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Abstract
Cancer of unknown primary (CUP) is a syndrome defined by clinical absence of a primary cancer after standardised
investigations. Gene expression profiling (GEP) and DNA sequencing have been used to predict primary tissue of
origin (TOO) in CUP and find molecularly guided treatments; however, a detailed comparison of the diagnostic yield
from these two tests has not been described. Here, we compared the diagnostic utility of RNA and DNA tests in
215 CUP patients (82% received both tests) in a prospective Australian study. Based on retrospective assessment
of clinicopathological data, 77% (166/215) of CUPs had insufficient evidence to support TOO diagnosis
(clinicopathology unresolved). The remainder had either a latent primary diagnosis (10%) or clinicopathological evi-
dence to support a likely TOO diagnosis (13%) (clinicopathology resolved). We applied a microarray (CUPGuide) or
custom NanoString 18-class GEP test to 191 CUPs with an accuracy of 91.5% in known metastatic cancers for high–
medium confidence predictions. Classification performance was similar in clinicopathology-resolved CUPs – 80%
had high–medium predictions and 94% were concordant with pathology. Notably, only 56% of the
clinicopathology-unresolved CUPs had high–medium confidence GEP predictions. Diagnostic DNA features were
interrogated in 201 CUP tumours guided by the cancer type specificity of mutations observed across 22 cancer types
from the AACR Project GENIE database (77,058 tumours) as well as mutational signatures (e.g. smoking). Among the
clinicopathology-unresolved CUPs, mutations and mutational signatures provided additional diagnostic evidence in
31% of cases. GEP classification was useful in only 13% of cases and oncoviral detection in 4%. Among CUPs where
genomics informed TOO, lung and biliary cancers were the most frequently identified types, while kidney tumours
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were another identifiable subset. In conclusion, DNA and RNA profiling supported an unconfirmed TOO diagnosis in
one-third of CUPs otherwise unresolved by clinicopathology assessment alone. DNAmutation profiling was the more
diagnostically informative assay.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Cancer of unknown primary (CUP) is a clinical
syndrome representing a heterogeneous group of
cancers where the primary tumour evades clinical detec-
tion after standardised investigations [1,2]. Representing
1–3% of all cancer diagnoses [3], CUP patients have a
notoriously poor outcome. For instance, despite being
the 14th most common diagnosis in Australia, CUP is
the sixth most common cause of cancer-related death [4].
In the absence of a known tissue of origin (TOO), most
CUP patients have historically received empirical
chemotherapy with limited clinical benefit in most
patients [5]. Current guidelines identify a subset
(�15%) of patients with a favourable outcome based
on clinicopathological features corresponding to more
treatment-responsive cancer types [6]. The improved
efficacy of targeted and immunotherapy treatments over
chemotherapy in some cancer types, such as non-small
cell lung cancer (NSCLC) and renal cell carcinoma
(RCC), has also led to proposed reassignment of some
traditionally unfavourable CUP subsets [7–9]. Improved
diagnostic methods to help resolve TOO, combined with
more effective precision treatments, are therefore likely
to be complementary to improve CUP patient outcomes.
Guidelines for a CUP diagnosis are currently based on

standardised gender-appropriate histopathological and
clinical investigations; for example, as described by the
European Society of Medical Oncology (ESMO) [6].
TOO classifiers using gene expression profiling (GEP)
and DNA methylation testing have also been
described. These molecular tests have 83–94% accuracy
when tested on known primary and metastatic
tumours [10–14] and are reported to be superior to
immunohistochemistry (IHC) [15,16]. The diagnostic
utility of molecular classifiers for CUP has been vali-
dated on latent primary CUP, in which a primary
tumour becomes known in time or through alignment
with IHC and other clinicopathological information
[10,13,15–17]. There is evidence that some CUP
patients will have molecularly identifiable cancer
types that respond better to site-directed treatments
[9,18–20]; however, the clinical utility of TOO tests
remains in question, based on negative results from
two randomised trials [19,20]. Despite the potential

limitations of these trials being that current standard of
care was not used for some treatable cancer types, the
level of recommendation for molecular testing remains
low under current guidelines [6].

