journal of Engineering for Gas Turbines and Power. 
https://doi.org/10.1115/1.4023608

[26]. Kestner, B. K., Lee, Y. K., Voleti, G., Mavris, D. N., Kumar, V., & Lin, T. P. (2011). 
Diagnostics of highly degraded industrial gas turbines using Bayesian networks. 
Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2011-45249  



195 

[27]. Mo, H., Sansavini, G., & Xie, M. (2018). Performance-based maintenance of gas 
turbines for reliable control of degraded power systems. Mechanical Systems and 
Signal Processing. https://doi.org/10.1016/j.ymssp.2017.10.021

[28]. Qingcai, Y., Li, S., Cao, Y., & Zhao, N. (2016). Full and part-load performance 
deterioration analysis of industrial three-shaft gas turbine based on genetic algorithm. 
Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2016-57120

[29]. Ogaji, S. O. T., Marinai, L., Sampath, S., Singh, R., & Prober, S. D. (2005). Gas-
turbine fault diagnostics: A fuzzy-logic approach. Applied Energy. 
https://doi.org/10.1016/j.apenergy.2004.07.004

[30]. Barbosa, R., & Ferreira, S. (2012). Industrial gas turbine diagnostics using fuzzy 
logic. Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2012-68767

[31]. Eustace, R. W. (2007). A real-world application of fuzzy logic and inlfluence 
coefficients for gas turbine performance diagnostics. Proceedings of the ASME 
Turbo Expo. https://doi.org/10.1115/GT2007-27442  

[32]. Sampath, S., & Singh, R. (2006). An integrated fault diagnostics model using 
genetic algorithm and neural networks. Journal of Engineering for Gas Turbines and 
Power. https://doi.org/10.1115/1.1995771

[33]. Viharos, Z. J., & Kis, K. B. (2015). Survey on Neuro-Fuzzy systems and their 
applications in technical diagnostics and measurement. Measurement: Journal of the 
International Measurement Confederation. 
https://doi.org/10.1016/j.measurement.2015.02.001

[34]. Wang, J., Fan, K., & Wang, W. (2010). Integration of fuzzy AHP and FPP with 
TOPSIS methodology for aeroengine health assessment. Expert Systems with 
Applications. https://doi.org/10.1016/j.eswa.2010.05.024

[35]. Dewallef, P., Romessis, C., Léonard, O., & Mathioudakis, K. (2006). Combining 
classification techniques with Kalman filters for aircraft engine diagnostics. Journal 
of Engineering for Gas Turbines and Power. https://doi.org/10.1115/1.2056507

[36]. Kumar, A., Shankar, R., & Thakur, L. S. (2018). A big data driven sustainable 
manufacturing framework for condition-based maintenance prediction. Journal of 
Computational Science. https://doi.org/10.1016/j.jocs.2017.06.006  

[37]. Yang, X., Pang, S., Shen, W., Lin, X., Jiang, K., & Wang, Y. (2016). Aero Engine 
Fault Diagnosis Using an Optimized Extreme Learning Machine. International 
Journal of Aerospace Engineering. https://doi.org/10.1155/2016/7892875  

[38]. Li, Z., Zhong, S. S., & Lin, L. (2017). Novel gas turbine fault diagnosis method 
based on performance deviation model. Journal of Propulsion and Power. 
https://doi.org/10.2514/1.B36267

[39]. Simon, D. L., Bird, J., Davison, C., Volponi, A., & Iverson, R. E. (2008). 
Benchmarking gas path diagnostic methods: A public approach. Proceedings of the 
ASME Turbo Expo. https://doi.org/10.1115/GT2008-51360



196 

[40]. Simon, D. L., Borguet, S., Léonard, O., & Zhang, X. (2014). Aircraft engine gas 
path diagnostic methods: Public benchmarking results. Journal of Engineering for 
Gas Turbines and Power. https://doi.org/10.1115/1.4025482

[41]. S. Togni, N. Theoklis, S. Sampath (2017). The application of multiple 
methodologies for the diagnostics of components multiple failure. ISABE 2017 

[42]. Kurz, R., Brun, K., & Wollie, M. (2008). Degradation effects on industrial gas 
turbines. Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2008-
50020 

