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Abstract 

Surface urban heat islands (SUHIs) are land surfaces with high concentrations of impervious 

surfaces like roofs, roads, sidewalks and other infrastructures that trap, absorb, and re-emit heat 

throughout the day/night and typically present higher temperatures than their surrounding rural 

areas. In this study, I evaluate how presence of and distance to SUHIs are associated with water 

temperature in the lower Chesapeake Bay watershed for the summer of 2019. When heavy 

precipitation events occur, flooding creates stormwater runoff, which is exposed to the hotter 

temperatures in urban areas. This introduces thermal pollution to nearby rivers and streams 

disrupting aquatic ecosystems. The hypothesis for this research is that the closer water 

temperature points are to SUHIs, the warmer the temperature measured will be. To assess this, I 

processed Landsat 8 and 9 scenes in order to derive land surface temperature (LST), normalized 

difference vegetation index (NDVI), and normalized difference build-up index (NDBI). I also 

processed land cover from the national land cover dataset (NLCD) and a digital elevation model 

(DEM) from which I derived flow direction (FD) and flow accumulation (FA). I used water 

temperatures measured by water quality stations from 25 sources as well. If areas with a surface 

temperature were half a standard deviation above the agricultural land cover LST average, they 

were defined as SUHIs, following Kaplan et al. (2018). The other datasets were used to extract 

other factors that can impact temperature or the relationship between distance to SUHIs and 

temperature. In addition, I also processed local climate zones (LCZs) to validate the identified 

SUHIs. To extract distance from SUHI areas and the water temperature datapoints, I used 

ArcGIS’s Euclidean Distance and Direction Distance tools. These were calculated for various 

cases, including; no-distance (contained within SUHI), omni-directional distance, and 

upstream/downstream distance. Some of these methodological attempts were more successful 
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than others. Overall results do not show a strong relationship between warmer water 

temperatures and proximity to SUHIs; therefore, in general terms, the hypothesis is not 

supported. However, there are some noteworthy findings; a) there are warmer water temperatures 

near urban centers where most of the SUHIs are located; b) elevation has the strongest influence 

and highest significance on water temperature with the trends of the variables explored (i.e., at 

higher elevations, the water temperature is cooler while at lower elevations, the water 

temperature is warmer); and, c) Euclidean distance to SUHIs and NDVI are other significant 

factors. With more time and resources, I would include more data on environmental confounding 

factors and use improved methods to calculate various distance measures, which would likely 

help tease out more specific relationships between water temperature and SUHIs as well as to 

interpret their correlations. 
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1. Introduction and Background 

Urban structures, such as asphalt roads and buildings, absorb and re-emit the heat from the 

sun more than the forests and agricultural areas nearby. Cities, where the urban infrastructures 

are highly concentrated and vegetation land covers are limited, become heat islands. Macarof 

and Statescu (2017) define urban heat islands (UHIs) as “the phenomenon of higher atmospheric 

and surface temperatures occurring in the urban area or metropolitan area than in the surrounding 

rural areas due to urbanization.” Figure 1 illustrates the fluctuating temperature for the different 

land covers below. Weather and geography also play a role in the influence of temperatures. For 

example, “calm and clear weather conditions result in more severe heat islands by maximizing 

the amount of solar energy reaching urban surfaces and minimizing the amount of heat that can 

be carried away,” and “nearby mountains can block wind from reaching a city or create wind 

patterns that pass through a city” (EPA 2022c). 

 

Figure 1: This image shows the temperatures of land surface and air during the daytime and 

nighttime over different land covers (EPA 2022c). 
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There are two main types of UHIs: surface urban heat islands (SUHIs) and atmospheric 

urban heat islands (Atmospheric UHIs). SUHIs are urban heat islands that “form because urban 

surfaces such as roadways and rooftops absorb and emit heat to a greater extent than most natural 

surfaces” (EPA 2022c). Atmospheric UHIs are similar but affect the local lower atmosphere 

around an urban area and use air temperatures instead of land surface temperatures. Research on 

UHIs and their impact on ecosystems, human health, and well-being are now common (for 

example: Yow (2007) and Sagris and Sepp (2017)). For example, people over the age of 65, 

under the age of 5, and with lung and heart issues/illnesses are disproportionately affected (EPA 

2022b). To remediate the impact of heat islands, typical measures include increasing vegetation 

in those locations which can provide shade and have a cooling effect, or to build ‘cooling 

centers’ in communities located inside or nearby an UHI (EPA 2022a). However, research on 

SUHIs is less common, and especially their link to the thermal pollution of water. 

SUHIs, the focus of this study, impact the environment when there are long or heavy rain 

events and flooding happens. The stormwater runoff is exposed to hotter land temperatures, 

increasing its temperature, which introduces thermal pollution to nearby rivers and streams. This 

pollution disrupts the aquatic ecosystems by potentially pushing inhabitants outside of their 

temperature optimal tolerance zone. 

My research question is: is there a relationship between spatial patterns of warmer water 

temperatures and day-time surface urban heat islands in the lower Chesapeake Bay watershed 

within Virginia for the months of June, July, and August of 2019? 

To address that question, I analyzed the months of June, July, and August because the 

summer months have hotter SUHIs due to the heat intensity. The objective is then to establish 
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whether there is a distance-based relationship between water temperatures and the location of 

SUHIs. Figure 2 illustrates the big picture and its relationships in a color-coded flowchart. 

 

Figure 2: This color-coded flowchart shows the big picture components of this research study 

and how the water temperature points have been correlated with SUHIs in order to establish a 

distance-based relationship. 

 

An EPA review of scientific studies found “the heat island effect results in daytime 

temperatures in urban areas about 1-7°F higher than temperatures in outlying areas and nighttime 

temperatures about 2-5°F higher” (EPA 2022c). Causes of these heat islands are reduced 

vegetated land covers in urban areas, urban material properties, urban geometry, heat generated 

from human activities, and arid weather conditions and lower topography. The thermal pollution 

introduced to nearby rivers, streams, lakes, and ponds “affects all aspects of aquatic life, 

especially the metabolism and reproduction… [and] can be particularly stressful, and even fatal, 

to aquatic life” (EPA 2022b). 

Research on SUHIs and their link to water is important because it informs citizens and city 

planners/developers, and it highlights the impact an urban area may have on nearby water quality 
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and aquatic ecosystems. In addition, like in the case of UHIs, there is a social dimension to 

SUHIs as well: vulnerable, low-income communities are often more affected than higher-income 

communities (Huang and Cadenasso 2016). Higher awareness of both UHI’s and SUHI’s may 

push for more action towards reducing impervious surfaces within SUHIs by increasing 

vegetation, incorporating green roofs, and using materials that reflect heat when building new 

structures or renovating existing ones. 

In this research study, I focus on the spatial relationship between SUHI locations and water 

bodies. One main assumption is that the closer water is to a surface urban heat island, the warmer 

the temperature of that water body is. That is, I expect a negative relationship between the 

distance from the station where water temperature was measured and the location of the SUHI. I 

also expect that relationship to be stronger if the measurement and the SUHI are within the same 

sub-watershed. Finally, I also expect the relationship to be stronger when the water measurement 

is downstream from the closest SUHI. 

2. Literature Review 

As mentioned above SUHIs are the focus of this study. In the following paragraphs I will 

cover environmental impacts (e.g., impacts of SUHIs on water pollution), human health impacts, 

economic impacts, related factors, remote sensing and GIS approaches, and local climate zones 

and their relationships with SUHIs. 

2.1 Environmental Impacts of SUHIs on Aquatic Ecosystems 

The main environmental parameter that this study looks into is water quality of nearby 

streams and rivers. One EPA study “found that urban streams are hotter on average than streams 

in forested areas, and that temperatures in urban streams rose over 7°F during small storms due 
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to heated runoff from urban materials” (EPA 2022b). When the temperature of water is affected, 

there is a chain of events that can happen. Warmer water temperatures decrease dissolved oxygen 

content, which negatively impacts survival of fish. Dead fish decompose, which generates excess 

nutrients in the water. Algal blooms then form to decompose the extra nutrients, and this 

decreases the dissolved oxygen content even further, creating a positive feedback loop (Harvey et 

al. 2011). 

As a consequence, the aquatic ecosystem will be less diverse as native fish and other species 

are likely to get increased competition from invasive species, which are better acclimated to the 

higher temperatures (Kaushal et al. 2010). The health of land ecosystems is important for a 

healthy stream in return because if there is less vegetation, there are fewer trees to filter the 

runoff before it flows into the bodies of water. The “degree to which populations of freshwater 

species are affected by rapid increases in temperature will depend, in part, on their maximum 

thermal tolerance,” which is “the temperature at which an organism loses the ability to maintain 

equilibrium” (Pagliaro and Knouft 2020, 2). 

