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Trackable and scalable LC-MS metabolomics
data processing using asari

Shuzhao Li 1,2 , Amnah Siddiqa1, Maheshwor Thapa1, Yuanye Chi1 &
Shujian Zheng1

Significant challenges remain in the computational processing of data from
liquid chomratography-mass spectrometry (LC-MS)-based metabolomic
experiments into metabolite features. In this study, we examine the issues of
provenance and reproducibility using the current software tools. Incon-
sistency among the tools examined is attributed to the deficiencies of mass
alignment and controls of feature quality. To address these issues, we develop
the open-source software tool asari for LC-MSmetabolomics data processing.
Asari is designed with a set of specific algorithmic framework and data struc-
tures, and all steps are explicitly trackable. Asari compares favorably to other
tools in feature detection andquantification. It offers substantial improvement
in computational performance over current tools, and it is highly scalable.

Metabolomics holds the promise to comprehensively measure and
quantify small molecules in biological systems. Since the chemistry of
these small molecules underlies most aspects of life science, metabo-
lomics is recognized as critical to support missions in biomedical
research, including precision medicine and environmental health1–3.
Since the mid-2000s, the experimental platforms of metabolomics
have improved significantly, and LC-MS (liquid chromatography cou-
pled mass spectrometry) has become the leading technology.

In LC-MS metabolomics, a sample is scanned by a mass spectro-
meter consecutively during the chromatography, generating a time
series of spectra, eachcontaining a list of ionswithmass to charge ratio
(m/z) and intensity values. The goal of data processing is to report a
quantitative value per metabolite feature per sample, which is a proxy
for its biological concentration. Multiple software tools have been
developed for LC-MSmetabolomics data processing over the years4–11,
and the most widely used are XCMS9 and MZmine7. They have con-
tributed significantly to the growth of the field, butmajor design issues
have also become apparent over the past decade.

These software issues are manifested in the current roadblock of
reproducibility, which has greatly limited the adoption of metabo-
lomics technologies by the broader research community. In global
profiling by a typical high-resolution mass spectrometer, studies
report 1000 s to 10,000 s of features. Myers et al.12 compared XCMS
and MZmine 2, and found that half or more of the features were not
shared between the tools. Delabriere et al.13 reported similar level of

disagreement between XCMS and OpenMS. It is common knowledge
among users that the results also vary wildly based on parameter set-
tings. Significant community efforts were spent on parameter opti-
mization of XCMS13–18. However, these post-hoc adjustments do not
address the fundamental design issues, namely, strong dependenceon
complex parameters, feature correspondence errors in larger studies
and difficulty in tracing software issues.

Additionally, as a key—omics technology, the users of metabo-
lomics cannot be limited to chemists, rather, the data processing must
be trustedby general bioinformatics practitioners. This requires a set of
transparentqualitymetrics and traceability througheverymajor stepof
data processing. These requirements mirror principles from modern
software design where explicit linking between steps is necessary for
automated testing, debugging and continued improvement. Robust
design combined with transparent algorithms will certainly help
address the roadblock of reproducibility in metabolomic studies.

In this study, we present asari, an open-source software tool for
LC-MS metabolomics data processing. Asari is designed with a set of
distinct algorithmic framework and data structures, and all steps are
explicitly trackable. To take advantage of the mass resolution in cur-
rent data, mass alignment is performed first, represented by mass
tracks within and composite mass tracks across acquisitions in an LC-
MS metabolomics experiment. They facilitate, along with a set of
quality metrics, the better understanding of reproducibility in
detectingmass peaks andelutionpeaks, and correspondenceof LC-MS
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features. Asari offers substantial improvement of computational per-
formance over the previous tools, and is highly scalable.

Results
Provenance issues in feature correspondence during LC-MSdata
preprocessing
Metabolomics today usually employs high-resolution mass spectro-
meters that are often capable of mass resolution at 5 ppm (part per
million) or better. This means that the measurement error for a singly
charged molecule of 150 Dalton is no greater than 0.00075 in m/z
values (150 * 5 * 1E-6), or0.0040m/z for amolecule of 800Dalton (800
* 5 * 1E-6). Previously, mass spectrometry software used to collapse
data into m/z bins of nominal or 0.1 amu (atomic mass unit). With the
mass resolution in today’s data, binning is no longer a valid approach,
and the mass should be reported as precisely as possible to support
compound identification. This step is the detection of mass peaks: a
group of ions measured on the same molecular species have small
random variations, and a consensus m/z value is determined for the
group as a mass peak. The detection of mass peaks now is usually
performedby the “centroiding”process; centroideddata are thenused
as input tometabolomics data processing. Centroiding is supportedby
all major instrumentmanufacturers. Tools like ThermoRawFileParser19

and msConvert20 are commonly used both for data format conversion
and for centroiding.