[43]. Valero, A., Correas, L., Zaleta, A., Lazzaretto, A., Verda, V., Reini, M., & Rangel, 
V. (2004). On the thermoeconomic approach to the diagnosis of energy system 
malfunctions Part 2. Malfunction definitions and assessment. Energy. 
https://doi.org/10.1016/j.energy.2004.03.008  

[44]. Morini, M., Pinelli, M., Spina, P. R., & Venturini, M. (2008). Influence of blade 
deterioration on compressor and turbine performance. Proceedings of the ASME 
Turbo Expo. https://doi.org/10.1115/GT2008-50043  

[45]. Morini, M., Pinelli, M., Spina, P. R., & Venturini, M. (2009). CFD simulation of 
fouling on axial compressor stages. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2009-59025  

[46]. Lakshminarasimha, A. N., Boyce, B. P., & Meher-Homj, C. B. (1994). Modeling 
and analysis of gas turbine performance deterioration. Journal of Engineering for Gas 
Turbines and Power. https://doi.org/10.1115/1.2906808  

[47]. Morini, M., Pinelli, M., Spina, P. R., & Venturini, M. (2010). Numerical analysis of 
the effects of non-uniform surface roughness on compressor stage performance. 
Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2010-23291  

[48]. Industrial Gas Turbine Performance: Compressor Fouling and On-Line Washing 
- U. Igie, P. Pilidis, D. Fouflias, K. Ramsden, P. Laskaridis - Journal of 
Turbomachinery – October 2014 

[49]. Zhou, D., Zhang, H., & Weng, S. (2015). A new gas path fault diagnostic method 
of gas turbine based on support vector machine. Journal of Engineering for Gas 
Turbines and Power. https://doi.org/10.1115/1.4030277  

[50]. Mohammadi, E., & Montazeri-Gh, M. (2014). Simulation of full and part-load 
performance deterioration of industrial two-shaft gas Turbine. Journal of Engineering 
for Gas Turbines and Power. https://doi.org/10.1115/1.4027187

[51]. Kurz R., B. K. (2001). Degradation in gas turbine systems. Journal of Engineering 
for Gas Turbines and Power. https://doi.org/10.1115/1.1340629  

[52]. Igie, U., Diez-Gonzalez, P., Giraud, A., & Minervino, O. (2016). Evaluating Gas 
Turbine Performance Using Machine-Generated Data: Quantifying Degradation and 
Impacts of Compressor Washing. Journal of Engineering for Gas Turbines and 
Power. https://doi.org/10.1115/1.4033748  



197 

[53]. Venturini, M., & Therkorn, D. (2013). Application of a statistical methodology for 
gas turbine degradation prognostics to alstom field data. Journal of Engineering for 
Gas Turbines and Power. https://doi.org/10.1115/1.4024952  

[54]. Stalder, J. P. (2001). Gas turbine compressor washing state of the art: Field 
experiences. Journal of Engineering for Gas Turbines and Power. 
https://doi.org/10.1115/1.1361108  

[55]. Morini, M., Pinelli, M., Spina, P. R., & Venturini, M. (2008). Influence of blade 
deterioration on compressor and turbine performance. Proceedings of the ASME 
Turbo Expo. https://doi.org/10.1115/GT2008-50043 

[56]. Mathioudakis, K., Kamboukos, P., & Stamatis, A. (2002). Turbofan performance 
deterioration tracking using non-linear models and optimization techniques. 
American Society of Mechanical Engineers, International Gas Turbine Institute, 
Turbo Expo (Publication) IGTI. https://doi.org/10.1115/GT2002-30026  

[57]. Bringhenti, C., & Barbosa, J. R. (2008). Effects of turbine tip clearance on gas 
turbine performance. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2008-50196  

[58]. Ghenaiet, A., Tan, S. C., & Elder, R. L. (2004). Experimental investigation of axial 
fan erosion and performance degradation. Proceedings of the Institution of 
Mechanical Engineers, Part A: Journal of Power and Energy. 
https://doi.org/10.1243/0957650041761900  

[59]. Bakken, L. E., & Skorping, R. (1996). Optimum operation and maintenance of 
gas turbines offshore. ASME 1996 International Gas Turbine and Aeroengine 
Congress and Exhibition, GT 1996. https://doi.org/10.1115/96-GT-273  

