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Abstract
Rationale Electronic (e)-cigarettes are popular among youth and cigarette smokers attempting to quit. Studies 
to date have focused on the utility of e-cigarettes as a smoking cessation tool, but the biological effects are largely 
unknown.

Objectives To identify transcriptomic differences in the blood and sputum of e-cigarette users compared to 
conventional cigarettes smokers and healthy controls and describe biological pathways affected by these tobacco 
products.

Methods Cross-sectional analysis of whole blood and sputum RNA-sequencing data from 8 smokers, 9 e-cigarette 
users (e-cigs) and 4 controls. Weighted gene co-network analysis (WGCNA) identified gene module associations. 
Ingenuity Pathway Analysis (IPA) identified canonical pathways associated with tobacco products.

Main results In blood, a three-group comparison showed 16 differentially expressed genes (DEGs); pair-wise 
comparison showed 7 DEGs between e-cigs and controls, 35 DEGs between smokers and controls, and 13 DEGs 
between smokers and e-cigs. In sputum, 438 DEGs were in the three-group comparison. In pair-wise comparisons, 
there were 2 DEGs between e-cigs and controls, 270 DEGs between smokers and controls, and 468 DEGs between 
smokers and e-cigs. Only 2 genes in the smokers vs. control comparison overlapped between blood and sputum. 
Most gene modules identified through WGCNA associated with tobacco product exposures also were associated with 
cotinine and exhaled CO levels. IPA showed more canonical pathways altered by conventional cigarette smoking than 
by e-cigarette use.

Conclusion Cigarette smoking and e-cigarette use led to transcriptomic changes in both blood and sputum. 
However, conventional cigarettes induced much stronger transcriptomic responses in both compartments.

Keywords Transcriptomics, Tobacco, Immune cells of the airways, Electronic cigarettes, Cigarette smoking
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Introduction
The use of e-cigarettes or “vaping” is popular among 
adolescents, young adults as well as former and cur-
rent cigarette smokers [1]. Although e-cigarettes with 
nicotine are a potential tool for smoking cessation, their 
effectiveness remains controversial [2], [3]. The benefit 
of switching from conventional tobacco to e-cigarettes 

relies on the notion that they are less harmful than com-
bustible cigarettes. Whereas smoke from cigarettes con-
tains 4,000–7,000 chemicals, with many known harmful 
toxicants and carcinogens, e-cigarette aerosols contain 
many fewer (50–120) chemicals [4]. Nevertheless, epi-
demiological studies have linked e-cigarette use with 
pulmonary diseases known to occur with conventional 
cigarette smoking, namely bronchitis, COPD, hyper-
sensitivity pneumonitis, eosinophilic pneumonia, lipoid 
pneumonia, and asthma [5–7], and in 2019, the Center 
for Disease Control and Prevention (CDC) identified 
a novel disease caused by vaping: e-cigarette or vaping 
product use-associated lung injury (EVALI) [8]. Beyond 
our clinical experience, little is known about the effects 
of e-cigarette use on the respiratory system, particularly 
when compared to conventional tobacco.

There are several reports from both in vitro and human 
subject studies showing that exposure to e-cigarette aero-
sols (commonly referred to as “vapor”) leads to signifi-
cant changes in gene expression by airway epithelial cells 
[9–11]. However, to our knowledge, there are no reports 
regarding the effects of e-cigarette use on gene expres-
sion in immune cells in human airways. There are scarce 
reports of gene expression in sputum of healthy smokers, 
and the most robust, which was funded by the tobacco 
industry, showed that cigarette smoking alters two bio-
logical pathways: (1) the xenobiotic response and oxida-
tive stress; and (2) immune related responses [12]. More 
recently, a study of inflammatory markers in the spu-
tum of e-cigarette users showed that newer generation 
e-cigarettes (4th generation) may cause more immuno-
suppression than prior e-cigarette devices; nevertheless, 
the effects of e-cigarettes on human airway and systemic 
immunity remain unclear.

The goals of this work were to identify biological path-
ways differentially regulated in the blood and sputum of 
e-cigarette users when compared to cigarette smokers 
(CS) and healthy controls and to shed light on how expo-
sure to these tobacco products may lead to respiratory 
diseases. Our primary hypothesis was that these two dis-
parate inhalants would lead to gene expression changes 
in the sputum and the circulation reflecting homeostatic 
changes in multiple biological pathways contrasting with 
those induced by conventional tobacco.