A feature in LC-MSmetabolomics is defined by a unique pair ofm/
z value and retention time in chromatography. Them/z value of a peak
is first determined per sample. When peaks are later aligned cross
samples (i.e., correspondence), the m/z values vary slightly in each
sample and the algorithm must ensure the correct peaks are grouped
and report a consensus m/z value. There are more steps in data pro-
cessing, while we first focus on m/z alignment.

We generated an LC-MS metabolomic dataset (HZV029) of 184
repeated analyses of a pooled human plasma sample. The same data
were processed by XCMS and MZmine, using similar parameters. The
two tools produced very different numbers of features, and about 60%
of XCMS features are unambiguously matched to MZmine features
(Fig. 1a). Similar levels of disagreement are seen in MZmine using a
different algorithm and MS-DIAL (Supplementary Table 1), and in a
different dataset (Supplementary Table 2).

Different from earlier studies, almost all XCMS feature here can
find a counterpart in theMZmine result, within 5 ppmofm/z and 6 s of
retention time. This is because HZV029 has better data quality than
older studies, and it’s significantly larger. If a feature is missed in 1
sample, it is unlikely for the processing software to miss it in the other
183 samples. The problem here is that many features are not uniquely
matched. Here, a unique match is defined as a pair of features that are
reciprocally best matches in the allowed m/z and retention time win-
dows. An ambiguousmatch is shown in Fig. 1b, where 3 XCMS features
are indistinguishable from5MZmine features. Thepossible reasons for

Fig. 1 | Provenance issues of feature correspondence in LC-MS metabolomics
data processing. a On a dataset of 184 repeated samples analyzed on an Orbitrap
ID-X mass spectrometer (HZV029), XCMS generated 10,901 features and MZmine
generated 42,099 features (see Supplementary Methods for versions and para-
meters). Between the two results, 6186 features are uniquely matched. Additional
comparisons are reported in Supplementary Tables 1, 2. b Many mismatched fea-
tures are due to failure to resolve reciprocal best match. This example shows all 3
features in XCMS match to all 5 features in MZmine. Retention time (rtime) is in
seconds. c Illustration of mSelectivity as a function of how distinct a m/z value is,

regarding to its neighboring features andmass resolution. Each dot represents am/
z feature, and its mSelectivity value (Y axis) depends on the horizontal distance to
neighbor features. The error in matching m/z values is modeled as a Gaussian
distribution dependent on mass resolution, and mSelectivity is low when a feature
has neighbors with close m/z values. d Distribution of mSelectivity in the features
produced by three processing tools. Feature m/z values are rounded to the 3rd
decimal place, so that minor variations are ignored and split peaks are not taken
into account. Rounding has no impact on asari, because asari m/z values are linked
to mass tracks. Source data are provided as a Source Data file.
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this type ofmismatch include (a) split mass peaks on the same feature,
(b) failure in m/z alignment cross samples, and (c) that multiple fea-
tures do exist because of close chemical properties. The last scenario
does occur but not in high frequency. All three scenarios violate the
mass resolution of 5 ppm set for this experiment, i.e., 760.5807 and
760.5817 cannot be distinguished on the mass spectrometer. If the
processing software does not resolve the issue, i.e., reporting a unique
numerical value for the samemass, errors propagate into downstream
annotation and statistical analysis. The confusion in comparison
between tools reflects their internal confusion in feature correspon-
dence, more specifically, mass alignment.

Using a similar concept to selectivity in mass spectrometry, we
define a “mSelectivity” function to calculate how well a m/z feature is
distinguished from others under a given mass resolution (see Sup-
plementary Methods). The concept of mSelectivity is illustrated in
Fig. 1c, where a m/z feature has a low mSelectivity score when it has
neighbors of very close m/z values. We computed mSelectivity scores
for the features from XCMS and MZmine, and their distributions are
shown in Fig. 1d. These mSelectivity scores were computed after their
m/z values were rounded to the 3rd decimal place and collapsed into
unique lists, to forgive rounding errors and exclude possible isomers
(i.e., compounds of the same mass). Figure 1d indicates that a very
large number of features in XCMS andMZmine have poormSelectivity
that is not consistent with the resolution of instruments. The ideal
result is that all features have mSelectivity close to 1, which is perfect
compliance of mass resolution. That is how we implemented mSe-
lectivity requirement in asari (right panel in Fig. 1d).

The distribution of mSelectivity is a straightforward summary of
how well software tools distinguish m/z values in the metabolomics
feature tables. The poor characteristics of XCMS andMZmine in Fig. 1d
reflect artifacts in feature correspondence, because the mass peaks
detected in a single sample prior to correspondence do not have as
severe a problem. Retention time in chromatography may help dis-
tinguish compounds of similar m/z values, but it does not fix issues in
m/z alignment in the software, and the sheer number of problematic
m/z values causes significant problems in reproducibility.