DNA mutational profiling has also been explored in
CUP [21–25]. The primary goal of these studies has been
to identify clinically actionable mutations to direct
targeted therapies [21–25]. Mutational profiling can also
provide insight into the TOO, given that certain muta-
tional processes and the prevalence of cancer driver
mutations can be cancer type-dependent or enriched
[21]. Combining GEP and DNA mutational profiling
into a single classification model has also been previ-
ously demonstrated [26], although these tools and
methods are often accessible only through commercial
service providers [27]. As the DNA features defining
cancer types are realised and comprehensive DNA
sequencing becomes more common, such results can
be easily interpreted alongside histopathology and clini-
cal picture to resolve diagnostic ambiguities [28].

While GEP and mutation profiling of CUP have been
described in previous studies, no attempt has been made
to compare the diagnostic value of these methods
benchmarked against clinicopathological review.
Therefore, we applied GEP and DNAmutation profiling
to patients recruited to a national study (Solving
Unknown Primary Cancer: SUPER). Based on available
clinicopathological data, we firstly curated the CUP
cases using the available clinicopathological data to find
latent primary CUPs and those cases where a TOO was
highly likely given the available clinicopathological evi-
dence, leaving any clinicopathology-unresolved CUPs,
where molecular profiling would be of most benefit.
We then compared the diagnostic value of GEP and
DNA sequencing in each of these CUP patient groups,
identifying recurrent cancer types among the cohort
and their molecular features.

Materials and methods

Patient cohort
CUP patients were recruited to the SUPER study from
11 Australian sites with informed patient consent under
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an approved protocol of the Peter MacCallum Cancer
Centre (PMCC) human research ethics committee
(HREC protocol: 13/62) per the Declaration of Helsinki
1975, as revised in 1983. Eligibility criteria for patient
inclusion and exclusion to the study are described in
Supplementary materials and methods.

CUP clinicopathological review
A retrospective review of all histopathology reports and
clinical data was performed by a single pathologist
(OP) (supplementary material, Tables S1 and S2). A his-
topathology review of slides was undertaken for a subset
of cases from the PMCC (n = 59), including additional
IHC staining if necessary if tissue was available
(supplementary material, Tables S1 and S2). Further
review of the clinical data was done by a medical oncol-
ogist (LM) to concur with the pathologist’s opinion.
Cases were assigned a TOO where possible, or
subclassified using a modified version of the Memorial
Sloan Kettering Cancer Center (MSKCC) OncoTree
classification system for CUPs [29] into undifferentiated
malignant neoplasms (UDMN); poorly differentiated
carcinoma (PDC); adenocarcinoma, not otherwise spec-
ified (ADNOS); neuroendocrine tumours, not otherwise
specified (NETNOS); neuroendocrine carcinomas, not
otherwise specified (NECNOS); and squamous cell car-
cinomas, not otherwise specified (SCCNOS). ADNOS
were further subdivided based on cytokeratin 7 (CK7)
and cytokeratin 20 (CK20) IHC staining; where CK7
was negative and CK20 had positive staining, caudal-
type homeobox 2 (CDX2) was annotated. SCCNOS
were subclassified based on p16INK4A (p16) IHC
staining positivity (Supplementary materials and
methods). The diagnosis for all cases was re-assessed
following the genomic findings.

Gene expression profiling
GEP was performed using a previously described
microarray-based test (CUPGuide) [21] or a custom
NanoString nCounter assay (NanoString Technologies
Inc., Seattle, WA, USA). A detailed description of
nucleic acid extraction, the NanoString assay, and the
TOO classifier is given in Supplementary materials and
methods. In brief, the NanoString panel included probe
sets targeting 225 genes differentially expressed across
18 tumour classes and viral transcripts encoding capsid
proteins for HPV16 L1, HPV18 L1, and Merkel
cell polyomavirus (VP2) (supplementary material,
Table S3). The NanoString classifier was trained on
harmonised TCGA RNA-seq data described previously
[14], representing 8,454 samples consolidated into
18 tumour classes (supplementary material, Table S4).
The RNA-seq/NanoString k-nearest neighbour cross-
platform classifier was validated on an independent test
set of 188 metastatic tumours profiled by NanoString
(supplementary material, Tables S5 and S6). A probabil-
ity score was generated for predictions and heuristic
thresholds set for classification confidence level

(unclassified <0.5, low ≥0.5 and ≤0.7, medium confi-
dence >0.7 and <0.9, high confidence ≥9 probability).