2.2 Human Health Impacts of SUHIs 

There is a strong correlation between UHIs and SUHIs. In the presence of SUHIs, people feel 

higher temperature radiating from the urban surfaces and get heat-related illnesses like heat 

exposure/exhaustion (EPA 2022b). In addition, this heat influences car owners to drive instead of 

walking or using public transport because they want air conditioning. The increased use of 

vehicles diminishes air quality by introducing pollutants from the exhaust which stay in the air or 

precipitate. Those add to other car-related pollutants, like gasoline and coolant, and to land 

surface runoff, that flow into waterways further deteriorating environmental conditions. City 

residents are exposed to these air, land, and water pollutants more often which is especially 
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detrimental for people with asthma and other lung health issues. Air pollution also influences the 

water quality because water is a sink for carbon in the atmosphere. There are also studies that 

link increased human mortality rates from heat stress especially during heat waves, which are 

extreme in heat island locations. Heat related mortality can be caused by “respiratory failure and 

circulatory system failure from heart attack or stroke” (Tan et al. 2010, 80). Yow (2007) states 

that “heat kills more people than any other weather-related hazard, even in developed countries” 

(Yow 2007, 1237). For example, an article by Grothe and Lynch (2022) regards an extreme heat 

event on a hot summer morning at a baseball stadium where 8 attendees were sent to the hospital 

and over 80 others were treated for heat-related illnesses The event had to end prematurely and it 

had not yet hit the hottest time of the day.  

2.3 Economic Impacts of SUHIs 

There are negative economic consequences due to poor water quality and hot temperatures. 

Water and energy demand and consumption increase with the need for staying cool (Yow 2007, 

1238). Emissions from using cooling energy affect the air temperature, which in turn influences 

the water temperature. Furthermore, warmer waters that affect fish populations impact fishing, 

both as a livelihood and a recreation activity. This applies to other businesses based on other 

water-based recreational activities that rely on good water quality such as kayaking, canoeing, 

paddle boarding, and swimming. Excess nutrients in water pollutants, combined with the higher 

water temperature, increase algae growth on the surface of water, which makes many of these 

activities harder or less appealing. The rivers and streams provide a scenic view to cities and 

towns, which drives up tourism and other linked industries like restaurants, shops, and lodging 

could also be impacted. For example, in Fredericksburg, VA, there are a lot of restaurants and 
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businesses overlooking the Rappahannock River for the appeal of the view of clean, healthy 

water along with a meal. 

2.4 Related Factors for Water Temperature and SUHIs 

The thematic contributions of literature within this field go into depth about how urban 

areas/land cover influence water temperature. Kaushal et al. (2010) looked at historical records 

showing water temperature for 40 sites. They found that 20 of the major streams and rivers 

experienced warming. The “annual mean water temperatures increased by 0.009-0.077°C yr-1 

[(per year)], and rates of warming were most rapid in, but not confined to, urbanizing areas” 

(Kaushal et al. 2010, 461). This supports the message that increasing urban land cover impacts 

the temperature of water in the vicinity. They identify that the increases in stream water 

temperatures are usually due to increases in air temperature. This incorporates the UHI effect 

because it influences the air temperatures, the temperature people feel when walking around 

outside that has an impact on their health. Additionally, the impacts of increasing temperature in 

water are eutrophication, biological productivity, stream metabolism, contaminant toxicity, and 

loss of aquatic biodiversity, which supports the environmental impacts listed above in the 

substantive section of this literature review. 

Water has a variety of properties and processes including specific heat capacity, latent heat 

exchange (evaporation and evapotranspiration), and depth profiles. The specific heat capacity of 

water is the amount of heat energy needed to raise the temperature of water; if the specific heat 

capacity is low, that means it does not take much heat to raise the temperature. Larger bodies of 

water like the Chesapeake Bay “have greater specific heat capacity and they have been found to 

provide a potential cooling effect during the daytime” (Wang et al. 2016). Additionally, with 

increasing urban land covers within cities that experience SUHIs, “vegetation and water surfaces 
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decrease and thus further reduce cooling effects caused by evapotranspiration [and]… this results 

in further heating of land surfaces and soil temperatures” (Schweighofer et al. 2021). There is a 

‘cold-skin’ effect with water where the surface of water may be lower than the bulk temperature 

due to high evaporation and conduction losses (Noble and Jackman 1980). Water that is colder is 

less dense than warmer water, so it sits on the top and may affect water temperatures. The 

properties of water control its temperature. 

To look into more of the ecosystem impacts of urban land cover, Paul and Meyer (2001) 

describe the changes caused by an increase in urbanization to streams and their landscape. The 

impervious surfaces alter the hydrology and geomorphology of the streams. These surfaces, 

along with runoff, increase the “loading of nutrients, metals, pesticides, and other contaminants 

to streams… [which] result in consistent declines in the richness of algal, invertebrate, and fish 

communities in urban streams” (Paul and Meyer 2001, 333). These environmental and biological 

changes emphasize the importance of understanding how a change in one environmental 

parameter can influence various other factors especially with the increase in urban land cover. 

Nelson and Palmer (2007) address the anthropogenic stressors that alter water temperature, 

and these include increased watershed imperviousness, increased siltation, destruction of the 

riparian vegetation, and changes in climate. When water temperature is affected, there are 

impacts that happen in lieu of the change involving influences on ecological processes and 

stream biota. For example, “a profound community shift, from common cold and coolwater 

species to some of the many warmwater species currently present in smaller number, may be 

expected, as shown by a count of days on which temperature exceeds the ‘good growth’ range for 

coldwater species” (Nelson and Palmer 2007, 440). This has an effect on the food web as well. 

For their methodology, they looked at 5 different indices; (1) percentage of urban land cover in a 
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micro-watershed that drains to the site where data was taken, (2) total impervious surface within 

a micro-watershed, (3) total impervious surface in a buffer of 50 m on either side of the stream 

upstream from the site, (4) deforestation in a micro-watershed, and (5) deforestation within the 

50 m buffer zone. Baseflow discharge was averaged, and water temperature was measured using 

Optic Stowaway Model WTA temperature loggers as well. The temperature surges they studied 

were linked to localized rainstorms, and they averaged to be about 3.5°C, dissipating over the 

duration of around 3 hours. 

Cuba et al. (2019) explore the water-related downstream risks associated with mineral 

extraction. This relates to the downstream risk to waterways associated with SUHIs. They 

conclude that “many severe externalities of extractive development are experienced in areas 

hydrologically linked to the site of extraction, though these areas may not be those closest to 

mines themselves” (Cuba et al. 2019). This paper assists with understanding how downstream 

hydrology works and links it with environmental impacts. 

Sechu et al. (2021) delineate the river valley bottom within drainage basins in Denmark using 

a cost distance accumulation analysis through GIS. Their tool “can delineate an area that has 

been the focus of management actions to protect waterways from upland nutrient pollution” 

(Sechu et al. 2021).  The result of a cost distance accumulation is used to calculate the least cost 

path between two locations whether they be points, polygons, or lines. This shows one distance 

approach that can be done between water temperatures and their upstream SUHIs. 

2.5 Remote Sensing and GIS Approaches to Study Urban Heat Islands 

There are a variety of papers that use remote sensing data to identify urban heat islands. An 

early paper by Lo et al. (1997) used day and night airborne thermal infrared 5 m imagery from 
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the Advanced Thermal and Land Applications Sensor (ATLAS). The authors studied the thermal 

signature changes in urban land cover between day and night since UHIs absorb heat throughout 

the day and continue re-emitting throughout the duration of the night. They defined UHIs as a 

representation of the “human-induced urban/rural contrast,” which supports this paper’s use of 

the comparison of temperatures of the urban core with nearby agricultural areas to help identify 

UHIs (Lo et al. 1997, 287 and Yow 2007). They also include an additional examination of the 

relationship between land cover irradiance and vegetation amount by using NDVI. They found 

that “the predominance of forests, agricultural, and residential uses associated with varying 

degrees of tree cover showed great contrasts with commercial and services land cover types in 

the centre of the city, and favours the development of urban heat islands” (Lo et al. 1997, 287).  

They found that within their study area of Huntsville, Alabama, the highest irradiance (or thermal 

emission) during the daytime is in commercial land cover types while at night, the land covers 

are more homogenous from cooling down and have water being the land cover type with the 

highest irradiance. 

In a more recent paper, Chen et al. (2006) go into depth about the relationship between UHIs 

and changes in land use/cover as cities are growing. Their study area is the Pearl River Delta in 

Guangdong Province, China, which is rapidly urbanizing. They use Landsat TM and ETM+ for 

temperatures and for the land use and land cover types. Their quantitative approach proposed a 

new index called normalized difference bareness index to extract bare land (NDBaI), which they 

compare with the normalized difference vegetation index (NDVI), normalized difference water 

index (NDWI), and normalized difference build-up index (NDBI). The correlations were found 

to be negative between NDVI, NDWI, NDBaI and the temperature while the correlation was 

found to be positive between NDBI and temperature. Their results showed that the UHIs were in 
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“a mixed pattern, where bare land, semi-bare land and land under development were warmer 

than other surface types” (Chen et al. 2006, 133). In addition, they found that vegetation is 

important for keeping an area cool in temperature because it provides shade that cools the local 

air temperature. 

Clinton and Gong (2013) use MODIS (Moderate Resolution Imaging Spectroradiometer) and 

population data to “estimate the magnitude of thermal differentials urban heat islands and/or 

sinks, the timing of heat differential events, and the controlling variables” (294). They conducted 

a global study, but they focused on specific latitudes around the equator to see if arid cities had a 

hotter temperature for their potential SUHIs (as opposed to atmospheric UHIs). They constructed 

5 and 10 km buffers around selected cities around the globe and found the surface urban heat by 

subtracting the surrounding temperature within the buffer from the core temperature of the city. 