In practice, an ad hoc step could be performed to merge these
close features. XCMShas a stepofmergingneighborpeaks that are too
close, which is among the reasons of fewer features reported here. But
Fig. 1d shows clearly that it does not solve the real problem of mass
selectivity. Furthermore, ad hocmerging is a subjective approach, and
usually reserved for expert users. It causes issues in the quantification
of these features implicitly because merging alters processing history
and it does not affect all peaks equally. Most critically, ad hocmerging
does not help the reproducibility of software.

Mass alignment should not be conditioned on elution peak
detection in high resolution metabolomics
The design of XCMS and MZmine is similar: extracted ion chromato-
grams (EICs or XICs) are built on regions of interest (ROIs) in each
sample; elution peaks are identified on each EIC; and elution peaks are
aligned across samples to become features, i.e., feature correspon-
dence (Fig. 2a, left). Here, m/z alignment occurs after detection of
elution peaks in each sample. In this approach, two peaks in a sample
can start with the samem/z value but end up with different m/z values
after correspondence. We note that the construction of chromato-
grams is straight forward in high resolution data, but detection of
elution peaks is very error prone (discussed in a later section). The
problem may not be pronounced in low-resolution data with few
samples, but is amplified exponentially by a large number of peaks and
a large number of samples. Without tracking EICs explicitly, it is a poor
design to perform m/z alignment after elution peak detection.

We implemented the “mass track” concept to address this
issue. A mass track is defined as a series of LC-MS data points of
the same consensus m/z value and spanning the full retention time

(Supplementary Fig. 1). A mass track may or may not have detectable
elution peaks, and zeros are filled for scans without an intensity value.
Therefore, a mass track is an EIC that spans the full retention time,
serving as the parent level of peaks. Mass tracks are aligned cross
samples before elution peak detection in asari (Fig. 2a, right). This takes
advantage of the superb mass resolution on today’s instruments and
avoids errors stemming fromelutionpeak detection.Mass tracks lock in
unique m/z values per sample, therefore greatly reducing the com-
plexity of m/z alignment, compared to the alignment of individual elu-
tion peaks. The mass tracks that match 13C/12C and Na/H patterns are
considered of high confidence and used as guides in them/z alignment.

Mass tracks and composite mass tracks anchor LC-MS align-
ments in asari
In biological studies, a feature is expected to have variations and it is
common that it is under detection limit in many samples. Even if no
elution peak is detectable, mass tracks still often exist in those sam-
ples, and the information is useful towards the correct m/z alignment.
On the other hand, feature detection should utilize the recurrent
pattern of the samepeak inmany samples. In asari, alignedmass tracks
are summed into a “composite mass track” after correction of reten-
tion time (Fig. 2b). With this approach, elution peak detection is no
longer required on individual samples. It can be done on the compo-
site mass track, then the peak area is looked up in each individual
sample and reported as feature intensity values (Fig. 2b).

This greatly simplifies feature correspondence, and has a sig-
nificant performance gain, by not repeating the computational cost of
peak detection on all individual samples. Because the composite mass
track has higher signals than any individual sample, the quality of peak
detection is often improved. In practical terms, detecting weak peaks
will be enhanced by combining signals from multiple samples; irre-
gularity such as chromatographic gap and bad peak shape will be
ameliorated (example in Supplementary Fig. 2).

The overall design of asari is illustrated in Fig. 2c, with a detailed
description in the Supplementary Information. Aligned mass tracks of
all samples form a “MassGrid”, which provides a foundation for
trackable and high-quality feature correspondence. Retention time
(RT) correctionbetween samples, also called retention time alignment,
is carried out by LOWESS regression, using a small subset of high-
quality elution peaks. These reference peaks are easy to select from
previously aligned mass tracks, preferably as the only peak on a mass
track. The regression result is translated to an RT remapping function
for each sample. This remapping is bidirectional: RT on the composite
mass track is mapped back to each sample correctly regardless how
much error is in the regression model. The error only affects the peak
range on the composite mass tracks, which is mostly inconsequential.
RT alignment has no impact on m/z alignment.

In previous tools, if a feature is only present in one or few samples,
correspondence becomes problematic. However, the presence of a
single good elution peak is evidence that the analytical method is valid
for that particular metabolite. It is important to know that weak or no
peaks in other samples is reflecting biology not inadequate chemical
analysis. Whenmany samples do not have a good signal on a feature, it
poses a significant challenge in peak detection individually. Since asari
considers all mass tracks in the composite map as combined signals, it
largely bypasses this challenge. Even if a peak is present only in a single
sample, it will be detected and reported in asari, which is important to
applications such as personalized medicine and exposomics.