Comprehensive DNA panel sequencing
Targeted enrichment andDNA sequencingwere performed
on matched blood and tumour DNA, capturing coding
regions and exon/intron splice sites of 386 cancer-related
genes (listed in supplementary material, Table S7) using
previously described methods [30]. Alignment and variant
callingwere performed using bcbio-nextgen cancer somatic
variant calling pipelines (https://github.com/bcbio/bcbio-
nextgen) and R tools were used for analysis. A detailed
description of bioinformatics is given in Supplementary
materials and methods.

Reference mutation data and identification of
putative diagnostic DNA features
The AACR Project GENIE mutation data for 77,058
tumours (referred to as GENIE) [31] was downloaded from
the cBioPortal webpage (https://genie.cbioportal.org/, ver-
sion3.7.9) [32,33].The frequencyofgene-specificmutations
was assessed in tumours annotated as CUP or other cancer
types. Genes investigated were restricted to those included
in the current study (supplementary material, Table S7). For
assessmentofcancerdrivermutations,GENIEcancerclasses
with fewer than 50 samples per class were removed from
consideration, except for assessing gene fusions, where can-
cer classes with fewer than 10 samples per cancer class were
removed from analysis (supplementary material, Table S8).
For identifying DNA features of potential diagnostic utility,
the frequency of gene-wise driver mutations was calculated
in 22 pre-defined cancer classes (supplementary material,
Tables S8 and S9). Oncogenes and tumour suppressor genes
(TSGs) were annotated using OncoKB [34]. For assessing
cancer class mutation frequency in the reference data, only
truncating mutations in TSGs or hotspot mutations in both
oncogenes and TSGs were used (annotated using the web
portal http://www.cancerhotspots.org/ [35]).Oncogenic gene
fusions and copy-number alterations were restricted to a
curated set of cancer genes (supplementary material,
Table S7). A Fisher’s exact test was then performed using
the R package stats (https://github.com/arunsrinivasan/cran.
stats) to identify genes statistically enriched for DNA alter-
ations in individual cancer classes versus all other cancers.
The Holm–Bonferroni methodwas used for post hoc adjust-
ment toaccount formultiple testing.Significancewasdefined
as anything with an adjusted P value less than 0.05 and an
odds ratio (OR) greater than 1. Significant cancer type diag-
nostic DNA alterations are summarised in supplementary
material, Tables S9 and S10.

Results

Study cohort and subclassification of CUPs
A total of 215 patients were recruited to the SUPER
study, and a summary of baseline characteristics is
shown in Table 1. Eighty-nine per cent (191/215)

Tissue of origin diagnosis in cancer of unknown primary 83
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received GEP, 93% (201/215) of patients had compre-
hensive DNA panel sequencing, and 82% (177/215)
received both assays (Table 1). A latent primary diag-
nosis was reported by the treating clinician during
clinical follow-up in 10% (22/215) of cases based on
histopathology, clinical presentation, and/or cancer
imaging. In another 13% (27/215) of cases, TOO
was assigned after a retrospective review of reported
or reviewed morphology, clinical picture, and IHC
staining. Notably, among the latent primary and
clinicopathology-resolved CUP cases, there was an
enrichment of patients with a prior history of cancer
(35%, 17/49), eight of whom had a likely recurrence
of their previous disease (supplementary material,
Table S1).
Most patients (166/215, 77%) did not have an initial

TOO designated (termed clinicopathology-unresolved)
as there was insufficient clinicopathological evidence
to support a likely TOO despite an IHC workup
according to current ESMO guidelines [6]. Additional
IHC stains may have been informative in a small subset
(7/166, 4%), but these could not be done owing to tissue
availability. The clinicopathology-unresolved CUPs
were classified into histomorphological subtypes using
a modified MSKCC OncoTree classification system
(see Supplementary materials and methods) (supple-
mentary material, Table S2). The majority of
clinicopathology-unresolved CUPs were adenocarci-
nomas, not otherwise specified (ADNOS) (51%) or
poorly differentiated carcinomas (PDCs) (25%), with
minor subsets of squamous cell carcinomas (SCCs)
(13%), undifferentiated malignant neoplasms (UDMN)
(7%), and neuroendocrine neoplasias (NET/NECNOS)
(2%). OncoTree classifications are summarised in sup-
plementary material, Table S11.

