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Axon radius is a potential biomarker for brain diseases and a crucial tissue

microstructure parameter that determines the speed of action potentials.

Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately

estimating the radius of axons in the human brain is challenging. Most axons in

the brain have a radius below one micrometer, which falls below the sensitivity

limit of dMRI signals even when using the most advanced human MRI scanners.

Therefore, new MRI methods that are sensitive to small axon radii are needed. In

this proof-of-concept investigation, we examine whether a surface-based axonal

relaxation process could mediate a relationship between intra-axonal T2 and T1

times and inner axon radius, as measured using postmortem histology. A unique

in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI

scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting

(i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced

diffusion-T2 dataset was collected at various echo times to evaluate the model

further. The intra-axonal relaxation times were estimated by fitting a diffusion-

relaxation model to the orientation-averaged spherical mean signals. Our analysis

revealed that the proposed surface-based relaxation model effectively explains

the relationship between the estimated relaxation times and the histological axon

radius measured in various corpus callosum regions. Using these histological

values, we developed a novel calibration approach to predict axon radius in other

areas of the corpus callosum. Notably, the predicted radii and those determined

from histological measurements were in close agreement.
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GRAPHICAL ABSTRACT

Surface-based relaxation model to predict axon radius.

Highlights

- Diffusion-relaxation MRI data were acquired using a high b-
value acquisition.

- A diffusion-relaxation model to estimate the intra-axonal T2 and
T1 was proposed.

- The histological inner axon radius modulated the estimated
relaxation times.

- A surface-based relaxation model predicted the axon radius in
the corpus callosum.

- The predicted axon radii agreed with the mean effective
histological radius.

1. Introduction

The speed of action potentials along axons is partly determined
by their radii (Goldstein and Rall, 1974). Axon radius explains
the biggest variance in conduction speed, as demonstrated by
previous studies (Hursh, 1939), with larger axons conducting
faster than those with smaller radii (Waxman and Bennett, 1972;
Costa et al., 2018; Drakesmith et al., 2019). Therefore, accurately
measuring axon radii in vivo is essential for better understanding
the neural mechanisms underlying brain function and their impact
on diseases.

The diffusion Magnetic Resonance Imaging (dMRI) signal is
sensitive to axon radii if strong diffusion encoding gradients (i.e.,
up to 300 mT/m in Connectom scanners (Jones et al., 2018) and
1,500 mT/m in animal preclinical scanners) are used (Assaf et al.,
2004, 2008; Assaf and Basser, 2005; Alexander, 2008; Dyrby et al.,
2013; Duval et al., 2015; De Santis et al., 2016; Veraart et al.,
2020; Barakovic et al., 2021a). However, the main limitation of
this approach is that the dMRI signals from axons with radii
smaller than ∼1–2 µm are practically indistinguishable from each
other, even when the most advanced human Connectom scanners
with ultra-strong (300 mT/m) gradients are employed in the data
acquisition (Nilsson et al., 2017). Today, the challenge is that
the peak of the axon radius distribution per voxel is below one
micrometer in most brain regions, as observed in histology. Hence,

most axon radii are below the lower bound for detection (Edgar
and Griffiths, 2014; Dyrby et al., 2018). For an overview of the
different strategies that have been employed to measure axon radius
with dMRI, the reader is referred to Assaf and Basser (2005),
Assaf et al. (2008, 2013), Alexander et al. (2010, 2019) Dyrby et al.
(2013, 2018), Novikov et al. (2019), Fan et al. (2020), Jelescu et al.
(2020), Veraart et al. (2020), Barakovic et al. (2021a), Pizzolato et al.
(2023).

Theoretical reasons explain the lower sensitivity of dMRI
to the inner radius of smaller axons. The commonly employed
model [i.e., Gaussian phase approximation in the long-pulse limit
(van Gelderen et al., 1994)] predicts an intra-axonal dMRI signal
attenuation that depends on the fourth power of the radius r.
Moreover, since the measured intra-axonal signal per voxel is the
sum of all the individual intra-axonal signals weighted by each
axon’s contribution to the signal (scaling by an extra-factor r2),
larger axons contribute more than smaller axons to the measured
signal. After considering these two factors together, an approximate
expression for the mean “effective” dMRI-based radius reff per
voxel can be derived, which depends on the higher-order moments
of the unknown axon radius distribution. The resulting analytical

expression reff ≈
(〈

r6〉 / 〈r2〉) 1
4 (where 〈〉 denotes the average over

the distribution) demonstrates that the estimate is heavily weighted
by the right-hand tail of the axon radius distribution (Burcaw et al.,
2015; Veraart et al., 2020). Consequently, the estimated mean axon
radius is mainly affected by the bigger axons from the fractions of
axons larger than the lower bound. This explains why estimations
may appear overestimated compared to histology (Alexander et al.,
2010; Dyrby et al., 2018).

Finding another source of MRI contrast sensitive to the
size of axons smaller than the diffusion resolution limit is
essential. Various studies in porous media have demonstrated that
the interaction between the water molecules and the confining
pore surface reduces the observed transverse T2 relaxation
time (Brownstein and Tarr, 1977). This surface-based relaxation
mechanism allows pore size to be estimated (Hurlimann et al.,
1994; Slijkerman and Hofman, 1998; Sørland et al., 2007; Mohnke
and Hughes, 2014; Müller-Petke et al., 2015). Notably, a similar
T2 relaxation model to predict the size of cells was proposed
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previously (Brownstein and Tarr, 1979), and the idea of applying
it to estimate the axon radius was suggested by Kaden and
Alexander (2013). However, there is a lack of validation studies to
demonstrate whether the inner axon radius modulates the intra-
axonal relaxation times. This might be explained by the fact that
approaches to estimating the intra-axonal relaxation times have
only been developed recently (Veraart et al., 2018; McKinnon and
Jensen, 2019; Barakovic et al., 2021b; Tax et al., 2021; Pizzolato et al.,
2022). Furthermore, to our knowledge, no dataset is available that
offers the combined histological information and relaxometry MRI
data from the same sample, which are necessary for the estimation
and comparison of these parameters.

The dMRI signals arising from the intra-axonal space can
be isolated if a sufficiently high b-value is employed (i.e.,
b > 4,000 s/mm2 for in vivo data), which significantly attenuates
the signal from spins experiencing large displacements (Jensen
et al., 2016; McKinnon and Jensen, 2019). As the confining
axonal geometry restricts the self-diffusion motion of spins
inside axons (assuming a slow exchange between the intra- and
extra-axonal spaces), the strongly diffusion-weighted MRI signal
should come from the intra-axonal spins. Thus, it is possible
to fit a diffusion-relaxation model of intra-axonal relaxation
to strongly diffusion-weighted MRI data collected at multiple
diffusion gradient directions and different echo times. This
approach, combined with taking the spherical mean (orientational
average), was employed previously to estimate the mean intra-
axonal T2 time per voxel (McKinnon and Jensen, 2019) and
bundle (Barakovic et al., 2021b), unconfounded by fiber orientation
effects.

This proof of concept study investigates whether the intra-
axonal T2 and T1 relaxation times are related to the inner axon
radius and whether they can be employed to predict the mean
effective radius. To do this, (1) we implemented two acquisition
protocols and measured diffusion-T1-T2 and diffusion-T2 weighted
MRI data from three healthy volunteers, one of them scanned using
both sequences; (2) we employed a diffusion-relaxation model to
enable the estimation of both intra-axonal T2 and T1 relaxation
times by using the spherical mean signals from the acquired data;
(3) we fitted the estimated relaxation times to a surface-based
relaxation model that depends on the histological axon radius;
(4) using histology from some brain regions we calibrated the
surface-based relaxation model to enable predicting axon radius in
other brain regions, and (5) we compared the MRI-based estimated
axonal radii with those obtained from two postmortem histological
human brain datasets in several regions in the midsagittal Corpus
Callosum (CC) cross-section. Additional details are provided at the
end of the next section.

2. Theory

2.1. Surface-based relaxation model

Inspired by the standard surface-based relaxation model used
in porous media (Zimmerman and Brittin, 1957; Brownstein
and Tarr, 1979), we propose the following model described
in Figure 1 and Eqs. (1)–(2). We assume that in the intra-
axonal space, there are two distinct water pools in fast exchange

(Zimmerman and Brittin, 1957): the surface water immediately
adjacent to the axonal membrane, e.g., see Le Bihan (2007), and
the cytoplasmic water (i.e., axoplasm). The T2 and T1 relaxation
times of the surface water are shorter because this water layer is in
a more ordered state (both spatially and orientationally) than pure
water (Halle, 1999; Finney et al., 2004) and the cytoplasmic water,
due to the strong water-tissue interactions (Levy and Onuchic,
2004; Zhang et al., 2007). Moreover, the relaxation times of the
cytoplasmic water are expected to be smaller than those of pure
water and Cerebrospinal fluid because the water molecules in this
pool could interact with cytoskeletal elements and a higher number
of macromolecules (Beaulieu, 2002). The fast exchange assumption
is reasonable if we consider that water molecules, on average, travel
distances much larger than the axon radius for typical diffusion and
echo times, as employed in this study.

