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Abstract

Mediation analysis is used in genetic mapping studies to identify candidate gene mediators of quantitative trait loci (QTL). We consider 
genetic mediation analysis of triplets—sets of three variables consisting of a target trait, the genotype at a QTL for the target trait, and a 
candidate mediator that is the abundance of a transcript or protein whose coding gene co-locates with the QTL. We show that, in the 
presence of measurement error, mediation analysis can infer partial mediation even in the absence of a causal relationship between 
the candidate mediator and the target. We describe a measurement error model and a corresponding latent variable model with estim
able parameters that are combinations of the causal effects and measurement errors across all three variables. The relative magnitudes of 
the latent variable correlations determine whether or not mediation analysis will tend to infer the correct causal relationship in large sam
ples. We examine case studies that illustrate the common failure modes of genetic mediation analysis and demonstrate how to evaluate 
the effects of measurement error. While genetic mediation analysis is a powerful tool for identifying candidate genes, we recommend 
caution when interpreting mediation analysis findings.
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Introduction
Mediation analysis is a class of statistical methods used to deter
mine whether the effect of an exogenous variable (X) on a target 
(Y) may be wholly, partially, or not transmitted through a medi
ator (M) (Fig. 1). We want to determine which of the causal effects, 
represented by edges in the graph, are present or absent. For ex
ample, if the effect of X on Y is wholly mediated through M, the 

edge labeled c is absent, indicating that there is no direct causal 
effect of X on Y. Mediation inference relies on propagation of vari
ation between causally linked variables that produces character
istic patterns of correlation in data. However, in addition to causal 
variation, data often include a measurement error component 
that does not propagate. In many applications of mediation ana
lysis, measurement error is not accounted for and the resulting 
model mis-specification can potentially bias mediation inference 
(Richmond et al. 2016).

Commonly used methods for mediation inference such as cau
sal steps (Baron and Kenny 1986) and the Sobel test (Sobel 1982) 
seek to establish the presence of an indirect effect of X on Y 
through M, i.e. edges labeled a and b are both present. Here, we ap
ply a more general Bayesian model selection approach to infer the 
most likely causal structure relating X, M, and Y (Crouse et al. 
2022). Importantly, our findings are not dependent on the infer
ence method as they follow from properties of the underlying 
model. Bayesian model selection is likelihood-based; it performs 
as well or better than other inference methods. Unlike the 
Sobel test, Bayesian model selection distinguishes complete 

from partial mediation. However, as with other commonly used 
mediation analysis methods, it does not account for measure
ment error.

Previous studies of the impact of measurement error on medi
ation analysis have demonstrated bias in estimation of the direct 
effect (the effect of X on Y independent from M) (le Cessie et al. 
2012). In addition, measurement error in M results in underesti
mation of the indirect effect (the effect of X on Y through M), 
and loss of conditional independence between X and Y, even 
when the effect of X on Y is fully mediated through M (Rockman 
2008; Ledgerwood and Shrout 2011; VanderWeele et al. 2012; 
Pierce et al. 2014; Otter et al. 2018). These impacts are similar to 
those that arise with unmodeled confounders (Fritz et al. 2016; 
Liu and Wang 2021) and other generalizations of the three- 
variable mediation model (Cole and Preacher 2014). It is known 
that unaccounted measurement error can lead to inference of 
partial mediation even when there is no direct effect on Y through 
M (Pierce et al. 2014; Otter et al. 2018; Gonzalez and MacKinnon 
2021), a point we emphasize here.

Our aim in this work is to assess the impact of measurement er
ror on mediation analysis in genetic mapping studies where X is 
the genotype at a quantitative trait locus (QTL) associated 
with a target phenotype Y, and the candidate mediator M is the ex
pression level of a transcript or protein product of a gene that co- 
localizes with the QTL, i.e. a local gene expression or protein QTL 
(eQTL or pQTL). Genetic mediation analysis was introduced by 
Schadt et al. (2005) and has been widely adopted in various forms 
in model organism genetic mapping studies (e.g. Keller et al. 2018). 
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More recently, it has been applied in transcript-wide association 
studies (TWAS) (Li and Ritchie 2021) to identify gene expression 
mediators of clinical traits in humans. We caution that co- 
localization of the target trait QTL and the candidate mediator is 
not sufficient to establish a causal relationship because an associ
ation between M and Y could result from linked genetic variants 
with unrelated causal effects; it could be induced by an unob
served confounder of M and Y, a problem that Mendelian random
ization (MR) is designed to address (Katan 1986; Didelez and 
Sheehan 2007); or, as we demonstrate here, it could be an artifact 
due to measurement error.

Methods
Mediation analysis with Bayesian model selection
We used Bayesian model selection implemented in the bmediatR 
R package (Crouse et al. 2022) to obtain the posterior probability for 
the standard mediation model (no measurement error) using ei
ther the three-choice or expanded model options. We ran 
bmediatR with default priors for the effect sizes, and a uniform 
prior over models. Data were classified according to the model 
with the greatest posterior probability. With the three-choice 
model options, the posterior probability was calculated for only 
the Causal, Independent, and Reactive models. For the expanded 
model options, the posterior probability was calculated for all 
models excluding models with an edge Y→ M that are likelihood 
equivalent to models with M→ Y. If the greatest posterior prob
ability was not assigned to one of the Causal, Reactive, 
Independent, or Complex models, the data were classified as 
nonmediation.

Simulations
We simulated data from the measurement error model with a 
gaussian exogenous variable. For each of the Causal, 
Independent, and Reactive models, 100,000 configurations were 
constructed by randomly sampling two causal and three error 
correlations from a beta distribution: ρ ∼ Beta(5, 1.25). We chose 
this as a realistic distribution for causal and error correlations 
with mean 0.8 and 95% highest density interval between 0.5 and 
1, allowing for weak correlations but placing greater density on 
moderate to strong correlations. We compared the distributions 
of data correlations to those observed between QTL, transcript, 
and protein profiling data from liver tissue of Diversity Outbred 
(DO) mice to confirm biological plausibility (Chick et al. 2016). 
Then X∗ was sampled from a standard normal distribution and 
M∗ and Y∗ were simulated according to the causal correlations 
using the method described in (Crouse et al. 2022) with the effect 
size calculated as ρ2. We used the same method to simulate X, 
M, and Y from their causal counterparts with the desired error 
correlation.

QTL mapping analysis
QTL mapping and allele effect estimation in mouse data were 
done using the qtl2 R package (Broman et al. 2019), which fits a 

linear mixed effect model that accounts for population structure 
encoded in a genetic relationship matrix, i.e. kinship matrix (Kang 
et al. 2010). Allele effects were estimated as best linear unbiased 
predictors (BLUPs) to stabilize estimates. Sex, diet, and litter 
were used as covariates in the DO liver data; sex was used as a cov
ariate in the DO kidney data; and sex was used as a covariate in the 
CC liver data. QTL in the LCL data were identified by calculating 
the − log10 (p − value) from regressing chromatin data or gene ex
pression onto the genotype of each SNP compared to a null model 
with no genotype term.

Using bootstrap sampling to compare real data to 
simulated data
To identify measurement error model parameters that are con
sistent with the observed data, we sampled the data with replace
ment 10,000 times using the boot R package (Davison and Hinkley 
1997; Canty and Ripley 2021). We then generated an empirical dis
tribution for the data correlations by estimating the correlation 
matrix for each sampled data set. If X was multivariate we used 
canonical correlation to estimate ρXM and ρXY. Then, we filtered 
the previously described measurement error model configura
tions used in data simulations to those that produced data corre
lations jointly within the range of the empirical distribution and 
examined the resultant distributions of model parameters (see 
the Appendix).

