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Background: Accelerometers are used to objectively measure movement in free-living individuals. Distinguishing nonwear
from sleep and sedentary behavior is important to derive accurate measures of physical activity, sedentary behavior, and
sleep. We applied statistical learning approaches to examine their promise in detecting nonwear time and compared the
results with commonly used wear time (WT) algorithms. Methods: Fifteen children, aged 4–17, wore an ActiGraph wGT3X-
BT monitor on their hip during overnight polysomnography. We applied Hidden Markov Models (HMM) and Gaussian
Mixture Models (GMM) to classify states of nonwear and wear in triaxial acceleration data. Performance of methods was
compared with WT algorithms across two conditions with differing amounts of consecutive nonwear. Clinical scoring of
polysomnography served as the gold standard. Results: When the length of nonwear was less than or equal to WT
algorithms’ predefined thresholds for consecutive nonwear time, GMM methods yielded improved classification error,
specificity, positive predictive value, and negative predictive value over commonly used algorithms. HMM was superior to
one algorithm for sensitivity and negative predictive value. When the length of nonwear was longer, results were mixed, with
the commonly used algorithms performing better on some parameters but GMM with the greatest specificity. However, all
approached the upper limits of performance for almost all metrics. Conclusions: GMM and HMM demonstrated robust,
consistently strong performance across multiple conditions, surpassing or remaining competitive with commonly used WT
algorithms which had marked inaccuracy when nonwear time periods were shorter. Of the two statistical learning algorithms,
GMM was superior to HMM.

Keywords: polysomnography (PSG), Hidden Markov Models (HMM), Gaussian Mixture Models (GMM), activity,
classification

Physical activity, sedentary behavior, and sleep behavioral
patterns are associated with multiple clinical outcomes, including
obesity, diabetes, and cardiovascular disease (https://www.nhlbi.
nih.gov/health/health-topics/topics/phys/benefits). Accurate mea-
surement is essential to understanding the determinants of these
behaviors and their relationships to health and disease, public
health surveillance of these behaviors, and designing and evaluat-
ing interventions to change them. Accelerometers have long been
used to measure physical activity, sedentary behavior and sleep,
and have been widely adopted as a device-based means to measure
movement in free-living humans (Sadeh, 2011; Troiano, 2007;
Trost, 2007). Accelerometer measures have great potential to
provide more accurate assessments of movement and sleep than
self-reported measures, which are prone to errors in recall (Trost,
2001).

Modern accelerometers continue to record data even when
users are not wearing the monitor, and data recorded during
nonwear periods can appear similar to data captured when parti-
cipants are wearing the monitor during sleep or sedentary periods.
Thus, distinguishing nonwear periods from those of sleep and
sedentary behavior is challenging but essential to accurately
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characterize physical activity, sedentary behavior, and sleep. Mis-
classification of sleep or sedentary periods as nonwear time (NWT)
or of NWT as sleep or sedentary periods can create substantial and
misleading errors in estimates of physical activity levels, sedentary
behavior, and sleep. Importantly, because NWT can mimic sleep or
sedentary behavior and vice versa, misclassification of NWT is a
particular threat to the validity of the estimates of sleep and
sedentary behavior, which are often key quantities of interest.

In practice, several algorithms are commonly applied to
distinguish between periods of wear time (WT) and NWT (Choi
et al., 2011, 2012; Troiano et al., 2008). These WT algorithms
are typically based on the number of epochs—defined periods of
time—with zero count values for acceleration (Banda et al., 2016;
Cain et al., 2013). WT algorithms are attractive for their simplicity,
and while they provide good accuracy in specific settings (Banda
et al., 2016; Cain et al., 2013), they may lack generalizability;
specifically, they are sensitive to intra- and inter-individual varia-
tions and to the precise placement of the sensors, resulting in
suboptimal classification accuracy. Furthermore, the most com-
monly used WT algorithms typically do not make use of all
available data from contemporary multiaxial accelerometers; they
utilize only uniaxial count and/or summarized measurements such
as vector of magnitude (VM)—the square root of the sum of the
“counts” (derived from the accelerations in multiple axes) squared
for each axis. In addition, they are often applied to varying epoch
lengths, resulting in estimates that are not comparable across
studies, potentially leading to disparate results, interpretations,
conclusions, and/or misleading findings (Banda et al., 2016).