[60]. Meher-Homji, C. B., Chaker, M., & Bromley, A. F. (2009). The fouling of axial flow 
compressors - Causes, effects, susceptibility and sensitivity. Proceedings of the 
ASME Turbo Expo. https://doi.org/10.1115/GT2009-59239  

[61]. Brekke, O., & Bakken, L. E. (2010). Accelerated deterioration by saltwater 
ingestion in gas turbine intake air filters. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2010-22455  

[62]. Verbist, M. L., Visser, W. P. J., & Van Buijtenen, J. P. (2013). Experience with 
gas path analysis for on-wing turbofan condition monitoring. Proceedings of the 
ASME Turbo Expo. https://doi.org/10.1115/GT2013-95739  

[63]. Tarabrin, A. P., Schurovsky, V. A., Bodrov, A. I., & Stalder, J. P. (1998). Influence 
of axial compressor fouling on gas turbine unit perfomance based on different 
schemes and with different initial parameters. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/98-GT-416  

[64]. Schneider, E., Bussjaeger, S. D., Franco, S., & Therkorn, D. (2010). Analysis of 
compressor on-line washing to optimize gas turbine power plant performance. 
Journal of Engineering for Gas Turbines and Power. 
https://doi.org/10.1115/1.4000133  



198 

[65]. Igie, U., Pilidis, P., Fouflias, D., Ramsden, K., & Lambart, P. (2011). On-line 
compressor cascade washing for gas turbine performance investigation. 
Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2011-46210  

[66]. Hepperle, N., Therkorn, D., Schneider, E., & Staudacher, S. (2011). Assessment 
of gas turbine and combined cycle power plant performance degradation. 
Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2011-45375  

[67]. Kurz, R., & Brun, K. (2011). Fouling mechanisms in axial compressors. 
Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2011-45012  

[68]. Maiwada, B., Mu ’az, N. I., Ibrahim, S., & Musa, S. M. (2016). Impacts of 
Compressor Fouling On the Performance of Gas Turbine. International Journal of 
Engineering Science and Computing. https://doi.org/10.4010/2016.514  

[69]. Yang, H., & Xu, H. (2014). The new performance calculation method of fouled 
axial flow compressor. Scientific World Journal. https://doi.org/10.1155/2014/906151 

[70]. Schroth, T., Rothmann, A., & Schmitt, D. (2007). Nutzwert eines Dreistufigen 
Luftfiltersystems mit Innovativer Technologie für Stationäre Gasturbinen. VGB 
PowerTech.  

[71]. Cavarzere, A., & Venturini, M. (2011). Application of forecasting methodologies 
to predict gas turbine behavior over time. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2011-45710  

[72]. Wilcox, M., & Brun, K. (2011). Gas turbine inlet filtration system life cycle cost 
analysis. Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2011-
46708  

[73]. Diagnostic Methods for an Aircraft Engine Performance - Ε. L. Ntantis, P. N. 
Botsaris - Journal of Engineering Science and Technology – November 2015 

[74]. Simulation of performance deterioration in eroded compressors – D. Singh, A. 
lamed, W Tabakoff - The American Society Of Mechanical Engineers – June 1996 

[75]. Pathirathna, K. A. B. (2013). Gas Turbine Thermodynamic and Performance 
Analysis Methods Using Available Catalog Data (Dissertation). Retrieved from 
http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17474  

[76]. Meher-Homji, Cyrus B.; Chaker, Mustapha A.; Motiwala, Hatim M. (2001). Gas 
Turbine Performance Deterioration.. Texas A&M University. Turbomachinery 
Laboratories. Available electronically from http : / /hdl .handle .net /1969 .1 /163330 

[77]. J. Palmer and T. Nikolaidis (2015), “The TURBOMATCH Scheme for Gas 
Turbine Performance Calculations (ver. 2.0) - User Manual,” 

[78]. W. J. Stromberg (1981). Performance deterioration based on simulated 
aerodynamic loads test, JT9D jet engine diagnostics program. NASA CR-165297 

[79]. Jiang, X., & Foster, C. (2014). Plant performance monitoring and diagnostics - 
Remote, real-time and automation. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2014-27314