Areas where the differential was positive were defined as SUHIs. The analysis included notable 

urban variables, which were ranked according to importance. They were: development intensity, 

vegetation amount, and size of the urban city/metropolis while the population number was the 

least important. Also, they found that arid regions had a higher temperature for the SUHIs in 

comparison to non-arid regions. 

Zhou et al. (2019) produced a systematic review of the analysis of SUHIs studies using 

sensors like Landsat TM/ETM+/TIRS and Aqua/Terra MODIS from 1972 to 2019. In their study, 

China was the most studied region and summer daytime was the most frequent time period 

researched. The authors do point out the scarcity of nighttime UHI studies and highlight the 

ability of MODIS to collect thermal images that capture the energy emitted by Earth at night. 

They conclude that “the large spatial… and temporal… variations of SUHI are contributed by a 
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variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, 

and climate” (Zhou et al. 2019, 1). 

In an earlier study that also looked at spatial and temporal patterns, Choi et al. (2014) assess 

SUHIs using cloud-free LST data that spans 1 year from the Communication, Ocean and 

Meteorological Satellite (COMS). The “LST was higher in low latitudes, low altitudes, urban 

areas and dry regions compared to high latitudes, high altitudes, rural areas and vegetated areas” 

(Choi et al. 2014). The study found that there is a maximum intensity of 10-13°C at noon during 

the summer with weaker intensities of 4-7°C during other times, especially nighttime, and other 

seasons. This article supports the finding that it is during the daytime in the summer when the 

SUHIs present the largest extent and intensities. 

There are many factors that affect SUHIs and their intensity. SUHI “varies with latitude, 

climate, topography and meteorological conditions” (Haashemi et al. 2016). SUHI are more 

present at lower latitudes, dryer climates, lower elevations, and during heat waves or other hot 

weather with no rain. Yang et al. (2020) add in other factors such as cloud coverage, wind speed, 

and solar radiation. If it is cloudy, the sun’s heat won’t reach the land surface as strongly. Also, 

SUHIs develop more with higher inputs of solar radiation on the Earth’s surface. Lastly, wind 

speed changes where SUHIs are; wind can blow hotter urban temperatures into a different area 

and cool down the urban land covers. Other factors to name are land cover, land use, 

morphology, structure and material of surfaces and buildings, human activity, and precipitation 

(Yang et al. 2020). Looking at these variables within a study area is important in order to 

consider all the processes affecting SUHI formations. 
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In what is probably the most influential paper for the present Capstone Project, Kaplan et al. 

(2018) synthesize the state of the art by stating that “UHI studies are generally conducted in two 

ways: through the air temperature measuring, or through measuring the surface temperature.” 

The surface UHIs are extracted with the equation of “UHI = μ + σ/2 in which μ is the mean LST 

value of the study area, and σ is the standard deviation of the LST” (Kaplan et al. 2018). 

Furthermore, the relationship of LST is found with NDVI and NDBI to see the trend; NDVI has 

a negative, or inverse, correlation with LST while NDBI has a positive, or direct, correlation with 

LST.  

2.6 Local Climate Zones and their Relationship with SUHIs 

Demuzere et al. (2021) introduces a methodology to obtain the local climate zones (LCZs) of 

a city or location. Benjamin Bechtel from the Bechtel et al. (2019) paper is an author of this 

paper as well. The concept of LCZs has been around since 2012, and it is explained in depth with 

its holistic classification approach. Training areas for the 17 classes of land cover are used in the 

LCZ Generator. Land classes 1-10 are urban areas (buildings and streets) while land classes 11-

17 are natural areas (trees and water). The LCZ Generator outputs LCZ mapping and 

“simultaneously provides an automated accuracy assessment, training data derivatives, and a 

novel approach to identify suspicious training areas” to control for error (Demuzere et al. 2021). 

The LCZs classification system originally provided an UHI framework for studies. 

Finally, using recent developments in the study of the relationship between land cover and 

temperature, Bechtel et al. (2019) use local climate zones (LCZs) to help identify SUHIs. LCZs 

are “a universal description of local scale landscape types based on expected variation at 

neighbourhood scale (≥ 1km2) in and around cities.” They use MODIS’s and Landsat 8’s LST 

multi-year average to compare to the LCZ scheme in 50 cities to investigate its suitability to 
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identify SUHIs. Both LST, which helps find SUHIs, and LCZs use some of the same variables 

that are important controls. The authors found that using an approach that combines LCZ and 

annual SUHI estimates provides a promising method for “a consistent and comprehensive SUHI 

analysis framework… to assess the spatial scale of matching LST and LCZ data, filter for 

topographic effects, and include the phenological status” (Bechtel et al. 2019). 

2.7 Literature Review Conclusion 

These papers helped me gain perspective and information about remote sensing and 

environmental responses from the water temperature. This research project looked at the 

correlation between water temperature in relation to its distance to the nearest SUHI within the 

sub-watershed. I expect a trend of warmer water temperature in locations where the distance to 

the nearest SUHI is shorter than the distances measured for cooler water temperatures. Use of 

Landsat data along with NLCD, NDVI, and NDBI were considered for this study from the input 

of these papers. LST, DEM, FD, and FA were additional variables incorporated in this project to 

incorporate land characteristics and water flow. 

In this study, I use Landsat satellite imagery similar to Chen et al. (2006) and Zhou et al. 

(2019), NDBI and NDVI similar to Chen et al. (2006) and Lo et al. (1997), and land cover (or 

NLCD) similar to all of the remote sensing papers mentioned in the Remote Sensing and Urban 

Heat Islands section above. The chosen time period of this research is the late morning around 

10:50 a.m. when Landsat 8 and 9 overpass the study area and the tiles of data selected are during 

the summertime because of the higher SUHI intensity mentioned in Choi et al.’s (2014) article. 

Kaplan et al.’s (2018) UHI equation is used to identify the SUHIs in the study area. Clinton and 

Gong (2013) and Nelson and Palmer (2007) both use the buffer method of distance between 

variables, which is one of the distance relationships considered but not used in this study. 
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Removing clouds from satellite imagery and using LCZs are utilized in this study, in the same 

way as shown by Bechtel et al. (2019). Also, the output of LCZs from Demuzere et al.’s (2021) 

methodology is used to see the built-up areas found to compare and validate the SUHIs 

identified. Furthermore, Kaushal et al. (2010) uses a simple linear regression to analyze their 

resulting trends/relationships. The gap I am filling is to test these combinations of methodologies 

for the lower Chesapeake Bay watershed.  

3 Data and Methods 

In this section, I go over the datasets utilized in this project along with the methods utilized to 

process and analyze them. 

3.1 Data 

The datasets (see Table. 1) used for this study can be organized in 3 groups: water station 

data, elevation data, thermal and land cover related data. The water station data includes the 

water temperature datapoints from the Chesapeake Bay Program (CBP), National Oceanic and 

Atmospheric Administration (NOAA), National Water Quality Monitoring Center (NWQMC), 

and Chesapeake Monitoring Cooperative (CMC) with many sub-sources such as USGS, Old 

Dominion University, Virginia Institute of Marine Science, Virginia Department of 

Environmental Quality, etc. (see Figures 4 and 5 for temporal and spatial coverage). Water depth 

is listed at some of the water stations but not all, which is recognized as an important 

environmental factor that cannot fully be taken into account in this study. Figure 6 shows the 

colored classes of water depth data and their spatial distribution. The elevation data is the DEM 

from USGS; Figure 13 shows the range of elevation within the study area. Finally, the thermal 

and land cover related data are: Bands 4, 5, 6, and 10 and cloud distance from Landsat 8 and 9 
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Collection 2 Analysis Ready Data (ARD) Level 2 scene tiles from USGS Earth Explorer; the 

NLCD from the Multi-Resolution Land Characteristics Consortium (MRLC); the national 

watershed boundaries (NBD) from the United States Geological Survey (USGS), Environmental 

Protection Agency (EPA), and National Resources Conservation Service (NRCS); and, the LCZs 

from Demuzere et al.’s (2022) global map of data. 26 Landsat tiles are used within the study area 

and its time duration. The LST, NDVI, and NDBI variables are calculated from the Landsat 8 

and 9 bands while the FD and FA are derived from the elevation tiles. Most of the data is from 

the year of 2019 to keep it consistent with that summer’s weather and ancillary data since the 

most recent NLCD dataset is from 2019. See Figure 16 for the spatial distribution of the 15 land 

cover classes. For the Landsat remote sensing imagery, the data are already processed and 

corrected for the atmosphere to be ready for direct use. The datasets were projected to NAD 1983 

StatePlane Virginia South FIPS 4502 (Meters) to maintain angles and shapes. 

