
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2023 Faculty & Staff Research 

1-1-2023 

Phenopacket-tools: Building and validating GA4GH Phenopackets. Phenopacket-tools: Building and validating GA4GH Phenopackets. 

Daniel Danis 

Julius O B Jacobsen 

Alex H Wagner 

Tudor Groza 

Martha A Beckwith 

See next page for additional authors 

Follow this and additional works at: https://mouseion.jax.org/stfb2023 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2023
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2023?utm_source=mouseion.jax.org%2Fstfb2023%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Daniel Danis, Julius O B Jacobsen, Alex H Wagner, Tudor Groza, Martha A Beckwith, Lauren Rekerle, Leigh 
Carmody, Justin Reese, Harshad Hegde, Markus S Ladewig, Berthold Seitz, Monica Munoz-Torres, Nomi L 
Harris, Jordi Rambla, Michael Baudis, Christopher J Mungall, Melissa A Haendel, and Peter N Robinson 



RESEARCH ARTICLE

Phenopacket-tools: Building and validating

GA4GH Phenopackets

Daniel DanisID
1*, Julius O. B. JacobsenID

2, Alex H. Wagner3,4, Tudor Groza5, Martha

A. Beckwith1, Lauren RekerleID
1, Leigh C. Carmody1, Justin ReeseID

6, Harshad Hegde6,

Markus S. LadewigID
7, Berthold Seitz8, Monica Munoz-Torres9, Nomi L. Harris6,

Jordi Rambla10, Michael Baudis11, Christopher J. Mungall6, Melissa A. Haendel9, Peter

N. RobinsonID
1,12*

1 The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America, 2 William

Harvey Research Institute, Queen Mary University of London, London, United Kingdom, 3 Departments of

Pediatrics and Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United

States of America, 4 The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s

Hospital, Columbus, OH, United States of America, 5 EMBL-EBI, Cambridge, United Kingdom,

6 Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA,

United States of America, 7 Department of Ophthalmology, Klinikum Saarbrücken, Saarbrücken, Germany,

8 Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany,

9 Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO,

United States of America, 10 European Genome-Phenome Archive (EGA) in the Centre for Genomic

Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain, 11 University of

Zurich and Swiss Institute of Bioinformatics, Zurich, Switzerland, 12 Institute for Systems Genomics,

University of Connecticut, Farmington, CT, United States of America

* daniel.danis@jax.org (DD); peter.robinson@jax.org (PNR)

Abstract

The Global Alliance for Genomics and Health (GA4GH) is a standards-setting organization

that is developing a suite of coordinated standards for genomics. The GA4GH Phenopacket

Schema is a standard for sharing disease and phenotype information that characterizes an

individual person or biosample. The Phenopacket Schema is flexible and can represent clin-

ical data for any kind of human disease including rare disease, complex disease, and can-

cer. It also allows consortia or databases to apply additional constraints to ensure uniform

data collection for specific goals. We present phenopacket-tools, an open-source Java

library and command-line application for construction, conversion, and validation of pheno-

packets. Phenopacket-tools simplifies construction of phenopackets by providing concise

builders, programmatic shortcuts, and predefined building blocks (ontology classes) for con-

cepts such as anatomical organs, age of onset, biospecimen type, and clinical modifiers.

Phenopacket-tools can be used to validate the syntax and semantics of phenopackets as

well as to assess adherence to additional user-defined requirements. The documentation

includes examples showing how to use the Java library and the command-line tool to create

and validate phenopackets. We demonstrate how to create, convert, and validate pheno-

packets using the library or the command-line application. Source code, API documentation,

comprehensive user guide and a tutorial can be found at https://github.com/phenopackets/

phenopacket-tools. The library can be installed from the public Maven Central artifact repos-

itory and the application is available as a standalone archive. The phenopacket-tools library

helps developers implement and standardize the collection and exchange of phenotypic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Danis D, Jacobsen JOB, Wagner AH,

Groza T, Beckwith MA, Rekerle L, et al. (2023)

Phenopacket-tools: Building and validating GA4GH

Phenopackets. PLoS ONE 18(5): e0285433.

https://doi.org/10.1371/journal.pone.0285433

Editor: Stephen R. Piccolo, Brigham Young

University, UNITED STATES

Received: January 5, 2023

Accepted: April 21, 2023

Published: May 17, 2023

Copyright: © 2023 Danis et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code and data are

freely available in the project GitHub repository

(https://github.com/phenopackets/phenopacket-

tools).

Funding: This work was supported by the National

Institutes of Health (NIH) under NIH NHGRI

RM1HG010860, NIH NHGRI 1R01HG011799-01,

NIH OD R24OD011883, NIH NICHD

1R01HD103805-01, NIH NLM contract

#75N97019P00280. JR, HH, NLH and CJM were

supported in part by Director, Office of Science,

Office of Basic Energy Sciences of the U.S.

https://orcid.org/0000-0003-0900-3411
https://orcid.org/0000-0002-3265-1591
https://orcid.org/0000-0003-2598-6622
https://orcid.org/0000-0002-2170-2250
https://orcid.org/0000-0002-6601-4486
https://orcid.org/0000-0002-0736-9199
https://github.com/phenopackets/phenopacket-tools
https://github.com/phenopackets/phenopacket-tools
https://doi.org/10.1371/journal.pone.0285433
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285433&domain=pdf&date_stamp=2023-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285433&domain=pdf&date_stamp=2023-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285433&domain=pdf&date_stamp=2023-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285433&domain=pdf&date_stamp=2023-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285433&domain=pdf&date_stamp=2023-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285433&domain=pdf&date_stamp=2023-05-17
https://doi.org/10.1371/journal.pone.0285433
http://creativecommons.org/licenses/by/4.0/
https://github.com/phenopackets/phenopacket-tools
https://github.com/phenopackets/phenopacket-tools


and other clinical data for use in phenotype-driven genomic diagnostics, translational

research, and precision medicine applications.

Introduction

Phenotypic features (signs, symptoms, laboratory and imaging findings, etc.) are of high clini-

cal importance, but standards for recording and exchanging such information along with

genomic data have lagged behind. To address this shortfall and pave the way to improving

patient care and clinical outcomes, the Global Alliance for Genomics and Health (GA4GH) [1]

has developed the Phenopacket Schema, a standard for sharing disease and phenotype infor-

mation. A phenopacket characterizes an individual person or biosample, linking that individ-

ual to phenotypic descriptions, genetic information, diagnoses, and treatments [2].

The Phenopacket Schema enables comparison of sets of phenotypic attributes from individ-

ual patients. Such comparisons can aid in diagnosis and facilitate patient classification and

stratification for identifying new diseases and treatments [3]. The Phenopacket Schema is

designed to support interoperability between the people, organizations, and systems that com-

prise the worldwide effort to address human disease and biological understanding. These part-

ners include clinical laboratories, authors, journals, clinicians, data repositories, patient

registries, electronic health record (EHR) systems, and knowledge bases.

Since its introduction in 2019, the Phenopacket Schema has seen wide adoption. It was

recently accepted by the International Standards Organization (ISO) (https://www.iso.org/

standard/79991.html). A number of databases and projects have adopted the standard to rep-

resent the clinical data of individuals, such as Japan’s biobanking system and the EBI Biosam-

ples repository. An estimated 1 million phenopackets have been created using version 1 of the

schema. Increasing the volume of standardized and computable data across a diversity of sys-

tems supports global computational disease analysis by integrating genotype, phenotype, and

other multi-modal data for precision health applications.

Phenopackets use shared and well-established ontologies, that is, logically defined hierar-

chies of terms that allow sophisticated algorithmic analysis over medically relevant abnormali-

ties [3]. The Phenopacket Schema does not directly model -omics data in detail but does

enable users to link a phenopacket to files representing data from high-throughput screening

techniques or to denote individual variants in several formats (see section on VRS and VRSA-

TILE, below) [4]. The Phenopacket Schema integrates a version of the GA4GH Variant Repre-

sentation Specification and is designed to be interoperable with other GA4GH standards

including those for pedigree data.

Previously introduced schemas for clinical data include the Fast Healthcare Interoperable

Resources (FHIR) model and the Observational Medical Outcomes Partnership (OMOP)

Common Data Model, which are designed for electronic healthcare record (EHR) data, and

special-purpose models such as the International Cancer Genome Consortium Accelerating

Research in Genomic Oncology (ICGC ARGO) Data Dictionary [5–7]. However, none of

these schemas represents a general model for representing clinical data of individual patients

with arbitrary diseases and with linkage to genomic and pedigree data.