To address some of these challenges, we investigated the
potential of statistical learning methods to improve discrimination
between WT and NWT periods, particularly nonwear periods
where the device would have signal that is similar to signal
recorded when sedentary or sleeping (e.g., device is on a dresser)
in contrast to when a device is not worn and mobilized (e.g., being
thrown up and down or in a moving vehicle). More specifically, we
applied statistical learning methods to triaxial accelerometer data
to develop and evaluate a new approach that distinguishes NW
periods from those of sleep and sedentary behavior. We are not the
first to consider statistical learning methods for application to
accelerometer data. For example, Gaussian Mixture Models
(GMMs), k-Nearest Neighbors (k-NN), and Hidden Markov Mod-
els (HMMs) have all been applied in accelerometer studies for
activity classification (Mannini & Sabatini, 2010). However, none
of these approaches have been applied and evaluated for NW
detection. For example, HMMs, which assume the accelerometer
data are generated according to aMarkov process and that activities
are unobserved, “hidden” states, have been used to classify an
individual’s type of activity based upon uniaxial acceleration data
and VM for biometric gait recognition (Nickel & Busch, 2013).
In another study, HMMs were applied to accelerometry data ob-
tained using a smartphone application available for Google
Android devices for action and activity recognition (Lee & Cho,
2011). The underlying assumption of Markovian dependence is
particularly attractive in this setting, as people tend to remain in the
same state (WT or NWT) for an extended period (Rabiner, 1989).
GMMs, which assume that an observed sequence belongs to a
weighted sum of multiple Gaussian distributions, have been adap-
tively employed for classification of three postures (sitting, stand-
ing, and lying) and five movements (sit-to-stand, stand-to-sit,
lie-to-stand, stand-to-lie, and walking) in a home-based multiple
days study with a limited number of subjects (Allen et al., 2006;
Reynolds et al., 2000). Given that we anticipate movement belongs

to one of numerous states, GMMs are a natural choice for classifi-
cation of these data.

Importantly, in contrast to the uniaxial or summarized vector
WT algorithms, which do not utilize the covariance structure of the
triaxial accelerations, we were motivated to incorporate data from
all three axes in our development of statistical learning approaches,
as their covariance may contribute relevant information about
movement, potentially increasing classification accuracy. In addi-
tion, we considered nonprocessed triaxial acceleration data (mea-
sured in gravity units), as opposed to processed counts (a unit
distinct to the manufacturer), to increase algorithmic transparency
and allow others to fully understand and possibly even enhance our
approach. In addition, it allows for translation across different
device brands.

To pursue these aims that especially relate to distinguishing
nonwear signal from signal recorded during sleep or sedentary
behavior, we used accelerometer data collected during clinical
sleep studies with overnight polysomnography (PSG) in 15 chil-
dren. We evaluated the performance of HMM and GMM ap-
proaches with metrics such as classification error, sensitivity,
specificity, and positive (PPV) and negative predictive values
(NPVs) for identifying NWT.

Methods

In a study of 15 children, we compared performance of HMM and
GMM results against two commonly used WT algorithms under
two conditions: (a) with 1-hr periods of NW on each side of a WT
period and (b) with 5-hr NW periods flanking the WT period (See
Figure 1 below), where theWT period takes place before, after, and
during a sleep study. The condition with longer NW intervals was
used to highlight the WT algorithms’ “best-case” performance,
while the shorter period mimicked a situation expected to be more
common and difficult to detect, where users remove their accel-
erometers for periods of activities that are shorter than 5 hr in length
(e.g., swimming, showering, sports, etc., where the accelerometer
may be removed for protection, safety, or convenience).