Name Source Year Format Data Type Resolution 

Water Quality Station 

(Temperature) 

CBP, NOAA, 

NWQMC, USGS 

2019 Shapefile Points 0.0001 m 

National Land Cover 

Dataset (NLCD) 

MRLC 2019 Shapefile Raster 30 m 

National Watershed 

Boundaries (NBD) 

USGS, EPA, 

NRCS 

2019 Shapefile Polygon 0.0001 m 

Landsat 8 and 9 C2 

ARD L2 Satellite 

Imagery 

USGS 2019 Tiff Raster 30 m 

Digital Elevation 

Model (DEM) 

USGS 2019 Tiff Raster 30 m 
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Local Climate Zones 

(LCZs) 

Demuzere et al. 2022 Tiff Raster 100 m 

Table 1: This table shows the information regarding each of the data layers used for this research 

study. This includes its source, year, format, data type, and resolution. It is color-coded based on 

the big component it is used for (see Figure 2). This light purple is for the water temperature 

component, the light red is for the SUHI component, and the light green is for the relationship 

component between the two main variables. 

 

 The first component of this project focuses on the water temperature (Figure 3). The 

water temperature data is portrayed through a chart of measurement counts and maps of 

temperature (Celsius) and depth (meters) (Figures 4 through 6). 

 

 

Figure 3: This flowchart highlights the water temperature component of this study. 
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Figure 4: This bar chart shows the count of water temperature measurements by day across the 

study area for the summer of 2019. There are 2,818 measurements of water temperature across 

25 sources total. 
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Figure 5: This map shows the outline of the study area in relation to the state of Virginia. It also 

displays the water temperature datapoints from the water quality stations obtained so far with 

classifications of temperature ranges in order to show the variation and warmer/cooler 

temperature values. 
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Figure 6: This map shows the depth of the water temperature measurements. 

 

3.2 Methods 

For this project I used three approaches to evaluate the relationship between the water 

temperatures and the SUHIs. Each approach is progressively more complex. The first approach is 

finding the relation of water temperature at zero distance; this is comparing the water 

temperature points that are contained within a SUHI to those outside of it. The second approach 

is omni-directional distance meaning that the distance between a water temperature point and its 

nearest SUHI is found whether it is upstream or downstream. Lastly, the third approach is uni-

directional with the water temperature point’s nearest SUHI being only upstream from it (i.e., the 

water temperature measured is downstream from the nearest SUHI). The third approach is more 

complex in finding the measurements. 
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The flowchart in Figure 7 describes the overall data processing and analysis steps I 

performed for this project. The following section describes those steps in more detail. 

 

Figure 7: This flowchart shows the overall step-by-step process of the methodology to find the 

outcome of the relationships between water temperature and distance to SUHIs. 

 

 The GIS methodology for steps 1 through 6 in Figure 7 identify SUHIs, which is the 

second big component of this research (Figure 8). 
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Figure 8: This color-coded flowchart shows the big component of SUHIs within this study. 

 

3.2.1 Flowchart Steps 1 and 2 

First, all data was collected and projected to NAD 1983 StatePlane Virginia South FIPS 

4502 (Meters) to reduce uncertainty in calculations derived from mismatched projections. Next, 

the LST, NDVI, and NDBI were calculated using the raster calculator tool in ArcGIS Pro. 

Specific formulas are described in the following paragraphs. 

Celsius = ((Multiplicative Scale Factor * Thermal Band 10) + Additive Offset) - 273.15, 

or C = ((0.00341802 * B10) + 149.0) - 273.15 for the case with Landsat 8 and 9 (USGS 2022). 

Figure 9 shows the processed data which displays spatial distribution of land surface 

temperatures (LST) in Celsius for the study area. Figure 10 displays the histogram showing this 

distribution of LST. 

NDVI was calculated using the near infrared (band 5) and red (band 4) bands and the 

following equation of (NIR B5 - Red B4) / (NIR B5 + Red B4). Figure 11 shows the processed 

data and its spatial patterns. 

NDBI was calculated with the middle infrared (band 6) and near infrared (band 5) bands 

and the following equation of (MIR B6 - NIR B5) / (MIR B6 + NIR B5). Figure 12 shows the 

processed data and its spatial distribution. 

The flow FD and FA variables were calculated with the DEM. The DEM was input into 

the Flow Direction tool and that output was used as input into the Flow Accumulation tool in 

ArcGIS Pro. Figures 14 and 15 display those spatial distributions. 
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The distance to shore (m) was calculated with the sub-watershed boundary of the 

Chesapeake Bay within the study area. This variable was used to visualize if there was a 

correlation between water temperature and distance to shore. The Euclidean Distance tool was 

used to obtain the distance values to the nearest shoreline. 

 

Figure 9: This map shows the land surface temperature for the study area using thermal band 10 

from Landsat 8 and 9. Thermal band tiles are averaged for the summer of 2019 with some band 

tiles from the summer of 2018 to fill in data gaps in the Virginia Beach area. 
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Figure 10: This histogram shows the distribution of LST along with its mean and standard 

deviation. 

 

 

Figure 11: This map shows the normalized difference vegetation index for the study area. The 

higher the positive value, the more healthy, green vegetation there is. 
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Figure 12: This map shows the normalized difference build-up index for the study area. The 

higher the value, the more built up, or urban, the land is with the exception of water. 

 

 

Figure 13: This map shows the elevation of the study with the Shenandoah Mountain range in the 

west and the flat coast in the east. 
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Figure 14: This map shows the flow direction calculated from the elevation surface. 
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Figure 15: This map shows the flow accumulation calculated from the elevation surface. The 

streams and rivers flow into the Chesapeake Bay. 

 

 

Figure 16: This map shows the 2019 land cover categories from the National Land Cover Dataset 

for the study area. 

 

3.2.2 Flowchart Steps 3 through 6 

The average LST of the study area for agricultural land cover (cultivated crops and 

hay/pasture classes) was calculated by isolating the agricultural land covers into their own 

polygons with the raster to polygon tool then selecting the rural land covers to export the data 

into its own feature class. Next, the ArcGIS Zonal Statistics as Table tool was used to find the 

mean LST for the agricultural land cover polygons. As mentioned in the beginning of this paper, 

SUHIs are identified by comparing the temperature of urban land cover with their surrounding 
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rural land covers. Any LST over a half a standard deviation above the rural temperature average 

within the study area is an area that has hotter temperatures than its surrounding agricultural land 

cover (Kaplan et al. 2018). Figure 17 shows the spatial distribution of SUHIs derived from the 

calculations described. 

 

Figure 17: This map shows the identified surface urban heat islands as defined by Kaplan et al. 

(2018) in red, which means the LST is half a standard deviation above the agricultural land cover 

LST average. The areas with LST temperatures above the agricultural land cover LST average 

but below the half standard deviation above that average are in yellow. The areas with no surface 

urban heat islands and LSTs under the agricultural land cover LST average are in green. 

 

Local climate zones (LCZs) can be used to see which areas that are classified as built-up 

coincide with the SUHIs (Bechtel et al. 2019). This is a form of validation for determining 

whether SUHIs are in areas that are likely to be urban heat islands. This study uses the LCZs 

created from Demuzere et al.’s (2022) global map of LCZs which was downloaded. A detailed 
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flowchart of the steps performed is shown in Figure 18. A description of those steps follows in 

the next paragraphs. 

 

Figure 18: This flowchart shows the workflow of defining the overlap between surface urban 

heat islands and local climate zones. 

 

The study area boundary feature class is projected to the same projection as the LCZ 

raster since the raster data is too large with the extent being the whole globe; this way the project 

tool runs faster. The environment settings for all tools automatically goes to the same NAD 1983 

StatePlane Virginia South FIPS 4502 (meters) coordinate system, so when the clip raster tool 

runs, it automatically projects back to the selected coordinate system. Next, the land classes as a 

raster are converted into polygons with the raster to polygon tool in order to select only urban 

land classes 1-10 with the select by attribute tool. The selected features are then exported into 

their own feature class using the export data tool. A field in the attribute tables is added for the 

SUHIs being the value of 3, the urban LCZs being the value of 2. The urban LCZ polygons are 

converted back to a raster with the polygon to raster tool so that they can be reclassified with the 

reclassify tool for the ‘no data area to be equal to the value of 1’. The already rasterized SUHIs 
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are also reclassified to get the ‘no data areas to be values of 1’. Figure 19 shows the spatial 

distribution of LCZs cropped for the study area.  

 

Figure 19: This map depicts the different land classes of the local climate zones within the study 

area. The first ten classes are urban land covers (compact highrise through heavy industry) and 

the last 7 classes are natural land covers (dense trees through water). The urban land classes are 

related to the areas with SUHIs. 

 

Next, the raster calculator tool is used to multiply the urban LCZs and SUHIs together in 

order to get the values of where there is no data, an overlap, and no overlap between the two 

variables. The output values were then labeled 1 = no data, 2 = urban LCZ, no SUHI, 3 = SUHI, 

no urban LCZ, and 6 = overlap between urban LCZ and SUHI. The combine tool between the 

urban LCZs and SUHIs was used to compare the maps from Figure 17 and 19 (only urban/built-

up classes). The overlap between urban/built-up LCZs and SUHIs shows that there are areas of 

agreement between the two approaches. Areas of agreement (label 6) can be interpreted as 
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SUHIs with less levels of uncertainty. SUHIs with no overlapping urban/built-up LCZs can be 

interpreted as having less certainty. One interpretation of the source of uncertainty in the 

definition of those non-overlapping SUHIs is the influence of weather like rain or drought 

events. Non-overlap areas are notoriously clustered in non-urban areas in the south central to 

west boundary area (areas in yellow in Figure 20). 