Results
Bayesian model selection
Our objective is to determine the structure of the causal rela
tionships among X, M, and Y. Specifically, we want to determine 
if one or more of the edges in Fig. 1 is absent. We adopt termin
ology from genetic mediation analysis (Schadt et al. 2005; Neto 
et al. 2013) and refer to the causal structures of interest as 
Causal (c = 0), Independent (b = 0), Reactive (a = 0), and 
Complex (all effects are nonzero). In addition, there are causal 
structures for which the three variables are not fully connected 
that we refer to as nonmediation models. Under the Causal 
model, also known as complete mediation, the effects of X on 
Y are completely mediated through M. Under the Independent 
model, X has direct but independent effects on each of M and 
Y. Under the Reactive model, the roles of the mediator and tar
get variables are reversed such that M is responding to variation 
in Y. Finally, under the Complex model, also known as partial 
mediation, X affects Y directly and indirectly through M. We 
note that there are challenges in distinguishing the directional
ity of the relationship between M and Y (Wiedermann and von 
Eye 2015). In some cases, the context will determine if causation 
from Y to M is possible.

Bayesian model selection as implemented in the bmediatR 
software (Crouse et al. 2022) provides a likelihood-based decision 
rule that selects the model with the highest posterior probability 
among a predefined set of models. It does not rely on hypothesis 
testing and thus avoids the difficulties inherent in establishing a 
null hypothesis, i.e. an effect size of zero. We applied bmediatR 
with a uniform prior across the set of models and weakly inform
ative priors on the effect sizes. We either restrict model selection 
to choose among the Causal, Independent, and Reactive models or 
we consider an expanded set of models that includes Complex 
and other nonmediation alternatives. As noted above, the model 
likelihood implemented in bmediatR does not account for meas
urement error.

Fig. 1. A simple mediation model. X effects Y directly (c) and indirectly 
through M (ab).
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Measurement error models
To incorporate measurement error, we introduce the error-free 
values of the causal variables, denoted as X∗, Y∗, and M∗. The causal 
variables are not directly observed. Instead, we observe their sur
rogates, the measured variables X, Y, and M. We define the measure
ment error model in terms of correlation parameters (Fig. 2a; 
Appendix). The causal correlations (ρX∗M∗ , ρX∗Y∗ , and ρY∗M∗ ) determine 
the relationship among the causal variables, which we refer to as 
the causal structure of the measurement error model. The error cor
relations (ρX∗X, ρY∗Y, and ρM∗M) determine the level of measurement 
error between each causal variable and its measured counterpart. 
The use of error correlations, which are equivalent to but inversely 
related to the more conventional error variances, simplifies our 
specification of the measurement error model. We assume that 
measurement error is independent for each pair of variables and 
that there are no hidden confounders. While these are strong as
sumptions, incorporating these features into our model would 
only further obstruct our ability to infer the correct causal 
structure.

We define the data correlations (ρXY, ρXM, and ρY∗M) to be the ex
pected correlations among the measured variables. They can be 
expressed in terms of the causal and error correlations:

ρXY = ρX∗X · ρX∗Y∗ · ρY∗Y

ρXM = ρX∗X · ρX∗M∗ · ρM∗M

ρYM = ρY∗Y · ρY∗M∗ · ρM∗M.

(1) 

The data correlations are always weaker than their corresponding 
causal correlations, more so when there is more measurement er
ror. The three data correlations can be estimated from observed 
data, but we cannot estimate the causal and error correlations 
without additional information or constraints (see the Appendix).

The Causal, Independent, and Reactive structures (Fig. 2b–e) 
impose constraints on the causal correlations. It is convenient 
here to introduce the term middle variable. For the Causal model, 
the middle variable is M, for the Independent model, it is X, and 
for the Reactive model, it is Y. In each case, the two nonmiddle 
variables are not directly connected by an edge. The causal correl
ation between the two nonmiddle variables is constrained to 
equal the product of the other two causal correlations. 
Equivalently, their partial correlation after conditioning on the 
middle variable is equal to zero. For the Complex model, the cau
sal correlations are not constrained, aside from the requirement 
that the correlation matrix is positive semidefinite.

Consider the Causal measurement error model with para
meters as specified in Fig. 2j. The causal correlations satisfy the 
constraint ρX∗Y∗ = ρX∗M∗ · ρY∗M∗ or equivalently, ρX∗Y∗|M∗ = 0. 
However, the data correlations do not satisfy these constraints; 
even a small amount of measurement error can result in data cor
relations that differ substantially from the causal correlations. 
The key contributor to this discrepancy is the error correlation 
of the middle variable, in this example ρM∗M. The data correlations 
will satisfy the same constraints as the causal correlations if and 
only if there is no measurement error in the middle variable (see 
the Appendix). In the presence of measurement error on the mid
dle variable, the data correlations will be unconstrained as they 
are for the Complex model without measurement error.

In summary, data correlations among measured variables X, M, 
and Y need not satisfy the constraints implied by the causal struc
ture. Indeed, all forms of the measurement error model (Causal, 
Reactive, Independent, and Complex) are likelihood equivalent 
to the Complex model without measurement error (see the 

Appendix). This presents a dilemma for determining the causal 
structure from real data. Of course, estimated data correlations 
will never exactly satisfy these constraints and statistical infer
ence is needed to determine if the observed data are consistent 
with an assumed model. Before we turn to the question of 
whether and when it is possible to recover the correct causal 
structure from observed data in the presence of measurement er
ror, we introduce a simplified form of the measurement error 
model.

The latent variable model
The Causal, Independent, and Reactive measurement error mod
els have five free parameters (six parameters with one constraint) 
and three observable outcomes. We can transform each of these 
models to an equivalent latent variable model with three free 
parameters. In the latent variable model, the causal variables 
X∗, M∗, and Y∗ are replaced by a single latent variable, U (Fig. 2f). 
The latent correlations (ρXU, ρYU, and ρMU) determine the relationship 
between U and each of the measured variables, and the data cor
relations can be expressed in terms of latent correlations:

ρXY = ρXU · ρYU

ρXM = ρXU · ρMU

ρYM = ρYU · ρMU.

(2) 

We can also express the latent correlations in terms of the causal 
and error correlations (Table 1, Fig. 2g–i). The expressions depend 
on which causal structure is assumed. For the nonmiddle vari
ables, the latent correlations are the product of a causal correl
ation and an error correlation, and for the middle variable, the 
latent correlation is equal to its error correlation. The latent vari
able model parameters are estimable from data (see the 
Appendix). Knowing which (products of) parameters can be esti
mated for a given causal structure, will be helpful when diagnos
ing the impacts of measurement error.

Simulations
The parameters of the measurement error model, denoted as ρ, 
can be thought of as correlations estimated from infinitely large 
data. We now consider what happens when model structure is in
ferred from correlations estimated from data from finite samples, 
denoted as r.