Phenopackets are designed to be both human- and machine-interpretable, enabling com-

puting operations and validation on the basis of defined relationships between diagnoses, lab

measurements, and genotypic information. They also enable seamless transfer of data from a

data source (e.g., a document describing the phenotypic information) to a data receiver (e.g.,

an application that reads and uses it). The Phenopacket Schema aims to provide sufficient and

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 2 / 19

Department of Energy Contract No. DE-AC02-

05CH11231. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://www.iso.org/standard/79991.html
https://www.iso.org/standard/79991.html
https://doi.org/10.1371/journal.pone.0285433


shareable information, including data from EHRs, research studies, data entry tools, published

case reports, and other sources to enable capturing of structured clinical data that can be lever-

aged for computational analysis in other clinical or research environments.

Currently, a wide range of ad hoc database schemas are used to represent clinical data for

specific research projects, and numerous different ontologies are used to represent clinical

entities; for instance, diseases can be represented by terms from ontologies and terminologies

including Mondo, OMIM, Orphanet, NCIt, ICD, and many others [8]. Therefore, the Pheno-

packet Schema is intentionally flexible in its choice of source ontologies to facilitate wide adop-

tion and to increase the value of the network of systems sharing phenopackets for

computational use. The major goals for the Phenopacket Schema include composability, trace-

ability (data provenance), the FAIR principles (Findable, Accessible, Interoperable, and Reus-

able), and computability [9–12].

Here, we present phenopacket-tools, a software library that makes it easier to create, vali-

date, and work with phenopackets. The library provides a concise builder API to simplify crea-

tion of phenopackets in data entry or extract-transform-load pipelines or graphical user

interfaces and includes terms from a core set of ontologies to promote interoperability in the

community. Additionally, the library provides functionality for converting phenopackets from

the v1 data model into the latest v2 format and includes a data validation framework, allowing

additional constraints to be enforced for specific use cases. In addition to the API, pheno-

packet-tools functionality is available through a command-line interface.

Materials and methods

Phenopacket-tools is a Java library and application for creating, converting and validation of

GA4GH Phenopackets. The library is implemented in Java version 17 and takes advantage of

Java Platform Module System (JPMS), a feature that promotes modular software architecture

and enables deployment of Java applications as efficient runtime images with small binary size.

Following the JPMS philosophy, we designed phenopacket-tools as a set of loosely coupled

modules, each providing a narrow scope of functionality and depending on a small number of

well-maintained external open-source libraries. Note that, although we designed phenopacket-

tools as a modular library, the library can still be used in traditional Java class path runtime

configurations or from other programming languages that compile to Java byte code such as

Kotlin and Scala.

Phenopacket-tools functionality is divided into three categories: builder for creating pheno-

packets using a concise API and promoting a key set of ontologies, converter for transforming

phenopackets from v1 format to v2 format, and validator for checking syntax, semantic con-

straints, and enforcing project-specific requirements. All of these can be accessed via the API

or the command line.

Brief introduction to protocol buffers

The Phenopacket Schema was created using the open source protocol buffers framework

(“protobuf” for short) developed by Google [13]. Protocol buffers provide a language-neutral,

platform-neutral, and extensible mechanism for serializing structured data. Protobuf represen-

tations can be converted by the protobuf compiler into native bindings for many different

computer languages, including Java and Python, thereby providing a widely used framework

for working with phenopackets. Additionally, protobuf output can easily be converted into

JSON or YAML for human consumption.

Without phenopacket-tools, code for working with phenopackets would need to use the

protobuf framework, which generates bindings, i.e., Java class files with definitions of

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 3 / 19

https://doi.org/10.1371/journal.pone.0285433


immutable data structures corresponding to the schema elements as well as builder classes for

creating hierarchical elements of the Phenopacket Schema. However, the protobuf-generated

classes can be verbose and unwieldy. Phenopacket-tools provides terms and constants that are

more convenient to use than creating the equivalent terms using the protobuf-generated bind-

ings, and a concise API for creating phenopackets and accessing the ontology concepts from

recommended ontologies.

Protobuf uses the term “message” to refer to any hierarchical structure, whereby one mes-

sage can contain other messages. For instance, an entire phenopacket is a protobuf message

and a phenopacket may contain messages that represent other elements such as the Phenoty-

picFeature and the Measurement. In the following, we will use “message” to refer to a compo-

nent of the Phenopacket Schema.

Predefined ontology terms

Currently, numerous different ontologies are used to represent clinical entities. Although the

Phenopacket Schema is flexible enough to accept any ontology, it would facilitate interopera-

bility if the community of users of the Phenopacket Schema converged around a set of ontolo-

gies that should be used unless there is an application-specific reason for not doing so. For

instance, a search in BioPortal [14] for “Unilateral” reveals matches in 36 different ontologies.

If users of the Phenopacket Schema chose to use terms representing the concept of unilaterality

from 36 different ontologies, then one would need to map the phenopackets post hoc to some

common representation, and so on for all the other concepts that are represented in various

ontologies. To avoid this Tower of Babel situation, phenopacket-tools encourages the use of a

flexible but constrained set of ontology terms from a small number of carefully chosen ontolo-

gies (based on computability, currency, open access status, and relevance to genomic health).

Predefined constants for terms from the core ontologies

Phenopacket-tools provides predefined ontology term constants to enhance interoperability.

The library includes a module with the corresponding constant values chosen from a range of

areas that can be accessed by calling static functions as shown in Table 1. For example, the

Table 1. Utility classes in the org.phenopackets.phenopackettools.builder.builders package that provide predefined constants that simplify con-

struction of selected elements of the Phenopacket Schema. The second column shows an example, and a full list is available in the online documentation. The third col-

umn indicates the parts of the Phenopacket Schema in which the constants can be used.

Class Static function Phenopacket element Source ontology or terminology

Unit mmHg() Measurement, MedicalAction UCUM

Severity mild() PhenotypicFeature HPO

Laterality unilateral() PhenotypicFeature HPO

SpatialPattern perilobular() PhenotypicFeature HPO

Evidence selfReportedPatientStatementEvidence() PhenotypicFeature ECO

Gender identifiesAsMale() Individual LOINC

BiospecimenType bloodDNA() Biosample NCIT

PathologicalTnm pM1StageFinding() Biosample NCIT

MaterialSample referenceSample() Biosample EFO

AllelicState heterozygous() Interpretation GENO

DiseaseStage nyhaClassIII() Disease NCIT

Organ kidney() Disease UBERON

Response partialRemission() MedicalAction NCIT

AdministrationRoute intravenous() MedicalAction NCIT

https://doi.org/10.1371/journal.pone.0285433.t001

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 4 / 19

https://doi.org/10.1371/journal.pone.0285433.t001
https://doi.org/10.1371/journal.pone.0285433


Unified Code for Units of Measure (UCUM) provides a simple and widely used syntax to

express all common units. In the GA4GH Phenopacket Schema, units are required to report

the results of laboratory tests (Measurementmessage) and to specify the dosage of medication

and some other treatments (MedicalActionmessage). In the GA4GH Phenopacket Schema,

units are represented as OntologyClass messages and we recommend UCUM for repre-

senting units. For instance, milligram is UCUM:mg, microgram per deciliter is UCUM:ug/dL,

and millimeters of mercury (used to specify blood pressure) is UCUM:mm[Hg]. The corre-

sponding static function names in phenopacket-tools are Unit.milligram(), Unit.
microgramPerDeciliter(), and Unit.mmHg().

For representing the evidence of assertions, terms from the Evidence and Conclusion

Ontology (ECO) should be used where possible [15]. For phenopackets derived by manual

annotation of a published case report, the constant Evidence.
authorStatementFromPublishedClinicalStudyManualAssertion()
should be used. For automatic generation of phenopackets from published reports (e.g., by

text mining), Evidence.
authorStatementFromPublishedClinicalStudyAutomaticAssertion()
should be used. Given the wide range of evidence available for clinical data, terms from other

ontologies may be used where appropriate.

Terms from the National Cancer Institute’s Thesaurus (NCIt) are used to represent a num-

ber of different subject areas [16]. Clinical Modifier and Onset terms are taken from the

Human Phenotype Ontology (HPO) [17]. Finally, two terms from the Experimental Factor

Ontology (EFO) are used to represent disease and reference sample status.

We do not have recommendations for concepts that are not discussed here, and users

should choose application-specific terminologies or ontologies based on their needs and the

criteria mentioned earlier.

Convenience functions

The phenopacket-tools library provides several convenience functions to reduce the amount

of boilerplate in client code (in this context, client refers to application-specific code developed

by a user of the phenopacket-tools library which calls the methods provided by the library).

The OntologyClassmessage is used ubiquitously in the Phenopacket Schema. Each Ontolo-
gyClassmessage has two fields, id (e.g., “HP:0001250”) and label (e.g., Seizure). Using the

Builder provided by the protobuf framework requires four commands to be chained (Fig 1A).