GEP classification confidence is lower for
clinicopathology-unresolved CUPs than known
metastatic cancers
We used two GEP methods to classify 191/215 CUP
tumours, where sufficient RNA was available. A previ-
ously described 18-class microarray-based classifier
(CUPGuide) was used in 20 cases [21], while a novel
NanoString classifier was used in the remaining
cases (supplementary material, Tables S1 and S2).
The NanoString classifier was validated using an inde-
pendent cohort of 188 metastatic tumours of known ori-
gin (supplementary material, Table S6), achieving an
overall prediction accuracy of 82.9%, increasing to
91.5% when only high–medium confidence classifica-
tions (n = 154) were considered (Figure 1A and supple-
mentary material, Table S5).

GEP TOO classification was possible for
45 clinicopathology-resolved CUPs (Figure 1B), of
which 80% (36/45) had a high–medium confidence clas-
sification (Figure 1C). Among high–medium confidence
predictions, 94% (31/33) were concordant with their
latent primary or histological diagnosis (supplementary
material, Table S1). Three cases were considered outside
the 18-class GEP TOO differential, including one rare
ampullary tumour (colorectal, high confidence) and two
uterine tumours (SCC, medium confidence; ovarian, high
confidence). Recurrent high–medium confidencemisclas-
sifications were observed among the clinicopathology-
resolved and latent primary CUP cases as well as known
metastatic cancers in the validation set that included
cholangiocarcinoma (1/1 and 5/11, respectively) and pan-
creatic adenocarcinomas (3/10 in the known metastatic
set) (Figure 1A,B).

GEP TOO classification was performed on
146 clinicopathology-unresolved CUPs, of which
high–medium confidence classifications were made for
only 56% (82/146) of cases (Figure 1C). The most fre-
quent high–medium confidence classifications included
SCC (32%), liver (13%), colorectal (12%), breast
(10%), and lung (8.5%) (Figure 1D). A lower percentage
of high–medium confidence classifications among
clinicopathology-unresolved CUPs compared with
known metastatic cancers indicates that many CUP
tumours either have an atypical transcriptional profile
or are potentially enriched for cancer types outside the
GEP classifier differential.

The mutation profile of the SUPER CUP cohort is
consistent with other CUP cohorts
Comprehensive DNA panel sequencing was performed
for 201/215 CUP tumours. We detected mutational fea-
tures including single nucleotide variants (SNVs), gene
fusions, copy number alterations (CNAs), SNV 96 trinu-
cleotide mutational signatures (COSMIC v2) [36],
tumour mutation burden (TMB), and off-target viral
DNA sequences (Figure 2). Viral RNA transcripts
detected by NanoString also supported viral status for
HPV-positive tumours.

Table 1. Study cohort characteristics.
Characteristics Count Proportion

Total cohort 215 100%
Age, mean (range), years 61 (20–86)
Sex

Male 89 41%
Female 107 49%
Unrecorded 19 9%

ECOG1 grade
0 67 31%
1 101 47%
2 24 11%
3 1 0.5%
Not determined 22 10%

Previous cancer diagnosis 58 27%
ESMO outcome

Favourable 31 14%
Unfavourable 176 82%
Not determined 8 4%

Gene expression profiling 191 89%
NanoString 172 80%
CUPGuide 19 9%

DNA sequencing 201 93%
Both molecular tests* 177 82%

*DNA sequencing and GEP performed successfully.
1ECOG: Eastern Cooperative Oncology Group.

84 A Posner et al

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2023; 259: 81–92
www.thejournalofpathology.com

 10969896, 2023, 1, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.6022 by JA

C
K

SO
N

 L
A

B
O

R
A

T
O

R
Y

, W
iley O

nline L
ibrary on [11/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.pathsoc.org
http://www.thejournalofpathology.com


At least one protein-coding mutation was found in
98.5% (198/201) of CUPs, with a median TMB of
4.4 mutations/Mb (range 0.5–149 mutations/Mb).
The most frequently mutated genes were TP53 (55%),
LRP1B (20%), PIK3CA (17%), KMT2D (15%), KRAS
(12%), ARID1A (11%), and SMARCA4 (11%)
(Figure 2). The variant allele frequency of these muta-
tions ranged between 16% and 40.5%, consistent with
clonal cancer driver events when tumour purity was
considered. Additionally, 8% (n = 16) of the cohort
had dominant signature 4 (smoking), 5% (n = 11) sig-
nature 7 (ultra-violet light, UV), and 2% (n = 4) signa-
ture 6 (microsatellite instability, MSI). HPV16 (DNA