We simulated data from the measurement error model and 
then analyzed the data assuming no measurement error. 
Specifically, we simulated X∗ from a standard normal distribution 
and then simulated M∗, Y∗, X, M, and Y according to linear models 
with the desired causal or error correlations (Crouse et al. 2022) 
(see Methods). The sample size for simulated data ranged from 
N = 200 to N = 5, 000. We simulated 100,000 data sets for each of 
the Causal, Independent, and Reactive measurement error mod
els. Model parameters (causal and error correlations) were 
sampled independently from beta distributions to obtain data cor
relations similar to those that arise in practice. We used bmediatR 
(Crouse et al. 2022) to select the model with the greatest posterior 
probability for each simulated data set. We first restricted the 
model selection to choose among only the Causal, Independent, 
or Reactive models (Schadt et al. 2005; Neto et al. 2013) (three-choice 
model options). We then repeated the model selection including the 
Complex model and nonmediation models (expanded model 
options).

Our rationale for examining three-choice model selection is 
partly motivated by previous approaches to genetic mediation 
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analysis (Schadt et al. 2005). In addition, recognizing that the 

measurement error model is equivalent to partial mediation 

(Complex model), we expect that Bayesian model selection in 

large samples will infer the Complex model regardless of the 

underlying causal structure. In the simulations and data exam

ples presented below we apply both options.

Three-choice model selection
The estimated data correlations obtained from simulations of the 
Causal, Independent, and Reactive measurement error models 
have overlapping ranges, i.e. a large proportion of the estimated 
data correlations could have been obtained from any of the three 
causal structures (Fig. 3). This immediately suggests that it will be 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 2. Directed acyclic graphs (DAGs) of measurement error models and their corresponding latent variable models. a) The measurement error model 
describes the relationships among causal variables in terms of their causal correlations (dotted lines) and between each causal variable and its 
corresponding measured variable in terms of error correlations (solid lines). Variables in circles are unobserved and those in boxes are measured. b–e) 
DAGs for the Causal, Independent, Reactive, and Complex measurement error models. f) The structure of the latent variable model where U is a single 
unobserved (latent) variable. g–i) The latent correlations are determined by the causal correlations (dotted edges) and error correlations (solid edges) in 
different combinations for the Causal, Independent, and Reactive models, respectively. j) An example of the Causal measurement error model for the 
Causal model. Causal (partial) correlations, error correlations, and data (partial) correlations are labeled along their corresponding edges. Dotted lines 
denote correlations between variables that do not share a direct edge in the measurement error model.
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difficult to distinguish among these models. Overall, we correctly 
classified the causal structure for ∼ 62% of simulated data sets 
with N = 200 (Table 2). The rate of correct classification across 
all parameter configurations increased with increasing sample 
size, but never exceeded 65% for sample sizes up to N = 5, 000 
(Supplementary Fig. S1).

Bayesian three-choice model selection always selected the 
model that has no direct effect between the two causal variables 
whose estimated data correlation is the weakest (see shading in 
Fig. 3). For example, if the correlation between X and Y is less (in 
magnitude) than the other two data correlations, the Causal mod
el will be selected. This simple inference rule for three-choice 
model selection is useful but it only holds for univariate X, M, 
and Y.

Expanded model selection
When we expanded the model selection options to include the 
Complex and nonmediation models, we saw a decrease in the 
overall rate of correct classification (41% when N = 200) but an 
even greater proportional decrease in the rate of incorrect classi
fication as one of the constrained models (9% when N = 200, 
Table 2). When N = 200, the Complex model was selected almost 
as frequently as the correct causal structure and for larger sample 
sizes, the rate of selecting the Complex model increased, e.g. up to 
88% when N = 5, 000 (Supplementary Figs. S1 and S2).

When using the expanded model selection options, the simple 
inference rule (shading) in Fig. 4 no longer applied, but there were 
some regularities. The Complex model was selected when all 
three data correlations were similar in magnitude. A nonmedia
tion model was selected when at least two of the data correlations 
were sufficiently weak. However, if one of the three constrained 
models was selected, it conforms with the inference rule from 
three-choice model selection.

Latent correlations determine the consistency of mediation 
analysis
The asympototic behavior of three-choice model selection is de
termined by the latent correlations (Table 1). For example, if ρMU 

is the strongest latent correlation, then ρXY will be the weakest 

Table 1. Latent correlations for each model.

Latent correlation

Causal structure ρMU ρXU ρYU

Causal ρM∗M ρX∗X · ρX∗M∗ ρY∗Y · ρY∗M∗

Independent ρM∗M · ρX∗M∗ ρX∗X ρY∗Y · ρX∗Y∗

Reactive ρM∗M · ρY∗M∗ ρX∗X · ρX∗Y∗ ρY∗Y

Fig. 3. Three-choice model selection outcomes are determined by the estimated data correlations. Each row of panels corresponds to simulations of a 
different causal structure (N = 200). Columns correspond to binned values of rYM. The x- and y-axes show rXM and rXY, respectively. Points representing the 
estimated data correlations are colored to indicate the model with the greatest posterior probability from three-choice model selection. Shaded regions 
indicate the range of data correlations in which each model will be inferred, and the unshaded region delineates where the correlation matrices are not 
positive semidefinite. Table 2 summarizes the model selection outcomes over all simulated parameter settings
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data correlation (Equation 2). As sample size increases, the esti
mated latent correlation rMU will converge towards its true value 
and, applying the simple inference rule, three-choice model selec
tion will tend toward selecting the Causal model. Similarly, when 
ρXU or ρYU are the strongest latent correlations, the Independent 
and Reactive models will be selected more frequently as sample 
size increases, respectively. Thus, it is the relative sizes of the la
tent correlations that determine whether three-choice Bayesian 
model selection will be consistent (tending toward the correct 
causal structure) or inconsistent (tending toward an incorrect 
causal structure). This is confirmed in simulations of the Causal 
model with increasing sample size (Fig. 5a).

The latent correlations also determine the large-sample be
havior of Bayesian model selection with expanded model options 
(Fig. 5b). We found that for simulations of the Causal measure
ment error model, a strong ρMU was required to drive selection 
of the Causal model. The Complex model was frequently se
lected at weaker values of ρMU, regardless of the strength of ρXU 

and ρYU. Even with very small error in the mediator 
(ρM∗M = 0.95), the Causal model was selected for only 25% of 
data sets simulated at N = 5,000. The remaining data sets were 
classified as Complex. Similar results were obtained for the 
Independent and Reactive models. Mediation analysis tends to 
support partial mediation when there is any measurement error 

Table 2. Classification of simulated data across all sampled parameters for three-choice and expanded model selection (N = 200).

Three-choice Expanded

Selected model Causal (%) Independent (%) Reactive (%) Causal (%) Independent (%) Reactive (%)

Causal 62.10 19.17 19.04 40.97 8.83 8.96
Independent 19.03 61.79 18.98 8.73 41.26 9.04
Reactive 18.87 18.98 61.98 8.87 8.95 41.20
Complex 38.63 38.68 37.97
Other 2.80 2.27 2.82

Fig. 4. Expanded model selection outcomes as a function of estimated data correlations. Each row of panels corresponds to simulations of a different 
causal structure (N = 200). Columns correspond to binned values of rYM. The x- and y-axes show rXM and rXY, respectively. Points representing the 
estimated data correlations are colored to indicate the model with the greatest posterior probability from expanded model selection. Shaded regions 
indicate the three-choice model selection inference rule, and the unshaded region delineates where the correlation matrices are not positive 
semidefinite. Table 2 summarizes model selection outcomes over all simulated parameter settings Y and M.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/224/1/iyad045/7080251 by The Jackson Laboratory Library user on 19 July 2023



M. S. Gastonguay et al. | 7

in the middle variable. This should not be not surprising, as all 
forms of the measurement error model are likelihood equivalent 
to the Complex model without measurement error. Thus, selec
tion of the Complex model is expected, but it is not useful for de
termining the causal structure.