The phenopacket-tools library provides predefined constants accessible via static functions for

commonly used ontology classes that will be discussed in the next section (an example is

shown in Fig 1B). In addition, a convenience function can be used to generate an arbitrary

ontology class (Fig 1C) to reduce the verbosity of client code. All three code snippets produce

the identical output (Fig 1D). Analogous functions are provided for many other areas

(Table 2).

Concise builders

The API of the phenopacket-tools library simplifies the construction of the various compo-

nents of the Phenopacket Schema with concise builders that wrap the code generated by the

protobuf compiler into convenience functions and an API to guide creation of valid Pheno-

packet elements, reduce verbosity, and increase code legibility. The org.phenopackets.
phenopackettools.builder package provides a builder class for each Phenopacket

element. We designed the builders such that all required fields must be provided upon builder

creation, to prevent generation of invalid elements. Each element can be further customized

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0285433


by chaining additional functions to the builder methods to specify optional components of the

message such as an enumerated attribute value (e.g., a variant actionability class) or a custom

value as a component’s attribute. For instance, to create a PhenotypicFeatureBuilder, an Onto-
logyClass corresponding to the type, a required attribute of a PhenotypicFeature, must be pro-

vided to instantiate the builder. The builder further offers convenience methods for setting the

optional PhenotypicFeature attributes, either as predefined constants such as builder.
childhoodOnset() or custom values such as builder.iso8601onset
("P10Y4M2D"). The building process is concluded by calling build(), yielding the final

element. The phenopacket-tools builder code is typically substantially less verbose than the

equivalent protobuf-generated builder code, providing a concise and intuitive interface. The

builders can be used in conjunction with the predefined constants and convenience functions

that were explained in the previous sections (Fig 1).

Below, we briefly discuss how some of the key elements (messages) in the Phenopacket

Schema are supported by phenopacket-tools builder methods.

Individual

Each phenopacket describes one individual. In many cases, the individual is a patient or a pro-

band of a study. The Individualmessage specifies demographic information. For example,

enumerations are used to represent biological sex (MALE, FEMALE, OTHER, UNKNOWN)

Table 2. Examples of convenience functions. In addition to the ontologyClass function that was explained in detail

in the text, phenopacket-tools provides convenience functions to reduce the amount of boilerplate in client code.

Details are available in the online user guide and Javadoc documentation.

Class Function

OntologyClass ontologyClass(String id, String label)

Age age(String iso8601duration)

Expression hgvsCdna(String hgvsExpression)

Extension alleleFrequency(double frequency)

Resource hpoVersion(String version)

TimeElement gestationalAge(int weeks, int days)

TimeElement childhoodOnset()

https://doi.org/10.1371/journal.pone.0285433.t002

Fig 1. Methods for creating OntologyClass messages with phenopacket-tools. A. Builder pattern provided by the protobuf Java framework. B.

Predefined constant (static function) that returns an Ontology term singleton instance. Here, BiospecimenType.bloodDNA() generates the

ontology term that represents the NCI Thesaurus (NCIt) concept C158416 for the biospecimen type “blood DNA” C. Convenience function provided

by phenopacket-tools. D. The JSON representation of OntologyClassmessage that is generated by the code in panels A, B, and C.

https://doi.org/10.1371/journal.pone.0285433.g001

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 6 / 19

https://doi.org/10.1371/journal.pone.0285433.t002
https://doi.org/10.1371/journal.pone.0285433.g001
https://doi.org/10.1371/journal.pone.0285433


and chromosomal sex (XY, XX, XO, XXY, XXX, XXYY, XXXY, XXXX, XYY, OTHER,

UNKNOWN). The Individual element additionally has an optional field for gender. Pheno-

packet-tools provides LOINC (Logical Observation Identifiers Names and Codes) codes to

represent gender, for instance, Female-to-male transsexual (LOINC:LA22880-1), correspond-

ing to the static function Gender.femaleToMaleTranssexual().

Phenotypic feature

A PhenotypicFeaturemessage describes clinical abnormalities including signs and symptoms,

laboratory findings, imaging, and electrophysiological results, along with modifier and quali-

fier concepts. Each phenotypic feature should be described using a term from the Human Phe-

notype Ontology (HPO), a rich representation of abnormal human phenotypic features. The

HPO is complemented by a corpus of phenotype annotations (HPOA) corresponding to each

of over 8,400 rare diseases [17, 18]. Almost all clinical genetics diagnostic tools now leverage

the HPO to encode and compute over patient features in the context of genomic variant classi-

fication. Accurate and comprehensive phenotyping matters for accurate diagnosis. Many

exome and genome sequencing pipelines incorporate phenotype analysis into approaches for

ranking and interpreting variants [19].

The PhenotypicFeature has optional fields that can be used to provide context about a phe-

notypic abnormality. The severity field is used to describe the intensity or degree of the pheno-

typic feature. The HPO defines five relevant terms (Borderline, Mild, Moderate, Severe,

Profound), each of which has a corresponding static function such as Severity.mild().

The modifiers field can contain a list of terms that describe the frequency, laterality, or

another pattern of a certain phenotypic feature in the patient being described. We recommend

using terms from the Clinical Modifier subontology of the HPO. There are over 250 available

terms, and we provide constants for some commonly used terms for laterality, e.g.,

Laterality.unilateral(), and spatial pattern, e.g., SpatialPattern.
perilobular().

Measurement

TheMeasurementmessage is used to capture quantitative, ordinal (e.g., absent/present), or

categorical measurements. LOINC assigns a unique identifier to a fixed combination of six

parts: Component (the measured analyte), Property (measured quantity of the analyte, e.g.,

mass), Time Aspect (moment in time or a time interval, e.g., 24-h urine), System (sample

material, e.g., serum), Scale (level of measurement e.g., quantitative), and Method [20]. We

recommend using LOINC codes to denote the assay ofMeasurementmessages.

Biosample

A Biosamplemessage encodes information about the examination of biological specimens

such as tissue biopsies. One example use case would be to describe the biopsy of a tumor and

of surrounding normal tissue. Another example would be to describe a muscle biopsy in a

patient with muscular dystrophy. Some of the fields of the biosample are cancer-specific, but

because these fields are optional, the Biosamplemessage can be used to describe any kind of

biological specimen.

The National Cancer Institute (NCI) Thesaurus (NCIt) provides a reference terminology

with over 100,000 terms and textual definitions. Although the focus is on cancer, terms from

many other domains are included [16]. We recommend that NCIt terms be used to describe

cancers and related data types such as cancer staging, cancer biomarkers, and procedures. The

term field of the top-level PhenotypicFeaturemessages should be created with HPO terms. In

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 7 / 19

https://doi.org/10.1371/journal.pone.0285433


contrast, the PhenotypicFeaturemessage in the Biosample is meant to refer to the phenotypic

features of a biopsy or similar biospecimen. Terms from the NCIt can be used to refer to can-

cer-related features. If the Biosample refers to a specimen that is not cancer-related, for

instance a muscle biopsy obtained from a person with muscular dystrophy, then HPO terms

can be used. TheMeasurement field should be created as described above but is used to

describe phenotypic features or measurements of the biospecimen.

The sampled_tissue field of the Biosample denotes the tissue from which a biopsy or other tis-

sue specimen was obtained. Uberon is an integrated cross-species ontology consisting of over

21,000 classes representing a variety of anatomical entities, organized according to traditional ana-

tomical classification criteria [21]. Uberon should be used to specify organs and other anatomic

entities, for instance, to represent the body site at which a biosample was taken. Phenopacket-

tools provides predefined UBERON classes representing commonly used anatomical entities such

as eye or kidney. In clinical use, it is most common to denote the site of tumor origin with Inter-

national Classification of Diseases for Oncology (ICD-O) Topography (T), together with the

ICD-O Morphology (M) code which indicates histological type and degree of malignancy. Tools

such as icdot2uberon can be used to convert between ICD codes and UBERON classes [22].

The sample_type field denotes the kind of specimen (DNA, RNA, protein, histology, etc.)

that is derived from the sampled tissue. The specimen type should be specified using terms

that descend from the NCIt term for Biospecimen (NCIT:C70699). Phenopacket-tools provides

a number of constants for many of these terms, e.g., BiospecimenType.bloodDNA().

Staging of cancer expresses the extent that cancer has spread and is usually described by num-

bers I to IV with IV representing distant extension beyond the organ of origin, diffuse infiltration

or metastatic spread. Clinical stage is based on all of the available information obtained before a

surgery to remove the tumor, while pathologic stage adds additional information gained by exam-

ination of the tumor microscopically after surgery and refers to the stage before therapy. If

desired, clinical stage can be expressed in theDiseasemessage using the disease_stage or clini-

cal_tnm_finding fields. The pathological_stage field, which is used in Biospecimen, should be used

with terms such as Lung Cancer by AJCC v8 Stage (NCIT:C136467) from the NCIt.