 

Figure 20: This map shows the comparison between surface urban heat islands and local climate 

zones. The yellow polygons are where there is only SUHIs; the blue polygons are where the 

urban LCZ land classes are; the green polygons are the overlap where the SUHIs and urban LCZ 

land classes coincide; and, the gray area is where there is neither SUHI or urban LCZ land 

classes. 

 

 While I kept an expansive/inclusive or liberal definition of SUHIs like the one displayed 

in Figure 17 (with both overlap and no overlap with LCZ) for the rest of the analysis presented in 

this paper, it is worth noting that the decision may have had an impact in the results discussed 

later in this paper. I will return to this point in the discussion section of the paper. 
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 Figure 21 shows the third and last big component of this study: the relationships between 

water temperature and SUHIs. This is explained in Steps 7 through 9. 

 

Figure 21: This color-coded flowchart shows the big component of the distance relationships 

within this study. 

 

3.2.3 Flowchart Step 7 

Now that the SUHIs are identified, the different approaches to distance between the water 

temperatures and nearest SUHI can be calculated. As explained earlier, several approaches with 

subsequent levels of complexity were attempted. In general, I relied on Euclidean Distance and 

Direction Distance tools. I restricted the calculations to each sub-watershed’s boundaries because 

the runoff from the SUHIs flows downstream within them. The distance between water 

temperature points and the nearest SUHI were not restricted within the sub-watershed when the 

measurement point was located within a river’s tidal section because there are many sub-

watersheds upstream that flow into the river. 

For the first approach, the distance-zero approach, two ways were available to establish 

whether the water temperature points were contained within a SUHI or not. Both are described in 
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Figure 22. The first way requires the omni-directional Euclidean distance tool, which outputs a 

raster surface that depicts distance away from the closest SUHI for each pixel (see Figure 23). 

Then, the extract multi values to points tool is run in order to assign distance values to a field in 

the attribute table of the water temperature points. Then, the select by attributes tool is used on 

that field to select the Euclidean distances that are at 0 meters (i.e., are contained within a SUHI); 

the reverse selection provides the water temperature points that are not contained within a SUHI. 

A new attribute table field us then created that classifies whether the water temperature point is 

contained within a SUHI or not. The second way to identify distance 0 or water temperature 

points contained within a SUHI is to use the intersect tool. 

 
Figure 22: This flow chart shows the first distance approach’s workflow. There are two methods 

to finding the no-distance between water temperature points and SUHIs; the first option is used 

in this case. 
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Figure 23: This map shows the distance from a pixel to the nearest SUHI for all of the areas in 

the study area. If the location is within a SUHI, it is on the green side of the color scheme in the 

legend with a distance of 0 meters. 

 

The second approach, the omni-directional distance, between water temperatures and 

SUHIs is to do what was listed above as a pre-step to the first method (distance-zero) (Figure 

24). The Euclidean distance tool is used to get a raster surface of the distance away from SUHIs. 

The value is extracted to the water temperatures points through the extract multi values to points 

tool which gives the distance in meters how far a water temperature point is from its nearest 

SUHI. 
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Figure 24: This flowchart shows the second distance approach’s workflow of finding the nearest 

SUHI to a water temperature point with the omni-directional distance approach. 

 

For the third approach, the more complex upstream/downstream distance approach, 

where the nearest SUHI distance that is upstream from a water temperature point is calculated, 

three methods are attempted. Not all of them worked. Those methods are described in the 

flowchart in Figure 25.  

 

Figure 25: This flowchart shows the third distance approach’s workflow of what was tried before 

getting to a method that worked for finding the nearest SUHI upstream from a water temperature 

point. The first three methods did not work, but the last one did. 

 

The first method used the watershed tool, but this tool’s output was not accurate upon 

inspection so it was rejected. The second method used the least cost path tool similar to the 

approach used by Sechu et al. (2021). This tool resulted in an error due to a failure in the 

distributed raster analytics operation step of the tool. While this tool could have been performed 

one pair of points at a time within each sub-watershed separately, this would have taken too 

much time, so it was rejected. For the third method, an array of tools was used to find the 

upstream area through a trace network, which traces the upstream stream network from a point to 
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find the streams flowing into that point. A smaller work area of a few sub-watersheds is used to 

see if the tool works at a faster pace. A trace network was created with the trace network tool, 

then the enable network topology tool was used, which failed when the whole study area is used. 

Next the trace tool was run, but it resulted in error due to too many “dirty areas” found within the 

trace network. The data could be cleaned in order for this tool sequence to work, but with this 

high volume of data it would not have been cost-effective. 

The fourth method of this approach is the approach that was ultimately successful. This 

method required the manual calculations of the upstream distances. In practice, this consisted in 

looking at the water temperature locations one at a time while using the stream polylines and the 

slope derived from the DEM to determine which SUHIs are upstream from that location or group 

of points. The direction distance tool was used to find the distance in meters between the water 

temperature points and the nearest upstream SUHI. While this approach was time consuming, it 

was easy to understand to control for quality. A set of rules were developed to help determine the 

nearest upstream SUHIs. These are listed in the following sentences, and as discussed later in the 

paper can serve as a starting point for future automation of the calculation. 

The first rule is that if the SUHI is upstream (having a higher stream order) from the 

water temperature point, then the direction distance tool is used manually. The second rule is that 

if the water temperature point is on land (in a stream), then use the direction distance tool on the 

nearest SUHI within the same sub-watershed with a higher slope. The third rule is that if the 

water temperature point is on water (in a wide river or the Chesapeake Bay), then use the 

direction distance tool on the nearest SUHI within the same sub-watershed or upstream sub-

watershed if there are no SUHIs in the direct sub-watershed. The fourth rule states that if no 

SUHI is upstream from the water temperature point, then leave the value null. Lastly, the fifth 
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rule says that if the water temperature point is contained within a SUHI, then put the value at 0 

meters. 

3.2.4 Flowchart Steps 8 and 9 

After the distances are calculated, scatter plots and box plots are created to establish the 

association between the water temperatures at the locations measured and its distance to the 

nearest SUHI location. The water temperature datapoints in degrees Celsius are on the y-axis 

while the distance in meters to SUHIs and other variables are on the x-axis. The scatterplots give 

the r-value, which is the Pearson Correlation. This is the strength of correlation between each of 

the two variables being compared. The closer to -1 or +1 it is, the higher the strength of 

association for those variables. The closer to 0 the values are, the lower the strength and the 

higher the randomness the correlation is. Additionally, a multiple linear regression in Excel is run 

to fit the pairs of variables being compared to a line and see how the dependent variable changes 

as the independent variable changes with the R-Squared value. An exploratory regression is also 

run in ArcGIS Pro to find more statistical information. Variables such as whether the data is in a 

stream/river or the bay, distance to shoreline, and the depth of the water for the water 

temperatures where it is known are regressors to see how it relates to the trend found. 

The box plots are created to describe the data variables such as the distance-zero 

approach, categories of water temperatures, and classes of LCZs to the water temperature. The 

parameters displayed in the box plot are the minimum, first quartile, median, third quartile, 

maximum, and outliers. In addition, the water temperature averages are added to the graph to add 

more depth to the summary of each data variable for the water temperature. 

3.2.5 Categories of Upstream/Downstream Relationships 
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The water temperature points are categorized into six classes depending on where the 

SUHIs are in relation to them within each sub-watershed. The water temperature point categories 

are described as: 1) contained within a SUHI; 2) SUHI upstream and downstream; 3) SUHI 

upstream only; 4) SUHI downstream only; 5) within a wide river with a SUHI; and, 6) No SUHI 

upstream and downstream or in the sub-watershed (see Figure 26). The water temperature data is 

categorized to assess how the average and range of the temperature increases or decreases for 

each case scenario. 

 

Figure 26: These images of water temperature points in different situations illustrate each of the 

six categories created. 1 = red, 2 = blue, 3 = green, 4 = purple, 5 = orange, and 6 = yellow. 

 

 SUHIs downstream do not have influence on the water temperatures upstream from them. 

So, categories 2 (SUHIs upstream and downstream) and 4 (SUHI downstream only) are 

combined to compare just category 3 (SUHI upstream only) to both situations that have SUHIs 

downstream present. 
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4 Results, Analysis, and Discussion 

ArcGIS Pro and Microsoft Excel are used to calculate the results and evaluate the 

relationships between water temperature and the three different distance approaches. Box plots 

and scatter plots are the main form of conveying data results (see Figures 27 through 37). 

Additionally, the statistics retrieved from Excel’s multiple linear regression and ArcGIS Pro’s 

Exploratory Regression tool were presented. See Tables 2 through 4 for the output values of 

these statistical tests. 

4.1 Distance Approaches Results 

The box plots and scatter plots show the spread of data and trend between two different 

variables, respectively. A few of the boxes and points in these graphs have been symbolized by 

different characteristics to visualize and understand the data. 