Composite map enables easy and interactive inspection of data
The design of asari significantly improves provenance through data
processing. To track a problem in software, computational objects in
each step must be explicitly linked while each step shall be verified
separately. Currently, it is cumbersome to verify peaks from XCMS. It
usually requires scripting to plot each ROI associated with a feature,
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which is not real backtracking because an ROI is not the same as EIC
and has more data points. On the other hand, the demand of com-
putational resources increases quickly if all intermediate steps are
recorded (part of the performance penalty in MZmine). By linking
features and raw data through composite map, asari produces an
efficient solution for automated testing, debugging and verification. A
significant change is that asari composite map is representative of all
samples – the burden of peak evaluation and visualization is largely
removed from repeats on individual samples. Therefore, this enables a
data dashboard for users to navigate and inspect data, regardless of
the size of samples.

An example asari dashboard is shown in Fig. 3a. This is an inter-
active tool that users can launch into a web browser after each dataset
is processed. The top part of the dashboard is a set of tabs for data
summary and quality metrics. Users can navigate through the feature
browser to inspect EICs by clicking, hovering, panning and zooming

functions. A separate mass track viewer shows all detected peaks on a
mass track, with an example screen shot shown in Fig. 3b. When users
zoom indifferent regions of themass track, the peaks can be inspected
closely (Fig. 3c, d). The ability to inspect data and feature quality
visually is important for the reproducibility of science, and should be
done before resources are committed to continued work. The asari
dashboard is not only useful to end users, but also to developers and
data scientists for testing and interacting with the software.

Elution peak detection is verifiable and understandable in asari
The design of asari leads to the improvement of multiple key aspects.
We start with benchmarking feature detection, before discussing the
underlying mechanistic of elution peak detection and quality metrics.
Of note, the approachhere on feature detectiondoes not concern false
positives, which are discussed in the next section. The benchmark
datasets must be impartial to the tools being tested.

Fig. 2 | The design of asari anchors on composite mass tracks. a Overview of
design differences between extant software tools and asari. b The “composite mass
track” is a representation of data from all samples, by adding up the signals in
correspondingmass tracks after retention time (RT) alignment.Mass tracks from the
MT02 dataset are used as an example. cAsari takes centroidmzML files as input and
builds chromatograms for each as mass tracks. To prioritize modern mass resolu-
tion, m/z alignment is performed first to form a MassGrid, aided by isotopic

landmarks. Alignedmass tracks across samples are corrected for RT, using LOWESS
regressionon a subset of high-quality elutionpeaks, then aggregated into composite
mass tracks (b). All composite mass tracks are stored in the “Composite Map”.
Elution peak detection is performed on the compositemass tracks, and feature table
is generated by looking up the corresponding peak areas in each individual sample.
Annotation groups degenerate features into empirical compounds, and reference
databases are used to match the m/z values in empirical compounds.
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We used the manufacturer’s software to process, select and
visually verify 402 features in the HZV029 data. The detection of these
features by each tool is reported in Fig. 4a. In its default setting, asari
detected 386of these features, the second highest next toMS-DIAL.Of
the 16 features asari disagreed with the manual list, 7 were on low
quality EICs discarded by asari, and 9 were peaks of poor shape and
borderline number of data points (Supplementary Fig. 3).We note that
the higher number of detected features by MS-DIAL is attributable to
its low stringency by reporting 29,924 features, several times more
than others. All the 8 peaks missed by MS-DIAL, however, had good
peak shape and were detected by asari (Supplementary Fig. 4).

A second benchmark dataset is Yeast2021, in which Chen et al.21

manually confirmed 314 identified features. The detection result by
each tool is shown in Fig. 4b. Asari returned the best performance of
detecting 310 of the 314 features. The 4 features missed by asari are
shown in Supplementary Fig. 5: two of them have too few data points,
one under minimal requirement of peak height, and one with too high
local noise. The 13C isotopologues and Na+ adducts associated with the
known compounds are shown in Supplementary Fig. 6.

Additional comparisons were performed between XCMS and
asari.We have analyzed the humanplasma reference sampleNIST SRM
1950, and verified 39 metabolites previously reported in the
literature22. Both asari and XCMS successfully detected all these 39
metabolite features (see Supplementary Methods). We generated a
new dataset based on credentialed E. coli samples (Fig. 4c, similar to

ref. 23). A subset of E. coli metabolites was labeled by 13C isotope
during the cell culture. XCMS and asari extracted 1525 and 1399 fea-
tures from this dataset, respectively. After matching isotopic patterns
between labeled and unlabeled samples, 643 features in total showed
correct isotopic patterns as protonated ions. Among them, XCMS
detected 581 and asari 621. Among the 22 featuresmissed by asari, two
features were out of the 5 ppm m/z range; the other 20 are plotted in
Supplementary Fig. 7. Three of them would pass as real peaks with
more aggressive smoothing, and the remaining 17 features do not
meet quality requirements in asari. Taken together, these results
indicate that the peak detection performance of asari compares
favorably against others, and that the behavior of asari is under-
standable and predictable.