Using latent correlations to diagnose the outcome of 
mediation analysis
The latent model determines which incorrect inferences are 
most likely. For data generated from a Causal model, three-choice 
model selection will be consistent if ρMU is the strongest latent cor
relation; it will be inconsistent in the direction of the Reactive 
model if ρYU is the strongest; and it will be inconsistent in the dir
ection of the Independent model if ρXU strongest.

We cannot directly estimate the causal and error correlations, 
but we can place constraints on their values (Fig. 6 and 
Supplementary Figs. S3 and S4). To illustrate, suppose that three- 
choice model selection indicates the Causal model. We can 

evaluate how each of the possible causal structures could have gi
ven rise to this outcome. If the true causal structure is Causal, the 
measurement error model parameters will be consistent with one 
of the DAGs in Fig. 6a. There may be equal error in all three vari
ables; there may be less error in the mediator than the other vari
ables; or there may be more error in the mediator than the other 
variables, but the causal correlations are weak. If the true causal 
structure is Independent, there must be more error in the exogen
ous variable than in the candidate mediator and X∗ should be 
tightly correlated with M∗ (Supplementary Fig. S3b). Lastly, if the 
true causal structure is Reactive, the measurement error for the 
target must be greater than for the mediator and Y∗ is strongly 
correlated with M∗ (Supplementary Fig. S4c). Ironically, weaker 
causal correlations and more measurement error in the nonmid
dle variables can improve our ability to select the correct causal 
structure. A complete enumeration of scenarios that lead to con
sistent or inconsistent inferences using three-choice model selec
tion is provided in Supplementary Table S1.

(a)

(c)

(d)

(b)

Fig. 5. Classification rates as a function of error in M for data simulated from the Causal measurement error model. Classification rates are shown for 
three-choice a) or expanded b) model options. Causal classifications are correct and non-Causal classifications are incorrect. Line color denotes sample 
size used in simulations. Each column shows the percent of data sets classified as the model listed at the top as a function of the latent correlation ρMU. 
Dashed lines in b) mark results when ρMU = 0.95. Both a) and b) are split into two rows showing results for data simulated with a stronger latent correlation 
for X (top row), and data sets with a stronger latent correlation for Y (bottom row). The corresponding latent variable DAGs are displayed in c) and d) 
where shorter edges denote stronger correlations.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/224/1/iyad045/7080251 by The Jackson Laboratory Library user on 19 July 2023

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad045#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad045#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad045#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad045#supplementary-data


8 | GENETICS, 2023, Vol. 224, No. 1

Evaluating mediation analysis with real data
We obtained transcript and protein profiling data from liver tissue 
for 192 Diversity Outbred (DO) mice, including mice of both sexes 
(Chick et al. 2016), and for 116 Collaborative Cross (CC) mice, with 
one female and one male from each of 58 CC strains (Keele et al. 
2021). The DO mice are an outbred stock, of which each mouse 
is a genetically unique individual and predominantly heterozy
gous at loci across the genome (Churchill et al. 2012). The CC 
mice represent a panel of recombinant inbred strains and are 
homozygous across most of their genomes (Collaborative Cross 
Consortium 2012; Srivastava et al. 2017). The DO and CC mice 
are descended from the same eight founder strains and they 
share the same genetic variants. To carry out genetic mediation 
analysis, we represented the genotype of each animal as an 
eight-state vector of haplotype dosages (Gatti et al. 2014), i.e. X is 
a multistate exogenous variable.

For each study, we identified genes with local protein abun
dance QTL (pQTL) and a corresponding local gene expression 
QTL (eQTL). We refer to these as concordant triplets (genotype- 
transcript-protein), and we assume that in most cases the 
transcript will mediate the effect of genetic variation on protein 
abundance (Chick et al. 2016). We found 2023 concordant triplets 
in the DO data, 967 in the CC data, and 582 genes with concordant 
triplets in both studies. For each concordant triplet, we identified 
a transcript from a nearby gene with the strongest co-mapping 
local eQTL within 1Mb of the pQTL. We refer to these as discordant 

triplets and assume that in most cases the genetic regulation of the 
transcript and protein occur independently.

Discordant triplets
Applying three-choice model selection to the discordant triplets, 
we found that 99% were classified as Independent in the CC and 
98% were classified as Independent in the DO (Table 3a). With 
the expanded model options, the Independent model was selected 
for 87% of triplets in both the CC and DO. The Complex model was 
selected for most of the remaining triplets in both studies. The 
high rate of correct classification of the discordant triplets indi
cates that there is little measurement error in the genotypes (mid
dle variable) for both studies.

Concordant triplets
Applying three-choice model selection to concordant triplets, we 
found that only 10% of triplets in the CC study and 32% of triplets 
in the DO study were classified as Causal (Table 3b). The remain
ing triplets were split between the Independent and Reactive mod
els with a larger proportion of Independent classifications. 
Notably, more CC triplets were classified as Reactive compared 
to the DO triplets. With the expanded model options, the Causal 
model was selected for only 5% of CC triplets and 16% of DO tri
plets, and the Complex model was selected for 35% of CC triplets 
and 46% of DO triplets. Partial mediation, in which the QTL has 
direct effects on both the transcript and protein is possible. 
However, we expect that many of the triplets that were classified 
as Complex are due to unmodeled measurement error in the tran
script data.

Allele effects
The 8-state exogenous variable representing the DO genotypes 
provides more information than is available for univariate X (nor
mal or binary). The relationships between the multistate genotype 
and the univariate transcript and protein abundances are defined 
by eight regression coefficients (with mean zero constraint) that 
represent additive allele effects. If the causal structure is 
Independent, we expect the correlation between the two vectors 
of allele effects for M and Y to be randomly distributed, as was 
seen for the discordant triplets (Fig. 7a). If the causal structure is 
Causal or Reactive, we expect the allele effects to be correlated 
as was seen for the concordant triplets (Fig. 7b). However, nearby 
genes may have similar genetic effects that can result in correl
ation between the RNA and protein allele effects as we saw for dis
cordant triplets that were classified as Causal (Fig. 7a). Thus, while 

(a)

(b) (c)

Fig. 6. Latent variable representation of the Causal measurement error 
model. Configurations of the latent variable model representing the 
Causal model that result in a) consistent and b–c) inconsistent inferences. 
Blue edges correspond to the proportion of the latent correlation 
determined by the error correlation and dotted orange edges correspond 
to the proportion determined by the causal correlation. Shorter edges 
represent stronger correlation. a) The correct model is inferred if the 
latent correlation for M is the strongest (the latent variable arm for M is 
the shortest). This can be achieved if there is an equal amount of error in 
all three variables (top right) or if there is less error in M than X and Y 
(middle left). If M is noisier than X and Y, the correct model may still be 
inferred if the causal correlations are weak (middle right). The bottom row 
shows scenarios where X and Y satisfy different configurations. b) The 
Independent model is inferred if the latent correlation for X is the 
strongest. When the causal structure is the Causal model, this will only 
occur if the error correlation for M is weaker than both the error 
correlation and causal correlation contributing to the latent correlation 
for X. The composition of the latent correlation arm for Y does not 
influence the inference. c) Shows the analogous scenario to b) for inferring 
the Reactive model by swapping X and Y.