The first few graphs’ results are for the distance approaches. Figure 27 below displays the 

first distance approach results (distance-zero or contained within SUHI). Each box plot split into 

two groups for the water temperature points: within a SUHI and outside a SUHI. 

 

Figure 27: This box plot shows the maximum, third quantile, median, first quantile, and 

minimum of water temperature along with the mean in degrees Celsius for the points not within a 

SUHI vs. the points contained within a SUHI. 
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For the first distance approach that looks into water temperatures split into whether the 

point is within a SUHI or not, the average water temperature is higher for the group that is not 

within the SUHIs. That average is 26.61147 °C while the average for the water temperature 

points within a SUHI is 24.56889 °C, which is a little over 2 °C apart (see Figure 27 above). The 

regression coefficient for this relationship is -1.226597188 while the R2 value is 0.007788809 

and the r-value is -0.088254231. The coefficient and r-value have the same negative sign when 

the R2 is positive; they all show a weak relationship with the low coefficient and close-to-zero 

values due to the categories not portraying a pattern with the water temperature. This does not 

follow what is expected with the hypothesis. However, the range of water temperature is longer 

for the group that is contained within SUHIs, which shows that there are some higher water 

temperatures when inside SUHIs. 

Figure 28 below shows the scatter plot for the second distance approach between the 

water temperatures and their nearest SUHI omni-directionally. 

 

Figure 28: This scatter plot shows the linear relationship between water temperature in degrees 

Celsius to the nearest omni-directional SUHI in meters. 
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The second distance approach finds the distance to the nearest SUHI omni-directionally 

in meters. There is a majority of the data points clustered in the distances lower than 2,000 

meters. The scatter plot that displays this relationship has a R-Squared value of 0.03, which 

means the line of best fit had very little connection between the two variables; only 3% of the 

variation was explained. The regression analysis output an R2 value of 0.016239136, which 

rounds up to 0.02 and is close to the 0.03 listed in the scatter plot. The regression coefficient is -

0.000206547 and the r-value is -0.127432868; both the coefficient and r-value show a negative 

weak relationship which is explained by the slightly negative slope of the scatter plot in Figure 

28. This approach takes into account the nearest SUHI whether it may be upstream or 

downstream; the downstream waterways do not directly influence a water temperature point that 

is upstream from it, so the mixed results are expected. 

Figure 29 presents the scatter plot for the third distance approach between the water 

temperatures and their nearest SUHI upstream from that point symbolized by classes of depth for 

the known water temperature depths. 
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Figure 29: This scatter plot is the same as Figure 28 above, but it is symbolized and classified by 

the depth of the water temperature that was taken. 

 

For the third distance approach, the water temperature is compared to its nearest upstream 

SUHI distance in meters and has a cluster of data in the distances lower than 5,000 meters. The 

R2 value of the scatter plot is 0.02 while the regression’s R2 is 0.02292 that rounds to 0.02 as 

well, which means the correlation between the two variables had very little connection or 

variation shared. The regression’s coefficient is -0.00006892 while the r-value is -0.019534627; 

both are negative and weak due to the relationship between water temperature and the upstream 

distance to SUHIs being slightly sloped downward with warmer temperatures being closer to 

SUHIs. 

However, for both the second and third distance approaches, the scatter plots showed a 

slightly negative slope in the trendline, which minutely supports the hypothesis where the 

warmer temperatures are closer in distance. A majority of the water temperatures clustered are 

where the depths are shallow while the deeper water temperatures are farther away from the 

SUHIs. This may be due to the Chesapeake Bay being deeper and farther away from land. 

4.2 Upstream/Downstream Category Analysis Results 

The water temperatures are categorized into 6 categories, then further combined to make 

5 categories (category 2 went into category 4). The distribution of the water temperatures within 

these categories were displayed in boxplots (see Figure 30 and Figure 31 below). Figure 32 is the 

same 5 categories from Figure 31 but split into two groups based on whether the water 

temperature point was in a stream/river or the bay. The following paragraphs discuss these 

categorizations. 
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The water temperature categories are listed as the water temperatures being 1) contained 

within a SUHI, 2) SUHI upstream and downstream, 3) SUHI upstream only, 4) SUHI 

downstream only, 5) within a wide river with a SUHI, and 6) No SUHI upstream and 

downstream or in the sub-watershed. When looking at the box plot of the six categories (see 

Figure 30), the lowest water temperature average is 24.70234 °C when the point is contained 

within a SUHI. This is an unexpected result because it is the opposite of what the hypothesis 

claimed; this does not support the hypothesis. The rank of the averages from least to greatest by 

category is 1, 3, 6, 2, 4, and 5.  

 

 

Figure 30: This box plot shows the maximum, third quantile, median, first quantile, and 

minimum of the water temperatures along with the mean in degrees Celsius for each category 1 

through 6. 

 

The water temperature categories are re-evaluated and category 2 is combined into category 

4 to make a total of five categories. This is done to group the categories that contain SUHIs 

downstream from a water temperature point. Figure 31 shows the box plots for these five 

categories; the only mean that changes is category 2 & 4 which are one category. Its new average 
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is 25.63874 °C which is lower than what it was before because category 2 brings it down. The 

new ranking of categories from least to greatest is 1, 3, 6, 2 & 4, and 5, which does not change 

the order. 

 

 

Figure 31: This box plot shows the maximum, third quantile, median, first quantile, and 

minimum of water temperatures in degrees Celsius for categories 1, 3, 2 & 4, 5, and 6. Notice the 

blue category 2 data is combined into the purple category 4 class. 

 

Furthermore, Figure 32 splits the data and categories in Figure 31 by the body of water it 

inhabits; the two groups are stream/river and bay. Category 1 does not have any water 

temperature points within the Chesapeake Bay because SUHIs are only on land; therefore, there 

is not an average or box plot for the bay in that category. Categories 3 through 5 have a higher 

water temperature average in the streams/rivers group than the bay group. This shows that the 

shallower waters are warmer when they contain a SUHI somewhere in the sub-watershed. 

Category 6 has the higher water temperature average within the bay group instead of the 

stream/river group; this means that there is a lower water temperature average for the streams 

and rivers that do not have a SUHI in their sub-watershed. This supports the hypothesis of this 

paper. One potential reason why the data spread out the way it did is that the majority of the 
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water temperature data points fall under category 2 & 4. The other categories do not have as 

many data points to have as much of a solid outcome as category 2 & 4. 

 

 

Figure 32: This box plot shows the maximum, third quantile, median, first quantile, and 

minimum of water temperature in degrees Celsius for categories 1, 3, 2 & 4, 5, and 6 split into 

two groups. The groups are if the water temperature point is in a stream or river or in the 

Chesapeake Bay. 

 

4.3 Other Variables 

 The four following scatter plots in Figures 33-36 show the relationship between water 

temperature and elevation, distance to the shore, NDVI, and NDBI, respectively. They are color 

coded by the 5 categories of water temperature situations. The following paragraphs discuss the 

scatter plots. 

The scatter plot for the correlation between water temperature and elevation has an R-

Squared value of 0.12 in the scatter plot and 0.174916568 in the regression, so it is more 

connected than the other scatter plots (see Figure 33). If the elevation is higher, then the water 

temperature is cooler (Choi et al. 2014). The regression’s coefficient is -0.013535057 while the r-

value is -0.418230281. They are both negative because the slope goes downwards (because 
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higher elevations have cooler temperatures), but the r-value shows a moderately strong trend due 

to it being almost halfway to -1.0. 

 

 

Figure 33: This scatter plot shows a stronger relationship with a steeper slope between the water 

temperatures in degrees Celsius and elevation in meters. The colored classifications match the 

different water temperature point categories 1 (red), 3 (green), 2 & 4 (purple), 5 (orange), and 6 

(yellow). 

 

In the beginning of the paper, the water temperature points were sized proportionally and 

color-coded in Figure 5. There was a clear pattern that the warmer water temperatures were near 

the shoreline; Dihkan et al. (2015) mention that coastal cities are more vulnerable to SUHI 

impacts. Figure 34 displays the trend between water temperatures and their distance to the shore. 
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Figure 34: This scatter plot shows the water temperature in degrees Celsius compared to its 

distance to the shoreline of the Chesapeake Bay in meters. The colored classifications match the 

different water temperature point categories 1 (red), 3 (green), 2 & 4 (purple), 5 (orange), and 6 

(yellow). 

 

The scatter plot for the relationship between water temperatures and their distance to 

shore had an R-Squared value of 0.10 while the regression’s value had a value of 0.16480232, so 

the line of best fit is almost as varied as the water temperature and elevation model. There is 

10%, or 16% with the regression, variation between these two data variables. The regression’s 

coefficient is -1.8701E-05, which is very small while the Pearson’s r-value is -0.40595852. 

Similar to the water temperature and elevation relationship, the water temperature and distance to 

shore relationship is moderately strong with its r-value and the r-value and coefficient are both 

negative like the slope of the line of best fit. 

The water temperature vs. NDVI relationship showed a slightly negative slope with an R-

Squared value at 0.11 in the scatter plot and 0.1079 that rounds to 0.11 in the regression analysis, 

which means there is little connection between the two variables but NDVI’s line of best fit is 

one of the higher ones. The regression coefficient is -10.72394 while the r-value is -0.427231349 
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both are negative due to the slope and strong due to the high coefficient and moderate r-value. 