According to the general model provided by Zimmerman and
Brittin (1957), the inverse of the observed intra-axonal T2 can be
modeled by the linear combination of the inverse relaxation times
of the surface water and the cytoplasmic water pools, weighted by
their volume fractions. Although the volume of the surface water
layer is much smaller than the total intra-axonal volume, its T2 time
(Ts

2) is much shorter than that of the cytoplasmic water (Tc
2). It thus

could have a non-negligible impact on the observed intra-axonal
(Ta

2 ) time. These assumptions are summarized in the following
model:

1
Ta

2
=

V − Sε
V

1
Tc

2
+

Sε
V

1
Ts

2 (1)

≈
1

Tc
2
+

2ε

r
1

Ts
2

=
1

Tc
2
+

2ρ2

r
,

where ρ2 = ε
/

Ts
2 is the T2 surface relaxivity; S is the surface area

of the axonal membrane; V is the intra-axonal volume; ε is the
thickness of the water layer. Note that when assuming a cylindrical
axonal geometry, as commonly done in dMRI, the surface-to-
volume ratio depends on the inner axon radius, S/V = 2/r. An
equivalent expression was obtained for the intra-axonal T1 time.

1
Ta

1
≈

1
Tc

1
+

2ρ1

r
, (2)

Where ρ1 = ε
/

Ts
1 is the longitudinal surface relaxivity.

2.2. Axon radius estimation from
intra-axonal relaxation times

By inverting Eqs. (1) or (2) it is possible to predict the inner
axon radius from the estimated intra-axonal Ta

2 and Ta
1 relaxation

times, respectively.

r ≈
2ρ2

1
Ta

2
−

1
Tc

2

,

r ≈
2ρ1

1
Ta

1
−

1
Tc

1

.
(3)

However, this approach requires knowing Tc
2 and ρ2 or Tc

1 and
ρ1 in advance. As these parameters are unknown and cannot be
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FIGURE 1

Transmission electron micrograph of a myelinated axon (adapted) illustrating the employed relaxation model for the intra-axonal space, composed
of two pools (arbitrarily colored in green and red for illustrative purposes) in fast exchange (Zimmerman and Brittin, 1957). This model is equivalent
to the Brownstein and Tarr (1977) model in the fast diffusion limit. The structured water (Le Bihan, 2007) adjacent to the inner axon surface (red) has
a shorter T2 than the cytoplasmic water (green). As the cytoplasmic water (i.e., axoplasm) interacts with large proteins, organelles, and cytoskeletal
elements (LoPachin et al., 1991; Beaulieu, 2002), its T2 is shorter than pure water. An equivalent model was assumed for the T1 relaxation. [This
transmission electron micrograph was deposited into the public domain by the Electron Microscopy Facility at Trinity College]. This is a file from the
Wikimedia Commons, a collection of freely usable media files, under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation (Source: https://en.wikipedia.org/wiki/File:Myelinated_neuron.jpg). This file is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license (CC BY-SA 3.0). Any copy and remix of the original file must be distributed under the
same or compatible license as the original.

estimated for each brain voxel without additional data, here we
propose a histologically-informed calibration approach to calculate
them.

The calibration is based on assuming that any dependence of
Tc

2 or Tc
1 on the axon radius, owing to potential changes in the

intra-axonal structure with the axon size (e.g., density of proteins,
organelles, and cytoskeletal elements), is weak and can be neglected.
That is, the dependence of Ta

2 and Ta
1 on the axon radius is

dominated by the surface-to-volume ratio terms in Eqs. (1) and
(2). Therefore, we assume that Tc

2, ρ2, Tc
1 and ρ1 are constant

across axons with different sizes. Nevertheless, we noted that the
calibration process is equally helpful in predicting axon radius
when Tc

2 or Tc
1 linearly varies with the radius. In that case, the

linear models [Eqs. (1) and (2)] can be rewritten in terms of
two alternative parameters. For more details, see the discussion
subsection “Is the cytoplasmic T2 constant?”

In this study, we collected in vivo diffusion-T1-T2 MRI data in
a human brain to estimate Ta

2 and Ta
1 . We employed a reduced

diffusion-T2 relaxation sequence to validate our model further by
scanning the same subject and two additional healthy volunteers,
which allowed us to estimate Ta

2 . Subsequently, we used histological
information from four regions of interest (ROIs) located in the CC
of a postmortem human brain to measure the mean histological
axon radii. The mean intra-axonal relaxation times and histological
axonal radii estimated in the four ROIs were combined to estimate
Tc

2 and ρ2, and Tc
1 and ρ1 via linear regression (i.e., calibration step)

from Eqs. (1) and (2). Then, using the calibrated parameters, we
predicted axon radius in another eleven CC ROIs for each scanned
subject via Eq. (3). Finally, we employed a second histological
dataset containing data from nine postmortem human brains to
further validate our results. All the details are provided in the
“Methods” section.

3. Methods

3.1. Intra-axonal diffusion-relaxation
models

As in McKinnon and Jensen (2019), we assume that for
b = 6,000 s/mm2 the in vivo dMRI signal comes from the intra-
axonal space. Thus, the diffusion-T1-T2 relaxation model for the
measured signal M for a given b, diffusion gradient unit vector ĝ,
echo time (TE), repetition time (TR), and inversion time (TI) is

M(b, ĝ, TE, TI) = kPDfaMa(b, ĝ) exp
(
−

TE
Ta

2

)
(4)∣∣∣∣1− 2 exp

(
−

TI
Ta

1

)
+ exp

(
−

TR
Ta

1

)∣∣∣∣+ η,

where k is a scalar that depends on the MRI machine, pulse
sequence, image-reconstruction algorithm, digital converter, etc.;
PD is the proton density; fa is the intra-axonal water volume
fraction; Ma(b, ĝ) denotes the orientation-dependent diffusion-
weighted signal from the intra-axonal compartment; η is the
experimental noise, assumed to be additive; |x| denotes the absolute
value of x; Ta

2 and Ta
1 are the intra-axonal relaxation times.

Following the approach of Edén (2003), Lasiè et al. (2014),
Kaden et al. (2016a,b), Eq. (4) can be simplified by computing the
orientation-averaged spherical mean signal M̄ as:

M̄(b, TE, TI) ≈ K exp
(
−

TE
Ta

2

)
(5)∣∣∣∣1− 2 exp

(
−

TI
Ta

1

)
+ exp

(
−

TR
Ta

1

)∣∣∣∣ ,
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where Ta
2 and Ta

1 are the parameters to be estimated, along with
the constant K (per voxel) that is proportional to the intra-axonal
water volume fraction (i.e., K = kPDfaM̄a(b, ĝ)); it also depends on
the intra-axonal diffusivities via M̄a .

It is important to note that in Eqs. (4)-(5), the T1 relaxation
terms follow the standard relaxation model (Bydder et al., 1998),
which assumes an ideal inversion pulse (Pykett et al., 1983; Barral
et al., 2010). Other acquisition sequences may require different
models. For a comprehensive review of alternative relaxometry
sequences and models, please refer to Stikov et al. (2015).

The diffusion-relaxation model in Eq. (5) is a more general
version of the model proposed by McKinnon and Jensen (2019)
for an inversion recovery sequence incorporating T1 relaxation.
The diffusion-T2 model for dMRI data collected at multiple TEs
(McKinnon and Jensen, 2019) without considering T1 effects is,

M̄(b, TE, TI) ≈ K exp
(
−

TE
Ta

2

)
. (6)

3.2. MRI data acquisition and
preprocessing

Human brain MRI data were acquired from three healthy
volunteers, and one of them was scanned twice on a Siemens
Connectom 3T system with 300 mT/m diffusion gradients
(Cardiff University Brain Research Centre, Wales, UK). The ethics
committee approved the study, and the participant provided
written informed consent.

Two diffusion-relaxation protocols were implemented.
A longer diffusion-T1-T2-weighted imaging sequence was
designed to obtain independent estimates of the axon radius from
the first subject’s intra-axonal T1 and T2 times (male, 28 years
old). A reduced diffusion-T2 protocol was employed to scan three
subjects (age-range = 28–39 years, mean-age = 32.3 ± 4.8 years,
males), including the first subject that was also scanned with the
longer sequence. Accordingly, for the second sequence, the axon
radii were estimated from the intra-axonal T2 times.

The diffusion-T1-T2 relaxation sequence comprised four
images with b = 0 s/mm2 and 48 diffusion directions at
b = 6,000 s/mm2 (diffusion gradient, 275 mT/m; diffusion times
1/δ = 22/8 ms) for each of the following nine (TE, TI) combinations
(in ms): (80, 200), (110, 200), (110, 331), (150, 200), (80, 906), (110,
906), (110, 1,500), (150, 906), (150, 1,500). The TIs were chosen
empirically from relatively small to large values to obtain maps with
different visual contrasts without nullifying the WM signal. The
lowest TE was set to minimize the contribution of the myelin water
(Mackay et al., 1994) to the measured signal, and the largest TE was
chosen as a trade-off between image contrast and noise. For each
(TE, TI) pair, one additional image with b = 0 s/mm2 and opposite
phase encoding direction was acquired to correct susceptibility
distortions (Andersson et al., 2003; Andersson and Sotiropoulos,
2016). Figure 2 shows the nine pairs of TEs and TIs. The TR was
5,000 ms, and the voxel size was 2.5 × 2.5 × 3.5 mm3. Ten slices
were acquired with matrix size and field of view of 88 × 88 and
220 × 220 mm2, respectively. The acceleration factor was 2, and
the total acquisition time was 42 min.