Table 3. Classification of concordant and discordant triplets 
under three-choice and expanded model options.

Three-choice Expanded

CC Liver DO Liver CC Liver DO Liver

(A) Discordant triplets (%)
Causal 0.72 1.78 0.41 1.38
Independent 99.17 98.22 87.07 87.35
Reactive 0.10 0.00 0.10 0.00
Complex 12.41 11.17
Other 0.00 0.10

(B) Concordant triplets (%)
Causal 10.34 32.13 5.17 15.57
Independent 47.67 38.51 31.54 19.03
Reactive 41.99 29.36 27.61 14.98
Complex 34.64 45.77
Other 1.03 4.65
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inconsistent allele effects can rule out a Causal relationship, con

sistent allele effects between Independent M and Y could be 

coincidental.

Diagnosis of mis-classified concordant triplets
We examined the estimated latent correlations of concordant tri
plets (Fig. 7c). Assuming that the Causal model is true, rMU is an 

(a)

(b)

(c)

(e)

(d)

Fig. 7. Mediation analysis of concordant and discordant triplets. Distribution of the correlation of eQTL and pQTL allele effects for discordant a) and 
concordant b) triplets, stratified by selected model. c) Distribution of the estimated latent correlations in the CC (top) and DO (bottom) concordant 
triplets. d) Results of three-choice Bayesian model selection for concordant triplets in the CC (top) and DO (bottom). Circles represent posterior probability 
for the Causal model as a function of the estimated latent correlation rMU, colored by selected model. Black triangles denote the proportion of triplets for 
which the Causal model was selected at values of rMU rounded to the nearest 0.05. e) Comparison of estimated latent correlations rMU and rYU for 
concordant triplets present in both the DO and CC, classified as Causal or Reactive, and stratified by selected model in each population.
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estimate of error in the transcript. The frequency of correct clas
sification as a function of rMU was consistent with our simulated 
data, as can be seen by comparing Fig. 5a with Fig. 7d. As rMU in
creased, so did the proportion of triplets classified as Causal 
with three-choice model selection. The Causal model was not se
lected until rMU > 0.6, and when rMU > 0.9 almost 100% of triplets 
were classified as Causal. Thus, low measurement error in M sup
ports correct inference of the Causal model with both univariate 
and multistate X.

The misclassification of concordant triplets as Independent is 
consistent with low genotyping error in both studies (Fig. 6b), 
but why are there more Reactive classifications in the CC than 
DO? To answer this question, we looked at 254 concordant triplets 
that were classified as either Reactive or Causal in both studies. 
Assuming the Causal model is true, greater error in the transcript 
data relative to protein data and a strong causal correlation be
tween the transcript and protein data would result in ρYU > ρMU 

and a Reactive classification (Fig. 6c). Recall that for the Causal 
model, ρYU = ρY∗Y · ρY∗M∗ (Table 1). If we assume that the causal cor
relations between RNA and protein are similar between the CC 
and DO (Keele et al. 2021), differences in estimated rYU are largely 
due to measurement error in the proteins (Y). We saw that triplets 
classified as Causal in the DO and Reactive in the CC generally had 
a weaker rMU and stronger rYU in the CC than DO (Fig. 7e, bottom 
left plot), consistent with more measurement error in the DO pro
teins relative to the CC. For the smaller number of triplets classi
fied as Causal in the CC and Reactive in the DO, the reverse was 
true (Fig. 7e, top right plot). When the selected model was the 
same in the CC and DO, the error correlations for Y and M were 
similar across the studies (Fig. 7e, diagonal plots). For triplets clas
sified as Causal, values of rMU were generally larger than values of 
rYU, and vice-versa for triplets classified as Reactive. This suggests 
that the higher rate of Reactive classifications in the CC is the due 
to less measurement error in the CC proteomics data. We note 
that the CC study used improved mass-spectrometer technology 
and replicated genotypes (Keele et al. 2021). Ironically, greater pre
cision in protein measurement resulted in a higher rate of mis
classification of concordant triplets in the CC data. A precisely 
measured Y and higher measurement error in M can result in in
correct Reactive classifications because Y is more strongly corre
lated with M∗ than is M (Rockman 2008) (Fig. 6c).

Case studies: diagnosing mediation analysis
We selected three cases, two from mouse studies and one from a 
study of human cell lines, where genetic mediation analysis re
sults appeared questionable. To evaluate each case, we deter
mined ranges of the measurement error model parameters for 
each causal structure of interest that could have given rise to 
the observed data. To do this, we bootstrapped the data and com
puted a 95% support region for the data correlations (see 
Methods). We then selected simulated data sets that generated es
timated data correlations within the support interval and noted 
the range of measurement error model parameters across the se
lected simulations. Lastly, we made a qualitative evaluation of the 
causal and error correlations considering the biological context 
and properties of the measurement technologies.

Mediation of distal eQTL in DO kidney
We obtained gene expression data from kidney tissue of 188 DO 
mice (Takemon et al. 2021) and examined a locus on chromosome 
13 where a distal eQTL for Sfi1 and a local eQTL for Rsl1 co-map 
(Fig. 8a,b). Rsl1 is a transcription factor and a biologically plausible 
negative regulator of Sfi1 (Krebs et al. 2012). We applied Bayesian 

model selection at the chromosome 13 locus (X) to evaluate Rsl1 
(M) as a candidate mediator of Sfi1 expression (Y). We note that 
Sfi1 also had a local eQTL on chromosome 11, which we included 
as a covariate along with age and sex in the Bayesian model selection. 
Three-choice model selection strongly favored the Independent 
model (posterior probability = 0.977), and expanded model selec
tion favored the Complex model (posterior probability = 0.846), 
followed by the Independent model (posterior probability = 
0.150) (Fig. 8c). The Complex and Reactive models, if true, would 
require a direct causal effect of the chromosome 13 locus on the 
distal gene expression of Sfi1, so we focused on the Causal and 
Independent models.

We bootstrapped the data and compared the measurement er
ror parameters for the Independent and Causal models. The 
ranges are substantially overlapping, with the exception that 
ρX∗M∗ ≈ 1 under the Causal model (Fig. 8f–i). If the Causal model 
is true, a combination of high measurement error on Rsl1, low 
genotyping error, and a strong causal genetic effect on Rsl1, 
such that ρM∗M < ρX∗X · ρX∗M∗ , would result in selection of the 
Independent model (Fig. 8j,k). We note that Rsl1 was expressed 
at low levels and may therefore have high measurement error; 
the Rsl1 transcript also has a strong eQTL (LOD >40), which is con
sistent with a strong causal correlation (ρX∗M∗ ). The allele effects of 
the two transcripts were strongly anticorrelated (r = −0.96, 
p = 7.4e−05) (Fig. 8d), consistent with a Causal model. We con
clude that a Causal relationship in which Rsl1 negatively regulates 
Sfi1 is plausible and that selection of the Independent model was 
likely the result of measurement error in Rsl1.