199 

[80]. Saravanamuttoo, H I (1990). Recommended Practices for Measurement of Gas 
Path Pressures and Temperatures for Performance Assessment of Aircraft Turbine 
Engines and Components. AGARD-AR-.245 

[81]. Gülen, S. C., Griffin, P. R., & Paolucci, S. (2002). Real-time on-line performance 
diagnostics of heavy-duty industrial gas turbines. Journal of Engineering for Gas 
Turbines and Power. https://doi.org/10.1115/1.1413465

[82]. Fentaye, Amare & Baheta, Aklilu & Gilani, Syed & Kyprianidis, Konstantinos. 
(2019). A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, 
Challenges and Opportunities. Aerospace. 6. 83. 10.3390/aerospace6070083.  

[83]. Tengeleng, S., & Armand, N. (2014). Performance of using cascade forward back 
propagation neural networks for estimating rain parameters with rain drop size 
distribution. Atmosphere. https://doi.org/10.3390/atmos5020454  

[84]. Garg, Sanjay, Simon, Donald L. (2012). NASA Technical Reports Server (NTRS) 
20150009565: Challenges in Aircraft Engine Control and Gas Path Health 
Management 

[85]. Abdul Ghafir, M. F., Li, Y. G., & Wang, L. (2012). Creep life prediction for aero 
gas turbine hot section component using Artificial Neural Networks. Proceedings of 
the ASME Turbo Expo. https://doi.org/10.1115/GT2012-68856  

[86]. Basso, M., Giarré, L., Groppi, S., & Zappa, G. (2005). NARX models of an 
industrial power plant gas turbine. IEEE Transactions on Control Systems 
Technology. https://doi.org/10.1109/TCST.2004.843129  

[87]. Loboda, Igor & Yepifanov, Sergiy & Felshteyn, Yakov. (2009). An Integrated 
Approach to Gas Turbine Monitoring and Diagnostics. International Journal of Turbo 
Jet Engines. 26. 111-126. 10.1515/TJJ.2009.26.2.111.  

[88]. Simon, D. L., & Armstrong, J. B. (2012). An integrated approach for aircraft 
engine performance estimation and fault diagnostics. Proceedings of the ASME 
Turbo Expo. https://doi.org/10.1115/GT2012-69905  

[89]. Dewallef, P., & Borguet, S. (2013). A methodology to improve the robustness of 
gas turbine engine performance monitoring against sensor faults. Journal of 
Engineering for Gas Turbines and Power. https://doi.org/10.1115/1.4007976  

[90]. Kumano, S., Mikami, N., & Aoyama, K. (2011). Advanced gas turbine diagnostics 
using pattern recognition. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2011-45670  

[91]. Kanelopoulos, K., Stamatis, A., & Mathioudakis, K. (1997). Incorporating neural 
networks into gas turbine performance diagnostics. Proceedings of the ASME Turbo 
Expo. https://doi.org/10.1115/97-GT-035 

[92]. Loboda, I., Yepifanov, S., & Feldshteyn, Y. (2007). A generalized fault 
classification for gas turbine diagnostics at steady states and transients. Journal of 
Engineering for Gas Turbines and Power. https://doi.org/10.1115/1.2719261  



200 

[93]. Volponi, A. J., DePold, H., Ganguli, R., & Daguang, C. (2003). The use of kalman 
filter and neural network methodologies in gas turbine performance diagnostics: A 
comparative study. Journal of Engineering for Gas Turbines and Power. 
https://doi.org/10.1115/1.1419016  

[94]. Fast, M., Assadi, M., & De, S. (2008). Condition based maintenance of gas 
turbines using simulation data and artificial neural network: A demonstration of 
feasibility. Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2008-
50768  

[95]. Lee, S. M., Choi, W. J., Roh, T. S., & Choi, D. W. (2007). Defect diagnostics of 
gas turbine engine using hybrid SVM-artificial neural network method. Collection of 
Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 
https://doi.org/10.2514/6.2007-5109  

[96]. Song, T. L., & Speyer, J. L. (1985). A Stochastic Analysis of a Modified Gain 
Extended Kalman Filter with Applications to Estimation with Bearings Only 
Measurements. IEEE Transactions on Automatic Control. 
https://doi.org/10.1109/TAC.1985.1103821  