The diffusion-T2 protocol employed a dMRI sequence that
was repeated by changing the TE, using the following four values
TEs = (73, 93, 118, and 150) ms with TR = 4,100 ms. The

other sequence parameters (i.e., acceleration factor, diffusion times,
b-value, diffusion directions, number of b0s images, diffusion
gradient strength, matrix size, and field of view) were equal to those
employed in the previous diffusion-T1-T2 sequence. The number
of slices was 46, and the voxel size was 2.5 × 2.5 × 2.5 mm3.
The acquisition time per TE was 5 min, and the total scan
time was 20 min.

Additionally, a structural T1–weighted (T1w) image was
collected for each subject using a 3D MPRAGE sequence with the
following parameters: TR = 2,300 ms, TE = 2 ms, TI = 857 ms,
voxel size = 1 mm isotropic, and flip angle = 9◦, for the purposes
of spatial normalization.

The nine diffusion-T1-T2 4D volumes with different TEs and
TIs, and the four diffusion-T2 4D volumes with different TEs
were preprocessed separately in the following order: (1) noise
level estimation and removal using the MP-PCA method (Veraart
et al., 2016) by using the matrix centering and patch-based
aggregation options (Manjon et al., 2013), as implemented in dipy
(Garyfallidis et al., 2014)1; (2) attenuation of the Rician-noise
dependent bias in the signal by implementing the postprocessing
correction scheme proposed by Gudbjartsson and Patz (1995) and
(3) motion, geometric distortions, and eddy current corrections
using the “topup” and “eddy” tools included in FSL (Andersson
et al., 2003; Andersson and Sotiropoulos, 2016).

3.3. Estimation of the intra-axonal
relaxation times

Diffusion-T1-T2 model: after computing the spherical mean
signal for each pair of the preprocessed diffusion-T1-T2 datasets
with different TEs and TIs (see Figure 2), the intra-axonal
relaxation times were estimated by fitting the diffusion-relaxation
model in Eq. (5) using the “L-BFGS-B” method for bound
constrained minimization included in the Scipy python library
(Virtanen et al., 2020),2 with the following bounds: 0 ≤ K <∞,
40 ≤ Ta

2 (ms) ≤ 2000, and 300 ≤ Ta
1 (ms) ≤ 5000. The bounds for

the intra-axonal relaxation times were chosen to be higher and
lower than those expected for the myelin water and Cerebrospinal
fluid (Mackay et al., 1994; Labadie et al., 2014), respectively.

Diffusion-T2 model: the estimation was performed by fitting
the diffusion-relaxation model in Eq. (6) to the spherical mean
signals estimated from the diffusion-T2 data, using the L-BFGS-B
method (Virtanen et al., 2020) with the following bounds: 0 ≤ K <

∞, 40 ≤ Ta
2 (ms) ≤ 2000.

3.4. Histological samples

Two histological datasets were employed. The first one
contains two histological samples measured on the same subject.
The first sample, which we call “Histology1,” was measured
and reported by Caminiti et al. (2009). For completeness, we
provide a summary of the histological procedures. Axon radii
were measured in four regions of interest (i.e., ROI2, ROI5,

1 https://dipy.org/

2 https://docs.scipy.org
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FIGURE 2

Orientation-averaged spherical mean signals for each pair of TE and TI (TE, TI) in ms. These images were used to fit the diffusion-relaxation model in
Eq. (5).

ROI8, and ROI10) in the midsagittal CC cross-section of a
postmortem human brain (female, 63 years old). These ROIs
include axons connecting the prefrontal, motor, parietal and
visual cortices, respectively. All analyses were performed with
Neurolucida 7 software (MBF Biosciences) and a digital camera-
mounted Olympus BX51 microscope. Three sagittal blocks of the
CC were removed from the brain. The sample was immersion-
fixed in 4% (w/vol) paraformaldehyde in phosphate-buffered saline
solution within 27–30 h of death, cryoprotected, cut frozen, and
stained for myelin. Axons were sampled within 112 × 87 µm2

frames divided into 25-µm squares. The axonal profiles were
chosen for measurement if they presented a dark complete or
nearly complete myelin ring with a clear center. Longitudinally
cut axons were excluded, and the radius of slightly obliquely cut
axons (which appeared as ellipses) was approximated to its smallest
radius. Since fixation artifacts were frequent, the sampling was
restricted to profiles that could be followed through the thickness of
the whole section. Limitations of the optical microscopy prevented
measurement of axons radius smaller than ∼0.17 µm. A different
number of axons were measured per ROI, ranging from 1,178
(ROI10) to 9,605 (ROI2) axons. No correction for shrinkage effects
was applied to the measured radii because accurate shrinkage
estimates were unavailable. For more technical details, see Caminiti
et al. (2009). The second sample, which we call “Histology2,”
was measured by the same team (Prof. Giorgio Innocenti) using
the same material and following the same sampling procedure.

The main difference was that this time, eleven ROIs (i.e., ROI0-
ROI10) encompassing the whole midsagittal CC cross-section were
analyzed, and the number of measured axons per ROI was smaller:
from 153 (ROI5) to 720 (ROI1) axons. It is important to note that
the spatial locations of ROI2, ROI5, ROI8, and ROI10 are the same
in both histological samples. However, the sampling procedure
employed in the Histology2 sample was repeated without including
the axons measured in the Histology1 sample. The anatomical
location of the ROIs in both histological samples and the number
of measured axons per ROI are displayed in Figure 3.

The second histological dataset, which we call “Histology3,”
was reported by Wegiel et al. (2018). This electron microscopic
study of the CC included nine control subjects (age-range = 4–
52 years old; mean-age = 26.3 ± 15.8 years; postmortem-
interval = 15 ± 6.6 h; six males and three females) with
well-preserved CC ultrastructure. Each brain was fixed in 10%
buffered formalin for at least 3 months, washed for 24 h in
water to remove fixer, dehydrated, embedded in celloidin, and cut
into 200-µm-thick sections. Samples were oriented to cut axons
perpendicularly to the long axon axis and stained with a 2%
solution of p-phenylenediamine. Each section was stained with
uranyl acetate and photographed at a magnification of 15,000x
using a Hitachi H7500 transmission electron microscope with an
Advanced Microscopy Technique (AMT) Image Capture Engine
(Danvers, MA). Axons from five different segments (i.e., I, II, III,
IV, and V) of the midsagittal CC cross-sections of the nine control
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FIGURE 3

Anatomical location of the two independent histological samples of the first histological dataset (Histology1 and Histology2) taken from eleven
regions of interest (ROIs) in the Corpus Callosum. The number of studied axons per sample and ROI are reported for each case. The second sample
(Histology2) consisted of axons not included in the first sample (Histology1).

subjects were measured. The study was limited to myelinated
axons, which were better preserved than non-myelinated axons.
For each case, 12 electron micrographs were used, and background
correction was applied to reduce the risk of distortions during
image analysis. Axons were manually delineated, and the Image J
software was employed to obtain the axon radius (Feret’s radius,
µm) and area (µm2). No correction for shrinkage effects to
the measured radii was reported. The total number of axons
measured in the nine control subjects was 15,085 (1,676 per subject,
and 335 per segment, on average). For additional details, see
Wegiel et al. (2018).

We note that the CC segments employed in both histological
datasets (i.e., Histology1-Histology2 and Histology3) are related.
Segment I (Histology3) approximately corresponds to the union
of ROI0, ROI1, and ROI2 (Histology1-Histology2); segment II is
located around ROI3 and ROI4; the union of segments III and IV is
similar to the union of ROI5, ROI6, and RO7; and segment V covers
ROI8, ROI9 and ROI10. These relationships were used to compare

the histological estimates from both studies and the MRI-based
radius estimates.

3.5. Estimation of the mean histological
effective radius

For each ROI of each sample, we estimated the mean
histological axon radius. However, as the mean axon radius
estimated from MRI generally differs from the mean histological
radius (Burcaw et al., 2015; Veraart et al., 2020), we derived
an approximate expression for the mean effective radius for our
diffusion-relaxation models, finding that reff ≈

〈
r2〉 / 〈r〉, which

differs from the previous result reported in Burcaw et al. (2015),
Veraart et al. (2020) (The complete derivation is reported in the
Appendix section). This key result shows that the mean effective
radius derived from our model is not heavily weighted by the tail
of the axon radius distribution as that in Burcaw et al. (2015),
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Veraart et al. (2020). Consequently, we used this expression to
estimate the mean effective histological axon radius for each CC
ROI in both samples (see Figure 3), which was compared with the
MRI-predicted mean radius.

In order to estimate the effective radius, knowing both the mean
histological axon radius and the mean squared radius is required.
For the Histology1 and Hostology2 samples, these values were
calculated from the whole radius distribution per ROI. We don’t
have access to the radius distributions of the Histology3 sample.
Fortunately, in that study, the mean histological radius and the
mean axon area were reported (Wegiel et al., 2018). We used the
mean axon area to estimate the mean squared radius assuming a
circular geometry.