Epigenetic mediation of gene expression in human 
lymphoblastoid cell lines
A study of epigenetic regulation of transcription in 63 human 
Lymphoblastoid Cell Lines identified genetic variants that af
fected gene expression (eSNPs) and chromatin accessibility 
(cSNPs), including a SNP in an interferon-stimulated response 
element (ISRE) in the first intron of SLFN5 that is both an eSNP 
for SLFN5 expression and a cSNP for a chromatin peak at the 
ISRE (Degner et al. 2012) (Fig. 9). The position of the peak suggests 
that chromatin state mediates expression of SLFN5, which is an 
interferon-regulated gene, by controlling the accessibility of the 
ISRE to transcription factors (Mavrommatis et al. 2013). Bayesian 
model selection with three-choice model options selected the 
Reactive model (posterior probability 0.87), implying that the 
gene transcript mediates the local chromatin accessibility. 
Expanded model selection placed most of the posterior probability 
on the Complex model (0.82), followed by the Reactive model 
(0.156). The Reactive and Complex models cannot be ruled out, 
but the Causal model, in which the chromatin state mediates 
gene expression, has greater biological plausibility.

Bootstrapping the correlation parameters (Fig. 9e–h) shows 
that under the Reactive model, the causal correlations must be 
weaker compared to the Causal model. For either model, meas
urement error in the SNP and in SLFN5 expression is low and there 
is more measurement error in the chromatin peak. If the Causal 
model is true, there must be a strong causal correlation between 
the SNP and chromatin peak (ρX∗M∗ ) and also between the chroma
tin peak and the target SLFN5 (ρY∗M∗ ) (Fig. 9j). This is consistent 
with the strong genetic associations for both the chromatin peak 
and SLFN5 [− log10 (p− value) > 10]. Alternatively, if the Reactive 
model is true, the causal correlations ρX∗M∗ and ρY∗M∗ must be 
weak, and there must be less error in the chromatin peak and 
more error in SLFN5 compared to the Causal model. In light of 
our expectation that chromatin data are noisy and that open 
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chromatin regulates transcript abundance, we suspect that the 
mediation analysis inference of a Reactive relationship is incor
rect and that the true causal structure is Causal or possibly 
Complex.

Mediation of distal pQTL in DO liver
In the DO liver data (Chick et al. 2016), we looked at protein to pro
tein mediation and observed a distal pQTL for TUBG1 that co- 
maps on chromosome 8 with a local pQTL for NAXD (Fig. 10). 
The allele effects for TUBG1 were negatively correlated with those 
of NAXD (r = −0.89, p = 0.003). We applied Bayesian model selec
tion to determine if NAXD could be a mediator of the TUBG1 
QTL and confirmed that the greatest posterior probability was 
on the Causal model for both three-choice (0.978) and expanded 
model options (0.694). Bootstrapping showed overlap between 
the distribution for ρXY and ρYM as the weakest data correlation, in
dicating the data may be consistent with either the Causal or 

Independent model. Examination of the error model parameter 
ranges indicated that, if NAXD and TUBG1 are Independent 
(Fig. 10l), there must be a strong causal correlation between the 
QTL and NAXD (ρX∗M∗ ), little error in the genotype, and little error 
in NAXD. Alternatively, if NAXD is a mediator of the TUBG1 QTL 
(Causal model, Fig. 10m), the strength of the causal correlation be
tween the QTL and NAXD must be even stronger, with slightly less 
genotyping error, but more error in NAXD.

At this point, we might have concluded that NAXD is a medi
ator. However, the chromosome 8 pQTL for TUBG1 also co-maps 
with a local pQTL for TUBGCP3 and the allele effects of the 
pQTL are positively correlated (r = 0.93, p = 0.0008). TUBGCP3 
and TUBG1, together with a third protein TUBGCP2, form the 
γ-tubulin small complex (Oakley et al. 2015; Farache et al. 2018). 
This functional relationship suggests that TUBGCP3 likely med
iates the distal pQTL for TUBG1. Three-choice Bayesian model se
lection to test TUBGCP3 as a mediator of the TUBG1 pQTL showed 

(a)
(d)

(e)

(b)

(c)

(f) (h)
(j)

(k)

(g) (i)

Fig. 8. Mediation of Sfi1 expression in DO kidney tissue. a) Sfi1 has a local eQTL on chromosome 11 and a distal eQTL on chromosome 13. b) The distal eQTL 
co-localizes with a local eQTL for the transcription factor Rsl1. c) Posterior model probabilities for the structure of the relationship between Rsl1 and Sfi1 
calculated by Bayesian model selection with the expanded (left) and three-choice (right) model options. d) Chromosome 13 QTL allele effects for Rsl1 and 
Sfi1. e) Variance stabilized transformed expression of Rsl1 and Sfi1. f–i) Median and 95% highest density interval for data, latent, causal, and error 
correlations corresponding to bootstrap estimated data correlations for Independent or Causal model structures. DAGs of the latent variable model for 
median causal and error correlations assuming Independent j) or Causal k) model structure.
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that Causal model had the greatest posterior probability (0.926). 
Under the expanded model options, the Complex model was se
lected (posterior probability 0.857). In addition, analysis of CC 
mice (Keele et al. 2021) supported TUBGCP3 as a Causal mediator.

Considering the biological evidence supporting TUBGCP3 as a 
mediator of TUBG1, why does mediation analysis provide stronger 
support for NAXD? The NAXD QTL (LOD ≈ 40) was much stronger 
than that of TUBG1 (LOD ≈ 13). In addition, NAXD was more abun
dant than the target gene TUBG1 (Fig. 10f), indicating that TUBG1 
may be measured with more error. The allele effects of the Chr 8 
pQTL on NAXD and TUBGCP3 are highly similar so we cannot rule 
out either candidate based on allele effects. The nearly 100% poster
ior probability for mediation by NAXD creates misleading certainty 
but it is based on a model that does not account for measurement 
error. This example illustrates a common scenario in which medi
ation analysis supports a highly expressed gene with a strong local 
QTL as a mediator when the true relationship is Independent.

Discussion
In this work, we examined the impact of measurement error 
on mediation analysis. We showed that in the presence of 

measurement error, data from any three variable causal structure 
will be consistent with partial mediation, i.e. the Complex model 
with no measurement error. It follows that mediation analysis, 
which does not account for measurement error, can infer partial 
mediation even in the absence of an indirect effect of X on Y 
through M. This outcome becomes more likely as sample size in
creases, which is especially concerning for methods such as the 
Sobel test that focus solely on detecting the indirect effect.

The measurement error model with three observable variables 
is not identifiable, i.e. it is not possible to uniquely estimate each 
of the model parameters. We introduce a latent variable model 
with estimable parameters and illustrate how they relate to the 
causal and error correlation parameters of the measurement er
ror model. Using the latent variable model, we identify scenarios 
for which a three-choice model selection strategy (excluding par
tial mediation) can lead to consistent or inconsistent identifica
tion of causal structure. Measurement error in the middle 
variable is most critical, but there are many other scenarios that 
can result in inconsistent inference (Table S1).