Low quality peaks account for major discrepancy between dif-
ferent software tools
Elution peak detection deserves a detailed investigation, because there
are many confusions in the field and the coverage of metabolomics is
related to how many peaks are detected. As seen in Fig. 1 and Supple-
mentary Tables 1, 2, the numbers of features are quite different from
different tools, even though XCMS and MZmine have the same
wavelet algorithm24. Therefore, the differences are not solely caused by
peak detection algorithms. Above, we discussed the impacts frommass
alignment and chromatogram construction. When different peak
detection algorithms are usedwithinMZmine, using the sameEICs, they

Fig. 3 | Compositemap enables easy and interactive inspectionof data in aweb
browser.Users can click, zoom, pan and hover on the interactive figures. Raw data
points are plotted without smoothing. The dashboard can be launched by the asari

viz subcommand. a Screen shot of the asari Dashboard, with the Feature browser.
Users can click through all features or find by feature ID. b A mass track with four
peaks and zoom-ins are shown in c and d. Mass track viewer supports m/z search.
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still returned very different numbers of features. It’s a complex problem
involving many components in software implementations. Just as in
other –omics data, metabolomics features should be considered in a
statistical context.

To give a visual guide to the problems, we illustrate a few typical
EICs in Fig. 5a, In the “good” cases, almost any peak detection algo-
rithm will work. In other cases, the consideration of noise level is cri-
tical. In high-noise EICs, more peaks can be obtained by lowering

stringency of parameters. An extreme example is shown in Supple-
mentary Fig. 8b, where the number of peaks inflates quickly by varying
parameters.We have to caution that sensitivity should not come at the
cost of low data quality. At low noise levels, small peaks can be valid
(Fig. 5a, upper right). A peak detection algorithm should ensure they
are detected even at the presence of multiple big peaks.

The default peak detection algorithm in asari first estimates the
baseline and noise level on a composite mass track (details in the
Supplementary Information). The statistics drive the decisions on
baseline subtraction, detrendingor smoothing.Detrending is to regress
out shifting chromatographic background, used sparingly in necessary
tracks (e.g., Supplementary Fig. 8c). Noisy composite mass tracks are
smoothed using simple moving average. Aggressive smoothing can
lead to superfluous artifacts (the reason that raw data points have to be
used for inspection) and is not recommended for general use. A com-
posite mass track is then separated into segments of valid signals, and
peakdetection is performedoneach segment.Weuse a localmaximum
search algorithm, with peak height and prominence requirements
dynamically determined on the segment statistics. Prominence is
the vertical distance of a peak top to its adjacent local minima, there-
fore important to control for fluctuating data points. The detected
peaks are assessed by a set of quality metrics and retained only if the
preset thresholds are met. In larger studies, asari’s performance
improves via the cumulative peak patterns in composite mass tracks.

To understand the vast differences in feature detection between
tools (Supplementary Tables 1, 2), we need to ask how many good
peaks are found by them. An intuitive measure of peak quality is “peak
shape”, here defined as the goodness of fitting to a Gaussian curve
(other curves have been used but the impact on fitness scores is neg-
ligible). High quality peaks should have peak shapes close to 1. We
recomputed the peak shapes from the result of each tool on the Yeast
2021 dataset (longer chromatography, small size of only three samples
minimizing impact from mass alignment), and plotted them as a
function of peak height in Fig. 5b. Because the reported retention time
differs slightly between tools, this calculation extended 3 s on each
sideof thepeak range,which led to slightlyworsefitting for somesmall
peaks. This extension accounts for the 504 features in red for asari,
which, by default, does not return peaks of bad shapes (under 0.5).
Other tools reported many more peaks with low quality peak shape:
XCMS has 1243 bad peaks; MZmine (wavelets) 4035 (not shown); and
MZmine (local minimum) has 9436 (all shown in red). These data
indicate that the number of good features is relatively stable between
tools. The large numbers of “extra” features reportedby different tools
are low-quality peaks, which are not reproducible and should not be
used without additional evidence. Indeed, the overlap features
between asari and others are stable at around 3000 (Supplementary
Table 2). Figure 5b has close to 5000good peaks (in black) for all tools,
because not all features are uniquely matched, due to the correspon-
dence problem discussed earlier. Summarizing results in Figs. 4, 5,
larger numbers of reported features do not improve the real perfor-
mance on benchmark peaks or good peaks.