Eligible participants were children 2–17 years of age when
completing an overnight PSG at our institution’s Sleep Medicine
Center. Children were ineligible if they (a) were participating in a
treatment sleep assessment; (b) had a condition interfering with
normal sleep body movements or wearing the monitors; (c) were
deemed inappropriate for study participation in the opinion of
their sleep center clinician; or (d) they or their parents were unable
to read, understand, or complete informed consent or assent (for
children ≥7 years) in English or Spanish. Our institution’s Admin-
istrative Panel on Human Subjects in Medical Research approved
the study.

Data Collection

The ActiGraph wGT3X-BT monitor (ActiGraph) was used to
measure movement at the hip during an overnight sleep study for
approximately 12 hr. Although accelerometers are often worn on the
wrist for sleep research, we used the hip placement as is typical of
studies of movement in children over full 24-hr days. The monitor
measures acceleration in three individual axes, has a dynamic range
of ±8 units of gravity, and was set to record at a frequency of 40 Hz,
as this frequency was recommended to enable a battery life of
1 week of continuous use in field studies. ActiLife (version 6.10.2)
was used to download these data from the monitor (ActiGraph
GT3X+ and wGT3X+Device Manual, n.d.). Participants wore the
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monitor on a belt on their right hip, placed by registered sleep
technologists prior to attaching PSG recording electrodes and
removed at the completion of the sleep study, prior to electrode
detachment. Study staff documented the time each monitor was
placed on and removed from participants. Because the 30-min
periods prior to placement and after removal of the monitor included
periods when technologists transported and handled the monitors,
these periodswere not considered nonwear for purposes of this study
because they do not capture typical nonwear signals, and thus
excluded from the analysis data (see Figure 1). From the remaining
data, we constructed two data sets to represent two scenarios of
shorter and longer periods of NWT: the first consisting of 1-hr
periods of NW time before and after the WT and the second
consisting of 5-hr periods of NW time before and after WT.

Sleep technologists scored PSG data using clinical software
(Sandman Elite™ Sleep Diagnostic Software, Covidien) and fol-
lowing American Academy of Sleep Medicine 2015 guidelines,
categorizing 30-s intervals as nonrapid eye movement sleep
(Stages N1, N2, and N3), rapid eye movement sleep and wake,
and scoring other sleep and respiratory events (Berry, 2015 and
Covidien, n.d.). This served as the ground truth for our study.
Participants were awake and monitored for periods immediately
after donning the PSG sleep equipment and again at the end of the
sleep study, just prior to removing the sleep equipment, providing
periods of both wake and sleep during the wear periods.

Statistical Analyses

Let Yt represent the triaxial acceleration data around three axes
(x-axis, y-axis, and z-axis) at time t, and let st be the categorical
variable representing the three activity states (nonwear, sleep, and
wake) at time t. Below, we describe the application of HMM and
GMM to process and analyze the triaxial acceleration data (Yt) for
classification of activity states (st) from the Sleep Study, where NW
and wear states are observed and known.

Activity Classification Algorithms

Feature Extraction. We considered features that could be
derived universally using raw data. We extracted such features

from nonoverlapping windows of 30-s intervals for classification
for the HMMs and GMMs.Windows of 30-s intervals were utilized
as they coincided with the frequency of the recordings of true
states, and the median vector m, and covariance matrix S were
computed for each window. Derivations of these features were
considered, such as the determinant of variance–covariance matri-
ces, which reduces the multidimensional matrix to a scalar, and
log-transformations to reduce the large variation observed in the
signal. The following features were therefore derived for each
window and considered in the activity classification algorithm:

• m: The median vector of data corresponding to each of the
three axes (x, y, and z) recorded at 40 Hz

• L2-norm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: The VM

• Logarithm of determinant of covariancematrix (logDetS): Log
transformation of the determinant of the sample covariance
matrix