[97]. Drécourt, J. P., Madsen, H., & Rosbjerg, D. (2006). Bias aware Kalman filters: 
Comparison and improvements. Advances in Water Resources. 
https://doi.org/10.1016/j.advwatres.2005.07.006  

[98]. Novoselov, R. Y., Herman, S. M., Gadaleta, S. M., & Poore, A. B. (2005). 
Mitigating the effects of residual biases with Schmidt-Kalman filtering. 2005 7th 
International Conference on Information Fusion, FUSION. 
https://doi.org/10.1109/ICIF.2005.1591877  

[99]. Ogaji, S. O. T., & Singh, R. (2002). Advanced engine diagnostics using artificial 
neural networks. Proceedings - 2002 IEEE International Conference on Artificial 
Intelligence Systems, ICAIS 2002. https://doi.org/10.1109/ICAIS.2002.1048094  

[100]. Yilmaz, Y., Kurz, R., Özmen, A., & Weber, G. W. (2015). A new algorithm for 
scheduling condition-based maintenance of gas turbines. Proceedings of the ASME 
Turbo Expo. https://doi.org/10.1115/GT2015-43545  

[101]. Li, Y. G. (2008). A genetic algorithm approach to estimate performance status of 
gas turbines. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT2008-50175  

[102]. Zedda, M. (1999). Gas turbine engine and sensor fault diagnosis. PhD Thesis - 
School of mechanical engineering, Cranfield University  

[103]. Zedda, M. and Singh R. (1999). Gas turbine engine and sensor fault diagnosis. 
ISABE 99-7238, 13th ISABE, Florence, Italy 

[104]. Elfghi, F. M. (2016). A hybrid statistical approach for modeling and optimization 
of RON: A comparative study and combined application of response surface 
methodology (RSM) and artificial neural network (ANN) based on design of 
experiment (DOE). Chemical Engineering Research and Design. 
https://doi.org/10.1016/j.cherd.2016.05.023 



201 

[105]. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. 
(2008). Response surface methodology (RSM) as a tool for optimization in analytical 
chemistry. Talanta. https://doi.org/10.1016/j.talanta.2008.05.019 

[106]. Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., 
Brandão, G. C., … dos Santos, W. N. L. (2007). Box-Behnken design: An alternative 
for the optimization of analytical methods. Analytica Chimica Acta. 
https://doi.org/10.1016/j.aca.2007.07.011  

[107]. Franceschini, G., & Macchietto, S. (2008). Model-based design of experiments 
for parameter precision: State of the art. Chemical Engineering Science. 
https://doi.org/10.1016/j.ces.2007.11.034  

[108]. Buzzi-Ferraris, G., & Forzatti, P. (1983). A new sequential experimental design 
procedure for discriminating among rival models. Chemical Engineering Science. 
https://doi.org/10.1016/0009-2509(83)85004-0  

[109]. Li, Y. G. (2002). Performance-analysis-based gas turbine diagnostics: A review. 
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and 
Energy. https://doi.org/10.1243/095765002320877856  

[110]. O’Brien, W., Kurzke, J., Rudnitski, D., Horobin, M., Csavina, F., Masson, P., … 
Evans, R. (2007). Performance Prediction and Simulation of Gas Turbine Engine 
Operation for Aircraft, Marine, Vehicular and Power Generation. In NATO Research 
and Technology Organisation. 

[111]. Kanelopoulos, K., Stamatis, A., & Mathioudakis, K. (1997). Incorporating neural 
networks into gas turbine performance diagnostics. Proceedings of the ASME Turbo 
Expo. https://doi.org/10.1115/97-GT-035  

[112]. A. Apostolidis (2015). Turbine cooling and heat transfer modelling for gas turbine 
performance simulation. PhD Thesis Cranfield University 

[113]. Sun, J., Zuo, H., Liang, K., & Chen, Z. (2016). Bayesian Network-Based Multiple 
Sources Information Fusion Mechanism for Gas Path Analysis. Journal of Propulsion 
and Power. https://doi.org/10.2514/1.B35658  

[114]. Ntantis, E. L., & Botsaris, P. N. (2015). Diagnostic methods for an aircraft engine 
performance. Journal of Engineering Science and Technology Review. 
https://doi.org/10.25103/jestr.084.10  