The NDVI values are higher where the water temperatures are cooler; the vegetation is healthier 

and greener when the values are high (see Figure 35). NDVI is the third strongest variable in 

relation to water temperature. 

 

Figure 35: This scatter plot shows the water temperature in degrees Celsius compared to that 

point’s normalized difference vegetation index value. The colored classifications match the 

different water temperature point categories 1 (red), 3 (green), 2 & 4 (purple), 5 (orange), and 6 

(yellow). 

 

The opposite pattern is seen for NDBI because instead of greenery being a higher value, 

it is a lower value. Macarof and Statescu (2017) stated that “NDBI is an accurate indicator of 

surface UHI effects and can be used as a complementary metric to the traditionally applied 

NDVI.” When the NDBI value is higher, more built-up and urban, the water temperatures are 

warmer (see Figure 36). This is expected and supports the hypothesis that the water temperatures 

are warmer when you get closer to SUHIs, which consist of built-up land covers. These findings 

with NDVI and NDBI relate to what Kaplan et al. (2018) concluded in their study. 
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Figure 36: This scatter plot shows the water temperature in degrees Celsius compared to that 

point’s normalized difference build-up index value. The colored classifications match the 

different water temperature point categories 1 (red), 3 (green), 2 & 4 (purple), 5 (orange), and 6 

(yellow). 

 

 The water temperature and NDBI scatter plot has an R2 value of 0.07, which is what the 

regression’s value is rounded up from 0.06551. The regression coefficient is 17.31023 and the r-

value is 0.388414478; these values are both positive because the slope of the line of best fit is 

positive this time and the relationship is direct. The coefficient is high while the r-value is 

moderately strong, so this relationship is strong although it is on the other end of the spectrum 

with a positive relationship. 

4.4 Local Climate Zones Results 

 The final graphic result is the box plot that shows the water temperature distribution and 

averages for each LCZ land class that is within the study area. LCZs describe the climate zone of 

a local area. Figure 37 shows the water temperature by LCZ classes; the study area only includes 

9 of the 17 land classes. The ranking of LCZ water temperature averages going from least to 
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greatest are 11 (dense trees), 12 (scattered trees), 9 (sparsely built), 8 (large lowrise), 6 (open 

lowrise), 10 (heavy industry), 17 (water), 5 (open midrise), and 14 (low plants). 

 

 

Figure 37: This box plot shows the different local climate zones within the study area and their 

maximum, third quantile, median, first quantile, and minimum of water temperature in degrees 

Celsius. The LCZ land classes are 5 = Open Midrise, 6 = Open Lowrise, 8 = Larger Lowrise, 9 = 

Sparsely Built, 10 = Heavy Industry, 11 = Dense Trees, 12 = Scattered Trees, 14 = Low Plants, 

and 17 = Water. 

 

The ranking output of the LCZs is expected with the exception of the highest water 

temperature average being within the low plants land class, which is unexpected to some degree. 

Vegetative land covers like forest cool down an area due to the cooling effect of shade that the 

trees bring, but low plants do not have as much shade hence why it is warmer. What is surprising 

is that the low plants have a higher water temperature average than the heavy industry land class. 

There may not be enough water temperature points within each LCZ land class, so this could be 

a potential cause of the unexpected results that limit the pattern of water temperature average. 

4.5 Pearson Correlation and Multiple Linear Regression Results 
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The Pearson Correlation test was calculated in Excel with the =PEARSON function to 

gather the r-values for the selected variables in Table 2. The strongest, least random variables are 

NDVI, elevation, distance to shore, and NDBI with r-values of -0.427, -0.418, -0.406 and 0.388, 

respectively. These values mean that the corresponding variables are moderately strong. NDVI, 

elevation, and distance to shore have a negation relationship (inverse) while NDBI has a positive 

relationship (direct). The other confounding factors such as distance to urban land cover and 

depth are positive, random correlations with water temperature. The depth data was incomplete 

so this may be why the r-value is closer to zero. 

 

Table 2: Excel’s Pearson Correlation test output ranked from most positive to zero to most 

negative (blue to white to red) 

 

The multiple linear regression results from Excel are in Table 3. The variables that were run 

are listed under the variable column. The R-Squared, coefficients, standard error, and P-value are 

the parameters selected from the output to display in the table. Also, the exploratory regression 

results from ArcGIS Pro are in Table 4. The percentage of significance and the overall Adjusted 

R-Squared, which is more unbiased and better to use than the normal R-Squared, is listed for the 

9 variables that are included. 

Water Temperature vs. Pearson Correlation r-Value

NDBI 0.388414478

Depth 0.139004198

Distance to Urban NLCD 0.033191568

Distance to Upstream SUHI -0.019534627

Not Within SUHI/Within SUHI -0.088254231

Euclidean Distance to SUHI -0.127432868

Distance to Shore -0.40595852

Elevation -0.418230281

NDVI -0.427231349
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Table 3: Excel’s multiple linear regression output. 

 

For the multiple linear regressions run in Excel, all of the variables that underwent the 

process had R-Squared values that were small. The three variables that had a stronger connection 

and variation compared to the rest were elevation, distance to shore, and NDVI. Their R-Squared 

values were 0.174916568, 0.16480232, and 0.1079, respectively, while depth, distance to urban 

land cover, not within SUHI/within SUHI, Euclidean distance to SUHI, distance to upstream 

SUHI, and NDBI had values around 0.0002-0.02 going from least to greatest. These low values 

show that these confounding factors that were looked at in this study are randomly related to 

water temperature.  

For the exploratory regression run in ArcGIS Pro, the summary of the variables’ 

significance is calculated. The variables that had 100.00% significance are elevation, Euclidean 

distance to SUHI, and NDVI with upstream distance to SUHI coming in close at 99.22%. The 

lowest significance was with the within SUHI/not within SUHI variable at 30.86% because that 

variable was a category and did not show a strong r-value. Flow accumulation was another 

confounding factor looked at in this regression; it ended up with a significance of 81.25%, which 

is high. Table 4 lists the significance mentioned for the selected variables. The overall Adjusted 

Regression Statistics

Variable R Square Coefficients Standard Error P-value

Not Within SUHI/Within SUHI 0.007788809 -1.226597188 0.882675222 0.165896

Euclidean Distance to SUHI 0.016239136 -0.000206547 0.000102498 0.044978

Distance to Upstream SUHI 0.02292 -0.00006892 8.46E-06 5.44E-16

Distance to Shore 0.16480232 -1.8701E-05 2.68418E-06 2.95E-11

Distance to Urban NLCD 0.00110168 7.43993E-05 0.000142835 0.602921

Elevation 0.174916568 -0.013535057 0.001874243 6.4E-12

NDBI 0.06551 17.31023 1.23443 2.20E-16

NDVI 0.1079 -10.72394 0.5828 2.20E-16

Depth 0.0002148 -0.01827 0.1666 0.273
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R-Squared was 0.23 which is the highest line of best fit seen in this study. However, values over 

0.50 have more variation shared between the variables. 

 

Table 4: ArcGIS Pro’s exploratory regression output. 

 

4.6 Discussion 

The hypothesis for this paper is that the closer a water temperature point is to a SUHI, the 

warmer the water temperature is. Three distance approaches are developed to explore different 

pathways to establish this relationship. Their results are discussed further in the following 

sections along with the other variables that supplement them. 

4.6.1 Distance Approaches Discussion 

The distance relationships explored show that when a water temperature point is within a 

SUHI, the water temperature is cooler than with the SUHI upstream of the point. A possible 

explanation for this distance pattern is that there is a spatial lag to the SUHI’s influence on water 

temperatures; this is a theory proposed by me. Two pieces of literature that use a similar theory 

are Arrigoni et al. (2008) with lagged water temperature and Wrzesiński and Graf (2022) with 

allochthonicity. This means that the area downstream the SUHIs are influenced by the SUHIs 
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more than when it is directly within the SUHI (Cuba et al. 2019). It takes a distance or certain 

amount of water for the warmer water temperature to fully flow and influence the water 

temperature point downstream from the SUHI. Furthermore, the cooler water temperatures 

upstream from a SUHI flow into the SUHI’s water temperature points which may make it a 

lower temperature. Groundwater flows into streams as well and is another confounding factor to 

take into account (Arrigoni et al. 2008). Kaplan et al. (2018) find that UHIs within their study 

area were found in many suburban areas; this supports the spatial lag theory since sub-urban 

areas are outside of heavily developed urban centers. 

A difficulty was encountered when calculating the nearest upstream SUHI distances. The 

method was done manually, so this Capstone study benefits from an automation of code that can 

find and measure the nearest upstream SUHI efficiently. 