3.6. Spatial registration

The histologist that measured the axons in the Histology2
sample drew the locations of the eleven histological ROIs on the
structural T1w image of the subject scanned using the diffusion-T1-
T2 sequence, which we used to create a cluster mask. Therefore, we
used that T1w image as a reference to spatially register the estimated
parameter maps for all the subjects (i.e., intra-axonal relaxation
times and K maps). The same affine registration matrix and non-
linear deformation field were applied to each subject’s estimated
parameter map. These registration parameters were determined
by non-linearly registering the estimated K map (whose visual
appearance is similar to a T1w image, e.g., see Figure 4 in the
results section) to the reference T1w image. The registration was
carried out using the state-of-the-art (Klein et al., 2009) Symmetric
Normalization (SyN) method (Avants et al., 2008) implemented in
the ANTs software (ANTsPy).3 Before the registration, we corrected
the K map and T1w image for spatial intensity variations due to
B1-Radiofrequency field inhomogeneities using FSL (Smith et al.,
2004). All the registered images were visually inspected to verify
the accuracy of the normalization procedure. All the subsequent
analyses employed the registered maps. Furthermore, the ROIs
were eroded to remove peripheral voxels that do not correspond
to the corpus callosum and are affected by partial volume effects
with surrounding tissue and CSF.

The number of voxels included in each ROI ranges from
170 (ROI0) to 604 (ROI1) in the cluster mask defined in the
reference T1w image. The equivalent number of voxels in the
native space of the diffusion-T1-T2 MRI data with a lower
spatial resolution (obtained after applying the resulting non-
linear inverse registration to the cluster mask) ranges from 10
(ROI10) to 20 (ROI1).

3.7. Calibration step to predict axon radii

The first sample of the first histological dataset (Histology1)
was employed to estimate the unknown parameters of the surface-
based relaxation models in Eqs. (1)-(2). These equations were fitted
independently using the mean intra-axonal T2 and T1 times and the

3 https://github.com/ANTsX/ANTsPy

mean effective histological radii estimated in the same four ROIs
of the Histology1 sample. The fitting allowed us to determine the
cytoplasmic Tc

2 and Tc
1 times and the surface relaxivity coefficients

ρ2 and ρ1, which best explain the data in these regions. This was
done by fitting the linear equation y = mx+ n, where y = 1

/
Tc

2
and x = 2/r for values from the four CC ROIs. Note that these
parameters can be estimated as ρ2 = m and Tc

2 = 1/n. A similar
independent linear model was used to fit the T1 data for estimating
ρ1 and Tc

1 .
Subsequently, we predicted the mean effective axon radii, using

Eq. (3), in the eleven CC ROIs of the second sample of the first
dataset (Histology2) and the CC segments defined in the second
histological dataset (Histology3). The forecasted and histological
axon radii were compared using a linear regression model. The
linear relationship among the parameters was quantified and tested
by the slope and intercept of the fitted regression line and the
Pearson correlation coefficient. It is important to mention that
when there are two variables, such as in our study, the p-value of
the slope of the regression line and the p-value of the correlation
coefficient are identical. Therefore, to avoid redundancy, we
have reported only the p-values of the slopes in our findings.
In the Results section, we present the raw p-values without
applying the correction for multiple comparisons. However, in the
Discussion section, we mention the analyses that have survived the
Bonferroni correction.

4. Results

4.1. diffusion-T1-T2 and
Histology1-Histology2 data

Figure 4 shows the Ta
2 , Ta

1 , and K maps estimated from the
in vivo diffusion-T1-T2 MRI data for different brain slices. The
estimated relaxation times are within the expected range for white
matter. The values in the whole medial part of the CC were
distributed in the following ranges: 70 < Ta

2 (ms) < 130, 650 <

Ta
1 (ms) < 760.

The results of the calibration step are depicted in Figure 5.
It shows the regression line fitting the inverse of the mean intra-
axonal T2 per ROI to the inverse of the mean histological radius
in the four ROIs of the Histology1 sample (for more details, see
Figure 1), employing the surface-based relaxation model in Eq. (1),
as described in the subsection “Calibration step to predict axon
radii.” The correlation coefficient between both variables was 0.97,
and the p-value of the slope (i.e., for a hypothesis test whose null
hypothesis is that the slope is zero) was p = 0.03. We found the
calibrated parameters Tc

2 ≈ 126.97 ms and ρ2 ≈ 1.16nm/ms from
the estimated coefficients.

In Figure 6, we compare the effective histological radii in the
eleven ROIs of the Histology2 sample and those predicted using
the intra-axonal T2 times estimated from the in vivo diffusion-T1-
T2 MRI data [Eq. (3)]. The intercept and slope of the regression line
were 0.026 µm and 1.055, respectively; the correlation coefficient
was 0.676, and the p-value for the slope and the correlation was
p = 0.022. To further investigate the data, we analyzed a subset of
seven ROIs, excluding the four ROIs in the same locations as those
in the Histology1 sample. We obtained a slightly higher intercept
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FIGURE 4

Axial slices of the Ta2, Ta1 , and K maps estimated from the in vivo diffusion-T1-T2 relaxation MRI data in native space (i.e., before registering the images
to the reference T1w image). Note that the intra-axonal relaxation times are only meaningful in the white matter because the assumptions
underlying the estimation method are invalid in gray matter or CSF. The values of K (in arbitrary units) are higher in the white matter because this
parameter is proportional to the intra-axonal volume. We highlight two regions with different intra-axonal relaxation times: the genu of the Corpus
Callosum and the corticospinal tract (CST).

of 0.12 µm and a smaller slope of 0.89 compared to the analysis
conducted with eleven ROIs. The resulting correlation coefficient
decreased to 0.557, and the p-value for the slope was not significant,
p = 0.19.

Figures 7, 8 show results from similar experiments using the
intra-axonal T1. Figure 7 depicts the linear fitting of the inverse
of the mean intra-axonal T1 per ROI estimated from in vivo
diffusion-T1-T2 MRI data to the inverse of the mean effective
radius corresponding to the Histology1 sample [Eq. (2)]. The
correlation coefficient between both variables was 0.755 lower
than that previously found for the intra-axonal T2 in Figure 5,
and the p-value of the slope and the correlation did not reach
statistical significance, p = 0.25. From the estimated coefficients,
we found the calibrated parameters to be Tc

1 ≈ 870 ms and ρ1 ≈

0.087 nm/ms.
The linear relationship between the effective mean axon radius

estimated in the Histology2 sample and the radius predicted by
using the intra-axonal T1 times [Eq. (3)] is shown in Figure 8. The
intercept and slope of the regression line were 0.064 µm and 1.002,
respectively. The correlation coefficient was 0.628, and the slope
was significant, p = 0.039. When analyzing the subset of seven ROIs,
excluding the four ROIs from the Histology1 sample, we obtained a
new slope of 0.962 (p = 0.16), which was not statistically significant.
The intercept was 0.065 µm, and the correlation coefficient was
0.598.

Table 1 reports the mean histological effective axon radius per
ROI and the predicted values from the intra-axonal T2 and T1

times, respectively. The predicted axon radius from both intra-
axonal T2 and T1 times were very similar to each other. A linear
fitting between both estimates revealed a slope close to one

(0.947) and an intercept close to zero (0.041 µm). The slope was
significantly non-zero (p = 4e–5), and the correlation coefficient
was 0.927.

4.2. Diffusion-T2 and
Histology1-Histology2-Histology3 data

We complement the results presented in the previous section
by reporting the predicted radii for the subjects scanned with
the diffusion-T2 MRI sequence and by including the Histology3
dataset. Notably, the parameters Tc

2 and ρ2 were not recalibrated
for these subjects; instead, we used the values estimated in the
previous section.

The estimated intra-axonal T2 values in the whole medial part
of the CC for the three subjects were distributed in the following
ranges 80–130 ms, 90–125 ms, and 85–115 ms, respectively.

In Figure 9, the predicted mean effective radius, derived from
the intra-axonal T2 times of the three subjects, is presented for all
the CC ROIs. The figure also depicts the mean histological effective
radius for the three histological samples (Histology1, Histology2,
and Histology3).

To assess the validity of the calibrated parameters, which
were estimated from the subject scanned with the diffusion-T1-T2
sequence, for the subjects scanned with the diffusion-T2 sequence,
we repeated the calibration process using the mean intra-axonal
T2 times estimated for the three subjects and the Histology1
sample as a reference, as before. The recalibrated parameters were
remarkably similar to those obtained previously: Tc

2 ≈ 127.17 ms
and ρ2 ≈ 1.13nm/ms.
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FIGURE 5

Linear fitting of the inverse of the intra-axonal T2 times (y-axis) estimated from the in vivo diffusion-T1-T2 MRI data to the inverse of the inner axon
radius (x-axis) measured from the first histological sample (Histology1) of the first histological dataset. The scatter plot depicts the mean values
computed for all the voxels inside four corpus callosum (CC) regions of interest, corresponding to ROI2, ROI5, ROI8, and ROI10 in the Histology1
sample. The number of axons sampled for each CC ROI is displayed in the legend. The intercept and slope of the regression line were 0.0079 ms−1

and 0.00116, respectively. The slope of the regression line was significantly different from zero (p = 0.030).

We compared the T2-based predicted radii for the subject
that underwent two scans, using both diffusion-relaxation MRI
sequences, which values are reported in Figure 9 and Table 1 (as
Subject 3). The linear fitting between both estimates produced a
statistically significant regression line with a slope close to one
(0.993, p < 0.001) and an intercept close to zero (−0.029 µm). The
correlation coefficient between both estimates was 0.884.

Finally, we employed the calibrated model to predict the axon
radius across the whole WM. Axial and sagittal slices of the voxel-
wise T2-based inner axon radius estimated for all the subjects are
shown in Figure 10. The maps are approximately symmetrical, the
spatial variability of the estimated radius is apparent in both slices,
and all subjects show a similar pattern of small and big axons in the
same anatomical regions.