Methods
Human subjects
Sixty-five participants were enrolled between May 1, 
2017, and March 1, 2020 (Fig.  1). Inclusion criteria 
included age 18–55 years old plus exclusive daily use of 
e-cigarettes or conventional cigarettes for at least one 
year. Exclusion criteria included use of prescription 
medications (excluding birth control pills); previously 
diagnosed pulmonary disease; emergency room visits 

Fig. 1 Diagrammatic representation of the study cohort and workflow. 
A total of 65 participants were enrolled in the study; all underwent ex-
haled carbon monoxide (eCO) measurement, spirometry, sputum induc-
tion with hypertonic saline, and blood draw. Adequate (i.e., with less than 
10% squamous cells) sputum samples were obtained from 33 subjects. 
Good quality RNA (RNA integrity numbers (RIN) > 7) was obtained from 
23 samples, which then were matched with whole blood RNAs from the 
same subjects to comprise our final study cohort. Following RNA-Seq and 
principal component analysis, additional samples were excluded (see 
main text and Fig. 2) before in-depth analysis of differentially expressed 
genes. Only smokers and controls with eCO of < 5 ppm were included in 
the final analysis
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or hospitalization within the prior year; pregnancy; his-
tory of allergic rhinitis/rhinosinusitis, chemical exposure 
(including dust and wood) or an adverse reaction to alb-
uterol; and current use of cigars, pipes, hookah, chewing 
tobacco or other tobacco products, marijuana, cocaine, 
or illicit drugs. We used these stringent criteria to avoid 
misclassification and residual bias, as older subjects may 
have greater significant undiagnosed comorbidities, 
while other noxious exposures, such as viral infections 
or allergies, could affect the biological pathways similarly 
to the use of tobacco products. All subjects underwent 
informed consent. This study was approved by the Uni-
versity of Connecticut Institutional Review Board.

Sputum induction, blood collection and RNA extraction 
and processing
All 65 participants underwent exhaled carbon monoxide 
(eCO) measurement, spirometry and sputum induction 
with hypertonic saline [13]. In brief, subjects were asked 
to blow their nose and to complete three 7-minute cycles 
of inhalation of 3%, 4%, and 5% hypertonic sodium chlo-
ride delivered by an ultrasonic nebulizer (DeVilbiss®). At 
the end of each cycle subjects were encouraged to expec-
torate into a sterile cup; samples were processed within 
15  min of collection. Sputum plugs were selected, and 
then cellular and aqueous compartments were separated 
using dithiothreitol (DTT) and centrifugation as previ-
ously described [13], [14]. Cell viability was determined 
by trypan blue exclusion. Total cell counts were deter-
mined by hemocytometer, and final differentials were 
performed on Wright-Giemsa stained Cytospin® slides of 
≥200 cells 15–18. Sputum samples with greater than 10% 
squamous cells were excluded as higher squamous cells 
concentration may reflect salivary contamination and 
may impact biomarker measurements [19], [20]. Aque-
ous phase was aliquoted and stored at -80 °C; cell pellets 
were stored at -80 °C in RNAlater®. YKL-40, TNF-alpha, 
interleukin (IL)-6, IL-33, IL-8, IL-10, and IL-13 were 
measured using the commercially available Magnetic 
Luminex Assay (R&D Systems Inc., Minneapolis, MN) 
and Bio-Plex 200 reader (BioRad Laboratories, Hercules, 
CA). All samples were tested in duplicate as described 
elsewhere [21]. RNA extraction was performed using the 
miRNAeasy and RNeasy MinElute kits (Qiagen) accord-
ing to manufacturer instructions. Phlebotomy was per-
formed and blood underwent automated cell blood count 
by the clinical laboratory, and RNA extraction and analy-
sis via PAXgene® RNA tubes (BD Biosciences) and PAX-
gene blood RNA kit (Qiagen).

RNA-Sequencing and qRT-PCR experiments
RNA from sputum and blood was analyzed on an Agi-
lent TapeStation 4200 (Agilent Technologies) using the 
RNA High Sensitivity assay. Only samples with ribosomal 

integrity numbers (RIN) values above 7.0 were consid-
ered for library preparation. Samples from blood and 
sputum were processed as one batch respectively. RNA 
samples were prepared for mRNA-Sequencing by the 
University of Connecticut Genomic Core Facility (Insti-
tute for System Genomics) using the Illumina TruSeq 
Stranded mRNA Sample Preparation kit, following the 
manufacturer’s protocol. Samples were combined into 
one sequencing pool and run as one sample on an Illu-
mina HiSeq 2500 as paired end 100 bp reads. 100 ng of 
sputum RNA was reversed transcribed to synthesize 
cDNA to then perform real time PCR using Applied Bio-
Systems 7900HT system as directed by manufacturer. 
Commercially available primer/probes were used for vali-
dation (see Supplemental Table 1). Relative levels of each 
gene were normalized against four control genes (HPRT, 
18s, ACTIN and GAPDH). All sequencing data presented 
in this publication have been deposited in NCBI’s Gene 
Expression Omnibus and are accessible through GEO 
Series accession number GSE223736.