The pathological_tnm_finding field is used to represent TNM findings used to determine

the pathological stage. Staging is often based on the TNM system, involving the tumor size (T)

and the regional lymph node involvement (N) and/or distant metastasis (M). Again, we rec-

ommend using NCIt terms for this field. Predefined terms are provided for general TNM find-

ings (note that some cancers have bespoke TNM classifications that are not provided here).

For instance, PathologicalTnm.pM1StageFinding() refers to pathological stage M1

(distant spread of cancer, i.e., metastasis).

Thematerial_sample element of the Biosamplemessage can be used to specify the status of

the sample. For instance, a sample may be used as a normal control, often in combination with

another sample that is thought to contain a pathological finding. We recommend terms from

the Experimental Factor Ontology (EFO) subclasses ofMaterial Sample (OBI:0000747), e.g.,

abnormal sample (EFO:0009655).

Interpretation

A phenopacket can contain one or more Interpretation elements that specify interpretations of

genomic findings. We refer to the online documentation and to our detailed introduction [23]

for further details. We provide constants for one field that is used in the Interpretation.

The allelic_state element should use terms from the GENO ontology to specify the allelic

state (zygosity). Static functions are provided for homozygous (GENO:0000134), heterozygous
(GENO:0000135), and hemizygous (GENO:0000134).

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 8 / 19

https://doi.org/10.1371/journal.pone.0285433


Genomic variants can be encoded in the GA4GH Variation Representation Specification

(VRS) format. When introduced in Phenopackets v2, a protobuf version of VRS (github.com/

ga4gh/vrs-protobuf) was derived from the source VRS representation in JSON schema and

used for Phenopackets. In Phenopackets-tools, we translate this derived representation back to

JSON schema, resulting in a message structure that is losslessly transformable but syntactically

distinct from the native VRS JSON schema. For users that wish to express Phenopackets with a

native VRS representation, we have implemented a function that converts VRS objects in Phe-

nopackets into JSON objects that correspond to the native VRS schema. If users desire to inter-

act with databases or software that use the VRS schema, this function can be used to generate

conformant JSON code.

Disease

The term element of Disease is used for an ontology term that specifies a disease. Phenopackets

can contain a list of Disease messages that represent diseases diagnosed in the proband. To

represent diseases, we recommend the Mondo Disease Ontology which integrates and harmo-

nizes multiple disease terminologies and ontologies into a coherent logic-based ontology that

provides precise semantic mappings between terms. Mondo aims to systematically integrate

the classifications and relationships in partnering terminological resources into a semantically

coherent, single resource to enable the aggregation and analysis of disparate clinical data

repositories and facilitate the discovery of relationships between disease concepts across sys-

tems. Mondo terms include links to many other nosologies and disease ontologies [24]. Some

users may prefer OMIM, ORDO, or NCIt terms, but since Mondo imports and provides prov-

enance and attribution to these source ontologies, it is nearly always possible to use Mondo.

The disease_stage field can be used to represent the disease stage according to the appropri-

ate disease-specific clinical staging systems. As an example, we provide predefined classes for

cancer Stage 0-Stage IV and New York Heart Association stages for heart failure, e.g.,

DiseaseStage.nyhaClassIII().

The clinical_tnm_finding field should be used to represent clinical tumor/node/metastasis

cancer-related findings using terms from the NCIt.

The primary_site field is used to specify the organ primarily affected by the disease. Uberon

should be used to specify organs and other anatomic entities. The laterality field should use

HPO constants for laterality (Table 1).

MedicalAction. The MedicalAction message can represent four specific kinds of medical

action: Procedure, Treatment, RadiationTherapy, and TherapeuticRegimen. In some cases,

terms from the Medical Action Ontology (MAxO) can be used. MAxO is an ontology of medi-

cal interventions including therapy and other actions for clinical management. The current

focus of MAxO is on rare disease but terms are available for all classes of disease. MAxO is

available at https://github.com/monarch-initiative/MAxO and can be viewed in the Ontology

Lookup Service of the European Bioinformatics Institute, BioPortal, and OntoBee [14, 25, 26].

We recommend that where possible MAxO terms be used for theMedicalActionmessage of

the GA4GH Phenopacket Schema.

For Procedure, the code field should use Terms from either MAxO or NCIt and the body_-
site field should use Uberon terms to specify organs and other anatomic entities.

For Treatment, the agent field represents a compound or other agent administered to a

patient. Numerous resources are available for specifying pharmaceutical compounds, drug

names, and related data. RxNorm is a standard and freely available terminology maintained by

the U.S. National Library of Medicine (NLM) that includes normalized names and relation-

ships extracted from several proprietary drug knowledge bases [27]. RxNorm can be

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 9 / 19

http://github.com/ga4gh/vrs-protobuf
http://github.com/ga4gh/vrs-protobuf
https://github.com/monarch-initiative/MAxO
https://doi.org/10.1371/journal.pone.0285433


interrogated through the RxNav browser, or via APIs (https://lhncbc.nlm.nih.gov/RxNav/).

DrugBank is a web-enabled database containing comprehensive molecular information about

drugs, their mechanisms, their interactions, and their targets [28]. DrugBank content on the

platform is provided under, and subject to, a Creative Commons Attribution-NonCommercial

4.0 International License but there are some restrictions on commercial use. DrugCentral

(freely available via CC-BY-SA) integrates a broad spectrum of drug resources related to chem-

ical structures, biological activities, regulatory data, pharmacology, disease information, and

drug formulations [29]. DrugCentral associates clinical data with drugs in two distinct ways:

medical uses and adverse events. Disease terms, mapped to SNOMED_ID and DO_ID where

possible, are available for indications and off-label drug uses, as well as contra-indications. All

drug-related adverse events in DrugCentral are mapped to the MedDRA (Medical Dictionary

for Regulatory Activities, https://www.meddra.org/) terminology. Adverse events are sorted by

importance (specifically, the log likelihood ratio [30]) and separately provided for women,

men, elderly people, and children, where data is available. All drug pharmacologic actions are

captured in DrugCentral and mapped to ATC (Anatomic Therapeutic and Chemical Classifi-

cation system, https://www.whocc.no/), ChEBI (Chemical Entities of Biological Interest [31]),

and MeSH, where available. Side effects, separated by sex, are also mapped in DrugCentral.

ChEMBL is a manually curated database of bioactive molecules with drug-like properties. It

brings together chemical, bioactivity and genomic data to aid the translation of genomic infor-

mation into effective new drugs [32]. We recommend that one of these resources be used

according to project needs.

For Treatment, the route_of_administration field represents the part of the body or way a

drug is administered, e.g., by mouth or intravenously. Terms that descend from the NCIt term

Route of Administration (NCIT:C38114) should be used. The phenopacket-tools library pro-

vides constants for many of these terms, e.g., AdministrationRoute.intravenous
() (Table 1). The intent field represents the condition or disease that this treatment was

intended to address. In general, the disease should be listed in the Diseases section and the

same ontology term should be used.

Finally, the MedicalAction has several fields that can be used with any of the four kinds of

medical action. The response_to_treatment field is intended for concepts such as Partial Remis-
sion (NCIT:C18058) from the NCI Thesaurus that can be used to code the overall response of

a patient to treatment. Predefined ontology terms are available (Table 1). The adverse_events
field is a list of adverse effects experienced by the patient attributed to the treatment. Terms

from the HPO or the Ontology of Adverse Events [33] can be used. The treatment_termina-
tion_reason field is used to represent the reason for stopping a medical action. The pheno-

packet-tools library provides several concepts from the NCIT that describe the reason for

which a treatment was stopped, such as Treatment Completed as Prescribed (NCIT:C105740)

and Treatment Terminated Due to Toxicity (NCIT:C105741).

Convert phenopackets from v1 to v2

Phenopacket-tools provides a method for mapping Phenopacket Schema from v1 to v2 data

model. The mapping functionality is offered in the Java API as V1ToV2Converter and in the

convert command of the command-line interface. The conversion is lossy due to the breaking

changes made to the Variant element of the v1 schema, and extra care must be taken when

converting data that include this element. To prevent unintended results, the conversion of

Variant elements is disabled by default in the command-line tool. However, the Variant ele-

ment can be converted if the v1 data includes exactly one Disease and the disease can be

assumed to be the definitive diagnosis. If this is the case, then each variant is converted into

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 10 / 19

https://lhncbc.nlm.nih.gov/RxNav/
https://www.meddra.org/
https://www.whocc.no/
https://doi.org/10.1371/journal.pone.0285433


VariantInterpretation and assumed to be causative of the diagnosis. The variant interpretation

must contain American College of Medical Genetics and Genomics (ACMG) variant pathoge-

nicity and a therapeutic actionability to meet the validation requirements. Since this informa-

tion is absent in the v1 data model, the variant is assigned “not provided” ACMG variant

pathogenicity and “unknown” therapeutic actionability. However, the phenopacket-tools API

code can be used as the basis of custom conversion logic that reflects assumptions of the origi-

nal dataset.