Asari includes a set of metrics to fully describe data quality
The discussion above shows the importance to safeguard the proces-
sing result through qualitymetrics. High numbers of badpeaks are not
acceptable in real-world applications due to their negative impacts on
downstreamanalyses. For biomedical studies, features of questionable
quality shouldnotbeused for decisionmaking. Becausemetabolomics
is often used across multiple disciplines, it is important that data
quality can be clearly assessed and that it is consistent with the quality
of analytical chemistry.

SNR (signal-to-noise ratio) is often defineddifferently among tools.
In asari, the noise for an elution peak is the average signal intensity of
neighboring non-peak data points, 100 to each side; SNR is the ratio
between peak height and noise (Fig. 6a). The mSelectivity metric

Fig. 4 | Evaluation of asari feature detection. a Detection in HZV029 dataset,
based on three randomly selected samples. The manually verified 402 features
were selected from results by Thermo Scientific software. b Detection of manually
certified features in three samples in the Yeast2021 dataset21. MZmine version 3.3.0
(wavelets) produced identical results as version 2.53 in both datasets (A and B).
cDetection in the credentialed E. colidata. XCMS and asari used similar parameters
(peak height > 1E5). The two feature tables were annotated separately using khipu27

to identify isotopic patterns. All [M +H]+ features with correct isotopic patterns
were combined into the 643 “certified” features. Missed feature numbers are 62 for
XCMS and 22 for asari (further examined in Supplementary Fig. 6).
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Fig. 5 | The number of peaks has no significance beyond a core set of high-
quality peaks. a Examples of different types of EICs. Levels of maximum height,
baseline and noise are used to inform algorithmic decisions involved in peak
detection. Mass track view of all detected peaks for the top right example is pro-
vided in Supplementary Fig. 8a. b Re-computed peak shapes for features reported
by different tools processing the Yeast2021 dataset (see Supplementary Table 2),
plotted as a function of peak height. Eachdot represents a LC-MS feature, black for
Gaussian fitness score > 0.5, red for < 0.5. MS-DIAL is not included in this analysis
becausewedid not find a straight forwardmethod to export peakboundaries after
alignment. For other tools, all features from each were mapped to a set of mass

tracks generated by asari using low thresholds (minimal peak height 5000, peak
shape 0.1, SNR 1.1). Almost all m/z values in the tools were matched to these mass
tracks. For each feature, the retention time was padded 3 s on each side of peak
boundary, to accommodate processing variations. The redundant features (within
5 ppm and 6 s) were first grouped in XCMS and MZmine results. Thus, the total
feature numbers in this analysis are 5809 for XCMS, 10876 forMZmine (wavelets),
and 14394 for MZmine (local minimum). The MZmine (wavelets) result has 6841
good peaks and 4035 bad peaks. They are not plotted here because too many low
intensity peaks returned peak shape of 0 s in this approach. Source data are pro-
vided as a Source Data file.
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Fig. 6 | Qualitymetrics in asari and applications to data review. a Signal-to-noise
ratio (SNR) in asari is defined by peak height divided by noise level. In a mass track
(extracted ion chromatogram), all data pointswithin the peak range are considered
part of the peak. All other data points are considered as noise. The noise level is
taken as average intensity of up to 100 nonpeak data points on each side of the
peak.bChromatographic peak selectivity (cSelectivity). Afterfiltering thedataby 1/
2 of a given peak height, the cSelectivity of the given peak is defined by the fraction
of the data points belong to any peak. cSelectivity is 1 when the chromatogram has

no noise above the half height of any peak. c Overview of all features in the
Yeast2021 dataset. Peak area (log2) and peak shape are x and y-axes; SNR and
cSelectivity are coded by size and color. Contrast to data of lower quality is shown
in Supplementary Fig. 9. The inset shows the kernel density of SNR and peak shape.
d, e Histograms of SNR distribution in the Yeast2021 and HZV029 datasets,
respectively. f Kernel density of SNR distribution in the Yeast2021 and HZV029
datasets. More features with high SNR indicate better quality in feature detection.
Source data are provided as a Source Data file.
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(Fig. 1c) is integral to mass track construction and mass alignment in
asari. Similar for chromatography, cSelectivity is defined as howdistinct
chromatograhic elution peaks are (Fig. 6b). Together with peak shape,
users can rely on them to routinely determine the peak quality. Global
visualization of these three qualitymetrics in Yeast2021 data, in relation
to peak size, is shown in Fig. 6c. This figure demonstrates the desired
qualities of good peak shape, high SNR and high cSelectivity on asari
features. The same plot can be used to weed out poor data quality, as
illustrated in Supplementary Fig. 9a. The SNR distribution is an infor-
mativeway to assess howmuch useful information is in ametabolomics
dataset (Fig. 6d–f, Supplementary Fig. 9b). These quality metrics are
exported with the feature tables in asari. In our own research lab, fea-
tures of interest in untargeted data used to require inspection of peak
quality. With asari and these quality metrics, the burden of manual
inspection is mostly removed. Users can be confident of feature quality
based on these metrics and own the decisions of filtering data.