Statistical analysis and bioinformatics approach
Participant characteristics were analyzed using chi-
square for categorical variables and non-parametric 
methods for continuous variables. A two-tail p < 0.05 was 
considered significant. For differential gene expression an 
adjusted (Benjamini and Hochberg [BH] method) p-value 
of ≤ 0.05 was considered significant. Quality control of 
the fastq files was performed using FASTQC [22]. BBDuk 
[23] was used to remove hemoglobin contamination from 
the blood samples. The reads were mapped to gencode.
v38 release (GRCh38.p13 Release 38) using Salmon [24]. 
R version 4.1.2 was used for the statistical analysis [25]. 
For the analysis of the qRT-PCR we log-transformed and 
plotted the data as a heatmap using R software pheatmap 
package (Version 1.0.12). R packages DESeq2 (1.32.0), 
tximport (1.20.0), Salmon (version 1.5.2) and WGCNA 
(1.4.1717) 26–29 were used for quantification and analy-
sis of the RNA-sequencing data. A cut-off of 95% quantile 
was used to subset the genes for Weighted Gene Co-
expression Network Analysis (WGCNA). WGCNA was 
performed in a signed network and soft thresholds to the 
similarity matrix with the best power chosen to simulate 
a scale free network. Three WGCNA were performed 
using the differentially gene expression of the following 
three comparisons: (1) E-cigarettes vs. controls, (2) Ciga-
rette vs. controls and (3) Cigarette vs. E-cigarettes. The 
gene clusters/modules from the WGCNA were further 
related with the metadata and phenotypical characteris-
tics of interest, including eCO level, cotinine exposure, 
pulmonary function tests and cell counts in both blood 
and sputum. Canonical pathways were generated through 
the use of Ingenuity Pathway Analysis® (IPA) (Qiagen) 
[30].
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Results
Population and biological samples
Study participants
A total of 65 participant were enrolled in our study [18]. 
Details and demographic characteristics of this entire 
cohort have been reported elsewhere [13]. Adequate 
(i.e., less than 10% squamous cells) sputum samples were 
obtained from 33 subjects. Good quality RNA (RIN ≥ 7) 
was obtained from 23 samples, which were matched with 
whole blood RNAs (also RIN ≥ 7) from the same subjects 
to comprise our final study cohort (Fig.  1). The demo-
graphic characteristics of these 23 subjects are presented 
in Table  1. Nine subjects used e-cigarettes exclusively 
daily with a median of 2 years, while 8 subjects were 
exclusive daily conventional smokers with a median of 13 
pack-years. There were no significant differences among 
groups with respect to age, marital status, race, oxygen 
saturation, or systolic blood pressure. We did not find 
any significant differences in the selected inflammatory 
markers (cytokines) measured in the population in both 

sputum and serum (Supplemental Table 2). As expected, 
cigarettes smokers (CS) had significantly higher eCO 
levels when compared to e-cigarette users and controls 
(Median 11.0 vs. 1.1 and 1.5 ppm respectively [p = 0.004]). 
All subjects had normal and comparable airflow as 
measured by spirometry. Serum cotinine and nicotine 
dependence, assessed using the PENN (E) Cigarette 
Dependence Index, were similar for e-cigarette users and 
CS (Median 95.3 vs. 68.2 and 5.0 [p = 0.271] and 15.5 vs. 
15.0 [p = 0.532] respectively). Among E-cigarette users, 
six used 4th generation e-cigarettes, including JUUL®, 
and all reported using “e-juice” containing nicotine con-
centrations greater than 10  mg/ml. Menthol and fruity 
flavors were the most common flavors reported, with 
four subjects using each (Supplemental Table 3).

Blood sample characteristics
Controls had a lower proportion of circulating neutro-
phils when compared to CS (60.9 vs. 48.3% [p = 0.028]) 
and e-cigarette users (60.9 vs. 55.9% [p = 0.043]) but a 
three-group comparison was not significant (Table  2). 
There were no other significant differences among other 
circulating blood cells, total white blood cells (WBCs), 
platelet count or hemoglobin concentration.

Characteristics of Induced Sputum
Although the amount of sputum produced and pro-
cessed from healthy controls tended to be lower (Median 
80.0  mg) than that from CS (125  mg) and e-cigarette 
users (130  mg), this was not statistically significant 
(Table  2). Similarly, there were no differences in total 
number of cells, viability, or proportion of neutrophils, 
macrophages, lymphocytes, eosinophils, and bronchial 
epithelial cells which is consistent with what other stud-
ies have reported [31], [32].