Validate phenopackets

The Phenopacket Schema uses the protobuf framework to define the structure of the schema

components and the hierarchical arrangement of the components. However, the framework

does not provide any means to validate content apart from basic checks that, for instance, a

field contains a number, string, or another message (hierarchical component). Any additional

validation is delegated to downstream applications. Phenopacket-tools provides an extensible

API for validation of all schema components, including a model of validation workflow and

validation results.

The validation workflow consists of a list of steps. The workflow includes a mandatory base
validation step that validates syntax and cardinality of each component, to verify the basic

requirements of the Phenopacket Schema, such as presence of identifier fields and metadata

(see the online documentation). The base validation is implemented using JSON schema. The

workflow can be extended by any number of validation steps for checking specific logical or

semantic requirements. Phenopacket-tools offers an API for the validation steps to allow

encoding custom validation logic as well as several off-the-shelf validators.

The central element of the validation API is PhenopacketValidator that represents a single

validation step. The validator is identified by ValidationInfo with the name, type, and descrip-

tion of the validation functionality. The validation reports any errors as ValidationResult
objects, one result per error. The execution of the workflow is orchestrated by the Validation-
WorkflowRunner. The runner applies the validators in the correct order, ensuring that the base

validator is applied as first, and gathers the results into a ValidationResults container. The con-

tainer represents the results of the validation as immutable value objects, ValidatorInfo, Vali-
dationResult, suitable for reporting back to the user.

Phenopacket-tools provides off-the-shelf validators for common checks. The metadata vali-

dator verifies presence of a Resource element for any ontology concept to ensure unambiguous

concept resolution. The ancestry validator checks violations of the annotation propagation

rule; the phenopacket must not contain both term and its ancestor. The only exception is pres-

ence of an observed ancestor and an excluded child (e.g. observed Abnormality of finger and

excluded Arachnodactyly). The organ system validator uses HPO to check if phenopacket

includes phenotypic feature for selected organ systems represented by a top-level HPO term.

Finally, a custom JSON schema can be used to enforce presence and format of Phenopacket

Schema components (Table 3). The validators can be used by calling the appropriate API

methods from the client code or from the command line.

Results and discussion

Code availability

Phenopacket-tools is open source, and is available on GitHub under the GNU3 license. We fol-

low the semantic versioning system [34] to tag and release our library. The version described

in this paper is v1.0.0. Releases are published on the Maven Central repository to allow users to

use the phenopacket-tools library in their applications. Comprehensive API documentation, a

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 11 / 19

https://doi.org/10.1371/journal.pone.0285433


user guide, and a tutorial are available on http://phenopackets.org/phenopacket-tools. A pre-

built executable Java archive with the command-line interface for the end users is available for

download from GitHub releases section. Alternatively, the application can be built with a sin-

gle command on Windows (mvnw.cmd package), or on macOS or Linux (./mvnw
package).

Usage examples

In this section, we outline common procedures that involve working with GA4GH Pheno-

packet data. When working with existing phenopacket files, we use PhenopacketParser
and PhenopacketPrinter from the phenopacket-tools-io module for (de)seriali-

zation of phenopacket, family, or cohort from/to protobuf binary, JSON or YAML data

formats.

Building phenopackets

Although Java bindings generated by the protobuf compiler can be used to work with pheno-

packets, the bindings are not easy to use. Phenopacket-tools simplifies the process of reading

or writing phenopackets by providing static functions to generate commonly used elements

such as left(), convenience functions, and concise builders (Methods). The protobuf version

and the corresponding phenopacket-tools version as well as the generated JSON code (Figs 1

and 2).

Several examples of how to use the library to create phenopackets are provided in the source

code of the command-line interface module of the library. We anticipate that the library code

will be used as a part of applications that leverage user-entered data or transform data from

Table 3. An overview of validation errors. Phenopacket-tools includes multiple off-the-shelf validators for performing basic and domain-specific checks. The validators

emit errors that refer to invalid phenopacket components. The table lists the errors and solutions for issues discovered in example phenopackets that are included in the

phenopacket-tools distribution.

Example

phenopacket

Validator Validation error Solution

missing-fields BaseValidator ‘id’ is missing but it is required Add the phenopacket ID

missing-fields BaseValidator ‘subject.id’ is missing but it is required Add the subject ID

missing-fields BaseValidator ‘phenotypicFeatures[0].type.label’ is missing but it is required Add the label attribute into the type

of the first phenotypic feature

missing-resources MetaDataValidator No ontology corresponding to ID ‘NCBITaxon:9606’ found in MetaData Add a Resource element with

NCBITaxon definition into

MetaData
marfan.no-subject CustomJsonSchemaValidator ‘Subject’ is missing but it is required Add the Subject (Individual

message)

marfan.no-

phenotype

CustomJsonSchemaValidator ‘phenotypicFeatures’ is missing but it is required Add at least one PhenotypicFeature

marfan.not-hpo CustomJsonSchemaValidator ‘phenotypicFeatures[0].type.id’ does not match the regex pattern ^HP:\d

{7}$

Use HPO in the type.id of the first

phenotypic feature

marfan.no-time-at-

last-encounter

CustomJsonSchemaValidator ‘subject.timeAtLastEncounter’ is missing but it is required Add the time at last encounter

marfan.obsolete-term HpoPhenotypeValidator Using obsolete id (HP:0002631) instead of current primary id

(HP:0002616) in id-C

Replace the obsolete ID with the

primary ID

marfan.annotation-

propagation-rule

HpoAncestryValidator Phenotypic features of id-C must not contain both an observed term

(Aortic root aneurysm, HP:0002616) and an observed ancestor (Aortic

aneurysm, HP:0004942)

Remove the ancestor term

marfan.missing-eye-

annotation

HpoOrganSystemValidator Missing annotation for Abnormality of the eye [HP:0000478] in id-C Annotate the eye or exclude any

abnormality

https://doi.org/10.1371/journal.pone.0285433.t003

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 12 / 19

http://phenopackets.org/phenopacket-tools
https://doi.org/10.1371/journal.pone.0285433.t003
https://doi.org/10.1371/journal.pone.0285433


other sources to generate phenopackets rather than building phenopackets for specific cases as

we have done here. However, the examples demonstrate numerous common use cases and can

be extended for many purposes in application code.

Converting phenopackets

Version 1 of the GA4GH Phenopacket Schema was released in 2019 to elicit community feed-

back. In response to this feedback, the schema was extended and refined and version 2 was

released in 2021 and published in 2022 by the International Standards Organization (ISO) as

ISO 4454:2022 [35]. The representation of versions 1 and 2 of the PhenotypicFeature, which

models and contextualizes phenotypic observations, is nearly identical and version 1 pheno-

packets that contain phenotypic information can be automatically converted to version 2

phenopackets.

The ability to convert between versions 1 and 2 of phenopackets is quite useful, given that

over a million phenopackets have been created so far. To demonstrate the conversion func-

tionality, we will use a cohort of 384 probands diagnosed with a Mendelian disease that was

used to benchmark the performance of LIRICAL [36] and Exomiser [37], tools for phenotype-

Fig 2. Building phenopackets. Phenopacket-tools offers convenience functions that streamline the construction of GA4GH phenopackets. (A) The protobuf

framework automatically generates Java bindings for messages that are defined in proto files. This panel shows an example of how the bindings can be used to

create a PhenotypicFeature element that represents severe weakness of the left triceps muscle with age of onset at eleven years and four months (“P11Y4M”). (B)

Phenopacket-tools provides builder classes that contain convenience functions that hide the relative verbosity of the protobuf bindings. (C) JSON

representation of the PhenotypicFeature element generated by Panel A or B.

https://doi.org/10.1371/journal.pone.0285433.g002

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 13 / 19

https://doi.org/10.1371/journal.pone.0285433.g002
https://doi.org/10.1371/journal.pone.0285433


driven prioritization of genomic variants and diseases. The probands were represented as v1

phenopackets, including phenotypic features, the causal genomic variants, and the diagnosed

disease. To further investigate this dataset, the phenopacket-tools conversion functionality

should be used to convert the v1 phenopackets into the current v2 format.

First, a converter (V1ToV2Converter)is obtained from the convert module. The

optional conversion of the Variant element of the v1 schema is controlled by a flag in the con-

verter’s constructor. Next, phenopacket JSON files are read into protobuf messages using phe-

nopacket parser (PhenopacketParser). The converter maps each message into a v2

phenopacket. The converted phenopackets can be stored to disk using the phenopacket printer

(PhenopacketPrinter).