• θx = cos−1(x)/L2-norm: Description of tilt using data from
x-axis

• θy = cos−1(y)/L2-norm: Description of tilt using data from
y-axis

• θz = cos−1(z)/L2-norm: Description of tilt using data from
z-axis

• logDetT: The logarithm of the determinant of T, the variance
covariance matrix of (θx, θy, and θz)

• mSm-norm1 =m × S ×m′

• mSm-norm2 =m × S−1 ×m′

Figure 2 depicts the primary features (centroid represented
as median vector of three axes and logarithm of determinant of
covariance matrix for 30-s interval along with activity state) for one
subject. Strong correlation among the features is observed with
considerably different patterns corresponding to each of the three
states.

Hidden Markov Model. Using the mhsmm package in R
(O’Connell & Højsgaard, 2011; R Core Team, 2015), we relied
on multiple sequence training to develop the HMM, using a
leave-one-out approach, where the model was trained on training

Figure 1 — Data included in our study to develop statistical learning procedures.
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sequences that remained after leaving out one of the 15 individual
sequences for testing. Multiple sequence training enabled an
alternative to providing only one training sequence derived as
14 concatenated sequences, which would provide an artificially
incorrect sequence. We trained on all possible iterations among the
15 choose 14 possible ways to construct a training data set, and
for each iteration, we tested on the left out individual. The initial
state of the HMM model was set as the first known (true labeled)
state. Transition probabilities were estimated from the training data
along with parameters for conditional Gaussian densities for each
state at time t, given the observed data. Evaluation of model
performance involved testing on the sequences of the participants
not used in the training set, predicting states for each time interval
t of a given participant’s sequence. Our publicly available code
demonstrates how to replicate this approach for any giving train-
ing size.

Alternate training strategies were also considered but yielded
poorer performance. Chief among these, we considered training
and testing within a given participant’s sequence, which required

partitioning the first x% to form the training set and the remaining
intervals into the testing set for all participants. Other training
strategies included randomly concatenating the data from all 15
participants before training and testing on a partitioned version of
this larger data set.

Prior to fitting the HMMmodels, we applied smoothing to the
reference labels using the smooth.discrete function from mhsmm
package in R (O’Connell & Højsgaard, 2011; R Core Team, 2015).
Similarly, we smoothed the predicted activity states post prediction
and before assessing the performance of these models described
below in subsection “Performance Evaluation Metrics”.

Through iteratively comparing the performance of the HMM
on various sets of the aforementioned extracted features, the
optimal set of features for this model consisted of each of the three
axes of the acceleration vector m as well as the logDetS feature.

Gaussian Mixture Model. Data from all 15 participants
were combined to estimate the Gaussian mixture densities for
different clusters based upon the triaxial data features for 30-s

Figure 2 — Activity states, triaxial acceleration data centroids, and logarithm of determinant of covariance matrix for one participant for a series of 30-s
intervals. (Centroids for three axes and the determinant of the sample covariance matrix represent acceleration data in gravity units.)
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intervals (as in the HMM) using the mclust package in R (R Core
Team, 2015; Fraley & Raftery, 2007). From this combined pool,
the training set was constructed by randomly sampling 80% of the
time intervals labeled as WT and randomly sampling the same
number of intervals from the time intervals labeled as NW. The
remaining data were used to create the test set. From the training
set, the maximum likelihood estimates were derived for weights,
mean vectors, and variance–covariance matrices for nine Gaussian
distributions assumed. These estimates were then applied to the
observed sequence data to determine the posterior probability for
generating the resulting state sequence. Each cluster was then
mapped to one of two activity states (NW or wear) based upon
the modal frequency observed for a particular state in each cluster.
For example, if Cluster one resulted in mostly wear (sleep or wake),
we assigned this cluster to wear. Thus, the GMM’s assignment of
a given interval to a cluster could be translated to an assignment to
either wear or NW. We compared the estimated state sequence to
the true state sequence labels. Other attempted training strategies
included training the model on a random sampling of 80% of the
pooled data without balancing the amount of wear and nonwear,
since the total data set has an uneven amount of wear and nonwear
in it and such a method would obtain a training set of an expected
composition more similar to the data set. Additionally, using a
method similar to training the HMM (training the GMMon the data
of 14 subjects pooled together and testing on the remaining one)
was also tried. However, these methods yielded inferior results.

