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ABSTRACT OF THE DISSERTATION 

A Framework for Investigating Random Ensembles of Structured Ecosystems 

and Quantifying Their Emergent Coarse-grainability 

by 

Jacob Thomas Moran 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2023 

Professor Mikhail Tikhonov, Chair 

 

The interface between statistical physics and theoretical ecology has a long history, 

employing powerful concepts such as ensemble approaches and typicality to study emergent 

properties of ecosystems. This of course raises the question of what ensembles are useful to 

describe the typical behaviors of evolution and ecology, but so far, the traditional context of high-

diversity ecology has considered ensembles of random, unstructured ecosystems. Although much 

insight has been gained in this regime, one naturally wonders how representative are random 

ensembles of real, natural ecosystems that are arguably atypical and highly structured by evolution. 

Moreover, the question of coarse-graining ecosystems has yet to be addressed because the very 

ingredient responsible for predictive coarse-grained descriptions – ecosystem structure – is 

explicitly absent from the current theoretical framework. This dissertation investigates the coarse-

grainability of ecosystems within minimal models that intend to capture the atypicality generated 

by evolution, aiming to establish a conceptual language from which a general theoretical 

framework can be built. 

In the first two chapters, I review the applications of statistical physics in classical models 

of ecology, moving on to then explore the evolutionary consequences of the atypicality that arises 
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from evolution. In Chapter 3, I present a model for investigating random, structured ecosystems, 

enabling me to begin studying the emergent coarse-grainability of microbial ecosystems. In 

particular, I develop the hypothesis that a high strain diversity, despite being nominally more 

complex, may in fact facilitate coarse-grainability, which is maximized when an ecosystem is 

assembled in its native environment. Building on this framework in Chapter 4, I provide a more 

principled approach for defining coarse-grainability by systematically mapping the prediction 

power versus information content of coarse-grained descriptions of ecosystem composition. 

Applying this framework to experimental data, I confirm the diversity-enhanced coarse-

grainability hypothesis and discuss how this effect cannot be reproduced in standard ecological 

models parameterized using random ensembles. Finally, I link these results to the theoretical 

concept of functional attractors of diverse ecosystems. 
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Chapter 1: Background and Motivation 
The sister disciplines, ecology and evolution, have been developing for centuries. With the 

influential quantitative approaches introduced by pioneers like Lotka and MacArthur [1–3], came 

a surge of mathematical theory to ecology. This foundational work served as a conduit for 

importing approaches from statistical physics, starting with the classic papers of May in the 

1970s [4]. Prior to this, most studies within mathematical models of ecology were confined to 

simple ecosystems of low diversity (a few species and resources). However, the natural world 

displays many ecosystems with a rich diversity of species coexisting. Incorporating this naturalistic 

complexity into the current modeling framework of the time was the challenge on which May 

paved progress. 

For modeling large, diverse ecosystems, parameterizing the dynamical equations becomes 

increasingly more complex with the inclusion of more species and environmental factors, 

especially in any thermodynamic limit (e.g., number of species and resources are taken to infinity 

with a fixed ratio). This challenge arises in many other contexts involving complex systems, and 

one influential workaround is to take an ensemble approach from statistical physics, of which 

Wigner’s modeling of heavy atomic nuclei with random matrices is perhaps one of the most 

notable successes of such an approach [5]. An ensemble approach aims to provide a statistical 

sense of possible behaviors produced by the dynamical model of interest by sampling parameters 

from an appropriately chosen random distribution. The key insight then is that patterns that are 

typical to some ensemble of systems are more generalizable and reproducible than the 

idiosyncratic details from any one realization. From this, the hope is that any principles one gleans 

from an ensemble approach are applicable and predictive of specific realizations, assuming a given 
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realization is representative of what is to be considered typical. However, what is considered 

typical depends on the choice of ensemble. In the context of ecology, the standard choice is a 

random, unstructured ensemble of ecosystems [6–13], but natural ecosystems are continuously 

being structured through evolution [14–25]. Therefore, by processes such as natural selection, 

evolution generates ecosystems that would be considered atypical, raising questions such as: which 

ecosystem properties or patterns are captured by random, unstructured ensembles, and which are 

not? How representative are these ensembles of natural populations? 

1.1 Insights from Models of Unstructured Ecosystems 
Recent applications of statistical physics in large-𝑁𝑁 ecology (high-diversity context) have 

primarily focused on predicting emergent statistical trends, such as scaling laws [26] and other 

global patterns. For example, a generalized version of MacArthur’s consumer-resource model, 

where model parameters are drawn randomly from an unstructured ensemble, can qualitatively 

reproduce distributions of community composition observed in ocean microbiome data collected 

across the globe [10]. Work like this serves an important role in highlighting which features 

presented in empirical observations should be considered surprising due to nontrivial underlying 

mechanisms versus those that can be reproduced with simple random models. 

Other work using similar modeling approaches has sought after understanding the relationship 

between ecosystem diversity and stability  [4,27–29]. For example, a recent theoretical study, also 

performed in a random consumer-resource model, demonstrates that incorporating metabolic 

trade-offs in resource consumption leads to highly diverse, yet stable communities with rank-

abundance patterns that resemble those observed in real-world ecosystems [29]. Progress such as 

this contribute to uncovering the principles behind the maintenance of biodiversity in nature; a 

crucial goal for facing climate change [30–34]. 
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In large part, the progress made in the regime of unstructured ecosystems has been motivated by 

the question of diversity and coexistence. Despite the rich biodiversity presented by the natural 

world, intuition from classical theory (i.e., competitive exclusion principle) argues that the 

diversity of community members should be limited by the amount of energy resources [35], but 

this is often violated even in simple, well-controlled environments of a lab [21,22]. Recent theory 

developed in minimal extensions of classic models have proposed plausible mechanisms to 

reconcile this contrast, showing how diversity may emerge from dynamical oscillations and chaos 

[36–39], metabolic trade-offs [29,40,41], or cross-feeding [10,42]. And although natural 

ecosystems are known to be structured in various aspects [14–20,43,44], these models of 

unstructured populations admittedly do capture empirically observed patterns of diversity as 

described above. 

1.2 A New Direction 
Instead of aiming to explain how different eco-evolutionary processes in a given environment 

enable coexistence of a diverse community, I will take the observation that natural communities 

are extremely diverse as my starting point for asking when such diversity can be usefully coarse-

grained for predicting properties of specific communities. In the case of microbial ecosystems, 

communities are complex dynamic systems often composed of hundreds of many interacting 

species. Because of this, expecting the prediction of functional behaviors performed by such 

heterogeneous many-body systems to be generally infeasible would be understandable. And yet, 

strikingly, microbial ecosystems appear to be at least partially coarse-grainable, in the sense that 

some functional observables of interest (e.g., nutrient production) can be predicted by effective 

models with far fewer variables than the number of interacting lineages. For practical purposes at 
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least, systems consisting of thousands of taxa, such as industrial bioreactors, are well described by 

models with just a handful of variables [45,46]. 