RNA-Seq Quality Control
Quality control of the RNA-Seq data was acceptable for 
all whole blood (hereinafter referred to as blood) samples 
except from one e-cigarette user, which was removed 
from further analysis (Fig. 2A). RNA-Seq quality controls 
showed that all sputum samples were acceptable for fur-
ther analysis. Surprisingly, principal component analysis 
showed that two e-cigarette user samples clustered with 
CS. Although these subjects identified as exclusive e-cig-
arette users, their eCO levels were greater than 4 ppm (9 
and 19 ppm), suggesting in retrospect that they are dual 
users. Thus, these subject samples were also removed 
from further transcriptomic analysis (Fig. 2B).

Transcriptomic differences in blood
Differentially expressed genes in blood
A three-group comparison (Likelihood Ratio Test 
[LRT]) showed 16 differentially expressed genes (DEGs) 

Table 1 Characteristics of the study participants with matched 
RNA-seq data from sputum

Cigarette 
Smokers
(8)

E-cigarette 
Users
(11)

Controls
(4)

p-
val-
ue

Age (years) 32.50 [26.50, 
43.25]

24.00 [21.50, 
28.50]

29.00 [25.75, 
37.00]

0.125

Female/Male 2/6 
(25.0/75.0)

2/9 
(18.2/81.8)

1/3 
(25.0/75.0)

1

White Race 7 (87.5) 11 (100.0) 3 (75.0) 0.15

Never Married 5 (62.5) 8 ( 72.7) 3 (75.0) 1

Body Mass Index 25.47 [22.52, 
31.75]

24.71 [23.68, 
34.37]

24.22 [21.02, 
28.36]

0.606

Heart Rate 77.00 (16.91) 73.00 (7.92) 71.25 (8.30) 0.676

Systolic Blood 
Pressure*

118.75 (9.19) 127.82 (10.84) 120.25 
(19.33)

0.252

Diastolic Blood 
Pressure*

74.62 (6.25) 78.00 (8.65) 75.00 
(11.22)

0.653

Oxygen Satura-
tion (%)

97.88 (1.25) 98.73 (1.49) 99.50 (0.58) 0.134

Carbon Monoxide 
(ppm)

11.00 [7.75, 
15.75]

1.10 [1.00, 
2.50]

1.50 [1.00, 
2.00]

0.004

PENN Score** 15.50 [13.50, 
18.00]

15.00 [13.50, 
16.00]

- 0.532

Serum Cotinine 
(ng/ml)

95.25 [89.95, 
97.45]

68.15 [20.08, 
91.78]

5.00 [5.00, 
43.65]

0.09

FEV1 (% 
Predicted)

91.50 [89.25, 
95.00]

101.00 [87.50, 
106.50]

96.00 [87.50, 
104.75]

0.577

FVC (% Predicted) 91.50 [86.00, 
100.25]

99.00 [88.50, 
111.00]

93.50 [86.25, 
100.50]

0.481

FEV1/FVC Ratio 78.50 [71.75, 
84.50]

81.00 [78.50, 
87.00]

83.50 [80.50, 
87.50]

0.573

Continues variables presented as median and interquartile range [IQR] and 
Categorical variables presented as count and percentage (%)

* mmHg **Penn State (e) cigarette dependence index not assessed in controls, 
p-value represents Wilcoxon rank-sum test
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(Supplemental Table  4). Eleven genes (RMRP, LCN8, 
RBPMS2, WASHC1, ZNF703, STON2, IGHV7-4-1, 
ICAM4, CHRNA2, SAMD14, ATF5) were overexpressed 
and 5 genes (WDR27, CBSL, RP11-807H22.10, SIX4, 
HERC2P2) were underexpressed. No specific biological 
pathways were overrepresented with this set of genes.

DEGs in the blood of E-cigarette users vs. controls
Comparison of e-cigarette users and controls revealed 7 
DEGs in blood (Fig. 3A-B, Supplemental Table 4). Three 
genes (UTS2, IGHG3, and IGLC3) were underexpressed, 
while 4 (PI4KAP1, RNF112, TG, and IQSEC3) were 

overexpressed in e-cigarette users. Similar to the above 
comparison there were no specific biological pathways 
overrepresented with these genes.

DEGS in the blood of cigarette smokers vs. controls
In contrast to the e-cigarettes vs. controls, CS had a more 
robust effect on blood gene expression with 35 DEGs 
(Supplement Table 4; Fig. 3A C). Three of these (IQSEC3, 
TG and UTS2) also were differentially expressed in the 
comparison between e-cigarette users and controls 
(Fig.  3D). Expression of these genes correlated with the 
use of tobacco products, with IQSEC3 and TG overex-
pressed and UTS2 underexpressed in blood of tobacco 
product users as compared to controls (Fig. 3B-C).