Genetic mediation analysis has some unique features that dis
tinguish it from more general applications of mediation analysis. 
The candidate mediator is typically a transcript or protein whose 

(a)
(c)

(d)

(g)
(i)

(j)

(b)

(e)

(f) (h)

Fig. 9. Mediation of Slfn5 expression by a nearby chromatin peak in LCL data. rs11080327 is an eSNP for SLFN5 a), and a cSNP for a chromatin peak in the 
first intron b). c) The locations of SLFN5, rs11080327, and chromatin peak264538 on chromosome 17. d) Posterior model probabilities for the relationship 
between the chromatin peak and SLFN5 calculated by Bayesian model selection with the expanded (left) and three-choice (right) model options. e–h) 
Median and 95% highest density interval for distributions of data, latent, causal, and error correlations for measurement error models that could 
generate the observed data when the causal structure is assumed to be Reactive or Causal. DAGs of the latent variable model show relative strengths of 
causal and error correlations that could produce the data if the assumed model is Reactive i) or Causal j).
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coding gene co-locates with the target QTL. If the target is a mo
lecular trait from a distant gene, it seems reasonable that any cau
sal effect linking the mediator to the target would be from M to Y, 
and the Reactive model would be a priori unlikely. On the other 
hand, if the target is a clinical trait or a molecular trait that co- 
locates with the mediator, we cannot rule out the Reactive model. 
When mediation analysis unexpectedly indicates the Reactive 
model, it is likely due to low measurement error in the target as 
illustrated by our analysis of concordant triplets. Multistate geno
types, as in our DO and CC mouse examples, can reduce the rate of 
misclassification by providing information that is not available 
with biallelic variants. We have previously shown, using simula
tions with no measurement error, that multistate genotypes can 
reduce false detection of mediation and provide stronger evidence 
of mediation when it is present (Crouse et al. 2022). In the presence 

of measurement error, when the QTL allele effects for a candidate 
mediator and a target do not align, we can confidently rule out 
mediation. However, as was shown in our third case study, match
ing allele effects can be misleading.

Our case studies illustrate the most common failure modes of 
genetic mediation analysis. In the first case study, a likely 
Causal relationship is classified as Independent (Fig. 6b). 
Correlated allele effects provide a clue that the Independent clas
sification may be in error and experimental evidence from other 
studies indicates that the transcript factor Rsl1 regulates down
stream gene expression (Krebs et al. 2012). In the second case 
study, a likely Causal relationship is classified as Reactive 
(Fig. 6c). The coding gene for SLFN5 and the chromatin peak at 
the ISRE co-locate with the target QTL, so we cannot rule out 
the Reactive model. Our conclusion that the true relationship is 

(a) (d)

(e)

(f) (g)

(b)

(c)

(h) (j)

(l)

(m)
(i) (k)

Fig. 10. Mediation of TUBG1 protein abundance in DO liver tissue. A distal pQTL for TUBG1 a) co-localizes with chromosome 8 local pQTLs for NAXD b) 
and TUBGCP3 c). Posterior probabilities for NAXD d) and TUBGCP3 e) as candidate mediators of TUBG1, calculated by Bayesian model selection with 
expanded (left) and three-choice (right) model options. f) Normalized protein abundance of NAXD, TUBGCP3, and TUBG1. g) Allele effects for TUBG1 
compared to those for NAXD (left) and TUBGCP3 (right). h–k) Median and 95% highest density interval for distributions of data, latent, causal, and error 
correlations for measurement error models that could generate the observed data when the causal structure is assumed to be Independent or Causal . 
DAGs of the latent variable model show relative strengths of causal and error correlations that could produce the data if the assumed model is 
Independent l) or Causal m).
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Causal relies on our assumptions that chromatin data are noisy 
and that chromatin states regulate gene expression and not vice- 
versa. In the third case study, an Independent relationship is clas
sified as Causal (Supplementary Fig. S3b). We were able to rule out 
NAXD as a mediator because there is another candidate mediator 
(TUBGCP3) with greater biological plausibility. Recall that in our 
analysis of discordant triplets, mediation analysis correctly classi
fied >98% of the triplets as Independent. The difference here is 
that NAXD was not chosen at random; it was identified by testing 
each of the genes in a QTL support interval to identify the protein 
with the strongest evidence for Causal mediation. This afforded 
multiple opportunities to encounter a candidate mediator with 
the same allele effects as the true mediator. If this study had relied 
on binary genotypes, any nearby gene with a strong local pQTL 
could be mistakenly identified as a Causal mediator. In each 
case study, we were able to diagnose the problem by considering 
how measurement error could have led to selection of an incorrect 
causal structure. However, the key to spotting these problems 
was the existence of independent evidence or prior knowledge 
about the biological mechanism of regulation that was at odds 
with the mediation analysis inference.

The ideal solution to these challenges would be to minimize 
measurement error. It is also possible, at additional cost, to design 
experiments with technical replication to estimate measurement 
error. Aygün et al. (2022) used technical replicates in a gene ex
pression study to estimate measurement error in the mediator 
and target. They excluded triplets with unbalanced error from 
mediation inference, which reduced the rate of false Reactive 
classifications. Methods to obtain direct estimates of measure
ment error have been proposed for proteomics data (Peshkin 
et al. 2019), and it seems likely that related approaches could 
be developed to estimate the precision of RNA-Seq data. 
Incorporating estimates of measurement error could enable ac
curate estimation of causal correlations.

We limited the scope of our mediation analysis to only three 
variables and to univariate measures, with the exception of multi
state genotypes. Expanding the causal system to include more 
variables or using multivariate observations in mediation analysis 
could mitigate some of the concerns raised here. For example, bi
directional mediation analysis (Talluri and Shete 2018) of the rela
tionship between Rsl1 and Sfi1 including the QTL on chromosome 
11 (local to Sfi1) should correctly identify the causal structure. In 
addition, we made simplifying assumptions including independ
ent measurement error and the absence of hidden confounders.

The problem of hidden confounders of M→ Y has received a 
great deal of attention (Saunders and Blume 2018). Mendelian ran
domization (MR) (Katan 1986; Didelez and Sheehan 2007; 
Richmond et al. 2016) is a form of causal inference that is robust 
to the presence of hidden confounders, but it achieves robustness 
by assuming that there is no direct effect between X and Y. Thus 
MR cannot distinguish between the Independent and Causal me
diation models (Crouse et al. 2022). For example, MR would fail to 
distinguish among candidate mediators with correlated allele ef
fects, likely favoring the one with the strongest local QTL because 
any information M possesses for Y after accounting for X is dis
carded. While MR does not address our objectives, it is a powerful 
and widely used method of causal inference and the potential im
pact of measurement error on MR warrants further study.

Genetic mediation analysis is an effective approach to identify 
candidate genes and to generate hypotheses about the mechan
ism underlying the effects of genetic variation. While the pitfalls 
of mediation analysis are real, we hope that this examination of 
the impact of measurement error will support more informed 

application, acknowledging weaknesses, while not detracting 
from its utility. As a simple approach to evaluate a mediation ana
lysis inference, we recommend transforming the estimated data 
correlations to latent correlations and then, assuming each causal 
structure in turn, consider whether the relative sizes of the causal 
and error correlations are consistent with prior knowledge 
about the biological system and measurement technologies. 
Bootstrapping can be helpful for investigating how precise the es
timated data correlations are. As illustrated in our case studies, it 
may not be possible to confidently establish (or rule out) medi
ation based solely on three-variable data. Incorporating more 
variables or employing experimental designs that support the es
timation of measurement error could mitigate some of these chal
lenges. However, in the absence of additional evidence to support 
a mediation inference, there may be no substitute for independent 
experimental validation.

Data availability
All analyses were performed using version 4.2.0 of the R statistical 
programming language (R Core Team 2022). All data and R code 
used to generate the results are available at figshare (https://doi. 
org/10.6084/m9.figshare.20126543).