and RNA) was detected in five cases and EBV (DNA
only) in one case.
The gene-wise mutation frequency in the CUP cohort

was also compared to 2,785 CUPs in the GENIE data-
base. The mutation profile between the SUPER CUP
and GENIE CUP cohorts was highly similar with some
minor differences, including a higher frequency ofKRAS
mutations (12% versus 22%) among the GENIE CUPs
and a higher frequency of LRP1B (18% versus 2%)
mutations in the SUPER cohort, the latter explained by
LRP1B not being included in the MSK-IMPACT panel
(Figure 2) [37]. Actionable mutations by reference to
the CUPISCO trial criteria, as previously described

Figure 1. Gene expression profiling (GEP) tissue of origin classification of known metastatic cancers and SUPER cancer of unknown primary
(CUP) tumours. (A) The NanoString GEP classifier was tested on 188 known origin metastatic tumours with confusion matrix showing con-
cordance of tissue of origin prediction and known cancer type. (B) The GEP classifier tested on clinicopathology-resolved CUPs showing con-
cordance between the likely tissue of origin and the predicted cancer type. Latent primary and clinicopathology-resolved CUPs representing
cancer types not represented in the classifier model were removed from the analysis. (C) Fraction of cases within confidence probability score
grouping contrasting classification of Clinicopathology-unresolved CUPs and clinicopathology-resolved CUPs combined with known meta-
static tumours (unclassified <0.5, low ≥0.5 and ≤0.7, medium confidence ≥0.8 and ≤0.9, high confidence = 1). (D) GEP cancer class predic-
tions of all clinicopathology-unresolved CUPs with high–medium confidence predictions.

Tissue of origin diagnosis in cancer of unknown primary 85
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[25], showed that 86 CUP patients (40%) were matched
to either the targeted therapy or immunotherapy arm of
CUPISCO (Figure 2) (supplementary material,

Table S12). DNA mutation profiling therefore showed
that the genomic landscape of our CUP cohort is highly
similar to that of other CUP cohorts.

Figure 2. DNA mutational profiling of the SUPER cancer of unknown primary (CUP) cohort. The Oncoplot shows somatic mutations in CUPs in
descending order of frequency. Genes and mutational features coloured red are actionable and targeted in the CUPISCO trial. The proportion
of mutations in the SUPER CUPs was compared with the AACR Project GENIE CUP cohort (right-hand bar plot). The left-hand plot shows the
average variant allele frequency (VAF) distribution per gene. The top bar plot shows the number of coding mutations per sample. Annotations
include MSKCC OncoTree class for clinicopathology-unresolved CUPs or the assigned tumour class for latent primary and clinicopathology-
resolved CUPs; detection of COSMIC mutational signatures (V2): smoking signature, ultra-violet (UV) signature, DNA mismatch repair
signature; oncoviruses: human papillomavirus 16 (HPV16) and Epstein–Barr virus (EBV); and tumour mutation burden (TMB) status: high >10
mutations/Mb or low <10 mutations/Mb.

86 A Posner et al

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2023; 259: 81–92
www.thejournalofpathology.com

 10969896, 2023, 1, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.6022 by JA

C
K

SO
N

 L
A

B
O

R
A

T
O

R
Y

, W
iley O

nline L
ibrary on [11/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.pathsoc.org
http://www.thejournalofpathology.com


Mutation profiling and GEP can augment
histopathology review
We next considered the independent or combined
diagnostic value of DNA and RNA features with a histo-
pathological review. Here, we considered driver
gene mutations, gene fusions, mutational signatures,
oncoviruses, and high–medium confidence GEP classifi-
cations. To identify gene mutations and fusions with sig-
nificant cancer type associations, we referenced the
GENIE database of 77,058 tumour samples involving
22 solid cancer types. The cancer type enrichment of a
gene feature was determined by comparing one cancer
type versus all the others [Fisher exact test adjusted
P value <0.05 and odds ratio (OR) >1] (supplementary
material, Table S10). A total of 171 genes passed the
threshold in one or more cancer types, and 90 genes were
significantly enriched in only one cancer type (supple-
mentary material, Figures S1 and S2). Mutational signa-
tures also provided important diagnostic evidence to
support likely TOO; for example, signature 7 (UV) is
associated with skin cancer or signature 4 (smoking)
with cancers of the airways, although not excluding liver
cancer [36].