Feature quantification is evaluated favorably in asari
Thequantificationof eachpeak is usually basedon thepeak area,which
is represented in asari by summing the intensity of each data point in a
peak. The peak areas by XCMS and asari are generally agreeable
(Fig. 7a, b). To further investigate the performance inquantification,we
designed anexperimentwhere humanplasma andvegetable juicewere
mixed by varying ratios (BM21 dataset, Fig. 7c). Therefore, amajority of
features are expected to have their peak areas correlated with the
mixing ratios. Overall, 5581 features were matched between XCMS and

asari in the BM21 dataset. Their Pearson correlation coefficients to the
mix ratios were computed, and the distributions are shown in Fig. 7d.
Asari has more features with correlation coefficient >0.9, indicating
that the quantification in asari is more useful than that of XCMS.

Asari delivers significant improvement in computational
performance
Computational efficiency is fundamentally important to—omics data.
For MZmine and MS-DIAL, processing 100 samples often becomes
challenging on a desktop computer. XCMS is considered more per-
formant and is the default choice of cloud computing13,25,26. Here, the
computational efficiency of asari is benchmarked against XCMS using
multiple datasets of different sizes and platforms. Small studies can be
processed by asari under aminute. Some studies of 100 ~ 200 samples
take less than 10min by asari using a single CPU core. Therefore, asari
provides significant improvement of CPU time over XCMS by 1 ~ 2
orders of magnitude (Fig. 8a).

To test the scalability, we subset the SLAW data13 using varying
sample numbers. The CPU time and memory use was largely a linear
function of sample numbers (Fig. 8b, c). The results indicate that the
performance gap between XCMS and asari widens for larger studies.
XCMS can also become more complicated if it goes beyond simple
workflows or large studies are processed13. The full SLAW dataset of
>2000 samples was processed in the previous study by XCMS on a
cluster nodeof 15CPUcores in 7~12 h. This samedatasetwasprocessed
in ~1 h on a regular laptop computer using asari. This enables

Fig. 7 | Evaluation of feature quantification. Scatter plot of the log2 peak areas of
common features betweenasari andXCMS, on three samples inHZV029dataset (a)
and Yeast2021 dataset (b). The r values are based on Pearson correlation. c Design
of the BM21 dataset, by varying mix ratios between human plasma and vegetable
juice. A well quantified metabolite is expected to show good correlation between

themixing ratios and the reported peak areas, as exemplified by the feature on top
(m/z 189.1232, 159 s). Asari calculates peak area differently from XCMS, resulting in
higher values in Orbitrap data. dOverall quantification results in the BM21 dataset,
shownas featurenumbers binnedbyPearson correlation coefficients betweenpeak
areas and sample mixing ratios. Source data are provided as a Source Data file.
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expeditious metabolomics data processing on cheap hardware and
makes very large studies feasible.

Reusable data structures and code, a bridge to data science
The asari software is built on a set of transparent data structures
(Fig. 2c). Mass tracks are an extension to the concept of extracted ion
chromatograms and serve to simplify m/z alignment and navigation. A
MassGrid records the alignment of mass tracks across samples. A
feature is defined at the experiment level, and elution peaks are
defined at sample level. Mass tracks across samples are superimposed
and summed, to become composite mass tracks. The composite mass
tracks are representative of all samples. A metabolite may have mul-
tiple degenerate features due to isotopes, adducts, neutral loss and
fragments, which are grouped into an “empirical compound” via
another package khipu27. An empirical compound is a computational

unit for a tentative metabolite, since the experimental measurement
may not separate compounds of identical mass (isomers). Asari
explicitly links mass tracks, peaks, features and empirical compounds,
so that each processing step can be traced and verified. Examples of
data structures are provided in Supplementary Methods and in our
code repositories. These data structures are JSON compatible and
exposed, so that advanced users and developers can reuse themeasily.

We designed asari with the goals of code reusability, easy
deployment, easy maintainability, cloud friendliness, and scalable
performance. The software is open source on GitHub and available via
standard Python package management tools, which can be integrated
seamlessly with cloud deployment. Docker images and build recipes
are available. Subcommands are designed to perform common tasks,
such as batch processing, analyzing experimental parameters, tar-
geted extraction, and visualization via the dashboard. The software

Fig. 8 | Evaluationofcomputationalperformance. aComputationalperformance
in user CPU time (equivalent to single core) by asari andXCMSondifferent datasets
(sample numbers show in parentheses on X-axis). CPU time and wall clock time (b)

andmemory (c) usedby asari andXCMSon the SLAWdatasetusing varyingnumber
of samples. Y-axis is in log10 scale for CPU time (a, b). Source data are provided as a
Source Data file.
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modules canbeported for other tools or scripting, asdemonstratedby
Jupyter notebooks in the code repositories.