Through comparing the performance of the GMM on various
sets of the aforementioned extracted features, the optimal set of
features for this model consisted of each of the three axes of the
acceleration vector m, logDetS, the three θ features for tilt, and
logDetT.

Commonly Applied Nonwear Classification Methods
Considered

We compared the performance of HMMs and GMMs with that
of two commonly applied WT algorithms: Choi et al. (2011) and
Troiano et al. (2008). These algorithms are based on counts of
consecutive zero values, where a nonzero count refers to a propri-
etary unit derived by ActiGraph to represent a level of activity
indicating accelerometer signal that exceeds some threshold—
enough to “count” as some activity and where the number of
counts is some indication of the level of intensity of activity
(ActiGraph GT3X+ and wGT3X+ Device Manual, n.d.). Impor-
tantly, the count-based WT algorithms serve as the current stan-
dards for determining activity state from accelerometer data. For
example, they were applied to data from the National Health
and Nutrition Examination Survey and several population-based
studies (Tudor-Locke et al., 2012).

Choi et al. Algorithm. The Choi et al. algorithm is applied
to counts for 1-min epochs and classifies periods of time with
consecutive zero counts of at least 90 min as NWT, with an
allowance for nonzero counts lasting up to 2 min as long as the
30-min windows flanking this allowance period contain only
nonzero counts (Choi et al., 2011). The algorithm was previously
validated for 24-hr periods including sleep on several subjects
(adults and youth) in a controlled environment and assessed on data
during a 7-day study in free-living environment in older female
adults (Choi et al., 2011, 2012). For the purposes of comparison,
we applied this algorithm for NW detection using the VM com-
puted from count data over three axes, as recommended by the
authors.

Troiano et al. Algorithm. This algorithm is also based upon
counts within 1-min epochs and was developed for uniaxial data.
Periods with an interval of at least 60 consecutive minutes of zero
activity intensity counts are classified as NW, with an allowance of
1–2 min of counts between 0 and 100 (Tudor-Locke et al., 2012).
As it was developed for uniaxial data, we applied this algorithm for
NW detection using data from each of the three axes independently,
represented as TroianoX, TroianoY, and TroianoZ. Note that the
original algorithm was developed and validated for the vertical
axis (TroianoY). However, because it is possible to extend the
algorithm to other axes and because people sometimes place the
device in different orientations, we decided to consider its perfor-
mance extended to the other two axes.

Comparative Performance Evaluation Metrics

We used the following metrics to compare the performance of the
methods, assessing their predictions on the intervals comprising
test set against the true states/labels for those intervals:
• Classification error: The proportion of intervals in the test set
that were misclassified by their predicted states.

• Sensitivity: The proportion of correctly predicted nonwear
among all nonwear intervals in the test set.

• Specificity: The proportion of correctly predicted wear inter-
vals among all wear intervals in the test set.

• PPV or precision: The proportion of predicted nonwear inter-
vals in the test set that was truly nonwear.

• Negative predictive value: The proportion of predicted wear
intervals in the test set that was truly wear.

All of our code has been annotated and are available online at
www.github.com/qsuProjects/r-nonwear-methods.

Results

The 15 participants had median and mean ages of 8 and 9.5 years,
respectively, with a range from 4.0 to 17.5 years, and roughly half
of the participants (46.7%) were female. The proportion of time
spent in each of three activity states (nonwear, sleep, and wake)
across all time periods for the 15 participants were 8.1%, 63.1%,
and 28.7%, respectively.