Intuitively, the predominant reasoning for why this is possible is that coarse-grainability directly 

follows from the hierarchical structure imprinted by evolutionary descent. Taxonomically then, if 

a community is composed of 100 interacting strains are all close variants of just 10 species that 

can be further grouped into 2 families, it is intuitively plausible for the community to be 

approximated by a model with just several variables. However, recent experiments have shown 

that closely related strains exhibit very different dynamics and interactions in their community 

context [47], revealing taxonomic structure to likely be inadequate to fully explain coarse-

grainability. Ecosystems exhibit other forms of structure at all levels of resolution though, such as 

the distribution of functional traits across taxa [17,48], and this structure has been shown to matter 

both for community-level functions [44,49–54] and for theoretical models to capture empirical 

observations [11]. For example, a random consumer-resource model that incorporates cross-

feeding interactions structured by “universal rules of metabolism” can reproduce a wide range of 

empirical observations [9,11], albeit primarily at the level of broad statistical patterns. Therefore, 

developing a framework to investigate ensembles of structured ecosystems seems necessary to 

fully grasp the concept of coarse-grainability in these systems and tap into its potential for practical 

purposes.  
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Chapter 2: What Evolves is Atypical 
As mentioned in the previous chapter, the mechanisms of evolution generate new structure in 

ecosystems, constantly pushing populations to atypical corners of fitness distributions. This 

chapter explores an evolutionary consequence of this atypicality. See Appendix A for a brief 

demonstration of how evolution generates atypicality in the model I present in this chapter, as well 

as an example ensemble calculation to demonstrate the amenability of the model to analytical 

methods from statistical physics. 

Expression level is known to be a strong determinant of a protein's rate of evolution. But the 

converse can also be true: evolutionary dynamics can affect expression levels of proteins. Having 

implications in both directions fosters the possibility of an “improve it or lose it” feedback loop, 

where higher expressed systems are more likely to improve and be expressed even higher, while 

those that are expressed less are eventually lost to drift. Using a minimal model to study this in the 

context of a changing environment, we demonstrate that one unexpected consequence of such a 

feedback loop is that a slow switch to a new environment can allow genotypes to reach higher 

fitness sooner than a direct exposure to it.  

The work presented in this chapter has been adapted from the following publication:  

Moran J, Finlay D, Tikhonov M. “Improve it or lose it: Evolvability cost of competition 
for expression.” Physical Review E 103, 062402 (2021).  

2.1 Introduction 
The rates of protein evolution are affected by a multitude of factors, including protein-protein 

interactions, stability-based constraints or dispensability [55–64]. However, the strongest single 

determinate appears to be expression level [65,66]. For instance, substantial evidence suggests that 
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lower-expressed proteins are less protected from drift, whereas highly expressed proteins are under 

stronger purifying selection [65–68].  

Conversely, the expression level can itself be affected by evolution, especially for proteins or 

pathways that are dispensable or partially redundant. For example, a protein that is disabled by a 

deleterious mutation becomes a metabolic burden (or may be directly toxic), favoring a reduction 

in expression. 

Since partial redundancy is believed to be widespread [69], this creates a theoretical possibility of 

a feedback loop. Consider an organism with several partially substitutable systems or pathways 

fulfilling a similar function; for example, several metabolic pathways to satisfy its requirement for 

carbon, or several sensing modalities to respond to environmental cues. In these circumstances, it 

seems plausible that the systems used more, being under a stronger selection pressure, would be 

more likely to improve and be used even more. In contrast, the lesser expressed systems could be 

more likely to deteriorate and be used even less (Figure 2.1). 

This process – effectively a “competition for expression” – could be viewed as an extension of 

Savageau's “use it or lose it” principle, and is conceptually similar to the generalist-to-specialist 

transition of ecological specialization [70,71], but is rarely discussed in an evolutionary context. 

One reason, perhaps, is that this intuition appears to predict that highly expressed proteins should 

evolve faster, the opposite of what is observed empirically  [65]. However, as we will show, the 

consequences of such a feedback interaction are more nuanced. 

To do so, we illustrate the feedback loop of Figure 1.1 in a simple minimal model. For highly 

adapted systems depleted for beneficial mutations, we find that the highest-expressed proteins are 

still expected to evolve slowest, in full agreement with the empirical observations. In contrast, for 
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an evolutionary process driven by strong adaptive mutations, e.g. following a strong environmental 

change, the sign of the correlation between expression and evolutionary rate is predicted to 

transiently invert. Moreover, at least in our model, the consequences of the “improve it or lose it” 

feedback include interesting qualitative effects, such as a loss of evolvability caused by an 

environmental perturbation that is too strong. As an example, we demonstrate how a gradual 

change to a new environment can lead to a higher rate of fitness gain than direct exposure. 

 
Figure 2.1 | The “improve it or lose it” feedback loop. In this schematic, 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 are partially 
substitutable systems fulfilling a similar function (e.g., metabolic pathways for alternative sources 
of carbon). Adaptive mutations in the highest-used system 𝑥𝑥 have stronger fitness effects than 𝑦𝑦, 
𝑧𝑧 (arrow 1). The stronger selection pressure makes system 𝑥𝑥 more likely to mutate and improve 
(arrow 2). This improvement in 𝑥𝑥 allows the organism to rely on it even more (arrow 3), 
completing the loop. 

 

2.2 Model and Context 
To study the “improve it or lose it” feedback loop, we need an evolutionary model that explicitly 

includes a notion of usage/expression. For this reason, we adopt the toolbox model from Ref. [72], 

summarized in Figure 2.2A. 