Better integration of metabolomics with biomedicine requires
metabolomics data processing tools that are accessible to general
data scientists, not limited to chemists. Previous tools are burdened
with complicated parameters while asari requires almost no tunable
parameters. To meet the diverse demands of advancing science, the
software has to be interoperable, and interface with the rich tools in
general data science. The above features of asari are designed to
bridge the gap to data science and fit easily into automated pipelines.

Discussion
Reproducibility in data processing has been a roadblock for metabo-
lomics. In this study, we attribute the inconsistency in previous soft-
ware tools to poor mass alignment and a lack of quality metrics. The
widely used wavelet algorithm shows no advantage in this study, but
costs unnecessary complexity. We have developed the asari software,
which compares favorably to other software in feature detection.
Arguably, the detection performance of the previous tools may be
improved by further parameter tuning. But this study highlights
that the number of high-quality features is stable, and increasing fea-
ture numbers also risks increasing the number of undesired false
positives.

Using a statistically-mindedapproach, asari doesnot require users
to supply any tunable parameter than mass resolution, where the
default value of 5 ppm rarely requires changing. Advanced users can
opt to modify parameters and workflows. Previous software tools
often deteriorate in feature correspondence in larger studies. On the
contrary, the processing quality in asari increases with larger studies,
because it utilizes recurrent patterns in feature detection. Asari has a
short history and has been mostly tested on the Orbitrap platforms.
The settings will need further optimization for other platforms. The
software does not work with low resolution data. The efficiency is not
optimal on data from longer chromatography. The default parameters
are designed to work with a broad range of data, but data of very high
noise may need customized processing. Future research and devel-
opment is clearly required to improve the tool. For example, additional
methods of retention time alignment can take advantage of spike-in
standards. Lipidomics and xenobiotics can benefit from additional
specific modules. Metabolomics platforms and methods are diverse
and always evolving. No single group can address all the computa-
tional needs. We will maintain an open development model and wel-
come community involvement. Asari can be easily chained with or
incorporated into other tools.

The mass tracks in asari are an operational unit to ensure
correct information retrieval, not necessarily resolving close m/z
values. This design does not interfere with annotation when the
existence of multiple compounds is known—they are found on a
mass track within a preset error range. There have been debates
on the use of absolute amu or relative ppm for mass resolution in
data processing28. Asari uses ppm currently. But the ppm is still a
practical approximation. In the same data, relative mass errors in
ppm can get larger in the higher m/z range29. Thus, the absolute
amu can be considered a 0 order and the ppm 1st order of a
polynomial model of mass accuracy, in relationship to m/z. But a
2nd order polynomial model may be required to cover the full m/z
range more accurately. Currently, asari keeps and retrieves data
within a preset resolution in a predictable way. For more spe-
cialized applications, researchers may take into consideration
these limitations. The borderline cases are often a tradeoff
between sensitivity and true discovery rate. The design of asari
favors the latter because it has less impact on data analysis and
sensitivity should have the support of annotation.

In summary, the development of asari has significantly con-
tributed to the reproducible data in metabolomics, using a full set

of linked and transparent data structures in all processing steps.
This allows developers to trace, debug and optimize the process
into the future. The end users can navigate and verify features by
interactive visualization of extracted ion chromatograms in asari
dashboard. Asari’s improvements in computational performance
and tractability will foster the increased use of metabolomics in
biomedicine.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The BM21 and HZV029 datasets have been deposited and are available
at Metabolomics Workbench (https://www.metabolomicsworkbench.
org) under the study IDs ST002454 [https://doi.org/10.21228/
M86Q7N] and ST002233 [https://doi.org/10.21228/M8SD86], respec-
tively. The datasets MT02 and SZ22 and the list of verified NIST SRM
1950 features are available at https://github.com/shuzhao-li/data. The
large SLAW dataset13 is available from MassIVE (https://massive.ucsd.
edu) under study ID MSV000086486 [https://doi.org/10.25345/
C5GJ4W]. The Yeast201 data21 is available from MassIVE under study
ID MSV000087434 [https://doi.org/doi:10.25345/C5WV53]. The other
public datasets used in this work are available under study IDs
ST001667 [https://doi.org/10.21228/M8NM4H] and ST001237 [https://
doi.org/10.21228/M8NQ4J] on Metabolomics Workbench. Source data
are provided with this paper.

Code availability
The asari source code is available at GitHub, https://github.com/
shuzhao-li/asari, and as a Python package via https://pypi.org/project/
asari-metabolomics/. Jupyter notebooks used for data analysis in this
paper are provided at GitHub, https://github.com/shuzhao-li/data.
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