[115]. Lu, F., Huang, J., & Lv, Y. (2013). Gas path health monitoring for a turbofan 
engine based on a nonlinear filtering approach. Energies. 
https://doi.org/10.3390/en6010492  

[116]. Dewallef, P., Romessis, C., Léonard, O., & Mathioudakis, K. (2006). Combining 
classification techniques with Kalman filters for aircraft engine diagnostics. Journal 
of Engineering for Gas Turbines and Power. https://doi.org/10.1115/1.2056507  

[117]. Kyriazis, A., Tsalavoutas, A., Mathioudakis, K., Bauer, M., & Johanssen, O. 
(2009). Gas turbine fault identification by fusing vibration trending and gas path 
analysis. Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2009-
59942  



202 

[118]. Zhou, D., Zhang, H., & Weng, S. (2015). A new gas path fault diagnostic method 
of gas turbine based on support vector machine. Journal of Engineering for Gas 
Turbines and Power. https://doi.org/10.1115/1.4030277  

[119]. D. Simon (2012). Challenges in aircraft engine gas path health management. 
Presented at turbo expo 2012 

[120]. Tahan, M., Tsoutsanis, E., Muhammad, M., & Abdul Karim, Z. A. (2017). 
Performance-based health monitoring, diagnostics and prognostics for condition-
based maintenance of gas turbines: A review. Applied Energy. 
https://doi.org/10.1016/j.apenergy.2017.04.048  

[121]. Allen, C. W., Holcomb, C. M., & De Oliveira, M. (2017). Gas turbine machinery 
diagnostics: A brief review and a sample application. Proceedings of the ASME 
Turbo Expo. https://doi.org/10.1115/GT2017-64755  

[122]. Pérez-Ruiz, J. L., Loboda, I., Miró-Zárate, L. A., Toledo-Velázquez, M., & 
Polupan, G. (2017). Evaluation of gas turbine diagnostic techniques under variable 
fault conditions. Advances in Mechanical Engineering. 
https://doi.org/10.1177/1687814017727471  

[123]. Palade, V., Patton, R. J., Uppal, F. J., Quevedo, J., & Daley, S. (2002). Fault 
diagnosis of an industrial gas turbine using neuro-fuzzy methods. IFAC Proceedings 
Volumes (IFAC-PapersOnline). https://doi.org/10.3182/20020721-6-es-1901.01632  

[124]. Li, K., Zhang, Q., Wang, K., Chen, P., & Wang, H. (2016). Intelligent condition 
diagnosis method based on adaptive statistic test filter and diagnostic bayesian 
network. Sensors (Switzerland). https://doi.org/10.3390/s16010076  

[125]. Pourbabaee, B., Meskin, N., & Khorasani, K. (2016). Robust sensor fault 
detection and isolation of gas turbine engines subjected to time-varying parameter 
uncertainties. Mechanical Systems and Signal Processing. 
https://doi.org/10.1016/j.ymssp.2016.02.023  

[126]. Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep neural networks: A 
promising tool for fault characteristic mining and intelligent diagnosis of rotating 
machinery with massive data. Mechanical Systems and Signal Processing. 
https://doi.org/10.1016/j.ymssp.2015.10.025  

[127]. Sina Tayarani-Bathaie, S., & Khorasani, K. (2015). Fault detection and isolation 
of gas turbine engines using a bank of neural networks. Journal of Process Control. 
https://doi.org/10.1016/j.jprocont.2015.08.007 

[128]. Verma, R., Roy, N., & Ganguli, R. (2006). Gas turbine diagnostics using a soft 
computing approach. Applied Mathematics and Computation. 
https://doi.org/10.1016/j.amc.2005.02.057  

[129]. Zio, E., & Gola, G. (2009). A neuro-fuzzy technique for fault diagnosis and its 
application to rotating machinery. Reliability Engineering and System Safety. 
https://doi.org/10.1016/j.ress.2007.03.040  

[130]. Zhou, D., Wei, T., Zhang, H., Ma, S., & Wei, F. (2018). An information fusion 
model based on dempster-shafer evidence theory for equipment diagnosis. ASCE-



203 

ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical 
Engineering. https://doi.org/10.1115/1.4037328  