5. Discussion

This proof-of-concept study shows that (1) the intra-axonal
T2 and T1 relaxation times are highly modulated by the axon
radius (see Figures 5, 7), as measured from histological data (see
Figure 3), (2) a simple surface-based relaxation model can explain
this dependence (see Figure 1), and (3) the intra-axonal relaxation

times may also be sensitive to the smallest axons. Indeed, we did
not observe a clear overestimation bias in the estimated axon radius
(see Figures 6, 8, 9) in comparison to the histological values, as
reported in previous dMRI studies (Assaf et al., 2008; Alexander
et al., 2010; Dyrby et al., 2013; Horowitz et al., 2015) where only the
largest radii might have been detected. This result suggests that our
new approach may also be sensitive to differences in axon radius
below the “diffusion resolution limit” of ∼1–2 µm. One possible
explanation for this finding is that the intra-axonal T2 times are not
influenced by the strength of the diffusion gradients, as opposed
to the intra-axonal radial diffusivities used to estimate axon radii in
dMRI. Moreover, we found that the effective mean radius estimated
by our approach, i.e., reff ≈

〈
r2〉 / 〈r〉, produces much smaller radii

than those from diffusion models heavily weighted by the tail of

the axon radius distribution, i.e., reff ≈
(〈

r6〉 / 〈r2〉) 1
4 (Burcaw et al.,

2015; Veraart et al., 2020). This important result suggests that,
from a modeling point of view, the employed diffusion-relaxation
model may be more valuable than previous pure dMRI models
for estimating axonal radii. The predicted mean effective radius
obtained from the intra-axonal T2 and T1 times fell within a
narrow range of 0.52–1.13 µm and 0.51–1.12 µm, respectively,
which closely matched the range of histological axon radii (0.57–
0.95 µm). The smallest predicted effective radii were observed in
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FIGURE 6

Linear fitting of the effective histological radius estimated from the second histological sample (Histology2) of the first histological dataset to the
predicted radius from the intra-axonal T2 times, calculated from the in vivo diffusion-T1-T2 MRI data. The scatter plot depicts the mean values
computed for all the voxels inside the eleven corpus callosum (CC) regions, corresponding to ROI0-ROI10. The number of axons sampled for each
CC ROI is displayed in the legend. The slope of the regression line was significantly different from zero (p = 0.022).

ROI1, ROI0, and ROI2, while the largest radii were found in ROI6
and ROI5, followed by ROI4, ROI9 and ROI10 (refer to Table 1).
Nevertheless, we cannot rule out the possibility that the calibration
step, informed by the histological values, may have reduced any
potential overestimation effect.

Inspecting the estimated Ta
2 and Ta

1 relaxation maps (see
Figure 4), we notice that both relaxation times tend to be smaller
in the genu and splenium of the CC than in the corticospinal
tract (connecting the motor cortex to the spinal cord). Although
these values could be affected by fiber orientation effects with
respect to the B0 field (see the subsection “Orientation dependence
on relaxation times” in the Appendix), the corticospinal tract is
characterized by axons with larger inner radius (Aboitiz et al., 1992;
Innocenti et al., 2014; Barakovic et al., 2021a). This observation
agrees with multi-echo T2 relaxometry studies showing that the
intra- and extra-axonal T2 times (and the myelin content) in the
corticospinal tract are larger than in the CC, e.g., see Yu et al.
(2020), Canales-Rodríguez et al. (2021a,b,c). A consistent trend was
observed in the T2-based predicted axon radii for all three subjects,
as shown in Figure 10. The voxel-wise maps in Figure 10 and
the ROI-based estimates in Figure 9 agree with previous estimates
derived from dMRI data acquired using much higher b-values
(Veraart et al., 2021).

In agreement with our results, a previous multi-echo T2

relaxometry study found a positive correlation between axon radius
and T2 (including both the intra- and extra-axonal compartments)
in six samples of an excised and fixed rat spinal cord (Dula et al.,
2010). Moreover, two previous experimental studies investigated
the microstructural correlates of T1 in white matter (Hofer et al.,
2015; Harkins et al., 2016). In line with our findings, a significant
correlation between 1/T1 and axon radius was reported by Harkins
et al. (2016) in white matter tracts of a rat spinal cord. Similarly,
the analysis performed by Hofer et al. (2015) found a tendency for
the lowest T1 in the genu of the human CC (composed of densely
packed smaller axons) and the highest T1 in the somatomotor
region (dominated by fibers with large radii). In those studies,
however, the estimated relaxation times characterize the relaxation
process in the intra- and extra-axonal compartments combined. In
contrast, we report a more specific relationship by analyzing the
intra-axonal relaxation times associated with the inner axon radius.

A multi-gradient-echo MRI model was proposed to estimate
axon density based on the susceptibility-driven non-monotonic
time-dependent MRI signal decay (Nunes et al., 2017). They
employed a simple (phenomenological) general-linear model
to predict the average axonal diameters using four modeled
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FIGURE 7

Linear fitting of the inverse of the intra-axonal T1 times (y-axis) estimated from the in vivo diffusion-T1-T2 MRI data to the inverse of the inner axon
radius (x-axis), measured from the first histological sample (Histology1) of the first histological dataset. The scatter plot depicts the mean values
computed for all the voxels inside four corpus callosum (CC) regions, corresponding to ROI2, ROI5, ROI8, and ROI10. The number of axons sampled
for each CC ROI is displayed in the legend. The intercept and slope of the regression line were 0.0011 and 0.000087. The p-value for the slope was
not statistically significant (p = 0.23).

parameters, including the T2 relaxation times of the intra- and
extra-axonal compartments.

5.1. Impact on previous and future
studies

Our study has important implications for previous and future
dMRI studies of white matter microstructure. Previous studies,
such as those by Assaf et al. (2008), Alexander et al. (2010),
Zhang et al. (2011), Dyrby et al. (2013), Xu et al. (2014),
Daducci et al. (2015), Horowitz et al. (2015), Huang et al. (2015),
Benjamini et al. (2016), Drobnjak et al. (2016), Sepehrband et al.
(2016b), Romascano et al. (2020), Harkins et al. (2021), Herrera
et al. (2022), estimated axon radius without considering any T2
dependence, assuming the same T2 for all axons and intra- and
extra-axonal water compartments. This simplification may affect
the estimation of the intra-axonal diffusivities from which the axon
radii are derived. Alternatively, this issue could be attenuated by
using sufficiently high b-values, as shown in studies by Veraart
et al. (2020), Pizzolato et al. (2022), which helps eliminate the
contribution from the extra-axonal signal. However, this may be
insufficient in voxels with a broad distribution of intra-axonal T2

times. These multi-compartment models should be extended to
include T2 dependence, as discussed in studies by Veraart et al.
(2018), Lampinen et al. (2019), Tax et al. (2021). Recently, (Ning
et al., 2022) demonstrated that more accurate estimates of neurite
size could be obtained by investigating the coupling between
relaxation rate and diffusivity using multi-TE diffusion-relaxation
MRI data. For further discussion on this issue, please refer to
the Appendix subsection “Is the intra-axonal relaxation process
mono-exponential and time-independent?”

5.2. Underlying assumptions and
confounding factors

The proposed diffusion-relaxation model specifically applies to
WM regions composed of myelinated axons, where the exchange
of water molecules and other macromolecules and elements (such
as iron/ferritin) between the intra- and extra-axonal spaces is
negligible. In the human brain’s CC, for example, more than 95%
of axons in most regions are myelinated (Aboitiz et al., 1992).
While the non-myelinated portions of the axon (i.e., nodes of
Ranvier) contain a high density of voltage-gated ion channels
that facilitate ion passage across the axonal membrane, including
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FIGURE 8

Linear fitting of the effective histological radius determined in the second histological sample (Histology2) of the first histological dataset to the
predicted radius from the intra-axonal T1 times estimated from the in vivo diffusion-T1-T2 MRI data. The scatter plot depicts the mean values
computed for all the voxels inside the eleven corpus callosum (CC) regions, corresponding to ROI0-ROI10 in the Histology2 sample. The number of
axons sampled for each CC ROI is displayed in the legend. The slope of the regression line was significantly different from zero (p = 0.039).

K + and Na + , which is associated with a concomitant water
flux (Badaut et al., 2002), the myelinated portions of the axon
(i.e., internodes) are not exposed to the extracellular environment.

TABLE 1 Mean effective radius (in µm) for each region of interest (ROI) in
the corpus callosum.

ROI Histology Ta2 Ta1
ROI0 0.632 0.515 0.571

ROI1 0.777 0.533 0.511

ROI2 0.592 0.634 0.547

ROI3 0.638 0.723 0.616

ROI4 0.759 0.789 0.844

ROI5 0.855 1.069 1.047

ROI6 0.953 1.129 1.123

ROI7 0.633 0.750 0.791

ROI8 0.572 0.673 0.832

ROI9 0.583 0.836 0.782

ROI10 0.741 0.803 0.794

The anatomical location of each ROI is shown in Figure 3. The second row lists the radii
corresponding to the Histology2 sample. The third and four rows report the predicted
axon radii from the intra-axonal T2 and T1 times, respectively, estimated from the in vivo
diffusion-T1-T2 MRI data.