For the first condition, with 1-hr periods of nonwear flanking
each side of the wear interval, the GMM outperformed the com-
monly applied WT algorithms for four of the five metrics: classifi-
cation error, specificity, PPV, and NPV (Figure 3, Table 1). The
Choi et al. method exhibited the best sensitivity. HMM was
superior to each axis for the Troiano method for sensitivity and
NPV but did not fare well relative to them or Choi et al. otherwise.
For instance, the HMM had a mean classification error of 40.2%
(SD of 24.5%) relative to a classification error of only 13.9% from
Choi et al. (SD of 8.7%) and to a mean classification error of
32.6% (SD of 10.9%) for the best-performing version of the
Troiano et al. algorithm (TroianoY).

The second condition, with 5-hr periods of nonwear flanking
each side of the wear interval, resulted in the performance of the
HMM and GMM being comparable but often poorer performing
compared with the commonly applied WT algorithms (Figure 4,
Table 2). The HMM had a mean classification error of 22.6% (SD
of 16.0%). With six iterations, the GMM results yielded a mean
classification error of 16.2% (SD of 9.4%). The Choi et al.
algorithm showed superior performance with a mean classification
error of 11.2% (SD of 10.1%), and the best-performing version of
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Figure 3 — Box-and-whisker plot comparison of algorithms’ performance for 1-hr condition. Individual points represent outliers at least
1.5 × (interquartile distance) less than the first quartile or greater than the third quartile.

Table 1 Mean Values (as Decimals) and SDs (in Parentheses) for Each Algorithm’s Results per Performance
Metrics for 1-hr Condition

Algorithm
Classification

error Sensitivity Specificity

Positive
predictive

value

Negative
predictive

value

Choi et al. 0.139 (0.087) 0.823* (0.349) 0.887 (0.031) 0.301 (0.178) 0.958 (0.090)

TroianoX 0.429 (0.148) 0.131 (0.122) 0.828 (0.064) 0.288 (0.233) 0.620 (0.172)

TroianoY 0.326 (0.109) 0.164* (0.115) 0.857 (0.042) 0.285 (0.225) 0.742 (0.142)

TroianoZ 0.363 (0.136) 0.167 (0.156) 0.852 (0.154) 0.316 (0.266) 0.694 0.148)

Hidden Markov Models 0.402 (0.245) 0.706 (0.244) 0.577 (0.270) 0.303 (0.206) 0.896 (0.103)

Gaussian Mixture Models 0.059 (0.063) 0.577 (0.249) 0.956 (0.067) 0.671* (0.383) 0.983 (0.010)

*Data contained one missing value that was removed when calculating the mean.

JMPB Vol. 6, No. 2, 2023 129
Unauthenticated | Downloaded 07/24/23 11:22 AM UTC



Figure 4 — Box-and-whisker comparison of algorithms’ performance for 5-hr condition.

Table 2 Mean Values (as Decimals) and SDs (in Parentheses) for Each Algorithm’s Results per Performance
Metrics for 5-hr Condition

Algorithm
Classification

error Sensitivity Specificity

Positive
predictive

value

Negative
predictive

value

Choi 0.112 (0.101) 0.951 (0.109) 0.860 (0.103) 0.806 (0.171) 0.959 (0.090)

TroianoX 0.242 (0.086) 0.716 (0.122) 0.845 (0.079) 0.845 (0.114) 0.682 (0.168)

TroianoY 0.304 (0.101) 0.643 (0.114) 0.814 (0.106) 0.841 (0.134) 0.569 (0.179)

TroianoZ 0.256 (0.097) 0.697 (0.122) 0.840 (0.087) 0.848 (0.112) 0.657 (0.174)

Hidden Markov Models 0.226 (0.160) 0.688 (0.281) 0.849 (0.160) 0.807 (0.225) 0.785 (0.168)

Gaussian Mixture Models 0.162 (0.094) 0.757 (0.218) 0.884 (0.125) 0.820 (0.161) 0.877 (0.093)
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Troiano et al. (TroianoX) had a mean classification error of 24.2%
(SD of 8.6%). As depicted below in Figure 4 and Table 2, Choi
et al. performed best in three out of five performance metrics,
while the GMM performed best with regard to specificity. The
GMM and HMM algorithms were able to perform better than any
Troiano et al. version for classification error, specificity, and NPV,
with GMM also displaying improved sensitivity over Troiano
et al.