DEGS in the blood of cigarette smokers vs. E-cigarette users
Comparison of CS to e-cigarette users revealed 13 DEGs 
(see supplemental Tables  4, Fig.  3E). Eight genes were 
overexpressed (LCN8, RBPMS2, ICAM4, CHRNA2, 
STON2, WASHC1, EGF, ZNF703) in the blood of CS 
when compared to e-cigarette users. Zinc Finger Protein 
703 (ZNF703) also was overexpressed in CS compared 
to controls (Fig.  3D). Although no biological path-
ways were enriched by these genes, in the blood CS had 
greater transcriptomic changes than e-cigarette users and 
controls.

Transcriptomic differences in sputum
DEGs in the sputum
Comparison of all 3 groups (LRT) revealed a total of 438 
differentially expressed genes (Supplemental Table  4). 
And similar to the DEG analysis of the blood, these dif-
ferences were driven mostly by CS.

DEGs in the sputum of E-cigarette users vs. controls
Only 2 genes were differentially expressed (PMEL and 
TBC1D3F) between e-cigarette users and controls 
(Fig.  4A-B). PMEL, a gene involved in lymphangioleio-
myomatosis (LAM) [33] was underexpressed. TBC1D3F, 
which is involved on macropinocytosis and tissue repair 
[34] was overexpressed in the sputum of e-cigarette 
users.

DEGs in the sputum of cigarette smokers vs. controls
A total of 270 genes were differentially expressed in the 
sputum between CS and controls (Fig.  4C and Supple-
mental Table  4). Interestingly, of these 270 genes, 2 
(THBS1 and SPOCD1, (Supplemental Fig. 1 and Supple-
mental Table  5) were overexpressed in both the blood 
and sputum of CS compared to controls. There was no 
overlap with genes differentially expressed between 
e-cigarette users and controls (Fig.  4D). Overexpressed 
genes in this set were overrepresented in biological 
pathways that encompass processes from oxidation 

Table 2 Blood and Sputum cell counts with differential cell 
populations

Cigarette 
Smokers (8)

E-cigarette 
Users (11)

Controls (4) p-
val-
ue

Blood 
Measurements
Hemoglobin (mg/
dl)

14.25 [13.78, 
15.53]

15.20 [13.85, 
15.95]

14.35 [13.65, 
15.13]

0.846

Hematocrit (%) 42.2 [40.88, 
44.75]

44.9 [41.65, 
47.25]

42.35 [31.31, 
44.85]

0.651

Platelet Count * 
10^3/mcL

251.0 
[221.00, 
273.75]

263.0 
[240.50, 
307.50]

209.5 
[202.25, 
240.00]

0.509

White Cell Count * 
10^3/mcL

7.9 [6.20, 
8.88]

5.9 [4.45, 
7.25]

4.5 [4.00, 
5.05]

0.118

Neutrophils (%) 60.90 [53.25, 
67.38]

55.90 [53.50, 
62.10]

48.25 [44.27, 
50.88]

0.061

Lymphocytes (%) 27.35 [21.03, 
34.83]

29.40 [27.75, 
31.25]

38.1 [33.38, 
43.23]

0.083

Monocytes (%) 7.7 [5.12, 
8.47]

9.9 [7.70, 
10.55]

9.55 [7.27, 
12.05]

0.096

Eosinophils (%) 2.85 [2.05, 
3.70]

1.9 [1.40, 
3.10]

3.4 [2.88, 
4.18]

0.352

Basophils (%) 0.55 [0.48, 
0.60]

0.7 [0.55, 
0.85]

0.7 [0.67, 
0.97]

0.088

Sputum 
Measurements
Sputum Plug 
Weight (mg)

125.0 [67.50, 
175.00]

130.0 [60.00, 
240.00]

80.0 [30.02, 
120.00]

0.342

Cell Viability (%) 95.0 [92.25, 
97.25]

96.4 [95.00, 
97.75]

96.0 [95.75, 
96.92]

0.459

Total Cells *10^6/g 4.92 [4.48, 
6.87]

6.46 [3.02, 
23.72]

6.83 [4.46, 
14.16]

0.81

Neutrophils (%) 22.75 [17.25, 
38.65]

25.0 [15.00, 
41.00]

26.2 [21.05, 
32.92]

0.876

Macrophages (%) 71.0 [58.50, 
78.25]

68.3 [49.50, 
79.00]

67.35 [62.90, 
72.78]

0.949

Lymphocytes (%) 0.0 [0.00, 
0.15]

0.25 [0.00, 
1.00]

0.0 [0.00, 
0.40]

0.572

Eosinophils (%) 0.7 [0.30, 
1.00]

0.25 [0.00, 
1.00]

0.0 [0.00, 
1.00]

0.538

Epithelial cells (%) 1.20 [0.48, 
2.60]

1.00 [0.25, 
2.85]

0.0 [0.00, 
0.00]

0.108

% Percent of the cell populations presented as median and interquartile range 
[IQR]
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reduction, xenobiotic metabolism, to anatomic structure 
development, while underexpressed genes were enriched 
for biological pathways involved in the inflammatory and 
immune response.