Although the axonal membrane in the nodes of Ranvier is
semipermeable to small diffusing molecules, such as water, the
internodes’ length is significantly greater [∼100 times the outer
axon diameter (Hursh, 1939; Rushton, 1951)] than the nodes of
Ranvier [∼1 µm (Arancibia-Cárcamo et al., 2017)]. As a result,
most multi-compartment T2 (Lancaster et al., 2003; Deoni et al.,
2013) and “standard” dMRI models [see (Novikov et al., 2019) for a
review] assume that the measured MRI signal is not significantly
affected by the inter-compartmental molecular exchange in WM
regions composed of myelinated axons.

Therefore, it is important to note that our model is unsuitable
for GM or WM regions affected by demyelination processes, such as
in Multiple Sclerosis, or any pathological condition with an increase
in intra-axonal iron. These conditions can significantly reduce
intra-axonal relaxation times and the estimated radii, rendering
our model invalid. However, it is worth noting that we use long
TEs in our model. If the intra-axonal T2 time of a given axon is
significantly reduced (e.g., below 20–40 ms) due to external factors,
the contribution of this axon to the overall voxel-wise measured
signal will be greatly diminished.

However, it is interesting that our calibration approach could
also be extended to cases where water exchange between intra-
and extra-axonal spaces is non-negligible, provided the exchange
is similar across axons with different radii. In such cases, the effect
of the exchange on the observed intra-axonal relaxation times can
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FIGURE 9

Predicted axon radius from intra-axonal T2 times estimated from the in vivo diffusion-T2 MRI data for the eleven ROIs (ROI0-ROI10) of the
Histology2 sample. Additionally, as a reference, the mean effective histological radius calculated from the three histological samples (Histology1,
Histology2, and Histology3) is also reported. Although the number and location of the ROIs used in the Histology3 sample differ from those
employed in the Histology1-Histology2 samples, they can be regrouped to cover similar anatomical areas (see subsection “Histological samples” for
more details). The histological and T2-based radii follow the expected “low-high-low” trend in axon radii. The axon radii from the
Histology1-Histology2 samples are consistently higher (about 25%) than those in the Histology3 sample.

be modeled by a global scaling of the cytoplasmic relaxation time,
which is accounted for during calibration.

A more suitable approach for modeling systems that are
coupled by means of a relaxation exchange process could be based
on the Bloch-McConnell equations (McConnell, 1958), which
generalize the relaxation model employed in this study [Eqs. (5) and
(6)]. However, fitting such a model requires estimating additional
parameters, including membrane permeability and extra-axonal
relaxation times, which may be prone to numerical degeneracies.
Additionally, the MRI acquisition time required for fitting the
Bloch-McConnell model (using both high and low b-values) is
longer than that required for our proposed model.

A study on human postmortem brains revealed that T2
∗ is

more sensitive than T2 to changes in WM iron concentration
(Langkammer et al., 2010). While it is established that the
macromolecular and iron content is altered in certain pathologies
(Stüber et al., 2014), more research is required to understand how
these abnormalities affect the intra-axonal space and how they can
impact the intra-axonal relaxation times.

We assume that signals measured at very high b-values are
primarily attributable to the intra-axonal space, given that the
signals from free-water and extra-axonal compartments decay
more rapidly with the b-value (Veraart et al., 2020). To further
suppress signals from tissue compartments with very short T2s,
such as myelin water (Mackay et al., 1994) and other confined

water molecules, we also used long TEs. Hence, the resulting
signals are expected to come from intra-axonal water molecules.
However, there are other 1D-stick-like structures in the WM,
such as the radiating processes of astrocytes, which can have
large diameters that might contaminate the resulting signals
(Veraart et al., 2020, 2021), as well as cell nuclei, vacuoles, and
other restricted compartments (Andersson et al., 2020). Therefore,
further studies are necessary to understand the potential effects of
these compartments on the measured T2 and predicted radii.

5.3. Acquisition sequences

The diffusion-T1-T2 sequence was implemented to investigate
the impact of axon radius on the intra-axonal T1 and T2 times
independently. Our results demonstrate that both relaxation times
are sensitive to changes in axon radius, with T2 exhibiting a slightly
higher sensitivity. Consequently, we can obtain two separate
estimates of axon radius using the relaxation times calculated from
this sequence (see Table 1). However, this is not our recommended
acquisition protocol due to the long acquisition time required.
Alternatively, a more practical approach for estimating axon radius
is to use the diffusion-T2 sequence. A faster version of this sequence
could be implemented by utilizing only two TEs, although the
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FIGURE 10

Axial and sagittal slices of the T2-based inner axon radius for the three scanned subjects. Subject3 underwent two scans, with scan2 (46 slices) and
scan1 (10 slices) representing the in vivo diffusion-T2 and diffusion-T1-T2 MRI data, respectively. All maps were normalized to the reference T1w
image, where the histological CC ROIs were defined, and the predicted radii were plotted over the reference image. A white matter mask was used
to suppress voxels in gray matter or cerebrospinal fluid.

resulting estimates may be more affected by underlying noise. This
possibility shall be investigated in future studies.

When implementing these sequences, it is important to identify
the optimal b-value to attenuate the extra-axonal signal. Based
on in vivo human brain data and numerical experiments using
analytical equations, the general rule of thumb is that a b-value
in the range of 4,000–6,000 s/mm2 is sufficient (Jensen et al.,
2016; McKinnon and Jensen, 2019). In our study, we used the
highest b-value within this range. However, it is worth noting that
determining the optimal b-value involves a trade-off influenced by
the SNR, which is affected by other sequence parameters, including
the TE and voxel size. Our data were acquired using the Connectom
3T scanner at CUBRIC, which has been previously used to collect
data with b-values up to 30,000 s/mm2 (Veraart et al., 2020,
2021). Ultra-high b-values with very strong diffusion gradients are
necessary for pure dMRI models to improve sensitivity to smaller
axon radii (Nilsson et al., 2017). However, our sequences do not
require b-values larger than 6,000 s/mm2 because all the necessary
information is derived from the relaxation times, which depend on
the TEs/TIs.

5.4. Main limitations and future studies

While our study provides valuable insights into the relationship
between axon radii and MRI relaxation times, it is important
to acknowledge some limitations. First, the in vivo diffusion-
relaxation MRI data and postmortem histological samples were

obtained from different subjects of different ages and genders.
Although some studies suggest that there are no sex differences in
the fibers composition of the corpus callosum (Aboitiz et al., 1992),
others have found age-related changes in axon size (Aboitiz et al.,
1996), which may affect the comparison between the postmortem
and in vivo measurements. Therefore, the estimated relaxation
times of the cytoplasmic water and surface relaxivities must be
considered as approximated guide values.

Second, the histological analysis of the second and third
histological samples (Histology2 and Histology3, covering eleven
and five CC sectors, respectively) are based on a reduced number
of axons compared to the first (Histology1) sample. This may
introduce sampling biases that could affect the accuracy of the
histological radius estimates. An extended discussion is provided
in the Appendix subsection “Histological tissue shrinkage and
sampling issues.” As such, a perfect agreement between the
effective histological radius and the predicted MRI-based radius
was not expected.

Third, the analysis was confined to the mid-sagittal plane of the
CC. Therefore, the estimated mean cytoplasmic relaxation times
and surface relaxivities are specific to this region. It is possible that
different values may be obtained if other white matter tracts were
included in the analysis. However, the extension of the analysis to
other regions would require modeling the orientation susceptibility
effects, which is beyond the scope of this proof-of-concept study.
For more details, refer to the Appendix subsection “Orientation
dependence on relaxation times.”
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Fourth, our study had a relatively small number of data
points available for computing correlations, with only four ROIs
to implement the calibration. This limited sample size restricts
the statistical power and precision of the estimated correlations,
leading to increased uncertainty and decreased reliability of the
findings. While it is generally recommended to account for multiple
comparisons to reduce the risk of false-positive findings, we opted
not to implement such correction. Given the exploratory nature
of our study, we prioritized sensitivity over stringent control of
false positives. Consequently, our findings should be interpreted
cautiously, requiring further validation in independent studies.
However, for completeness, we report that if we correct our
results for multiple comparisons using the Bonferroni method, only
two analyses survive the correction: the correlation of the radii
estimated using the T2 and T1 relaxation times reported in Table 1
and the T2-based predicted radii for the subject who underwent two
scans, using the two diffusion-relaxation MRI sequences employed
in this study.

Fifth, the proposed model is not suitable for GM or WM
regions affected by demyelination processes or any pathological
condition increasing intra-axonal iron. These conditions can
significantly reduce intra-axonal relaxation times and the estimated
radii, rendering the model invalid. A more detailed discussion
of these underlying assumptions and confounding factors can be
found in the previous subsection, “Underlying assumptions and
confounding factors,” in the Discussion section.

Sixth, the estimation of intra-axonal T2 from the spherical
mean of the strongly diffusion-weighted signal may be subject to
bias due to the presence of isotropically-restricted compartments,
including cell nuclei and vacuoles (Andersson et al., 2020).
However, this issue can be mitigated by utilizing the spherical
variance instead (Pizzolato et al., 2022). For more detailed
information, please refer to the Appendix subsection “The effect of
spherical cells: spherical mean vs. spherical variance.”

Seventh, although the spherical mean signal is not affected
by the presence of fiber crossings and orientation dispersion
(Lindblom et al., 1977; Callaghan et al., 1979; Kaden et al., 2016a), it
is influenced by the orientation susceptibility effect. In other words,
the measured signal still depends on the angle between the B0
magnetic field and the fiber orientation. In our study, the regions of
interest were located in the medial part of the CC, where the angle
between the B0 vector field and the nerve fibers remains relatively
constant. More details on this topic can be found in the Appendix
subsection “Orientation dependence on relaxation times.”