Discussion

The performance of GMM and HMM relative to the commonly
appliedWT algorithms varied between the two settings considered.
For the 1-hr data set, the GMM methods had more favorable
properties than all the Troiano et al. versions and yielded improved
classification error, specificity, PPV, and NPV over Choi et al.
HMM was superior to each axis for the Troiano method for
sensitivity and NPV. However, Choi et al. had a much improved
sensitivity over both the GMM and HMM (i.e., Choi et al. was less
likely to miss NWT). In contrast, for the 5-hr data set, the WT
algorithms performed better than they did for the 1-hr data set, as
anticipated, and had substantially improved performance than the
GMM and HMM with much increased sensitivity and PPV,
although the GMM and HMM approaches remained competitive.
In general, the commonly applied WT algorithms—when con-
fronted with shorter NW periods—are more likely to misclassify
WT as NW, whereas the GMM and HMM approaches may miss
NW periods and misclassify as WT. When confronted with longer
NW periods, increased sensitivity is observed across the board,
with the algorithms less likely to misclassify NW as WT. These
comparisons demonstrate that the Choi et al. and Troiano et al.
algorithms are less suitable for scenarios with shorter nonwear
intervals, particularly those shorter than their dictated thresholds,
which are preselected and thereby require particular, initial knowl-
edge of how the nonwear data will be distributed. Conversely, the
HMM and GMM models appear to be flexible, largely accurate,
and useable for a variety of scenarios and with limited advance
knowledge of the distributions of nonwear in the data. Of the two
statistical learning algorithms, the GMM exhibited stronger per-
formance for most metrics across the two conditions.

Importantly, while all approaches performed better when there
were long continuous blocks of NW, the 1-hr data set may be more
representative of common real-world scenarios that are most
difficult to predict or classify, where the wearable technology is
removed for relatively shorter periods of time for specific activities
like showering, swimming, or sports as discussed by Vert and
others who mention that the most common lengths of NWTs are
shown to be under 60 min of length (Vert et al., 2022). While long
periods of nonwear can exist if users potentially remove them
during sleep at night or forget to wear them for the day, the
regularity, duration, and timing of these instances may already
yield key fingerprints for detection and classification.

Study Strengths

This study’s use of statistical learning methods provides algorithms
of not only superior or comparable performance to commonly
applied WT algorithms across a variety of scenarios but also ones
that do not rely on predetermined, hard-coded thresholds and
decision rules. As a result, they are likely to be more adaptable
to different profiles of data and patterns. In addition, this study
demonstrates that this classification task can be accomplished with

a few given variables, namely acceleration in each of the three
spatial axes, and without other types of data, such as ambient light
or time of day. Furthermore, this study set and met a rigorous
threshold for success of its classification task. Specifically, while
the value of machine learning-based algorithms are often compared
against simple naïve baseline algorithms, our study compared the
GMM and HMM performance with currently used algorithms with
more complex logic, demonstrating the GMM and HMM as not
only effective but competitive and practically applicable. The data
used in this study originated from a sleep study, which allowed us
to evaluate our algorithms for an activity type that may arguably be
the most similar to nonwear and thus most challenging. The variety
of performance metrics used in this study also enabled several
options for comparing algorithms and defining “superior perfor-
mance.” The data set itself contributes to further study on this topic
through its PSG labels, allowing for potential work on classifica-
tion of various sleep stages from the given data.