[131]. Yang, Q., Cao, Y., Yu, F., Du, J., & Li, S. (2017). Health estimation of gas turbine: 
A symbolic linearization model approach. Proceedings of the ASME Turbo Expo. 
https://doi.org/10.1115/GT201764071  

[132]. Lu, F., Ju, H., & Huang, J. (2016). An improved extended Kalman filter with 
inequality constraints for gas turbine engine health monitoring. Aerospace Science 
and Technology. https://doi.org/10.1016/j.ast.2016.08.008  

[133]. Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., & Figari, M. (2016). 
Machine learning approaches for improving condition-based maintenance of naval 
propulsion plants. Proceedings of the Institution of Mechanical Engineers Part M: 
Journal of Engineering for the Maritime Environment. 
https://doi.org/10.1177/1475090214540874  

[134]. Alaswad, S., & Xiang, Y. (2017). A review on condition-based maintenance 
optimization models for stochastically deteriorating system. Reliability Engineering 
and System Safety. https://doi.org/10.1016/j.ress.2016.08.009  

[135]. Panov, V. (2015). Gas turbine performance diagnostics and fault isolation based 
on multidimensional complex health vector space. 11th European Conference on 
Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2015.  

[136]. Lu, F., Qian, J., Huang, J., & Qiu, X. (2017). In-flight adaptive modeling using 
polynomial LPV approach for turbofan engine dynamic behavior. Aerospace Science 
and Technology. https://doi.org/10.1016/j.ast.2017.02.003  

[137]. Feng Lu and Tiebin Zhu and Jinquan Huang (2014). Multi-sensor data fusion 
using least square support vector regression for missing data online recovery. 50th 
AIAA/ASME/SAE/ASEE Joint Propulsion Conference  

[138]. Li, Y. G., & Nilkitsaranont, P. (2009). Gas turbine performance prognostic for 
condition-based maintenance. Applied Energy. 
https://doi.org/10.1016/j.apenergy.2009.02.011 

[139]. Dewallef, P., & Borguet, S. (2013). A methodology to improve the robustness of 
gas turbine engine performance monitoring against sensor faults. Journal of 
Engineering for Gas Turbines and Power. https://doi.org/10.1115/1.4007976  

[140]. Simon, D. L., & Rinehart, A. W. (2016). Sensor Selection for Aircraft Engine 
Performance Estimation and Gas Path Fault Diagnostics. Journal of Engineering for 
Gas Turbines and Power. https://doi.org/10.1115/1.4032339  

[141]. Brun K., K. R. (2001). Measurement uncertainties encountered during gas turbine 
driven compressor field testing. Journal of Engineering for Gas Turbines and Power. 
https://doi.org/10.1115/1.1340628  



204 

APPENDIX 

Driving parameters for the Turbomatch deterioration 
modelling 

The parameters used to model the 24 deteriorated combinations are listed in 

Table 79 and reflect the ratio reported in the literature and summarized in Table 

3. 

1 LP Comp Efficiency deterioration 

2 LP Comp Massflow deterioration 

3 LP Comp Pressure Ratio deterioration 

4 HP Comp Efficiency deterioration 

5 HP Comp Massflow deterioration 

6 HP Comp Pressure Ratio deterioration 

7 HP Turb Efficiency deterioration 

8 HP Turb Massflow deterioration 

9 HP Turb dh/T deterioration 

10 LP Turb Efficiency deterioration 

11 LP Turb Massflow deterioration 

12 LP Turb dh/T deterioration 

Table 79 Turbomatch deterioration parameters 

Condition based monitoring graphical user interface 

The graphical user interface is built to help the user assessing the deterioration 

of each component of an engine. The mechanism behind the GUI is the one 

shown in Figure 18 including the measurements filtering section, the artificial 

neural network training and prediction and the fuzzy logic qualification and 

quantification. The characteristics planned for this GUI are: be easy to use, 

provide a simple and immediate answer to the user, provide an additional level 

of detail for the user to investigate the failures, show the regular measurements, 

summarize all the failures and the related parameters in a table, provide space 

and flexibility to user-defined rules.  