DEGs in the sputum of cigarette smokers vs. E-cigarette users
Comparison of CS to e-cigarette users revealed 468 dif-
ferentially expressed genes in sputum (Fig.  4E and Sup-
plemental Table  4). One hundred and forty-three genes 
overlapped with genes differentially expressed in the 
sputum of CS compared with controls (Fig.  4D). Over-
expressed genes were overrepresented in biological pro-
cesses involved mostly in cellular response to stimulus, 
cell proliferation, tube morphogenesis and oxidative 
stress, while underexpressed genes were overrepresented 
in biological pathways associated with the inflamma-
tory and immune response similarly to the comparison 
between CS and controls.

We compared our findings with published proteomics 
studies of the sputum of tobacco users [32], [35], [36] 
(See Supplemental Fig. 2 and Supplemental Table 6). We 
found the overlap of 23 genes/proteins with those studies. 

Some of these genes, such as those involved in neutrophil 
degranulation and antimicrobial humoral response (C3, 
CLU, B2M, LIZ, CSF1R, and S100A8), response to exter-
nal stimuli (G6PD, NQO1, and ALDH3A1), and endo-
cytosis (CLU, C3, and B2M), are involved in biological 
processes affected by exposure to tobacco. We also per-
formed qRT-PCR of selected genes from sputum to vali-
date our findings; results are presented in Supplemental 
Fig. 3.

WGCNA analysis and IPA
To determine whether specific gene networks were asso-
ciated with phenotypic features and tobacco product 
exposure we performed Weighted Gene Correlation Net-
work Analysis (WGCNA) of the blood and sputum. Gene 
modules that demonstrated association with a relevant 
trait then were analyzed using IPA.

Blood WGCNA and IPA
Multiple gene modules were associated with clinical 
traits including pack year history, cotinine concentration, 
and multiple blood cell population counts (Supplemental 

Fig. 2 Principal component analysis reveals outliers and dual users. Principal component analysis (PCA) of RNA-Seq data from all (A) blood samples and 
(C) sputum samples. (A) A single e-cigarette blood sample was deemed as an outlier (black arrow) and excluded from further blood analysis (note this 
sample was retained in the sputum group). (C) Two sputum samples from e-cigarette users (black arrows) were observed to cluster with samples from 
smokers. Analysis of exhaled carbon monoxide in these subjects reveled levels of more than 5 ppm, suggesting that they likely were dual e-cigarette 
and tobacco users. Samples from these subjects were excluded from further analysis for both blood and sputum. PCA plots for (B) blood and (D) sputum 
following exclusion of outliers and dual users

 



Page 7 of 13Perez et al. Respiratory Research          (2023) 24:134 

Tables 9 and Fig. 5A-C). Serum cotinine was associated 
with the Turquoise module in both e-cigarette users 
(R = 0.7, p = 0.01) and CS (R = 0.6, p = 0.05), suggesting 
that in the blood these genes are affected by nicotine 
exposure. Two modules were significantly associated 
to CS when compared to controls (Magenta and Tur-
quoise [R = 0.64 and 0.60, p = 0.03 and 0.04 respectively]) 
(Fig.  5B). The genes in these modules were enriched in 
biological pathways associated with xenobiotic metabo-
lism, oxidative stress, and pulmonary healing (Supple-
mental Table 7).

One module (Green module R = 0.58, p = 0.05) was 
associated with e-cigarettes when compared to con-
trols (Fig.  5A) but no significant biological pathways 
were identified through IPA. (Supplemental Table  7). 
However, when we compared CS to e-cigarette users, 3 
modules were significantly associated with e-cigarette 
use (Turquoise, Green and Yellow [R = 0.52, -0.49, -0.67 
and p = 0.04, 0.05 and 0.02 respectively]) with genes that 
enriched in several biological pathways including fer-
roptosis, eNOs, macropinocytsis and EGF signaling, 