4.6.2 Category Discussion 

The water temperature categories to elaborate further are 5 and 6. Category 5 is the water 

temperatures within wide rivers. It is a separate category because they have streams flowing into 

them and more than one sub-watershed influences that point. This category has the highest 

average water temperature at 28.23338 °C, which is not too surprising since all the streams going 

through SUHIs upstream flow to that point. Category 6 is the water temperature points that don’t 

have a SUHI upstream and downstream or in the sub-watershed, so this is expected to be the 

coolest temperature. But it is the third least water temperature average, which is a surprising 

result. This may be higher ranked because it mainly includes the water temperatures points 

within the Chesapeake Bay. The bay has all the streams and rivers flowing into it and mixing the 

deep and tidal waters while evaporating is occurring, so numerous water temperatures are 

influencing that one point. 
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4.6.3 Other Variables Discussion 

Many variables are explored in this study such as elevation, NDVI, NDBI, NLCD, depth at 

some points, flow direction, and flow accumulation. One major limitation with the collected 

datasets was that not all of the water stations had depth data with their measurements. Other 

factors to take into account include wind speed and solar radiation as mentioned in Yang et al. 

(2020), weather events that affect satellite imagery, dissolved oxygen content like explored in 

Harvey et al. (2011), and biota influences like algae blooms. Additionally, there are 

anthropogenic factors that are stressors, which include “increased watershed imperviousness, 

destruction of the riparian vegetation, increased siltation, and changes in climate” (Nelson and 

Palmer 2007). 

The scatter plot for the correlation between water temperature and elevation illustrates that 

the higher the elevation is, the cooler the water temperature is. This is understandable and 

expected because there are typically cooler temperatures at higher altitudes like Shenandoah 

National Park and its mountain range. Bechtel et al. (2019) mention topography as having an 

influence on the SUHIs. The NDVI values are higher while the NDBI values are lower where the 

water temperatures are cooler (see Figures 35 and 36). This was an expected result, which 

supports the hypothesis that the cities, where there are SUHIs, are where warmer water 

temperatures are located. 

The other confounding factors not investigated in this study that play a role in SUHI 

development are important to consider to get the whole picture and to control for all influences 

on the environment that deal with the study. Wind speed is a factor because wind can cool down 

an area with evaporation/evapotranspiration or move the heat elsewhere. The LST data is from 

Landsat satellite imagery and if there are weather events like droughts, extreme heat, and heavy 
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precipitation, they have an effect on the values shown in the remote sensing bands. For example, 

thermal band 10 which is turned into the LST map in Figure 9 has areas where it is darker and 

cooler (the second bump of the study are in the north and on the western tip) or brighter and 

warmer (the southwestern portion of the study area). The darker, cooler areas may be due to 

heavy precipitation and the brighter, warmer areas may be due to drought. The southwestern 

portion of the study area that is brighter and warmer (red in Figure 9) is the agricultural fields 

outside of Lynchburg. This SUHI output was not expected and is a limitation to understanding 

the relationships explored. 

Next, the dissolved oxygen content within water influences its temperature. If the dissolved 

oxygen is high, then the assumption is that oxygen is being introduced from the atmosphere 

because the water is flowing fast, and so the water is cooler. In comparison, if the dissolved 

oxygen is lower, then the water is warmer. Algae blooms affect the amount of dissolved oxygen 

in a body of water; the more algae there is, the more decomposition and decreased dissolved 

oxygen content. Algae blooms circulate in a positive feedback loop, which means that it gets 

worse and accumulates as time goes on. It is important to take into account all of the different 

factors to see the true outcome of the water temperature vs. proximity to SUHI relationship. 

4.6.4 Local Climate Zones Discussion 

Demuzere et al.’s (2022) global map was used to obtain the LCZs for the study area, but 

there is a more accurate way of defining these LCZs. Demuzere et al. (2021) have a methodology 

that creates the LCZs and is what created the global map of LCZs. However, it would have been 

better to carry out this methodology for only the study area in order for it to be portrayed to the 

best of the method’s abilities. Demuzere et al.’s (2021) methodology uses training areas created 

by the user for each LCZ which becomes the input for their LCZ Generator tool. Bechtel et al. 
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(2019) finds that using LCZs with SUHIs is strongly recommended due to the significant LST 

differences found between built-up and natural land classes. 

Due to time constraints, this study did not create the training areas to be specific to the study 

area and instead used Demuzere et al.’s 2022 version of the global map of LCZs. The LCZs are 

used to validate the SUHIs identified in this study using the overlap between the two variables. 

Given more time, this study could show stronger distance relationships seen in the graphs if only 

the validated SUHIs were used to make the water temperature and distance relationship 

correlations. The relationships and analysis presented in this paper may have been impacted by 

the decision to use the SUHIs including the non-LCZ validated areas. 

4.6.5 Pearson Correlation and Multiple Linear Regression Discussion 

The three variables that had a stronger connection and variation compared to the rest were 

elevation, distance to shore, and NDVI. The P-values are significant for the Euclidean distance to 

SUHI, distance to Shore, distance to urban NLCD, and elevation (DEM) due to the value being 

under 0.05. The values that are not significant are the first distance approach’s no SUHI/SUHI 

zero-distance, distance to urban land cover, and depth. The first distance approach hadn’t 

supported the hypothesis at all, so its insignificance is not surprising. The depth data was not 

available for all water temperature points, so only certain measurements are represented, so 

insignificance is not surprising for that variable either. The other variables that have significance 

percentages above 50% from greatest to least are distance to nearest urban NLCD, NDBI, FA, 

and distance to nearest shore. The last one is the no SUHI/SUHI zero-distance approach with a 

significance percentage of 30.86%. The overall Adjusted R-Squared is 0.23, which is the 

strongest correlation found within the data; it takes into account many variables to explain the 

outcome. Furthermore, both Excel’s multiple linear regression and ArcGIS Pro’s exploratory 
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regression found the same results that elevation is an important factor in water temperatures 

while the first distance approach’s results are not significant. 

4.7 Future Work 

There is room for future work in this research study given more time. To make this data 

better, it would be good to have many summers averaged together for the Landsat tiles and water 

temperature points. The data should come from July and August and not include the month of 

June due to its cooler temperatures; the summer season does not start until late June. This enables 

more data to be collected for the higher elevations in the study area. Additionally, calculating the 

variables such as LST, NDVI, and NDBI individually per Landsat tile would make the tiles blend 

better. The depth data has many null values from the NWQMC source where the water 

temperature datapoints are derived. It would be an improvement if data was found with all the 

sources having depth measurements. The depth is an important influencer on water temperature 

data because if it is taken at a shallow depth, then the temperature may be warmer due to it 

having increased exposure to the sun’s rays and less density. Knowing the total depth to the 

bottom of a body of water also helps because elevation data does not cover bodies of water such 

as the Chesapeake Bay and bathymetric data was not found for this study. All the factors that 

influence SUHIs and water temperatures need to be covered so that it takes into account the 

environment and sets controls in order to see a real pattern in the data. A major limitation in this 

research was the datasets available. 

In the future, with more time, it is recommended to create training areas for classifying the 

LCZs with Demuzere et al.’s (2021) methodology. Training areas created by the researcher for 

only the study area is better than using the global map of LCZs that are generalized. 

Furthermore, using the urban LCZ validated SUHIs with the methodology and analysis would be 
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an improvement since this study only identifies them instead of using them. Another distance 

approach that was not finished may have showed a different relationship between water 

temperatures; this approach was calculating the upstream acreage of SUHIs that accumulate and 

influence the corresponding water temperature point. There may be other distance approaches to 

explore as well as scientific literature on SUHIs and their impacts on water increase. 

5 Conclusion 

This study aimed to identify what the distance relationship is between water temperatures 

and their proximity to SUHI locations. It is found that there are land surfaces within the lower 

Chesapeake Bay watershed from the summer 2019 that exhibit the characteristics and 

measurements of surface urban heat islands. Urban centers including but not limited to 

Richmond, Virginia Beach, Norfolk, Fredericksburg, Newport News, Charlottesville, and 

Lynchburg are dense areas of SUHIs. However, the hypothesis of water temperatures being 

warmer when closer to SUHIs is not supported for the lower Chesapeake Bay watershed in 

Virginia and some areas in West Virginia, Maryland, and Delaware. There is no strong linear 

pattern between water temperature and the nearest SUHIs based on the r- and R-Squared values 

found for each distance relationship, although the variables of elevation, NDVI, and Euclidean 

distance to SUHIs have a strong significance to the water temperatures measured. Factors not 

addressed in this study’s methodology need to be taken into account in the future along with 

using the validated SUHIs in order to get a more accurate correlation between the water 

temperatures and their distance to SUHIs. Additionally, the decision to use all SUHIs identified 

and not only the ones LCZ validated may have influenced the outcome of the relationships. 

The parts of this methodology that worked were the process of identifying SUHIs and the 

first two distance approaches (no-SUHI/SUHI and Euclidean distance to SUHIs). These two 
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approaches were easier to obtain through the use of ArcGIS Pro tools. The part that didn’t work 

the best is the last distance approach (upstream distance to SUHIs). This approach was more 

complex, took up a lot of time, and the workflows had to be done manually in order to get the 

distance data needed for the relationship. One thing I would have done differently are to use the 

LCZ validated SUHIs for distance analysis, but this dataset was collected after most of this 

study’s analysis was calculated. Another would be to research data availability for confounding 

factors not explored in this paper such as wind within the study area. Overall, data that holds all 

the necessary SUHI and water temperature influencing factors and newer technology for easier 

tool use could make this study go more smoothly. 
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