Briefly, we think of a genotype as encoding a set of 𝐾𝐾 systems that can be used at different levels 

to optimize the fitness of the organism in a given environment. Mathematically, we represent the 
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𝐾𝐾 systems as basis vectors {�⃗�𝛿𝜇𝜇} (𝜇𝜇 = 1 …𝐾𝐾) and the environment as a target vector 𝛿𝛿�⃗  in an abstract 

𝐿𝐿-dimensional space (which can be interpreted as the phenotype space [72]. The fitting problem 

can be written as, 

�𝑎𝑎𝜇𝜇� = argmin�𝑎𝑎𝜇𝜇≥0� �𝛿𝛿�⃗ −�𝑎𝑎𝜇𝜇�⃗�𝛿𝜇𝜇
𝜇𝜇

�, 

(2.1) 

where the environment-dependent coefficients {𝑎𝑎𝜇𝜇} can be interpreted as the extent to which the 

organism relies on a given system �⃗�𝛿𝜇𝜇 in 𝛿𝛿�⃗ . The quality of fit, which these {𝑎𝑎𝜇𝜇} optimize, can then 

be interpreted as the fitness of the genotype 𝐺𝐺 = {�⃗�𝛿𝜇𝜇} in environment 𝛿𝛿�⃗ : 

𝐹𝐹�𝐺𝐺,𝛿𝛿�⃗ � = −min�𝑎𝑎𝜇𝜇≥0� �𝛿𝛿�⃗ −�𝑎𝑎𝜇𝜇�⃗�𝛿𝜇𝜇
𝜇𝜇

�. 

(2.2) 

In Ref. [72], the coefficients {𝑎𝑎𝜇𝜇} are called “expression level”; however, conceptually, they 

correspond more closely to the intuitive notion of “usage”. Indeed, a larger 𝑎𝑎𝜇𝜇 in this model 

corresponds to a system whose deletion would have a stronger fitness effect, rather than one 

present in a larger copy number (although in practice, the two properties are, of course, correlated 

[62]). Throughout this work, we refer to {𝑎𝑎𝜇𝜇} as usage coefficients. 
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Figure 2.2 | A context to study the “improve it or lose it” feedback loop. (A) In the toolbox 
model, a genotype is a matrix representing the available “systems” an organism can (linearly) 
combine to approximate the optimal phenotype required by the environment, 𝛿𝛿�⃗ . The coefficients 
of the best approximation are interpreted as usage levels 𝑎𝑎𝜇𝜇, serving as a proxy for expression. 
Matrix elements are chosen to be binary (0 or 1) so that mutations in the evolutionary process can 
be implemented as bit flips. (B) Fitness trajectories of initially random genotypes evolving under 
𝛿𝛿�⃗1 before switching to 𝛿𝛿�⃗ 2 a distance Δ𝛿𝛿 away. We choose to study the feedback loop and its 
consequences during the early-time dynamics after switching (gray region). 

 

For simplicity in simulating evolution within this model, we assume that mutations are rare and 

selection is strong, so that we need only track the evolutionary trajectory of a single genotype [73]. 

In each simulation step, we enumerate all beneficial point mutations of the current genotype by 

performing all single bit-flips of the genotype matrix. We then pick one of these mutations as the 

first to rise to fixation; in this parameter regime, selection only considers beneficial mutations, and 

fixation probability is proportional to a mutation's fitness effect. We note that, when evaluating the 

fitness of mutants, the usage coefficients are optimized for the mutated genotype, and thus 

typically differ from those of the parent. This corresponds to the assumption that the evolution of 

{𝑎𝑎𝜇𝜇} occurs on a much faster timescale than evolution of system vectors {�⃗�𝛿𝜇𝜇} (a separation of 

timescales; see Section 2.6 for more discussion). 

Figure 2.2B shows an example of fitness dynamics of random initial genotypes first exposed to a 

random environment 𝛿𝛿�⃗1 and then to a different random environment 𝛿𝛿�⃗ 2. The feedback loop we 
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will describe is already present during the early-time dynamics of evolution in 𝛿𝛿�⃗1; however, we 

choose to focus on the time period that follows the environment switch (shaded gray region). This 

will allow us to use the difference between the two environments, Δ𝛿𝛿 = �𝛿𝛿�⃗ 2 − 𝛿𝛿�⃗ 1� as a natural 

control parameter (see Section 2.6.3 for parameterization of environment pairs (𝛿𝛿�⃗1,𝛿𝛿�⃗ 2)). 

In what follows, we use 𝛿𝛿�⃗  vectors of unit length so that fitness is constrained to −1 ≤ 𝐹𝐹 ≤ 0. We 

fix 𝐿𝐿 = 40 and vary 𝐾𝐾, and consider genotype matrices with binary values, 0 or 1, initialized 

randomly with probability 𝑝𝑝 = 0.5 of being 1. Since environments are represented by unit vectors 

with positive components, Δ𝛿𝛿 is confined to the range Δ𝛿𝛿 ∈ [0,√2]. We will show that Δ𝛿𝛿 

controls the strength of the feedback loop, with stronger changes in environment (large Δ𝛿𝛿) 

inducing stronger feedback. 

2.3 The toolbox model exhibits the “Improve it or lose 
it” feedback 
Figure 2.3A depicts a representative trajectory of the “improve it or lose it” feedback realized in 

the toolbox model. The panel shows the dynamics of usage coefficients after a genotype with 𝐾𝐾 =

5 systems, pre-adapted to some environment 𝛿𝛿�⃗ 1, was switched to a different environment 𝛿𝛿�⃗ 2, with 

Δ𝛿𝛿 = 1 (random environment pairs with a given Δ𝛿𝛿 were generated as described in the Section 

2.6.3). Note that, after each mutation, the usage coefficients are re-optimized according to eq. (2.1) 

and thus change discontinuously (see Section 2.6.2 and Ref.  [72]); however, these steps are 

typically small, creating an illusion of smooth dynamics. We see that strong adaptive mutations 

initially concentrate in the two systems with highest usage (frequent redder dots). As they mutate, 

they also rise in usage, 𝑎𝑎𝜇𝜇. In contrast, the lower-used systems decrease in usage, and mutate only 

rarely, with relatively weak fitness effects (bluer dots). 
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Figure 2.3 | The toolbox model exhibits the feedback loop. (A) An example of evolutionary 
dynamics of usage coefficients after a genotype adapted to a random environment 𝛿𝛿�⃗1 is switched 
to another random environment 𝛿𝛿�⃗ 2 with Δ𝛿𝛿 ≡ �𝛿𝛿�⃗ 1 − 𝛿𝛿�⃗ 2� = 1. Despite similar usage initially, by 
𝑡𝑡 = 100 only two of 𝐾𝐾 = 5 systems remain in use. Dots mark the systems in which a beneficial 
mutation arose, color indicates fitness effect (red is strongest). In panels (B-D), we examine the 
statistics of usage dynamics and mutation effects within the first 3 time steps of 20 trajectories in 
15 random environment pairs with the same Δ𝛿𝛿 = 1. Inset pictograms refer to feedback steps as 
shown in Figure 2.1. (B) Fitness effects of all available mutations in each system versus system 
usage. Dark and light gray points are beneficial and neutral/deleterious mutations, respectively. 
Higher-used systems possess stronger fitness effects. (C) Probability of a system to mutate, plotted 
against its usage rank (ascending order). At early times (black bars), higher used systems are more 
likely to mutate. As the strong beneficial mutations in highest-used systems are depleted, the 
probability of mutating shifts towards lower used systems (white bars). (D) Distribution of change 
in usage of a system that just mutated (blue) or a system that failed to mutate (red) at a particular 
simulation step. The difference in means of these conditional probability distributions, 𝑠𝑠, quantifies 
the strength of the feedback loop. (E) The strength of the feedback loop 𝑠𝑠 is controlled by the 
magnitude of environmental change Δ𝛿𝛿. Error bars represent 1 standard deviation (SD) over 300 
replicates. 