Fig. 3 Increased numbers of differentially expressed genes in the blood of cigarettes smokers vs. e-cigarette users. (A) Heatmap showing significant (log2 
fold change |≥1 and p≤ 0.005) combined genes from pairwise comparisons in blood (cigarette smokers, Cig; e-cigarette users, E-cigs; and controls, Cont). 
(B, C and E) Volcano plots of DEGs in blood from pairwise comparisons between (B) e-cigarette users (E-cigs) and controls, (C) cigarette smokers and con-
trols, and (E) cigarette smokers and E-cigarette users (E-cigs). (D) Venn diagram representing the number of DEGs that overlap between each comparison
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Fig. 4 Increased numbers of differentially expressed genes in the sputum of cigarettes smokers vs. e-cigarette users. (A) Heatmap showing significant 
(log2 fold change |≥1 and p≤ 0.005) combined genes from pairwise comparisons in sputum (cigarette smokers, Cig; e-cigarette users, E-cigs; and controls, 
Cont). (B, C and E) Volcano plots of DEGs in sputum from pairwise comparisons between (B) e-cigarette users (E-cigs) and controls, (C) cigarette smokers 
and controls, and (E) cigarette smokers and E-cigarette users (E-cigs). (D) Venn diagram representing the number of DEGs that overlap between each 
comparison
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Fig. 5 Weighted gene co-expression network analysis identifies modules and canonical pathways associated with type of tobacco product and clinical 
traits. (A-E and I) Heatmaps showing WGCNA gene modules associated with phenotypic characteristics, including the type of tobacco product exposure 
(last column in each heatmap) for pairwise comparison in the blood and sputum. (F-G and J-L) Bar plots highlighting IPA canonical pathways from the 
gene modules associated with the tobacco product type in sputum for (F-H) cigarettes versus controls and (J-L) e-cigarettes versus cigarettes
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suggesting that those pathways were differently affected 
by type of tobacco product.

Sputum WGCNA and IPA
Like our analysis of blood samples, multiple gene mod-
ules were associated with serum cotinine and eCO sug-
gesting that these gene modules are highly involved in 
pathways associated to tobacco use (see Fig.  5, Supple-
mental Tables  8 and 9). When compared to controls, 
cigarette smoking was associated with 4 gene modules 
(Magenta, Black, Green-Yellow and Yellow [R = -0.8, 
0.75, 0.87 and − 0.77, p = < 0.01, < 0.01, < 0.01 and < 0.01 
respectively]). The genes in these modules were over-
represented in biological pathways related to xenobiotic 
metabolism, oxidative stress response, aryl hydrocar-
bon receptor (AHR) signaling, coronavirus replication 
and Th1/Th2 activation (Supplemental Table  8). The 
comparison between e-cigarettes and controls, showed 
that one gene module was associated with e-cigarette 
use (Red [R = -0.54, p-value = 0.05]), with genes involved 
in the SNARE and synaptogenesis signaling pathways 
which regulates vesicles fusion and exocytosis, match-
ing other in vitro reports from bronchial epithelial cells 
[37]. By contrast the comparison between CS and e-cig-
arettes users in the sputum showed 5 gene modules 
correlated with type of product use (Black, Magenta, 
Yellow, Red and Green [R = -0.9, -0.5, 0.77 and 0.49 with 
p-value = < 0.01, < 0.01, < 0.01, < 0.01 and 0.01 respec-
tively]). Genes from these modules are overrepresented 
in multiple biological pathways including hepatic fibro-
sis, xenobiotic response, nicotine degradation, inhibition 
of metalloproteases, atherosclerosis, and COPD (Sup-
plemental Tables  8 and 9). Suggesting that the type of 
tobacco product has different effects on these biological 
processes and how they may lead to disease.

Discussion
The purpose of our study was to characterize transcrip-
tomic changes in the sputum and blood of cigarette 
smokers compared to e-cigarette users and controls. 
We discovered that cigarette smoking is the main driver 
of transcriptomic differences between the three groups, 
with a much stronger impact in the airways than blood. 
Gene modules associated with type of tobacco prod-
uct exposure were highly associated with levels of eCO 
and/or with cotinine concentration, both of which were 
highest in smokers. These findings support the overarch-
ing conclusion that cigarette smoking is likely to perturb 
more biological processes than e-cigarettes, however, 
this does not imply that e-cigarettes are harmless or safer 
than conventional cigarettes.

In fact, several genes were differentially expressed 
in blood and sputum of e-cigarette users compared to 
controls. These transcriptomic changes support the 

hypothesis that chronic use of e-cigarettes can lead to 
biologically significant changes and, potentially contrib-
ute to pulmonary diseases. For example, one of the two 
genes differentially expressed in the sputum of e-cigarette 
users, TBC1D3F, has been implicated in the differentia-
tion of macrophages and vesicle function and trafficking 
[38], [39] suggesting that vaping may lead to dysfunc-
tion of these immune cells in the airways. The other gene 
(PMEL) encodes for a protein that is highly expressed by 
cells associated with pulmonary lymphangioleiomyoma-
tosis, a potentially lethal cystic lung disease [33], [40]. 
Furthermore, PMEL is a component of the melanosome, 
a type of lysosome-related organelle that is dysfunctional 
in patients with Hermansky-Pudlak, an inherited fibrotic 
pulmonary disease [41]. However, it is unknown as to 
how changes in the expression of PMEL may influence 
pulmonary disease development secondary to e-cigarette 
exposure.