To better assess the generalizability of our approach, further
validation studies are necessary. In particular, we plan to test our
method using biomimetic phantoms with known ground truth
(Hubbard et al., 2015; McHugh et al., 2018; Huang et al., 2021; Zhou
et al., 2021) and ex vivo data from the same brains and multiple
white matter regions. Such datasets would allow us to investigate
whether the cytoplasmic relaxation times are truly independent of
axon radius (see the Appendix subsection “Is the cytoplasmic T2
constant?”). This could be achieved by repeating the calibration
process using different subsets of ROIs and comparing the resulting
estimates. However, obtaining sufficient histological ROIs and
measured axons per ROI will be crucial to minimize sampling bias
and get robust results not affected by noise. Additionally, including
data from the same brains (e.g., from non-human studies) will

enable us to guarantee that we are studying the same axonal
bundles.

An interesting future direction would be to utilize bundle-
specific intra-axonal T2 values (Barakovic et al., 2021b) to estimate
bundle-specific inner axon radius, which could potentially resolve
multiple axonal radii per voxel. This approach may potentially
predict axon radius beyond the current dMRI resolution limit
using clinical scanners. However, one limitation of translating
the diffusion-relaxation MRI sequence to clinical scanners is the
decreased signal-to-noise ratio resulting from using high b-values
and long TEs. One potential solution to mitigate this could be
to reduce the b-value to 4,000–5,000 s/mm2 and use numerical
simulations to determine the optimal range of TEs, based on
the intra-axonal relaxation times reported in this study and the
expected noise range.

Despite these limitations, our study provides a promising
approach for estimating axon radii and understanding their
relationship with MRI relaxation times. Future studies could
address these limitations and expand the analysis to other brain
regions to further validate the technique.

6. Code and data availability
statement

The datasets used in this study and the Python code can
be made available upon request from the corresponding authors,
subject to the following terms and conditions. The mean effective
histological radii of the Histology1, Histology2, and Histology3
samples are reported in Figure 9 and Table 1, respectively. We can
also share any other derived metric from the Histology1-Histology2
samples. Additional results for the Histology2 and Histology3
samples are available in Caminiti et al. (2009) and Wegiel et al.
(2018), respectively. The MRI data will be available upon signing
a data-sharing agreement with Cardiff University. Finally, we can
provide the Python scripts used in this study upon request.

7. Appendix: effective axon radius

We derive the mean effective radius that can be estimated from
the intra-axonal T2 and T1 relaxation times. For simplicity, we will
separately analyses the components of the measured signals that
exclusively depend on T2 and T1.

7.1. Axon radius estimated from Ta2

The signal arising from the intra-axonal compartments is the
sum of signals from the spins inside all axons. The measured T2-
weighted signal for a given echo time TE is

M(TE) = k
P∑

i=1

Ni exp
(
−

TE
Ti

2

)
, (7)

where P is the total number of axons, Ni is the number of spins
inside the ith axon with transverse relaxation time Ti

2, and k is a
constant that depends on the sequence/scanner.
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Assuming that the proton density (PD) does not depend on the
axon radius, then

PD =
Ni

πr2
i h
=

∑P
i=1 Ni∑P

i=1 πr2
i h
=

Nt∑P
i=1 πr2

i h
. (8)

where πr2
i h is the volume occupied by the ith axon, h is the axon

length, and Nt is the total number of spins in the intra-axonal space.
From Eq. (8) we obtain the following simplified relationship:

Ni = Nt
r2

i∑P
i=1 r2

i
, (9)

By plugging Eq. (9) into Eq. (7) we get.

M(TE) = kNt

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

TE
Ti

2

)
. (10)

We estimate a single intra-axonal T2 per voxel, which is equivalent
to assuming that all the T2s in Eq. (10) are equal to Ta

2 (i.e., and
hence that all axons in the voxel have the same radius r̄); in that
case, Eq. (10) becomes.

M(TE) ≈ kNt

P∑
i=1

(
1
P

)
exp

(
−

TE
Ta

2

)
= kNt exp

(
−

TE
Ta

2

)
. (11)

To understand how the distribution of axon radii in Eq. (10) affects
the apparent Ta

2 in Eq. (11), we use the following approximation.

kNt exp
(
−

TE
Ta

2

)
≈ kNt

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

TE
Ti

2

)
. (12)

After plugging the surface-based relaxation model in Eq. (1) and
removing common terms on both sides of the previous equation,
we get

exp
(
−

2TEρ2

r̄

)
≈

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

2TEρ2

ri

)
, (13)

where we cancelled the contribution from the cytoplasmic Tc
2,

which appears on both sides of the equation.
The exponential terms 2TEρ2

/
ri are small (according to our

data and results < 0.5), so we can expand the exponentials in Taylor
series using a first-order approximation as

1−
2TEρ2

r̄
≈

P∑
i=1

(
r2

i∑P
i=1 r2

i

)(
1−

2TEρ2

ri

)
(14)

=

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
−

P∑
i=1(

ri2TEρ2∑P
i=1 r2

i

)

= 1− 2TEρ2

P∑
i=1

(
ri∑P

i=1 r2
i

)

Therefore,
1
r̄
≈

P∑
i=1

(
ri∑P

i=1 r2
i

)
,

r̄ ≈
∑P

i=1 r2
i∑P

i=1 ri
=

〈
r2〉
〈r〉

,

(15)

This is the expression that we used to correct the histological
radii, which is the mean effective radius estimated from this
relaxation model.

7.2. Axon radius estimated from Ta1

Following a similar approach, the measured T1-weighted signal
for a given TI is

M(TI) = k
P∑

i=1

Ni

∣∣∣∣1− 2 exp
(
−

TI
Ti

1

)∣∣∣∣ (16)

= kNt

P∑
i=1

(
ri∑P

i=1 r2
i

)
∣∣∣∣1− 2 exp

(
−

TI
Ti

1

)∣∣∣∣ .
Note that we neglected the TR dependence because, in practice, this
experimental parameter is much higher than the intra-axonal T1,
and its contribution is minor.

As we estimate a single apparent intra-axonal T1 per voxel, our
model is equivalent to assuming that all the T1s are equal to Ta

1
(i.e., all axons in the voxel have the same radius r̄); thus, Eq. (16)
becomes.

M(TI) = kNt

∣∣∣∣1− 2 exp
(
−

TI
T̄1

)∣∣∣∣ . (17)

To investigate how the distribution of axon radii in Eq. (16) affects
the apparent Ta

1 in Eq. (17), we use the approximation

kNt

∣∣∣∣1− 2 exp
(
−

TI
T̄1

)∣∣∣∣ ≈ kNt

P∑
i=1

(
r2

i∑P
i=1 r2

i

) ∣∣∣∣1− 2 exp
(
−

TI
Ti

1

)∣∣∣∣ .
(18)

After plugging the surface-based relaxation model in Eq. (2) and
removing common terms on both sides of Eq. (18) we obtain.

exp
(
−

2TIρ1

r̄

)
≈

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

2TIρ1

ri

)
, (19)

Note that Eq. (19) is similar to Eq. (13). Hence, we can get the
same relationship given by Eq. (15) after using the first-order Taylor
series approximation, which is justified by the small values of the
exponential terms 2TIρ1

/
ri (according to our MRI acquisition

parameters and results < 0.3).

7.3. Histological tissue shrinkage and
sampling issues

The histological datasets were inspected to investigate the trend
in axon radii. As expected, the data followed the “low-high-low”
pattern in axon radii, as shown in Figure 9. However, the mean
effective histological radii differed between the samples. The axon
radii from the Histology1-Histology2 samples were about 25%
higher than those in the Histology3 sample. These differences could
be due to genuine anatomical variations between the postmortem
brains or related to the histological procedures and corresponding
tissue shrinkage factors. The T2-based predicted radii in all subjects
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followed a similar “low-high-low” pattern closer to the values
measured in the Histology1 sample, as this was the calibration
sample.

In this study, the histological samples were not corrected for
tissue shrinkage, which can affect the accuracy of the estimated
axon radii. Consequently, the in vivo axons may be thicker than the
reported histological values (Barazany et al., 2009; Horowitz et al.,
2015). The extent of tissue shrinkage can vary widely depending
on the used histological preparation techniques, with reported
shrinkage factors ranging from 1 to 65% (Lamantia and Rakic, 1990;
Aboitiz et al., 1992; Houzel et al., 1994; Riise and Pakkenberg, 2011).
It is also unclear if shrinkage affects all brain axons equally, as
previous research has shown varying shrinkage levels in different
cellular compartments (Hursh, 1939). However, there is currently
limited knowledge about the effects of shrinkage on CC axons in
the human brain (Innocenti et al., 2019). Please refer to Dyrby et al.
(2018) for further information on tissue shrinkage issues.

Sampling biases can impact histological radii measurements.
One issue is that only a small amount of tissue is typically
sampled, so the microstructure properties of these regions may
not accurately represent properties in other regions within the
ROIs (Assaf et al., 2008). Another issue is that larger axons can
influence the mean effective radius more than the mean radius of
the distribution. Since larger axons are less common, accurately
detecting their proportions in a sample requires measuring a larger
number of axons. We observed this effect in the Histology1 and
Histology2 samples, where the effective radii in the four ROIs
used in Histology1 (which had denser spatial sampling) were
consistently higher than those in the same ROIs measured in the
Histology2 sample (see Figure 9).