Of the clinicopathology-resolved and latent primary
CUPs, 69% (33/49) had one or more DNA features con-
sistent with the TOO diagnosis: gene mutations
(n = 24), mutational signatures (n = 4), CNA (n = 2),
gene fusions (n = 1), and oncoviruses (n = 1)
(Figure 3A and supplementary material, Figure S3). By
comparison, high–medium confidence GEP classifica-
tions were diagnostically useful in 51% of this group
(n = 25). An example of where DNA and RNA
features were consistent with the latent primary and
clinicopathology TOO designation included 8/10
(80%) ovarian cases with high-confidence GEP classifi-
cation and a TP53mutation, the latter occurring in more
than 96% of high-grade serous ovarian cancers [38]
(supplementary material, Figure S3 and Table S1).

A single case (1097) thought initially to be colorec-
tal cancer based on histology had contradictory
molecular features that resulted in a change in classifi-
cation to clinicopathology-unresolved CUP (ADNOS
CK7�CK20+CDX2+). In this case, no recurrent gene
mutations supported a colorectal origin (e.g. APC,
RAS/RAFmutations), while high-confidence GEP pre-
diction of kidney was made with mutations detected in
NF2 and SMARCA4. Confirmatory IHC staining
(e.g. for PAX8) may have supported a kidney cancer
diagnosis, but no tissue was available to perform the
staining.

Molecular features supported a TOO diagnosis consis-
tent with clinicopathological features in 37% (61/166) of
clinicopathology-unresolved CUPs (Figure 3A,B).
DNA features supported a diagnosis in 31% (51/166) of
such cases, whereas high–medium confidence GEP pre-
diction was useful in only 13% (21/166) and viral detec-
tion in 4% (6/166). GEP classification and mutation
profiling were informative in 10% (16/166) of cases
(Figure 3C). DNA features supporting a diagnosis

included driver gene mutations (n = 36), mutational
signatures (n = 23), oncoviral nucleic acids (HPV16,
n = 5; EBV, n = 1), CNA (n = 4), and gene fusions
(n = 3) (Figure 3A). DNA features could also narrow
the differential diagnosis in a further 11/166 (7%) cases,
although assignment of a single TOO could not be confi-
dently made (Figure 3B). Considering the combined
genomics data, the most frequently suspected cancer
types among clinicopathology-unresolved CUPs were
lung (n = 18), including a single pleomorphic carcinoma
of the lung (LUPC), biliary tract (n = 8), breast (n = 5),
colorectal (n = 5), HPV+ SCC (n = 5), and kidney
(n = 4) (Figure 3D).

Recurrent CUP types and their molecular and
clinicopathological features
Lung-CUP was the most frequent molecular diagnosis
among the clinicopathology-unresolved CUPs. A domi-
nant smoking mutational signature was found in 14
cases. Driver gene mutations associated with NSCLC
included KEAP1 (lung OR = 9.8), STK11 (lung
OR = 14.1), SMARCA4 (lung OR = 2.8), and KRAS
(lung OR = 2.1) (Figure 3D and supplementary mate-
rial, Figure S2 and Table S10). Notably, all but one
lung-CUPwere negative for TTF1 IHC staining. Among
the lung-CUPs where GEP was possible, a high–
medium confidence lung classification was made in only
5/16 cases. Two cases had a high–medium lung GEP
classification, but mutation profiling was unsuccessful,
and there was insufficient clinicopathological evidence
available to support a lung cancer diagnosis. Notably,
three lung-CUPs were CDX2-positive by IHC but had
mutational features consistent with lung carcinoma,
including a smoking mutational signature in all three
cases. GEPwas uninformative in these cases, as one case
was classified as colorectal (0.9-confidence probability)
and twowere predicted as SCC, a non-specific classifica-
tion but potentially in keepingwith lung SCC (Figure 3D
and supplementary material, Table S2). These CDX2+

lung-CUPs were favoured to be enteric-like lung adeno-
carcinomas [39].
Eight ADNOS tumours were likely to be intrahepatic