Data are also available for download and interactive analysis 
with the QTLViewer webtool (Vincent et al. 2022) (https://github. 
com/churchill-lab/qtlapi) for the DO Liver (https://churchilllab. 
jax.org/qtlviewer/svenson/DOHFD) and DO Kidney (https:// 
churchilllab.jax.org/qtlviewer/JAC/DOKidney) studies. The 
individual CC liver data are available in QTLViewer format 
from figshare (https://doi.org/10.6084/m9.figshare.12818717) at 
data/qtlviewers/cc_individuals_proteomics_qtlviewer.Rdata. Both 
genotype (Li et al. 2016) and RNA-seq data (Pickrell et al. 2010; van 
de Geijn et al. 2015) for Yoruba LCLs are available on GEO 
(GSE19480). The DNase-seq data for the 69 cell lines with 
RNA-seq data (GSE31388) were used as previously processed 
(Grubert et al. 2015). Supplemental material is available at 
GENETICS online.
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Appendix
Violation of conditional independence between 
measured variables
Conditional independence between measured variables can be 
violated even when the underlying causal variables are condition
ally independent. Suppose the causal structure is Causal such 
that the causal correlations satisfy the conditional independence 
constraint ρX∗Y∗ = ρX∗M∗ · ρY∗M∗ , and assume that all of the causal 
and error correlations are nonzero. Conditional independence be
tween X and Y hold if ρXM · ρYM = ρXY and this implies that there is 

no measurement error in M, as

ρXY − ρXM · ρYM = 0

ρX∗X · ρX∗Y∗ · ρY∗Y − ρX∗X · ρX∗M∗ · ρM∗M · ρY∗Y · ρY∗M∗ · ρM∗M = 0

ρX∗X · ρX∗M∗ · ρY∗M∗ · ρY∗Y · (1 − ρM∗M
2) = 0

ρM∗M = ±1.

Similar algebra shows that if ρM∗M = ±1 and the structure of the 
causal system is Causal then ρXY − ρXM · ρYM = 0. Thus, when the 
structure of the causal system is Causal, conditional independ
ence between measured variables is satisfied if and only if 
ρM∗M = ±1, i.e. there is no measurement error in M. Repeating the 
above with the constraints for the Independent and Reactive mod
els, we see that measurement error in the middle variable leads to 
lack of conditional independence between measured variables.

This result is overlooked in mediation analyses that rely on 
conditional independence criteria to infer complete mediation. 
For example, Chen et al. (2007) introduce the Causality 
Equivalence Theorem in which they prove that the causal relation
ship X→ M→ Y exists and there are no unmeasured confounders 
of M→ Y if and only if the following three conditions hold: X→ Y, 
X→ M, and X ⊥ Y|M (conditional independence). The proof of this 
theorem assumes that all direct causes of each variable are mea
sured without error. However, it is reasonable to assume that 
measurement error is present in any real setting and conditional 
independence between the exogenous variable and target will 
not hold in the measured data even if the causal structure is 
X→ M→ Y.

Deriving latent correlations from the 
measurement error model
In our measurement error models, the data correlations can be 
described in terms of causal and error correlations (Equation 1) 
or in terms of latent correlations (Equation 2). These equivalencies 
can be used to express the latent correlations in terms of the cau
sal and error correlations as follows,

ρXU · ρYU = ρX∗X · ρX∗Y∗ · ρY∗Y

ρXU · ρMU = ρX∗X · ρX∗M∗ · ρM∗M

ρYU · ρMU = ρY∗Y · ρY∗M∗ · ρM∗M.

(A1) 

Solving this system for the latent correlations yields,

ρXU =

����������������������

ρX∗Y∗ · ρX∗M∗ · ρX∗X
2

ρY∗M∗

􏽳

ρYU =

����������������������

ρX∗Y∗ · ρY∗M∗ · ρY∗Y
2

ρX∗M∗

􏽳

ρMU =

�����������������������

ρY∗M∗ · ρX∗M∗ · ρM∗M
2

ρX∗Y∗

􏽳

.

(A2) 

For the Causal model, ρX∗Y∗ = ρX∗M∗ · ρY∗M∗ and Equation A2 sim
plifies to,

ρXU = ρX∗X · ρX∗M∗

ρYU = ρY∗Y · ρY∗M∗

ρMU = ρM∗M.

(A3) 

Table 1 summarizes the latent correlations for the Independent 
and Reactive models. In each case, the latent correlation for the 
middle variable is equivalent to the error correlation on that 
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variable while the other latent correlations are products of one 
causal and one error correlation.

The measurement error model likelihood
The log likelihood of the data given a model correlation matrix, Σ, 
is described by

L = − log |Σ| + tr(Σ−1S) (A4) 

where S3×3 is the correlation matrix of the observed data. For the 
Causal measurement error model,

Σ =
1 ρX∗X ·ρX∗M∗ ·ρM∗M ρX∗X ·ρX∗M∗ ·ρY∗M∗ ·ρY∗Y

ρX∗X ·ρX∗M∗ ·ρM∗M 1 ρM∗M ·ρY∗M∗ ·ρY∗Y

ρX∗X ·ρX∗M∗ ·ρY∗M∗ ·ρY∗Y ρM∗M ·ρY∗M∗ ·ρY∗Y 1

⎡

⎢
⎣

⎤

⎥
⎦.

Each combination of measurement error model parameters gener
ates one Σ, but the same Σ may be achieved by different parameter 
combinations. For example, every entry with ρX∗X includes the prod
uct ρX∗X ·ρX∗M∗ . Thus, the values of ρX∗X and ρX∗M∗ may be swapped, 
and the resultant Σ will not be changed. This property holds when 
the causal structure is Independent or Reactive, indicating that 
the measurement error model is unidentifiable and the causal and 
error correlations cannot be uniquely estimated from the data.

However, the latent variable model may also be used to de
scribe the data and thus we can write Σ for any causal structure 
as follows,

Σ =
1 ρXU · ρMU ρXU · ρYU

ρXU · ρMU 1 ρMU · ρYU
ρXU · ρYU ρMU · ρYU 1

⎡

⎣

⎤

⎦.

This formulation of Σ is identifiable and can be used to 
estimate the latent correlations via maximum likelihood 
estimation.

We numerically optimized the likelihood in Equation A4 using 
the “L-BFGS-B” method (Byrd et al. 1995) with bounds of ( − 1, 1) 
and initial condition 0.5. In the case when X is a multistate vari
able, we estimate rXY and rXM with canonical correlations. Doing 
so results in underestimation of ρXU, providing an upper bound 
on the amount of error in X (Supplementary Fig. S5b).

Bootstrapping procedure
We bootstrapped the data to obtain an approximate confidence 
region for the data correlation parameters. We then used simula
tions to determine the ranges of the measurement error model 
parameters that can produce data correlations falling within 
this confidence region. The procedure is as follows:

1) Sample the data with replacement 10,000 times.
2) Regress out any covariates used for mediation analysis.
3) Estimate the data correlations for each sample, using 

canonical correlation to estimate rXM and rXY if X is 
multivariate.

4) Define an elliptical region that captures 95% of absolute va
lue of all boostrapped data correlations.

5) Filter the measurement error model simulations to find the 
parameters (causal and error correlations) that produce es
timated data correlations within the bootstrap confidence 
region.

6) For each causal structure, compute the 95% highest density 
interval for each causal and error correlations over the fil
tered set of measurement error model simulations.
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