 

Although the details of these dynamics are shaped by eq. (2.2) and are of course model-dependent, 

on a qualitative level the instability driving a subset of usage coefficients up at the expense of 

others can be directly traced to the feedback loop summarized in Figure 1, as we will now show. 

First, agreeing with the intuitive notion of {𝑎𝑎𝜇𝜇} as “usage”, systems with higher 𝑎𝑎𝜇𝜇 tend to harbor 

stronger fitness effects. To see this in our model, we plot the fitness effects of all available 

mutations within the first few simulation steps against the usage coefficient of the system where 

they occur (Figure 2.3B). As expected, both beneficial (dark gray) and deleterious (light gray) 

mutations are stronger in systems that have a higher usage coefficient 𝑎𝑎𝜇𝜇. 
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As a result, higher-used systems are more likely to mutate, because mutations with a larger fitness 

effect are more likely to escape drift and fix in the population [74]. The black bars in Figure 2.3C 

show the early-time probability of each system to mutate, plotted against its usage rank. 

Finally, Figure 2.3D shows the distribution of usage changes, defined as the difference in usage 

𝛿𝛿𝑎𝑎𝜇𝜇 before and after a simulation step, over the same early time period as described above. 

Whenever a system mutates, its usage typically increases (Figure 2.3D, blue). In contrast, the 

systems that did not mutate at that particular timestep typically drop in usage (Figure 2.3D, red). 

In our model, this also is ultimately a consequence of eq. (2.2), but it is not the model that justifies 

this behavior. Rather, it is this behavior that justifies using the model, making it appropriate for 

studying the feedback loop that this behavior induces. In summary, Figure 2.3B-D demonstrates 

all three arrows from Figure 2.1 at play in our model. 

Since a greater separation between the distributions of Figure 2.3D would entail stronger feedback, 

we can use the difference in the mean of these conditional distributions, denoted as 𝑠𝑠, as a measure 

of the feedback strength. Figure 2.3E demonstrates that, as expected, the feedback becomes 

stronger (increasing log 𝑠𝑠) as the change in environment becomes more severe. 

The rapid evolution of highly used systems (Figure 2.3C) may seem to be at odds with 

experimental work showing that highly expressed proteins evolve slowest [65]. However, the 

mechanism described here is fully compatible with the explanations previously proposed for this 

experimental result. The effect shown in Figure 2.3B (higher used systems have stronger fitness 

effects) applies to both beneficial and deleterious mutations. For early stages of adaptation driven 

by beneficial mutations (as considered here), this means the most-used systems will evolve first. 

However, at later stages, as beneficial mutations are depleted, the same argument dictates that the 
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most-used systems become the most protected, and evolve slowest. We demonstrate the presence 

of this effect by replotting the per-system mutation probabilities at a later time (Figure 2.3C, white 

bars); the probability of mutating begins to shift from higher used to lesser used systems. This 

result therefore predicts that the negative correlation between expression and evolution rate 

observed in [65] should transiently invert following a change in environment. If additional factors 

like interaction and stability constraints on evolutionary rates are considered, our framework 

predicts that the negative correlation would at least weaken, with the size of the effect controlled 

by the magnitude of the environmental change. Encouragingly, this transient weakening in  

negative correlation between expression and evolutionary rate is consistent with recent analysis of 

evolutionary rates in yeast [75]. 

2.4 The cost to evolvability  
Intuitively, one might expect that the competition for usage mediated by the “improve it or lose it” 

feedback loop may be detrimental for the organism, since it effectively reduces the number of 

systems it has available. Implementing this effect in a simple model allows us to make this intuition 

precise. We will see that, at least in our model, the feedback loop exhibited above reduces the 

adaptive potential of the genotype, and mitigating its effects can allow for faster adaptation. 

For this, we compare the fitness trajectories of genotypes evolving in conditions that exacerbate 

the feedback and those that weaken it. Specifically, starting from a genotype pre-adapted to 𝛿𝛿�⃗1, we 

compare two ways of adapting it to a new, strongly different environment 𝛿𝛿�⃗ 2: either by exposing 

it to 𝛿𝛿�⃗ 2 directly (as discussed above), or by changing the environment from 𝛿𝛿�⃗1 to 𝛿𝛿�⃗ 2 slowly (on a 

timescale that is slow compared to mutation fixation). By avoiding large environment jumps, we 
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expect the gradual switch to weaken the feedback loop. The question we ask is which exposure 

protocol will ultimately lead to higher fitness in the environment of interest, 𝛿𝛿�⃗ 2. 

An example of this comparison is shown in Figure 2.4A. The red curve shows fitness (in the 

environment of interest 𝛿𝛿�⃗ 2) for genotypes evolving under the slow-exposure protocol, 

implemented by linearly relaxing the environment vector from 𝛿𝛿�⃗1 to 𝛿𝛿�⃗ 2 over a time 𝜏𝜏: 

𝛿𝛿�⃗ (𝑡𝑡) = �
normalize �𝛿𝛿�⃗ 2 +

𝜏𝜏 − 𝑡𝑡
𝜏𝜏

�𝛿𝛿�⃗ 1 − 𝛿𝛿�⃗ 2�� , if 𝑡𝑡 < 𝜏𝜏

𝛿𝛿�⃗ 2, if 𝑡𝑡 ≥ 𝜏𝜏
 

(2.3) 

(the environment vector in our model is always normalized to unit length). The 𝜏𝜏 we use is large 

relative to the typical time between mutations (𝜏𝜏 = 100; compare to Figure 2.3A). The red curve 

𝐹𝐹SE(𝑡𝑡) (slow exposure) is to be compared to the blue curve 𝐹𝐹DE(𝑡𝑡) (direct exposure), showing 

fitness of the same initial genotypes evolving directly in 𝛿𝛿�⃗ 2. 