The GUI is divided into the sections that reflect the requirements planned 

above (Figure 122). In section 2 six bars are inserted: the first two on the 

compressor side reflect the LP and HP compressor status. The bar is colour 
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coded (with traffic light code) with green lemon colour if the alarm is between 5 

and 20, yellow colour if the alarm level is between 20 and 50, orange if the alarm 

is between 50 and 90, and red colour if the alarm level is above 90. On the turbine 

side, four bars are drawn. Two for the HP turbine and two for the LP turbine as 

the fouling/corrosion and the erosion effect are distinguished. The left bar 

indicates fouling/corrosion while the right bar indicates the erosion.  

In section 1 two charts are drawn. On the upper side, the chart is used to plot 

two possible parameters among the available within a specified range of time. 

The parameters available are those at each location - reference Figure 21 - and 

in addition to that the efficiency and the alarm level of each component. The plots 

allow the user to perform a graphical diagnostic and to cross-compare 

parameters in order to reach the right conclusion. The lower graph is used to plot 

real-time value. In the alarm level of the LP, the compressor is shown for points 

9 and 10. The same level is also reported in the bar graph in section 2. 

In section 3 the real-time measurements for each location are reported. This 

information can be useful for reference but will rarely provide a diagnostics 

indication. From there though it might be seen if a measurement is drifting or has 

other types of errors. 

Section 4 shows a polar plot reporting the exhaust temperature difference. The 

difference is calculated as: 

����� = �� − (����) (31) 

Where Ti is the temperature of the single probe and Test is the estimated 

temperature after the KF. 

Section 5 contains a table that summarizes all the diagnostics information. The 

first four columns report the efficiency of the components. The next four columns 

report the alarm level of each component and the last four to indicate the cause 

of the failure. The code is 1 for the fouling, 0 for no failure and 2 for the erosion. 

The last column, that is not appearing below, indicates the exhaust temperature 

spread. 
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Section 6 has one tick box for KF. If ticked it triggers the multiple 

measurements and the measurement filtering shown in Figure 21, if not it works 

on a single measurement.  

Figure 122 Graphical user interface 

1

2
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4

5

6
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Set up the FL for failure quantification and for failure 
classification 

The set up for the failure quantification relies on the deltas from the reference 

conditions. The selection is based on what have been experienced to be the most 

impactful parameters for that specific simulation. There is a set up that is valid for 

the failure quantification (Table 80) and another that is used for the failure 

classification (Table 81). 

Failure quantification

LP 
comp 

HP 
comp 

HP 
turb 

LP 
turb 

LP compressor exhaust pressure Δp2 X X 

LP compressor exhaust temperature ΔT2 X X 

LP compressor efficiency ΔEtaCLP X X X 

HP compressor exhaust pressure Δp3 X 

HP compressor exhaust temperature ΔT3 X X X 

HP compressor efficiency ΔEtaCHP X X X X 

HP turbine exhaust pressure Δp5 

HP turbine exhaust temperature ΔT5 

HP turbine efficiency ΔEtaTHP X X 

HP turbine massflow deterioration ΔmfTHPDeg 

LP turbine exhaust pressure Δp6 

LP turbine exhaust temperature ΔT6 X X X 

LP turbine efficiency ΔEtaTLP X X 

LP turbine mass flow deterioration ΔmfTLPDeg 

Power ΔP 

Table 80 Fuzzy logic failure quantification set up 
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Failure classification
LP 

comp 
foul

HP 
comp 
foul

HP  
turb 
foul

HP  
turb 

erosion

LP   
turb 
foul

LP   
turb 

erosion

LP compressor exhaust pressure Δp2 

LP compressor exhaust temperature ΔT2 X 

LP compressor efficiency ΔEtaCLP X 

HP compressor exhaust pressure Δp3 

HP compressor exhaust temperature ΔT3 X 

HP compressor efficiency ΔEtaCHP X 

HP turbine exhaust pressure Δp5 

HP turbine exhaust temperature ΔT5 X 

HP turbine efficiency ΔEtaTHP X 

HP turbine massflow deterioration ΔmfTHPDeg X 

LP turbine exhaust pressure Δp6 

LP turbine exhaust temperature ΔT6 X 

LP turbine efficiency ΔEtaTLP X 

LP turbine mass flow deterioration ΔmfTLPDeg X 

Power ΔP 

Table 81 Fuzzy logic failure classification set up 