Validating phenopackets

In protobuf (version 3, which is what the Phenopacket Schema uses), all fields are optional.

However, the Phenopacket Schema defines certain fields to be required. Phenopacket-tools

uses JSON schema to encode these requirements. Additionally, it may be desirable to enforce

additional constraints or requirements on phenopackets that are created for a specific purpose.

For instance, one may want to require that phenopackets made for rare-disease diagnostics

include the age of the proband and use HPO terms to represent phenotypic features. Addition-

ally, one may want to enforce requirements that are difficult to encode using JSON schema,

such as that only a valid term id is used (currently, the HPO has over 16,000 terms), or that the

phenopacket does not encode both a term and a parent or ancestor of the term, or that the phe-

nopacket annotates or excludes abnormality in selected organ systems. Here we show a valida-

tion workflow for checking all these requirements.

We start by getting a workflow builder

(JsonSchemaValidationWorkflowRunnerBuilderxya). The builder automati-

cally adds the base validation backed by a JSON schema and the metadata validator

(MetaDataValidator) to check the presence of a Resource for the ontology concepts into

the workflow. We provide an example of a JSON schema engineered to validate the presence

of the age of the proband in a phenopacket. To use the schema in the validation, we set a

schema url to the workflow builder (builder.addJsonSchema(customSchema)).

We use ontology-dependent validators to point out usage of obsolete HPO term ids

(HpoPhenotypeValidators.Primary) and to report violations of the ontology anno-

tation propagation rule (HpoAncestryValidators.Ancestry). Last, we add a valida-

tor for checking annotation of selected organ systems (e.g., the cardiovascular system,

HpoAncestryValidators.OrganSystem). The validation workflow can be used to

validate phenopackets, producing a ValidationResults container for each phenopacket (Fig 3).

We provide further examples on how to use the interfaces of the phenopacket-tools library to

create project-specific validators in the online documentation.

Command-line interface

The command-line interface application allows users to generate phenopacket example files,

convert, and validate phenopackets without writing Java code. We designed the CLI applica-

tion around principles of UNIX philosophy. The commands of the CLI application perform

simple and focused tasks and the application supports reading and writing phenopackets

from/to standard streams, to allow combining commands into data pipelines. The application

reads phenopackets formatted in JSON and YAML data formats and can detect the input data

format automatically. For maximizing the user convenience, the application supports com-

mand-line autocomplete, showing subcommands, available options and parameters, and a

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 14 / 19

https://doi.org/10.1371/journal.pone.0285433


granular adjustment of logging verbosity to facilitate debugging. The source code of the appli-

cation is designed as a separate module within the phenopacket-tools library and exemplifies

usage of the library functionality, serving as an important part of the library documentation.

The GA4GH Phenopacket Schema is designed for sharing disease and phenotype informa-

tion that characterizes an individual person, linking that individual to detailed phenotypic

descriptions, genetic and genomic information, diagnoses, variant interpretations, and treat-

ments. In addition to functioning as a data exchange schema, phenopackets represent compu-

tational models of the health trajectory of an individual and can model data from many

domains including phenotypic abnormalities, numerical measurements, disease diagnoses,

and treatments, optionally linked to genomic functional or variant data [2]. We have previ-

ously published a tutorial and detailed example representing a child with retinoblastoma [23].

The Phenopacket Schema is designed to complement and be interoperable with existing sche-

mas for health care and translational research. The Fast Health Interoperability Resources

(FHIR) Standard was introduced in 2011 by Health Level Seven International (HL7) and lever-

ages Web technologies such as a Representational State Transfer (REST)-based application

programming interface (API), XML, and JSON. Information is represented using building

blocks (FHIR resources) that define the content and structure of information and serve as an

extensible foundation providing resources, APIs, and a platform in which different solutions

can be implemented [38]. The information contained in a phenopacket can be represented in

FHIR, and we are currently developing a FHIR Implementation Guide to represent the

GA4GH Phenopacket Schema using and extending FHIR resources [39]. The Clinical Data

Interchange Standards Consortium (CDISC) Operational Data Standard is dedicated to the

exchange of data within clinical trials [40], but is not a general schema for representing com-

prehensive clinical and genomic data about an individual. However, it may be possible in the

future for CDISC to be able to represent collections of Phenopackets in the context of trial data

exchange. The Observational Health Data Sciences and Informatics (OHDSI) Observational

Medical Outcomes Partnership (OMOP) common data model is frequently used in clinical

data warehouses as a foundation for observational research. OMOP enables large-scale analysis

of distributed data to generate evidence for research that promotes better health decisions and

better care [41]. The Phenopacket Schema is more narrowly focused towards semantic analysis

of individual patient disease trajectories, but is compatible with the OMOP Schema; a prelimi-

nary transformation strategy from OMOP to GA4GH Phenopacket Schema has been

Fig 3. Creating a customized validator and applying it to a phenopacket. The ValidationResult object contains fields representing

validation metadata, the level of the validation (error or warning), the category, and a message (See Table 3).

https://doi.org/10.1371/journal.pone.0285433.g003

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 15 / 19

https://doi.org/10.1371/journal.pone.0285433.g003
https://doi.org/10.1371/journal.pone.0285433


published [42]. Phenopackets are a schema that can and should be used with ontologies and

commonly used clinical terminologies such as the Systematized Nomenclature of Medicine

Clinical Terms (SNOMED CT) and Logical Observation Identifiers, Names, and Codes

(LOINC). We envision the role of the GA4GH Phenopacket as a common exchange format

that can improve interoperability between research data and existing clinical systems at the

case-level, and the schema is especially well suited to providing a comprehensive and comput-

able representation of clinical data for genomic research and care.

The main motivation for the phenopacket-tools library is the fact that the Java bindings

generated by the protobuf framework are not easy to use and do not enforce the constraints

defined by the GA4GH Phenopacket Schema. Also, we envision that consortia and project

groups using phenopackets will want to define requirements and constraints that go beyond

those defined by the schema itself. The library is designed to be used in different settings.

Developers of pipelines for genotype-phenotype analysis can use the library to test the validity

of input data. Developers of graphical user interfaces for the entry of clinical data can use the

library to build code that will generate valid phenopackets. Bioinformaticians developing anal-

ysis algorithms for clustering or clinical decision support using data encoded as phenopackets

can use the command line tool or the library to perform various processing steps.

As mentioned in the introduction, the GA4GH Phenopacket Schema does not enforce the

use of any specific ontology or terminology. Nevertheless, it will promote interoperability if

users of the schema employ the same ontologies wherever possible. Therefore, phenopacket-

tools provides constants that represent ontology terms for commonly used concepts (Table 1).

We prefer open-source ontologies such as those from OBO Foundry wherever possible. How-

ever, users are free to use other ontologies or terminologies such as SNOMED CT if these bet-

ter fit with their analysis goals.

The GA4GH Phenopacket Schema places only a few constraints on the schema elements to

facilitate wide adoption in a variety of settings. Consequently, the broadest validation scope

that is applicable to all phenopackets is limited to checking the syntax and cardinality of the

schema elements, and to ensuring that all ontology concepts can be traced to a specific ontol-

ogy version. For specific projects, users can design additional constraints to meet the project

requirements. Phenopacket-tools provides off-the-shelf validators for performing basic syntax

and cardinality checks, including user-specific requirements encoded in JSON schema docu-

ments, and sets up the validation framework for building project-specific validators. The

library provides an example by implementing validators for checking logical consistency of

clinical phenotype data encoded using Human Phenotype Ontology, designed for phenotype-

driven diagnostics of Mendelian diseases. The validation framework is open to future improve-

ments. Possible non-trivial extensions include validation of ontology concepts across all phe-

nopacket elements such as medical actions and diagnoses, validation of the longitudinal aspect

of the phenotypic annotations, and validation of variation descriptors.

Conclusion

The GA4GH Phenopacket Schema is designed to support comprehensive and accurate

computational analysis of clinical data for research and ultimately clinical decision support.

Ontologies are systematic formal representations of knowledge that can be used to integrate

and analyze large amounts of heterogeneous data by defining entities and concepts such as

genetic variation, clinical findings, and diseases as well as the relationships between these con-

cepts in a way that allows computational logical reasoning [3]. Ontology-driven algorithms

have been transformative for rare disease diagnosis [37, 43]. While existing algorithms have

leveraged unordered sets of HPO terms to support diagnostics in rare disease, the GA4GH

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 16 / 19

https://doi.org/10.1371/journal.pone.0285433


Phenopacket Schema offers the ability to go beyond this by integrating information about the

time course of disease manifestations, treatments and other clinical management, quantitative

measures, and multimorbidity. We anticipate that phenopacket-tools will help users to lever-

age the full advantages of this new schema.