 
Figure 2.4 | Higher evolvability from slow exposure than direct exposure. (A) Fitness, 
evaluated in environment 𝛿𝛿�⃗ 2, of genotypes that are either directly exposed (DE) to 𝛿𝛿�⃗ 2 at 𝑡𝑡 = 0 
(blue trace) or slowly exposed (SE) to 𝛿𝛿�⃗ 2 over a time 𝜏𝜏 = 100 according to the protocol defined 
in Eq. (2.3) (red trace). Each trace shows mean ±1 SD (shading) of 20 replicate trajectories of 
genotypes with 𝐾𝐾 = 4 systems in a random environment pair with Δ𝛿𝛿 = 1.4. Colored dots 
highlight that slow exposure leads to higher long-term fitness, despite slower fitness gain initially. 
The relative improvement in fitness, Δ𝐹𝐹 � , is measured at an arbitrarily late time point 𝑡𝑡∗ = 400 
(see Section 2.6.4 and Figure 2.7 for later 𝑡𝑡∗). (B) Heatmap of the long-term relative fitness 
improvement, Δ𝐹𝐹 � . Contour lines show Δ𝐹𝐹 � can be predicted by the feedback loop strength 𝑠𝑠 and 
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the number of initially inactive systems 𝐾𝐾0 (see panel E). Here and in the remaining panels, results 
are averages over 20 trajectories in 15 random environment pairs with varying Δ𝛿𝛿. (C) Heatmap 
of Δ𝐾𝐾act, the average difference in number of active systems (𝑎𝑎𝜇𝜇 > 10−3) between the SE and DE 
protocols at 𝑡𝑡 = 𝜏𝜏. Contour lines show it is predicted by the product 𝑠𝑠𝐾𝐾0; see panel D. (D) Δ𝐾𝐾act, 
the increased number of active systems at 𝑡𝑡 = 𝜏𝜏, is predicted by 𝑠𝑠𝐾𝐾0, measured at trajectory start. 
(E) The long-term fitness improvement Δ𝐹𝐹 � at 𝑡𝑡 = 𝑡𝑡∗ is predicted by 𝑠𝑠𝐾𝐾0/𝐾𝐾, measured at trajectory 
start. 
 

The vertical dashed line at 𝑡𝑡 = 𝜏𝜏 marks the timepoint where the “red genotypes” evolving under 

the slow-switching protocol are finally exposed to 𝛿𝛿�⃗ 2 for the first time. It is therefore not surprising 

that they are less fit than the “blue genotypes”, who have been evolving in 𝛿𝛿�⃗ 2 from the start 

(𝐹𝐹SE(𝜏𝜏) < 𝐹𝐹DE(𝜏𝜏); red curve below the blue). However, while more fit, the blue genotypes are 

manifestly less evolvable: From 𝑡𝑡 = 𝜏𝜏 onwards, both red and blue curves document evolution in 

the same environment 𝛿𝛿�⃗ 2, but the red curve gains fitness much faster, and overtakes the blue. 

To quantify the strength of this effect, we consider the relative improvement of fitness provided 

by the smooth protocol, compared to direct exposure: 

Δ𝐹𝐹 � (𝑡𝑡∗) ≡
𝐹𝐹SE(𝑡𝑡∗) − 𝐹𝐹DE(𝑡𝑡∗)

|𝐹𝐹DE(𝑡𝑡∗)| . 

While initially negative, in the example of Figure 2.4A this quantity becomes positive at a later 

time. To demonstrate the robustness of this observation, Figure 2.4B shows Δ𝐹𝐹 � (𝑡𝑡∗) for a range of 

𝐾𝐾 and Δ𝛿𝛿, computed at an arbitrary late timepoint 𝑡𝑡∗ = 400 (see Section 2.6.4 and Figure 2.7 for 

Δ𝐹𝐹 � at a later value of 𝑡𝑡∗). We see that, at large Δ𝛿𝛿, the slow-switching protocol consistently 

outperforms direct exposure, and more so as 𝐾𝐾 increases.  While the scenario of an organism 

possessing 𝐾𝐾 = 7 competing systems fulfilling a similar function is arguably unrealistic, we note 

that the effect is already present at 𝐾𝐾 = 2. (For the purposes of illustration, the example in panel 
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A used 𝐾𝐾 = 4 and a dramatic environment change Δ𝛿𝛿 = 1.4, when the effect is strongest.) Note 

that, for simplicity, in Figure 2.4B our slow exposure protocol eq. (2.3) used the same value of the 

relaxation time 𝜏𝜏 = 100 for all 𝐾𝐾 and Δ𝛿𝛿; optimizing over this parameter and the observation 

timepoint 𝑡𝑡∗ could of course render the effect stronger. 

The origin of this effect is the “improve it or lose it” instability affecting the genotypes undergoing 

an abrupt environment switch, effectively leaving them with fewer systems. To confirm this, we 

record the average number 𝐾𝐾act
DE, 𝐾𝐾act

SE of “active” systems (usage 𝑎𝑎𝜇𝜇 > 0.001) observed at time 𝑡𝑡 =

𝜏𝜏 under both protocols. As expected, a slow environment change leaves more systems active; the 

difference Δ𝐾𝐾act ≡ 𝐾𝐾act
SE − 𝐾𝐾act

DE is shown in Figure 2.4C and exhibits a trend similar to Figure 2.4B. 

Since unused systems harbor weak mutations only (cf. Figure 2.3B), a genotype with few active 

systems finds itself on a fitness plateau, and its rate of fitness gain is reduced. 

Finally, we can quantitatively relate both effects to the strength of the feedback loop as defined 

above. To start, we focus on the increase in the number of active systems Δ𝐾𝐾act in Figure 2.4C. 