cholangiocarcinomas supported by mutations in BAP1
(cholangiocarcinoma OR = 7.2) and IDH1 (cholangio-
carcinoma OR = 32) (Figure 3D and supplementary
material, Table S10). Seven of these tumours presented
with liver masses. These tumours lacked KRAS
mutations, making pancreatic cancer less likely, given
that KRAS mutations occur in approximately 90% of
pancreatic adenocarcinomas (supplementary material,
Tables S9 and S10) [40]. FGFR2 fusions are also fre-
quent in intrahepatic cholangiocarcinoma (cholangio-
carcinoma OR > 100) [41–43] and therefore supported
a cholangiocarcinoma diagnosis in two cases (supple-
mentary material, Tables S2 and S10).
In four clinicopathology-unresolved CUPs, subse-

quently diagnosed as kidney cancers using genomic fea-
tures, two expressed PAX8 by IHC, supported by high
PAX8 mRNA expression (z-score > 2), and in an
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Figure 3. Identification of diagnostically useful DNA features using AACR Project GENIE mutation data and summary of evidence used to
support tissue of origin (TOO) diagnosis among SUPER cancer of unknown primary (CUP) cases. (A) Proportion and number of cases where
each genomic feature supported a putative TOO for clinicopathology-unresolved CUPs and clinicopathology-resolved CUPs. Genomic fea-
tures included single nucleotide variants (SNV), gene expression profiling (GEP), mutational signatures, oncoviral sequences, copy number
alterations (CNAs), and gene fusions. (B) MSKCC OncoTree cancer classification of clinicopathology-unresolved CUPs before and after
genomic analysis. CUPs were either resolved to a putative TOO, had reduced occult diagnosis, or remained clinicopathology-unresolved.
(C) Proportion of cases where DNA and/or GEP classification supported TOO diagnosis among clinicopathology-unresolved CUPs.
(D) Detailed summary of supportive genomic features and IHC staining used to assign a putative TOO for all genomically resolved
clinicopathology-unresolved CUPs.
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additional case, PAX8 IHC staining could not be
performed, but the tumour had high PAX8 mRNA
expression. The fourth case had neither PAX8 IHC
staining nor PAX8 mRNA expression. Only two cases
were classified as kidney by GEP (Figure 3D). Driver
mutations consistent with RCC and detected among
kidney-CUPs included BAP1 (kidney OR = 7.6) and
NF2 (kidney OR = 7.2). Another case had a truncating
FH mutation consistent with FH-deficient RCC (kidney
OR = 8.1) (supplementary material, Figure S1).
No VHL mutations were detected, representing the most
common driver gene in clear cell RCC (42.5% RCC in
GENIE, OR > 100). Another assigned kidney case was
confirmed to be a recurrence of late-onset adult Wilms’
tumour by detecting a somatic FGFR1 missense muta-
tion in both the original primary tumour and a recurrent
metastasis that presented over 20 years after first diagno-
sis (supplementary material, Table S2 and S10).

Discussion

Consistent with other large retrospective CUP studies,
we found that approximately one-quarter of CUPs may
be assigned a likely TOO based on centralised histopa-
thology and clinical review [44,45]. This is similar to
the recent experience of the international CUP clinical
trial CUPISCO, where �20% of patients had a single
primary site diagnosis supported by available evidence
or strongly suspected TOO [46]. Here, we directly com-
pared the two molecular diagnostic approaches in
CUP benchmarked against clinicopathological data.
Our study is therefore distinguished from other studies
where only a single molecular assay was applied
[10–14] or where DNA and RNA features were algorith-
mically combined together to make a single TOO predic-
tion [26,27,47]. We showed that DNA and RNA tests
help to resolve a third of CUP cases where clinicopatho-
logical data alone were insufficient to designate a likely
TOO diagnosis. Importantly, despite GEP being the
most commonly explored molecular diagnostic test for
CUP to date, we found that DNA sequencing may be
of greater diagnostic value, as many CUP tumours
appear to have an atypical transcriptional profile yet
retain identifiable and compelling diagnostic mutational
features.