Our study also showed that two genes (SPOCD1 and 
THBS1) were differentially overexpressed in sputum and 
blood among CS when compared to controls. SPOCD1 
has been implicated in pi-RNA-directed DNA methyla-
tion, with at least two prior studies linking it with smoke 
exposure 42–44, and THBS1 is an integral component of 
the extracellular matrix where it regulates cell migration, 
cytoskeletal organization, cell proliferation and apopto-
sis, and plays a role in the regulation of inflammation and 
modulation of reactive oxygen species [45], [46]. Changes 
in DNA-methylation and expression of THBS1 have been 
associated with atherosclerosis and cancer among smok-
ers, while other reports have linked overexpression of 
THBS1 with higher lung cancer survival [47], [48]. Taken 
together, these genes may aid our understanding of how 
cigarette smoking can lead to systemic disease from its 
effects in the respiratory system.

Our findings in sputum resemble those reported by 
others demonstrating that smoking cigarettes induces 
a xenobiotic and oxidative stress response and activa-
tion of immune-related genes [35], [36]. However, in 
contrast with data from shotgun proteomics of spu-
tum [32], we did not see evidence of an altered innate 
immune response or dysfunctional neutrophils in the 
sputum of e-cigarette users. Furthermore, our analyti-
cal approach allowed us to detect misclassification bias 
and, using only transcriptomics, we were able to distin-
guish exclusive e-cigarette users from likely dual users or 
subjects exposed to smoke. Two other strengths of our 
study are that only high-quality specimens were used for 
RNA sequencing as RNA degradation could significantly 
impact RNA-seq analysis [49], and we recruited sub-
jects with no known history of significant comorbidities, 
including atopy or asthma. Our subjects also underwent 
spirometry that confirmed normal air flow with no evi-
dence of obstructive pulmonary disease. A recent study 
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also demonstrated that exposure to e-cigarettes affects 
the immune homeostasis of the respiratory airways and 
that this is altered by the generation of e-cigarette [31]. 
A significant difference with that report is our exclu-
sion of sputum samples with greater than 10% squamous 
cells. Furthermore, the majority of our study participants 
(66%) were users of fourth generation e-cigarette devices 
which reflects the current trends of e-cigarette use in the 
US [50], [51].

Our findings in the blood are similar to those reported 
by Tommasi et al., in that cigarette smoking induced 
more transcriptomic changes in blood leukocytes than 
vaping, although we did not find a dysregulation of 
mitochondria-specific genes as reported in their study 
perhaps due to differences in the cell composition stud-
ied (PBMCs vs. whole blood) [52]. Our study shows that 
cigarette smoking generates a greater transcriptomic 
response in the respiratory system and in blood than 
e-cigarettes. However, further studies are necessary to 
better characterize the long-term clinical significance of 
these gene expression differences to properly support the 
use of e-cigarettes as a viable harm reduction strategy for 
cigarette smokers.

Our study does have limitations, including the rela-
tively small sample size. This was associated with the 
COVID-19 pandemic hindering recruitment of subjects 
for a study in which nebulized saline was used for spu-
tum induction and concerns of aerosolization of viral 
particles. This limitation affects our ability to perform 
subgroup analysis based on e-cigarette brands, type of 
device (or generation), nicotine concentration or flavors. 
Furthermore, we did not collect the time of last use of the 
tobacco product, but we assume that our results reflect a 
steady state in the airways and blood as one would expect 
in chronic tobacco use as subjects reported daily use of 
their tobacco product for at least one year. In addition, 
since we are analyzing bulk RNA-Seq on samples with 
a complex cellular composition, lowly expressed tran-
scripts or highly expressed transcripts in low prevalence 
cells may have been missed. We did not collect data on 
secondhand smoke exposure either, which could poten-
tially affect our findings. Indeed, one healthy control had 
elevated cotinine serum levels (but a normal eCO level), 
although this is not necessarily proof of tobacco expo-
sure [53], [54]. Nonetheless, our results are valuable as 
they provide early evidence of specific transcripts in the 
airways and the blood associated with e-cigarette use in 
contrast to cigarette smoking.

In summary, cigarette smoking and e-cigarette vaping 
led to significant transcriptomic changes in the airways 
and the blood of their users. This transcriptomic impact 
is higher among CS than e-cigarette users. Some of the 
transcriptomic changes among e-cigarette users are asso-
ciated with vesicle trafficking and macropynocitosis, 

biological functions that are fundamental for proper 
macrophage function and airway immune response. 
More research is urgently needed to better characterize 
the long-term effects of these transcriptomic changes in 
relationship to tobacco product use.
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