Denote 𝐾𝐾0 the number of inactive systems at time 𝑡𝑡 = 0 (immediately after the environment 

switch; usage 𝑎𝑎𝜇𝜇 < 0.001). This is the number of systems that the slow-exposure protocol could 

conceivably “rescue”. One expects Δ𝐾𝐾act to scale with 𝐾𝐾0, and if our argument is correct, it should 

also scale with the strength of the feedback loop 𝑠𝑠. Indeed, we find Δ𝐾𝐾act to be predicted by the 

product 𝑠𝑠𝐾𝐾0 (Figure 2.4D). The availability of these additional systems translates into additional 

adaptive opportunities, and ultimately a higher fitness. In a strongly epistatic model like ours, the 

exact relationship to the long-term fitness is hard to predict. Nevertheless, it is reasonable to expect 

the fractional effect on fitness Δ𝐹𝐹 � to at least correlate with the fractional effect on the number of 

active systems Δ𝐾𝐾act/𝐾𝐾. If so, then Δ𝐹𝐹 � should correlate with 𝑠𝑠𝐾𝐾0/𝐾𝐾, an expectation confirmed in 
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panel Figure 2.4E. Given the approximate nature of this argument, the correlation observed in 

Figure 2.4E is in fact surprisingly good. For convenience, the same 𝑠𝑠𝐾𝐾0 and 𝑠𝑠𝐾𝐾0/𝐾𝐾 data, Gaussian-

smoothed for visualization purposes, are shown as contour lines superimposed on the heatmaps of 

Figure 2.4B,C. It is worth emphasizing that our definition of the feedback strength 𝑠𝑠 is computed 

from the statistics of the first 3 mutations, which only take 𝑡𝑡 ∼ 7 ± 5 to occur; and 𝐾𝐾0 is similarly 

measured at the very start of the trajectory. Nevertheless, at least in our model, these early-time 

properties are predictive of the long-term evolutionary outcome at 𝑡𝑡∗ = 400. 

2.5 Conclusions and Discussion 
In this work, we used a minimal model to explore a possible feedback loop between the usage of 

a system and its rate of evolution. Within this model, we demonstrated that this feedback loop is 

particularly pronounced after strong shifts in the selecting environment and can negatively impact 

evolvability (future fitness gain). In particular, we described a mechanism by which a slow switch 

to a new environment can allow the genotypes to reach higher fitness sooner than a direct exposure 

to it. Interestingly, this effect is reminiscent of recent results from the Evolthon crowdsourcing 

effort, which found that when yeast and E. coli populations are slowly exposed to cold 

temperatures they attain higher fitness than those that undergo a direct exposure [76]. 

A situation where exposure to a different environment 𝛿𝛿′ can help evolve better fitness in 𝛿𝛿 than 

a direct exposure to 𝛿𝛿 itself is not, in itself, novel. One well-established scenario for this to occur 

is the crossing of fitness valleys (or plateaus): much like an enzyme that catalyzes a reaction by 

stabilizing the reaction transition state, a transient exposure to 𝛿𝛿′ can facilitate reaching a higher 

fitness peak by enabling prerequisite mutations that would otherwise be unfavorable (or 

neutral)  [77,78]. However, the scenario described here is particularly interesting because the 

fitness plateau is not an idiosyncratic property of a particular landscape, but emerges through 
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evolution itself. Fitness landscapes of evolved systems are themselves shaped by 

evolution  [79,80], and at least in our model, the feedback mechanism we described generically 

induces a fitness plateau following a sufficiently strong environmental change. 

To focus on this effect, our proof-of-principle model ignored many other factors contributing to 

rates of protein evolution. In any realistic scenario, the feedback interaction we described will only 

be a part of a larger picture. Nevertheless, our analysis predicts that the empirically observed 

negative correlation between expression and evolution rate would transiently weaken following a 

change in environment Δ𝛿𝛿, and this weakening should be more pronounced for stronger Δ𝛿𝛿. We 

expect this effect to be more evident if other constraints not included in our model are weakened, 

following, for example, a genome duplication event  [75]. 

It is worth stressing that we considered beneficial mutations only. Clearly, if deleterious mutations 

were included, our feedback loop would become even stronger: in addition to the effect described, 

the lesser-used systems would also be less protected from drift  [81–83]. This observation could 

then be seen as the traditional manifestation of the “use it or lose it” principle; in particular, the 

problem of maintaining redundancy in the face of drift has been extensively discussed  [84]. 

Focusing on beneficial mutations only, and thus explicitly excluding any drift-dependent effects, 

allows us to highlight a novel aspect. Unlike the discussion of Ref.  [84], here, no system is ever 

fully redundant, and all remain under selection. Nevertheless, some are progressively lost even in 

the absence of deleterious mutations – simply because the beneficial mutations preferentially target 

the systems used more, and those that fail to improve become obsolete. This mechanism is clearly 

analogous to the Red Queen effect  [85] (to remain useful, a system must keep improving), except 

here it applies to an effective competition for expression. In this way, the loss of evolvability 

described in Figure 2.4 can be seen as a form of a conflict of levels of selection [86]: the 
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competitive dynamics between lower-level entities (the 𝐾𝐾 “systems” in our model) lead to negative 

consequences for the organism as a whole -- a decline of phenotypic flexibility and evolvability 

due to a reduction of the effective 𝐾𝐾. On a related note, while our model considered 𝐾𝐾 as a fixed 

parameter, it could easily be extended to allow for system loss and duplication events. 

2.6 Technical Details 

2.6.1 Interpretation of Model Parameters 𝑲𝑲 and 𝑳𝑳 
In the toolbox model, 𝐿𝐿 is the dimension of the phenotypic trait space. Collectively, the trait 

dimensions correspond to a list of characteristics that can make a given system suited better or 

worse in different environmental conditions. This list is potentially infinite! Therefore, although 𝐿𝐿 

appears as the dimensionality of some relevant trait space, a better interpretation is that 𝐿𝐿, with 

𝐿𝐿 ≫ 𝐾𝐾, effectively sets the magnitude of fitness effects; i.e., mutations in an initially random 

genotype matrix have fitness effects on the order of ∼ 1/𝐿𝐿. 

As stated in the main text, 𝐾𝐾 is the number of systems �⃗�𝛿𝜇𝜇 encoded in a genotype. Because system 

vectors are used to fit the conditions a target environment 𝛿𝛿�⃗  sets on 𝐿𝐿 traits, 𝐾𝐾 can be understood 

as the dimensionality of phenotype space a genotype can access. In this sense, the impact of 

increasing 𝐾𝐾 is two-fold. (1) Clearly, from eq. (2.2), a larger 𝐾𝐾 would in general allow for greater 

fitness since more basis vectors can better fit a target vector, unless 𝐾𝐾 is large enough to already 

ensure a perfect fit. We therefore focus on the 𝐾𝐾 ≪ 𝐿𝐿 regime for the sake of biological plausibility. 

Possessing more adjustable “knobs” further means that a genotype with larger 𝐾𝐾 has more adaptive 

opportunities available to gain fitness. (2) By the same token, larger 𝐾𝐾 also means greater 

flexibility across different environments (multiple 𝐿𝐿-dimensional targets) due to possessing more 

available degrees of freedom for tuning. This second effect (phenotypic plasticity) is relevant when 
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studying performance of the same genotype across multiple environments  [72]. However, 

consequence (1) of larger 𝐾𝐾 is more relevant to the present work's focus on the cost to evolvability 

that comes with a declining effective 𝐾𝐾. 