Study Limitations

Our study is limited in terms of representation as it only includes
15 participants 4.0–17.5 years of age and only three activity states
(nonwear, and wear consisting of sleep and wake) in a limited
setting of a sleep study. However, the classification results indicate
that these participants were heterogeneous in the signal measured.
Importantly, our study does not attempt to draw inference based on
these 15 individuals. Instead, our intent is to examine the potential
of statistical learning methods to discriminate between WT and
NWT particularly when signal during NWT may appear similar
to that during sedentary behavior or sleep. For this purpose, we
presented summary statistics such as sensitivity and specificity
along with the variation in such measures across 15 individuals
in box plots. In addition, while using data from the controlled
environment of a sleep study is a strength, providing a rigorous
ground truth measure of sleep, wear, and nonwear, it is also a
limitation in terms of generalizability. This could potentially affect
children’s typical movements in sleep, compromising PSG inter-
pretation itself and contributing noise or measurement error into
what we refer to as true labels (Van De Water et al., 2011). This
may contribute to some of the observed subject-to-subject varia-
tion. It also raises issues with generalizability to the free-living
environment and the ability to extend the results to daily wear in
children and to adults. For example, our findings are based on sleep
studies where sleep was the most common activity. Thus, perfor-
mance of these approaches may differ in the context when sleep
is not the predominant activity state. For example, the Choi and
Troiano algorithms were not validated for detecting nonwear
during sleep periods and may contribute to some of the variation
in performance observed for these algorithms (Choi et al., 2011,
2012; Troiano et al., 2008). In addition, the quality of the sleep may
differ from sleep in a noncontrolled environment, and it may be that
nonwear detection differs in these two settings. These findings
therefore need to be replicated in a context where activity states
are more varied in both order, and, length of occurrence, similar to,
and ideally in proportions of how they would arise in free-living
settings. Our work is relevant for distinguishing a specific type
of nonwear—one where the signal would mimic that of sleep or
sedentary behavior (e.g., when the device is placed on a dresser) in
contrast to not wearing the device and having the device carried by
an individual from one location to another in order to place on a
participant. This latter scenario is one that we attempted to remove
from our studies by excluding the half hour of time just prior to
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putting the device on the participant. We wanted to include the
common type of NWT we find in free-living settings where an
individual removes the device while showering, for example. An
additional limitation is the fixed sequence of states of nonwear to
wear to nonwear, which may further compromise generalizability
to scenarios with different sequences of states particularly those
where NW is interspersed throughout WT periods. Also, in our
experiment where true activity state labels were available for 30-s
intervals, we compared performance of features extracted from
various window sizes and determined the 30-s intervals to perform
comparatively well. However, we recognize that this may not
generalize to other studies and may be a function of our study
design having true labels measured with the same window size.
Furthermore, our results may differ for consumer wrist-worn and
smartphone-based accelerometers, as the inertial measurement
units are likely to differ between such devices and those studied
here. In addition, note that the sampling frequency of 40 Hz in our
data set may differ from the sampling frequency of other studies.
In work by Clevenger et al. (2019), the authors evaluated differ-
ences in interpretation resulting from different sampling rates of 30
and 100 Hz. While largely no significant differences were observed
in mean acceleration, the authors did note that the more intensively
sampled data resulted in significantly more total counts, particu-
larly for higher intensity activities. Importantly, however, the
percent agreement between the two types of data was high and
ranged from 97.4% to 99.7% when machine learning algorithms
were applied to the data (Clevenger et al., 2019). Thus, we
anticipate that our findings here would generalize across a range
of sampling rates. It is important, however, that the data set to
which the machine learning tools are applied is comprised of
consistently sampled data across individuals within the data set.
The groundwork for applying these methods is now established but
extending them to additional technologies needs further explora-
tion. Finally, further study is needed to pinpoint the reasons behind
why the clustering approach of GMM generally performed better
than the Markovian chain approach of HMM for these data sets.

Conclusions

Statistical learning methods hold promise over commonly used
algorithms for detecting NWT periods. GMM and HMM demon-
strated robust, consistently strong performance across multiple
conditions, surpassing or remaining competitive with the com-
monly used WT algorithms, which had marked inaccuracy when
NWT periods were shorter. Of the two statistical learning algo-
rithms, the GMM was superior to the HMM.
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