For these reasons, the presented histological results should
not be considered the definitive “ground truth.” Future studies
should aim to identify optimal histological procedures, such as
those suggested by Sepehrband et al. (2016b), and also explore
the use of neural network approaches for automatic measurement
of tens of thousands of axons per ROI to reduce sampling biases
(Mordhorst et al., 2022). It is also worth noting that because the
proposed calibration approach uses histological data as a reference,
the predicted radii are relative to the specific histological sample
employed.

7.4. The effect of spherical cells:
spherical mean vs. spherical variance

A recent study showed that isotropically-restricted
compartments might bias the intra-axonal T2 estimated from
the spherical mean of the strongly diffusion-weighted signal
(Pizzolato et al., 2022). Thus, our estimates could be partially
affected by cell nuclei, vacuoles, and other types of structures in
the white matter (Andersson et al., 2020). As a remedy for that
problem, it was proposed to use the spherical variance (Pizzolato
et al., 2022) as a “filter” since the spherical variance of an ordered
axon bundle would be high, but in an isotropic component would
be close to zero. Although the results obtained in that study are
promising, the spherical variance is more sensitive to noise than the
spherical mean. Moreover, a larger number of diffusion gradient
directions than that used in our study is necessary to employ this

novel technique [48 vs. > 96 in Pizzolato et al. (2022)]. In future
studies, we plan to acquire dMRI data using a higher angular
resolution to compare both techniques’ outputs and filter out any
contribution from spherical cells.

7.5. Is the cytoplasmic T2 constant?

The cytoplasmic T2 may be influenced by the intra-axonal
microstructure, such as the number of organelles and the density
of cytoskeletal elements such as neurofilaments, microtubules, and
actin, as well as the chemical composition, including the type and
density of macromolecules and water content.

Numerous morphometric studies have provided evidence
of a linear correlation between neurofilament and microtubule
numbers and axonal cross-sectional area (Friede and Samorajski,
1970; Hoffman et al., 1987). These studies suggest that myelinated
axons contain more neurofilaments than microtubules and that
the axon radius adjusts to maintain a constant density of
neurofilaments. It was demonstrated that this relationship is
regulated by the relative degree of phosphorylation of the mid-
sized and heavy neurofilaments (Rao et al., 1998). Furthermore,
the myelin-associated glycoprotein is implicated in the signaling
cascade controlling neurofilament phosphorylation (Lunn et al.,
2002) and axon radius. As neurofilaments are the more abundant
cytoskeletal elements and their density is nearly constant in
myelinated axons with different radii, we do not anticipate a
relationship between cytoplasmic T2 and axon radius mediated by
neurofilament density in the axonal cytoskeleton.

However, a previous study using electron probe x-ray
microanalysis (LoPachin et al., 1991) measured the concentrations
of biologically relevant elements (such as Na, P, S, Ca, CI, K,
and Mg, in mmol/kg dry or wet weight) and water content in
the axoplasm of rat optic nerve myelinated axons. The study
found that dry and wet weight concentrations of Na, P, S, and
Ca were not dependent on the axonal radius. In contrast, the
axoplasmic concentration of K, CI, and Mg was related to axon
radius. Furthermore, the water content in medium and large axons
was similar (between 91 and 92%) but slightly reduced in small
axons (89%). These findings suggest that the chemical composition
of the axoplasm depends on the axon radius (LoPachin et al.,
1991). Therefore, until the effect of K, CI, and Mg on intra-axonal
relaxation times is clarified, the surface-based relaxation model
employed [i.e., Eqs. (1) and (2)] should be regarded as a first-order
approximation.

Despite this limitation, our findings (refer to Figures 5, 7)
suggest a linear relationship between the inverse of intra-axonal
relaxation times and axon radius, consistent with predictions made
by the surface-based relaxation model we employed. Our empirical
results demonstrate that the calibration step enables us to estimate
the mean axon radius in various regions of the midsagittal CC
(refer to Figures 6, 8, 9). As we did not observe any significant
non-linear relationships between intra-axonal relaxation times and
axon radii (within the range of measured radii in the midsagittal
CC), we conclude that any non-linear dependence is weak and
can be disregarded. Hence, either the cytoplasmic relaxation times
remain constant, as assumed in this study, or they vary linearly with
axon radius. In the following, we present some examples where the
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calibrated model could predict the axon radius accurately, even if
the cytoplasmic relaxation times depend on the axon radius.

Let us consider two distinct scenarios: In the first case, the
cytoplasmic T2 increases with the radius (similar to the observed
trend for intra-axonal T2 time), while in the second case, it
decreases. The former corresponds to the model

1
Tc

2 (r)
=

1
Tconst

2
+

k
r
, (20)

where Tconst
2 is a constant term common to all axons and k is a

constant quantifying how fast the cytoplasmic T2 changes with r.
By plugging this equation into our relaxation model [Eq. (1)], we
get a similar model with redefined parameters

1
Ta

2
=

1
Tconst

2
+

γ

r
, (21)

where γ = 2ρ2 + k. Althout the new parameters Tconst
2 and γ cannot

be interpreted as the cytoplasmic T2 and surface relaxivity, they can
be estimated by employing our calibration approach. Therefore, the
resulting model would be equally valid for predicting axon radius.

The second case corresponds to a model that predicts a decrease
in Tc

2 (r) for larger axons.

1
Tc

2 (r)
=

1
Tconst

2
+ kr. (22)

After plugging Eq. (22) into Eq. (1) and regrouping terms, the
relaxation model becomes.

1
Ta

2
=

1
Tconst

2
+

(
kr2
+ 2ρ2

)
r

. (23)

In our experiments, we observed a net reduction of Ta
2 with r.

Hence, the surface relaxivity term must dominate the relaxation
over k, i.e., 2ρ2

/
r > kr for the range of measured radii. The

modified parameters to be calibrated in this model are Tconst
2

and γ = 2ρ2 + kr2. In this case, our model only provides a good
approximation if the previous inequality becomes 2ρ2

/
r >> kr.

It is important to note that the models presented in this section
[Eqs. (20)–(23)] are hypothetical and were discussed to illustrate
the flexibility and limitations of the calibration approach in cases
where the underlying assumptions are not met. Similar results can
be obtained by using the intra-axonal T1 time or assuming a surface
relaxivity that depends on the radius.

7.6. Orientation dependence on
relaxation times

By computing the spherical mean of the diffusion signal,
the resulting orientation-averaged signal is independent of
the fiber orientation distribution and thus is not affected by
the presence of fiber crossings and varying levels of fiber
orientation dispersion (Lindblom et al., 1977; Callaghan et al.,
1979; Kaden et al., 2016a). However, the spherical mean does
not eliminate the dependence on the orientation susceptibility
effects, i.e., the measured signal still depends on the angle
between the B0 magnetic field and the fiber orientation. Some
previous studies have reported this orientation dependence for

both the T2
∗ and T2 (Oh et al., 2013; Aggarwal et al., 2016; Gil

et al., 2016) and T1 (Knight and Kauppinen, 2016; Knight
et al., 2017, 2018; Schyboll et al., 2018, 2020). Notably, while
(McKinnon and Jensen, 2019) reported a significant intra-
axonal T2 orientation effect, a recent study found that extra-
axonal T2 is more affected by this phenomenon than intra-
axonal T2 (Tax et al., 2021). Given these inconsistent findings,
further research is needed to determine whether the orientation-
dependent T2 effect is significant enough to be considered in this
model.

In our study, the regions of interest were located in the
medial part of the CC, where the angle between the B0 vector
field and the nerve fibers remains relatively constant. Therefore,
our findings are not likely affected by B0-orientation-related bias.
However, the orientation effect should be modeled in brain regions
with different fiber orientations, as it may affect the estimation.
Despite this potential limitation, in Figure 10, we present T2-based
radius images across the entire white matter, showing the spatial
variability of estimated radii across different regions, especially
in the sagittal slices depicting the midsagittal CC cross-sections.
The estimates from all subjects demonstrate a similar concordant
pattern, as well as the maps of the same subject (Subject3) obtained
from the two diffusion-relaxation MRI sequences, although some
differences are noticeable due to the different voxel sizes used in
both acquisitions.

7.7. Is the intra-axonal relaxation process
mono-exponential and
time-independent?

A recent theoretical formulation by Kiselev and Novikov
(2018) demonstrated how the interplay between diffusion and spin
dephasing in a heterogeneous environment could produce a non-
mono-exponential time-dependent transverse relaxation signal.
While this effect may be significant for short TEs, our relatively
long TEs (i.e., > 73 ms) and diffusion times (1 = 22 ms, δ = 8 ms)
used in this study (compared to the small intra-axonal space where
the restricted diffusion process takes place) indicate that a mono-
exponential signal relaxation is expected for the spins inside each
axon.

In our study, we estimated a single intra-axonal relaxation
time per voxel. However, if axon radii are distributed with non-
negligible variance, a more complete formulation must consider
distributions of relaxation times. Estimating a non-parametric
distribution of relaxation times is problematic from a practical
point of view because a large number of TEs/TIs would be
required. Nevertheless, an approach similar to that introduced in
AxCaliber (Assaf et al., 2008) could be adopted by assuming a
parametric form for such distributions, as shown in Sepehrband
et al. (2016a). Future studies should investigate this generalization
further.
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