Together then, 𝐾𝐾𝐿𝐿 reflects the dimensionality of a relevant genotype space in the toolbox model. 

We stress, however, that the entries in the 𝐾𝐾-by-𝐿𝐿 genotype matrix do not correspond to individual 

loci in a genome, but represent key traits that many loci may contribute towards  [87]. For instance, 

the genotype matrix could represent patterns of trait co-regulation, with each system vector �⃗�𝛿𝜇𝜇 

corresponding to a master regulator of the pathways involved in the 𝐿𝐿 traits. The vector entries 

then indicate which pathways the master regulatory system does or does not co-regulate. Involving 

many constituent proteins in general, each individual pathway is of course encoded in more than 

a single locus. On top of this, additional loci are devoted to the genetic encoding of the master 

regulators themselves. Therefore, the full genotype space is much larger than 𝐾𝐾𝐿𝐿. In summary, for 

the purposes of this work, the genotypic space consists of: a subset of loci that we ignore because 

they do not evolve at all (e.g., membrane synthesis), a subset whose evolution we do not explicitly 

consider as we assume it occurs on a shorter timescale (master regulators/usage coefficients), and 

a focal subset that contribute to the key traits of our system vectors {�⃗�𝛿𝜇𝜇} and evolves on a relevant 

timescale of interest. 

2.6.2 Modeling the Evolutionary Process 
For simplicity in simulating the process of evolution, we work in the regime where mutations are 

rare and selection is strong. In doing so, we only need to track the evolutionary trajectory of a 

single genotype matrix, representing a clonal population that evolves by sequential mutations that 

sweep through the entire population as schematized in Figure 2.5. Computationally, we implement 

a Gillespie-style algorithm, where each loop iteration updates the genotype matrix by mutation 
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and selection. Having chosen the genotype matrix to be binary, we can implement point mutations 

as simple bit-flips of one of the matrix elements. Within each step of the algorithm, all point 

mutations of the current genotype are enumerated. The fitness effect of each mutation relative to 

the current genotype fitness is computed using eq. (2.2) (reoptimizing the usage coefficients for 

each mutant). From only the beneficial mutations, one is randomly selected to fix for the next 

iteration, with the probability of being selected weighted by fitness effect (strong selection, rare 

mutation regime;  [73,74]). Finally, we also update the state of the environment within the 

Gillespie loop if the environment target vector is dynamic (e.g., eq. (2.3)). To update the 

environment in a semi-smooth fashion (even if the next mutation has yet to occur), we include an 

“environment update” event that occurs at a rate comparable to the typical timescale of a fixation 

event. 

 
Figure 2.5 | Evolution in strong selection, rare mutation regime. 

 

2.6.3 Constructing Environment Pairs 
In this work, we studied evolution of genotypes after switching from one environment to another: 

An initially random genotype was first computationally evolved in an environment 𝛿𝛿�⃗1 until no 

beneficial mutations remain (highly adapted to 𝛿𝛿�⃗1). We then either directly or slowly switch 

exposure to environment 𝛿𝛿�⃗ 2. Although there are many features of environment pairs that may 
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matter for an evolving genotype, here, for simplicity, we focus on characterizing each environment 

pair (𝛿𝛿�⃗1,𝛿𝛿�⃗ 2) by the Euclidean distance between them, Δ𝛿𝛿 = �𝛿𝛿�⃗ 2 − 𝛿𝛿�⃗1�. 

To construct a random pair with specified Δ𝛿𝛿, we generate two 𝐿𝐿-dimensional random vectors 

(𝛿𝛿�⃗𝐴𝐴,𝛿𝛿�⃗ 𝐵𝐵) from a normal distribution with 𝜇𝜇 = 1,𝜎𝜎2 = 1 and rotate these vectors towards or away 

from each other (Figure 2.6A), similar to the approach of Ref. [72]. Specifically, the desired Δ𝛿𝛿 is 

attained by rotating the two random vectors away from their arithmetic mean 𝛿𝛿�⃗ ≡ 𝐸𝐸�⃗ 𝐴𝐴+𝐸𝐸�⃗ 𝐵𝐵
2

,  

according to the following parameterization: 

𝛿𝛿�⃗ 1(𝛿𝛿) =  normalize �max �𝛿𝛿�⃗ +
𝛿𝛿
2
�𝛿𝛿�⃗𝐴𝐴 − 𝛿𝛿�⃗ 𝐵𝐵�, 0��

𝛿𝛿�⃗ 2(𝛿𝛿) =  normalize �max �𝛿𝛿�⃗ −
𝛿𝛿
2
�𝛿𝛿�⃗𝐴𝐴 − 𝛿𝛿�⃗ 𝐵𝐵�, 0��

 

(2.4) 

where the “normalize” operation normalizes a vector to unit length and max(… ,0) acts 

component-wise to ensure that each component is nonnegative. Eq. (2.3) thus parametrically 

defines a function Δ𝛿𝛿(𝛿𝛿) that can be inverted for obtaining a random pair of environments (𝛿𝛿�⃗1,𝛿𝛿�⃗ 2) 

a given Δ𝛿𝛿 apart. By construction, both vectors 𝛿𝛿�⃗1 and 𝛿𝛿�⃗ 2 obtained in this way have unit length 

and only nonnegative components. 
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Figure 2.6 | (A) Schematic of environment pair construction: Two 𝐿𝐿-dimensional vectors are 
randomly drawn and any negative entries are capped at 0 (red and black solid arrows). The two 
random vectors are then rotated (parameterized by eq. (2.4) until the desired Δ𝛿𝛿 is obtained (red 
and black dashed arrows). (B) Random environment pairs were constructed using either eq. (2.4) 
or (2.5) over a range of Δ𝛿𝛿. For each environment, the maximum component is divided by the 
average of the components and plotted against Δ𝛿𝛿. Error bars correspond to ±1 standard deviation 
over 100 replicates. For Δ𝛿𝛿 > 1, the log-space construction has extreme values that rapidly grow 
with increasing Δ𝛿𝛿, which is precisely the region of interest for this work. 