GEP classification relies upon the expression of cellu-
lar differentiation markers that are often lost or equivocal
in CUP tumours [48]. Our observation that fewer CUPs
have high–medium confidence GEP classification com-
pared with known metastatic cancers, thus reflecting a
poorer classifier performance, is supported by results
from other studies. For instance, the CancerTYPE ID
classifier, which had extensive multisite validation,
showed an overall accuracy of 85% for known cancer
metastases. However, in CUP, the concordance of GEP
with IHC and clinicopathological evidence was lower,
at 75% for latent primary CUPs and 70% compared
with the clinical picture only [11]. Similar to our

observations, among lung-CUP cases, GEP classifica-
tion was even less concordant, with a latent primary
tumour corresponding to TOO classification in only
50% of cases [17]. We found that GEP classification
accuracy can be low for other cancer types, such as
cholangiocarcinomas, as the transcriptional profile is
similar to that of pancreatic and upper gastrointestinal
neoplasms [14]. Notably, some previous GEP and
DNA methylation tests did not include a cholangio-
carcinoma class in their models or instead combined
them with pancreatic cancers into a single pancreati-
cobiliary class [13,49]. We found that DNA mutational
profiling may be particularly useful in biliary cancers,
given that some gene mutations are highly enriched in
cholangiocarcinoma and have both diagnostic and occa-
sionally therapeutic significance, including alterations in
IDH1, FGFR2, and BAP1 [41–43].
Rare cancers likely comprise a significant subset of

CUP tumours. Perhaps because rare cancers were either
not represented or underrepresented in our GEP training
data, this may explain lower confidence predictions
among CUPs unresolved by histopathology alone.
Transdifferentiation or mixed phenotypes can also
potentially confuse GEP classification, and in such
cases, a DNA profile may be more reliable. For instance,
a recent multi-omics study of lung cancers with mixed
histology found that while transcriptomic profiles
reflected regional cellular differentiation, the tumour’s
DNA mutation profile remained remarkably stable [50].
The reliability of mutation profiling over GEP in atypical
lung cancers was also captured in our data. For example,
we identified pulmonary enteric adenocarcinomas that
lacked TTF1 expression but expressed the gastrointesti-
nal marker CDX2 [39]. Importantly, GEP or IHC alone
could not resolve such cases, given their atypical tran-
scriptional profile; however, they had DNA features
highly suggestive of NSCLC, including a smoking
mutational signature and somatic mutations in KRAS,
STK11, and SMARCA4. SMARCA4-deficient lung can-
cers lack TTF1 expression [51] and are likely to be
enriched among the CUP population [22,23]. It is of high
interest that murine SMARCA4-deficient lung cancers
also lose expression of lung differentiation markers and
have pro-metastatic behaviour similar to CUP tumours
[52]. Therefore, it is enticing to think that SMARCA4
deficiency may account for the clinical presentation of
some lung-CUP cases.
Kidney cancers are another emerging CUP entity,

representing �4–6% of CUPs [7,8,46]. Interestingly,
we found somatic mutations in NF2, FH, and BAP1 in
some CUPs that were suggestive of kidney cancer when
considered with clinicopathological data. Somatic NF2
mutations are characteristic of advanced papillary renal
cell tumours and those with biphasic hyalinising
psammomatous features [53]. Papillary carcinomas are
enriched among other kidney-CUPs [7,8] with a muta-
tion profile similar to that of the kidney-CUPs that we
identified in the SUPER cohort [54]. Identifying CUP
entities and recurrent therapeutic targets in these groups
may help to guide future CUP clinical trials. For
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instance, while empirical chemotherapy is ineffective in
RCC, targeted therapies and immune checkpoint inhibi-
tors are likely more efficacious [7,55]. Furthermore,
detection of NF2 mutations among RCCs could direct
targeted treatment of the Hippo pathway using inhibitors
of TEAD auto-palmitoylation [56], now in clinical trials
(NCT04665206). TEAD inhibitors therefore add to a
growing list of molecular targeted therapies that may
be effective in CUP tumours.
In conclusion, we have shown that both DNA and

RNA tests can be incorporated into a pathology assess-
ment to improve cancer type diagnosis, identify CUP
subtypes, and find treatment targets. Rather than
replacing traditional histopathological analysis, molecu-
lar testing can augment conventional testing to confirm a
suspicion of primary TOO or provide robust diagnostic
leads that are not otherwise evident. In practice, in cases
where tissue is limited, prioritising genomic testing to
guide additional investigations may be more informative
before consuming tissue on extended IHC panels.
With steady technological improvements and reduced
sequencing costs, more comprehensive whole-genome
and transcriptome analysis will likely increase the sensi-
tivity to detect features such as structural variants and
mutational signatures that are not reliably detected by
panel sequencing [57]. While DNA mutational profiling
is not currently recommended in most CUP guidelines,
the adoption of comprehensive panel DNA sequencing
to assist cancer type diagnosis and detect potential treat-
ment targets would seem of high clinical value for this
patient group.
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