Author Contributions

Conceptualization: Daniel Danis, Christopher J. Mungall, Melissa A. Haendel, Peter N.

Robinson.

Data curation: Leigh C. Carmody, Markus S. Ladewig, Berthold Seitz.

Formal analysis: Daniel Danis.

Funding acquisition: Peter N. Robinson.

Investigation: Daniel Danis, Julius O. B. Jacobsen, Jordi Rambla, Michael Baudis.

Methodology: Daniel Danis, Julius O. B. Jacobsen, Alex H. Wagner, Peter N. Robinson.

Project administration: Monica Munoz-Torres, Nomi L. Harris.

Software: Daniel Danis, Julius O. B. Jacobsen, Alex H. Wagner, Tudor Groza, Martha A.

Beckwith, Lauren Rekerle, Justin Reese, Harshad Hegde, Markus S. Ladewig, Peter N.

Robinson.

Writing – original draft: Daniel Danis, Peter N. Robinson.

Writing – review & editing: Daniel Danis, Alex H. Wagner, Nomi L. Harris, Jordi Rambla,

Michael Baudis, Christopher J. Mungall, Melissa A. Haendel, Peter N. Robinson.

References

1. Rehm HL, Page AJH, Smith L, Adams JB, Alterovitz G, Babb LJ, et al. GA4GH: International policies

and standards for data sharing across genomic research and healthcare. Cell Genom. 2021;1. https://

doi.org/10.1016/j.xgen.2021.100029 PMID: 35072136

2. Jacobsen JOB, Baudis M, Baynam GS, Beckmann JS, Beltran S, Buske OJ, et al. The GA4GH Pheno-

packet schema defines a computable representation of clinical data. Nat Biotechnol. 2022; 40: 817–

820. https://doi.org/10.1038/s41587-022-01357-4 PMID: 35705716

3. Haendel MA, Chute CG, Robinson PN. Classification, Ontology, and Precision Medicine. N Engl J Med.

2018; 379: 1452–1462. https://doi.org/10.1056/NEJMra1615014 PMID: 30304648

4. den Dunnen JT. Describing Sequence Variants Using HGVS Nomenclature. Methods Mol Biol. 2017;

1492: 243–251. https://doi.org/10.1007/978-1-4939-6442-0_17 PMID: 27822869

5. Bender D, Sartipi K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange.

Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems.

2013. pp. 326–331.

6. Voss EA, Makadia R, Matcho A, Ma Q, Knoll C, Schuemie M, et al. Feasibility and utility of applications

of the common data model to multiple, disparate observational health databases. J Am Med Inform

Assoc. 2015; 22: 553–564. https://doi.org/10.1093/jamia/ocu023 PMID: 25670757

7. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, et al. International Cancer Genome Consor-

tium Data Portal—a one-stop shop for cancer genomics data. Database. 2011; 2011: bar026. https://

doi.org/10.1093/database/bar026 PMID: 21930502

8. Haendel MA, McMurry JA, Relevo R, Mungall CJ, Robinson PN, Chute CG. A Census of Disease Ontol-

ogies. Annu Rev Biomed Data Sci. 2018; 1: 305–331.

9. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding

Principles for scientific data management and stewardship. Sci Data. 2016; 3: 160018. https://doi.org/

10.1038/sdata.2016.18 PMID: 26978244

10. Wilson SL, Way GP, Bittremieux W, Armache J-P, Haendel MA, Hoffman MM. Sharing biological data:

why, when, and how. FEBS Lett. 2021; 595: 847–863. https://doi.org/10.1002/1873-3468.14067 PMID:

33843054

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 17 / 19

https://doi.org/10.1016/j.xgen.2021.100029
https://doi.org/10.1016/j.xgen.2021.100029
http://www.ncbi.nlm.nih.gov/pubmed/35072136
https://doi.org/10.1038/s41587-022-01357-4
http://www.ncbi.nlm.nih.gov/pubmed/35705716
https://doi.org/10.1056/NEJMra1615014
http://www.ncbi.nlm.nih.gov/pubmed/30304648
https://doi.org/10.1007/978-1-4939-6442-0%5F17
http://www.ncbi.nlm.nih.gov/pubmed/27822869
https://doi.org/10.1093/jamia/ocu023
http://www.ncbi.nlm.nih.gov/pubmed/25670757
https://doi.org/10.1093/database/bar026
https://doi.org/10.1093/database/bar026
http://www.ncbi.nlm.nih.gov/pubmed/21930502
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1002/1873-3468.14067
http://www.ncbi.nlm.nih.gov/pubmed/33843054
https://doi.org/10.1371/journal.pone.0285433


11. Haendel M, Su A, McMurry J, Chute CG, Mungall C, Good B, et al. Metrics to assess value of biomedi-

cal digital repositories: response to RFI NOT-OD-16-133. Geneva: Zenodo. 2016.

12. Rubinstein YR, Robinson PN, Gahl WA, Avillach P, Baynam G, Cederroth H, et al. The case for open

science: rare diseases. Jamia Open. [cited 16 Sep 2020]. https://doi.org/10.1093/jamiaopen/ooaa030

13. Huang B, Tang Y. Research on optimization of real-time efficient storage algorithm in data information

serialization. PLoS One. 2021; 16: e0260697. https://doi.org/10.1371/journal.pone.0260697 PMID:

34914712

14. Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, et al. BioPortal: enhanced func-

tionality via new Web services from the National Center for Biomedical Ontology to access and use

ontologies in software applications. Nucleic Acids Res. 2011; 39: W541–5. https://doi.org/10.1093/nar/

gkr469 PMID: 21672956

15. Nadendla S, Jackson R, Munro J, Quaglia F, Mészáros B, Olley D, et al. ECO: the Evidence and Con-

clusion Ontology, an update for 2022. Nucleic Acids Res. 2022; 50: D1515–D1521. https://doi.org/10.

1093/nar/gkab1025 PMID: 34986598

16. Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu W-L, Wright LW. NCI Thesaurus: a semantic

model integrating cancer-related clinical and molecular information. J Biomed Inform. 2007; 40: 30–43.

https://doi.org/10.1016/j.jbi.2006.02.013 PMID: 16697710

17. Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human Phenotype Ontology: a

tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008; 83: 610–615.

https://doi.org/10.1016/j.ajhg.2008.09.017 PMID: 18950739

18. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The Human

Phenotype Ontology in 2021. Nucleic Acids Res. 2021; 49: D1207–D1217. https://doi.org/10.1093/nar/

gkaa1043 PMID: 33264411

19. 100,000 Genomes Project Pilot Investigators, Smedley D, Smith KR, Martin A, Thomas EA, McDonagh

EM, et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report. N

Engl J Med. 2021; 385: 1868–1880. https://doi.org/10.1056/NEJMoa2035790 PMID: 34758253

20. Drenkhahn C, Ingenerf J. The LOINC Content Model and Its Limitations of Usage in the Laboratory

Domain. Stud Health Technol Inform. 2020; 270: 437–442. https://doi.org/10.3233/SHTI200198 PMID:

32570422

21. Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA. Uberon, an integrative multi-species anat-

omy ontology. Genome Biol. 2012; 13: R5. https://doi.org/10.1186/gb-2012-13-1-r5 PMID: 22293552

22. Huang Q, Carrio-Cordo P, Gao B, Paloots R, Baudis M. The Progenetix oncogenomic resource in 2021.

Database. 2021; 2021. https://doi.org/10.1093/database/baab043 PMID: 34272855

23. Ladewig MS, Jacobsen JOB, Wagner AH, Danis D, El Kassaby B, Gargano M, et al. GA4GH pheno-

packets: A practical introduction. Advanced Genetics. 2022; 2200016. https://doi.org/10.1002/ggn2.

202200016 PMID: 36910590

24. Shefchek KA, Harris NL, Gargano M, Matentzoglu N, Unni D, Brush M, et al. The Monarch Initiative in

2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

Nucleic Acids Res. 2020; 48: D704–D715. https://doi.org/10.1093/nar/gkz997 PMID: 31701156

25. Côté R, Reisinger F, Martens L, Barsnes H, Vizcaino JA, Hermjakob H. The Ontology Lookup Service:

bigger and better. Nucleic Acids Res. 2010; 38: W155–60. https://doi.org/10.1093/nar/gkq331 PMID:

20460452

26. Ong E, Xiang Z, Zhao B, Liu Y, Lin Y, Zheng J, et al. Ontobee: A linked ontology data server to support

ontology term dereferencing, linkage, query and integration. Nucleic Acids Res. 2017; 45: D347–D352.

https://doi.org/10.1093/nar/gkw918 PMID: 27733503

27. Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore R. Normalized names for clinical drugs: RxNorm at 6

years. J Am Med Inform Assoc. 2011; 18: 441–448. https://doi.org/10.1136/amiajnl-2011-000116

PMID: 21515544

28. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to

the DrugBank database for 2018. Nucleic Acids Res. 2018; 46: D1074–D1082. https://doi.org/10.1093/

nar/gkx1037 PMID: 29126136

29. Avram S, Bologa CG, Holmes J, Bocci G, Wilson TB, Nguyen D-T, et al. DrugCentral 2021 supports

drug discovery and repositioning. Nucleic Acids Res. 2021; 49: D1160–D1169. https://doi.org/10.1093/

nar/gkaa997 PMID: 33151287

30. Ursu O, Holmes J, Bologa CG, Yang JJ, Mathias SL, Stathias V, et al. DrugCentral 2018: an update.

Nucleic Acids Res. 2019; 47: D963–D970. https://doi.org/10.1093/nar/gky963 PMID: 30371892

31. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al. ChEBI in 2016: Improved ser-

vices and an expanding collection of metabolites. Nucleic Acids Res. 2016; 44: D1214–9. https://doi.

org/10.1093/nar/gkv1031 PMID: 26467479

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 18 / 19

https://doi.org/10.1093/jamiaopen/ooaa030
https://doi.org/10.1371/journal.pone.0260697
http://www.ncbi.nlm.nih.gov/pubmed/34914712
https://doi.org/10.1093/nar/gkr469
https://doi.org/10.1093/nar/gkr469
http://www.ncbi.nlm.nih.gov/pubmed/21672956
https://doi.org/10.1093/nar/gkab1025
https://doi.org/10.1093/nar/gkab1025
http://www.ncbi.nlm.nih.gov/pubmed/34986598
https://doi.org/10.1016/j.jbi.2006.02.013
http://www.ncbi.nlm.nih.gov/pubmed/16697710
https://doi.org/10.1016/j.ajhg.2008.09.017
http://www.ncbi.nlm.nih.gov/pubmed/18950739
https://doi.org/10.1093/nar/gkaa1043
https://doi.org/10.1093/nar/gkaa1043
http://www.ncbi.nlm.nih.gov/pubmed/33264411
https://doi.org/10.1056/NEJMoa2035790
http://www.ncbi.nlm.nih.gov/pubmed/34758253
https://doi.org/10.3233/SHTI200198
http://www.ncbi.nlm.nih.gov/pubmed/32570422
https://doi.org/10.1186/gb-2012-13-1-r5
http://www.ncbi.nlm.nih.gov/pubmed/22293552
https://doi.org/10.1093/database/baab043
http://www.ncbi.nlm.nih.gov/pubmed/34272855
https://doi.org/10.1002/ggn2.202200016
https://doi.org/10.1002/ggn2.202200016
http://www.ncbi.nlm.nih.gov/pubmed/36910590
https://doi.org/10.1093/nar/gkz997
http://www.ncbi.nlm.nih.gov/pubmed/31701156
https://doi.org/10.1093/nar/gkq331
http://www.ncbi.nlm.nih.gov/pubmed/20460452
https://doi.org/10.1093/nar/gkw918
http://www.ncbi.nlm.nih.gov/pubmed/27733503
https://doi.org/10.1136/amiajnl-2011-000116
http://www.ncbi.nlm.nih.gov/pubmed/21515544
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
http://www.ncbi.nlm.nih.gov/pubmed/29126136
https://doi.org/10.1093/nar/gkaa997
https://doi.org/10.1093/nar/gkaa997
http://www.ncbi.nlm.nih.gov/pubmed/33151287
https://doi.org/10.1093/nar/gky963
http://www.ncbi.nlm.nih.gov/pubmed/30371892
https://doi.org/10.1093/nar/gkv1031
https://doi.org/10.1093/nar/gkv1031
http://www.ncbi.nlm.nih.gov/pubmed/26467479
https://doi.org/10.1371/journal.pone.0285433


32. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBL database in

2017. Nucleic Acids Res. 2017; 45: D945–D954. https://doi.org/10.1093/nar/gkw1074 PMID: 27899562

33. He Y, Sarntivijai S, Lin Y, Xiang Z, Guo A, Zhang S, et al. OAE: The Ontology of Adverse Events. J

Biomed Semantics. 2014; 5: 29. https://doi.org/10.1186/2041-1480-5-29 PMID: 25093068

34. Preston-Werner T. [No title]. [cited 30 Sep 2022]. Available: https://semver.org/

35. ISO 4454:2022. In: ISO [Internet]. 2022 [cited 13 Oct 2022]. Available: https://www.iso.org/standard/

79991.html

36. Robinson PN, Ravanmehr V, Jacobsen JOB, Danis D, Zhang XA, Carmody LC, et al. Interpretable Clin-

ical Genomics with a Likelihood Ratio Paradigm. Am J Hum Genet. 2020; 107: 403–417. https://doi.org/

10.1016/j.ajhg.2020.06.021 PMID: 32755546

37. Smedley D, Jacobsen JOB, Jäger M, Köhler S, Holtgrewe M, Schubach M, et al. Next-generation diag-

nostics and disease-gene discovery with the Exomiser. Nat Protoc. 2015; 10: 2004–2015. https://doi.

org/10.1038/nprot.2015.124 PMID: 26562621

38. Vorisek CN, Lehne M, Klopfenstein SAI, Mayer PJ, Bartschke A, Haese T, et al. Fast Healthcare Inter-

operability Resources (FHIR) for Interoperability in Health Research: Systematic Review. JMIR Med

Inform. 2022; 10: e35724. https://doi.org/10.2196/35724 PMID: 35852842

39. GA4GH Phenopacket Schema FHIR core-ig. Github; Available: https://github.com/phenopackets/core-ig

40. Bönisch C, Kesztyüs D, Kesztyüs T. Harvesting metadata in clinical care: a crosswalk between FHIR,

OMOP, CDISC and openEHR metadata. Sci Data. 2022; 9: 659. https://doi.org/10.1038/s41597-022-

01792-7 PMID: 36307424

41. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for

active safety surveillance research. J Am Med Inform Assoc. 2012; 19: 54–60. https://doi.org/10.1136/

amiajnl-2011-000376 PMID: 22037893

42. Núria Queralt-Rosinach, Pablo Alarcón, Tiffany Callahan, GiovanniDelussu, Charlotte Fraboulet,

Romain Goussault, et al. Mapping OHDSI OMOP Common Data Model and GA4GH Phenopackets for

COVID-19 disease epidemics and analytics. [cited 5 Apr 2023]. Available: https://biohackrxiv.org/

ep3xh/

43. Smedley D, Schubach M, Jacobsen JOB, Köhler S, Zemojtel T, Spielmann M, et al. A Whole-Genome

Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Dis-

ease. Am J Hum Genet. 2016; 99: 595–606. https://doi.org/10.1016/j.ajhg.2016.07.005 PMID:

27569544

PLOS ONE Phenopacket-tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0285433 May 17, 2023 19 / 19

https://doi.org/10.1093/nar/gkw1074
http://www.ncbi.nlm.nih.gov/pubmed/27899562
https://doi.org/10.1186/2041-1480-5-29
http://www.ncbi.nlm.nih.gov/pubmed/25093068
https://semver.org/
https://www.iso.org/standard/79991.html
https://www.iso.org/standard/79991.html
https://doi.org/10.1016/j.ajhg.2020.06.021
https://doi.org/10.1016/j.ajhg.2020.06.021
http://www.ncbi.nlm.nih.gov/pubmed/32755546
https://doi.org/10.1038/nprot.2015.124
https://doi.org/10.1038/nprot.2015.124
http://www.ncbi.nlm.nih.gov/pubmed/26562621
https://doi.org/10.2196/35724
http://www.ncbi.nlm.nih.gov/pubmed/35852842
https://github.com/phenopackets/core-ig
https://doi.org/10.1038/s41597-022-01792-7
https://doi.org/10.1038/s41597-022-01792-7
http://www.ncbi.nlm.nih.gov/pubmed/36307424
https://doi.org/10.1136/amiajnl-2011-000376
https://doi.org/10.1136/amiajnl-2011-000376
http://www.ncbi.nlm.nih.gov/pubmed/22037893
https://biohackrxiv.org/ep3xh/
https://biohackrxiv.org/ep3xh/
https://doi.org/10.1016/j.ajhg.2016.07.005
http://www.ncbi.nlm.nih.gov/pubmed/27569544
https://doi.org/10.1371/journal.pone.0285433

	Phenopacket-tools: Building and validating GA4GH Phenopackets.
	Authors

	Phenopacket-tools: Building and validating GA4GH Phenopackets