 
 

Note that this is slightly different from the precise approach adopted in Ref.  [72]. In that work, 

the rotation was performed in log-space: 𝛿𝛿�⃗1,2(𝛿𝛿) = normalize�𝛿𝛿�⃗ 1,2
′ (𝛿𝛿)�, where 

log 𝛿𝛿�⃗1′(𝛿𝛿) = log 𝛿𝛿�⃗ +
𝛿𝛿
2
�log 𝛿𝛿�⃗𝐴𝐴 − log 𝛿𝛿�⃗ 𝐵𝐵�

log 𝛿𝛿�⃗ 2′(𝛿𝛿) = log 𝛿𝛿�⃗ −
𝛿𝛿
2
�log 𝛿𝛿�⃗𝐴𝐴 − log 𝛿𝛿�⃗ 𝐵𝐵�

 

(2.5) 

and logarithms are applied component-wise. In Ref.  [72], the protocol Eq. (2.5) was adopted as 

the simplest approach that naturally preserved nonnegativity of vector entries, without the need for 

explicit truncation. However, for large Δ𝛿𝛿, environment pairs constructed in log-space will 

typically possess extremely large entries (see Figure 2.6B) that focus the majority of selection 

pressure on a few traits. Since much of our attention in this work concerns the large-Δ𝛿𝛿 regime 
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(see, e.g., Figure 2.4B,C above), we opted for the linear-space construction of environment pairs, 

as defined in eq. (2.4). 

2.6.4 Raw versus Gaussian Smoothed 𝒔𝒔𝑲𝑲𝟎𝟎 and 𝒔𝒔𝑲𝑲𝟎𝟎/𝑲𝑲 
Figure 2.4B&D traces a long-term evolutionary effect – namely, the relative fitness gain Δ𝐹𝐹 � (𝑡𝑡∗) 

that a slow exposure (SE) protocol provides compared to direct exposure (DE) to a novel 

environment – to the early-time property of feedback loop strength, 𝑠𝑠. As described in the main 

text, the difference in number of active systems Δ𝐾𝐾act between SE and DE is predicted by 𝑠𝑠𝐾𝐾0, 

where 𝐾𝐾0 is the number of inactive systems at t = 0 (the time at which the environment switches 

from 𝛿𝛿�⃗ 1 to 𝛿𝛿�⃗ 2 for the DE protocol). In turn, we reasoned Δ𝐹𝐹 � (𝑡𝑡∗) ∼ 𝑠𝑠𝐾𝐾0/𝐾𝐾 for sufficiently late 

observation time t∗. Figure 2.7A,B provide heatmaps of the raw 𝑠𝑠𝐾𝐾0 and 𝑠𝑠𝐾𝐾0/𝐾𝐾 values, 

respectively, for each (𝐾𝐾,Δ𝛿𝛿) parameter combination (average over 300 trajectories), from which 

the contour lines used in Figure 2.4B,C were obtained after smoothing with a Gaussian kernel (of 

width equivalent to 1 heatmap pixel). 

 
Figure 2.7 | (A-B) Heatmap of feedback strength scaled by the number or fraction of inactive 
systems during early-times of evolution (first 3 mutations), 𝑠𝑠𝐾𝐾0 in A and 𝑠𝑠𝐾𝐾0/𝐾𝐾 in B, with varying 
number of systems 𝐾𝐾 and degree of environment change Δ𝛿𝛿. The contour lines of Gaussian-
smoothed 𝑠𝑠𝐾𝐾0 and 𝑠𝑠𝐾𝐾0/𝐾𝐾 (filter width 𝜎𝜎 = 1) overlaid on top as done in Figure 2.4B,C. (C) 
Relative fitness gain Δ𝐹𝐹 � , as defined above, measured at 𝑡𝑡∗ = 800 (2-times later than the 
observation time used above) and scattered against the 𝑠𝑠𝐾𝐾0/𝐾𝐾 data from (A). Each data point is an 
average over 300 trajectories. 
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2.6.5 Dependence of Fitness Improvement on Observation Time 
The Δ𝐹𝐹 � (𝑡𝑡∗) reported in panels B and E of Figure 2.4 were measured at 𝑡𝑡∗ = 400. Figure 2.7C 

replots the same results for 𝑡𝑡∗ = 800, demonstrating that the observation of Figure 2.4 is not 

sensitive to the particular choice of the late-time observation point.  
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Chapter 3: Coarse-grainability in a Model of 
Structured Ecosystems 

Now that we have seen how evolution can generate structure and atypicality and the evolutionary 

consequences of this, I will next present a framework for using evolutionary dynamics to generate 

ensembles of random, structured ecosystems. 

Despite their complexity, microbial ecosystems appear to be at least partially “coarse-grainable” 

in that some properties of interest can be adequately described by effective models of dimension 

much smaller than the number of interacting lineages. This is especially puzzling since recent 

studies demonstrate that a surprising amount of functionally relevant diversity is present at all 

levels of resolution, down to strains differing by 100 nucleotides or fewer. Rigorously defining 

coarse-grainability and understanding the conditions for its emergence is of critical importance for 

understanding microbial ecosystems. To begin addressing these questions, we propose a minimal 

model for investigating hierarchically structured ecosystems within the framework of resource 

competition. We use our model to operationally define coarse-graining quality based on 

reproducibility of the outcomes of a specified experiment and show that a coarse-graining can be 

operationally valid despite grouping together functionally diverse strains. Further, we demonstrate 

that a high diversity of strains (while nominally more complex) may in fact facilitate coarse-

grainability, and that, at least within our model, coarse-grainability is maximized when a 

community is assembled in its “native” environment. Our modeling framework offers a path 

towards building a theoretical understanding of which ecosystem properties, and in which 

environmental conditions, might be predictable by coarse-grained models. 

The work presented in this chapter has been adapted from the following publication: 
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Moran J, Tikhonov M. “Defining coarse-grainability in a model of structured microbial 

ecosystems.” Physical Review X 12, 021038 (2022). 

3.1 Introduction 
Microbial communities are complex dynamical systems composed of a highly diverse collection 

of interacting species, and yet they often appear to be at least partially “coarse-grainable”, meaning 

that some properties of interest can be predicted by effective models of dimension much smaller 

than the number of interacting lineages. For example, industrial bioreactors consisting of hundreds 

of species are well described by models with ≲ 10 functional classes [45,46]. What makes this 

possible? One potential explanation is that coarse-grainability is a direct consequence of the 

hierarchically structured trait distribution across organisms. If 100 interacting phenotypes are all 

close variants of only 10 species, which can be further grouped into just two families, it is natural 

to expect that the diverse community might be approximately described by a 2- or 10-dimensional 

model. Under this view, effective models are possible because ecosystems are less diverse than a 

naïve counting of microscopic strains might suggest. 

However, recent data reveal this intuition to be too simplistic: a surprising extent of relevant 

diversity persists at all levels of resolution. Numerous studies have highlighted the role of strain-

level variation in shaping the functional repertoire of a microbial population [49–54]. A recent 

work by Goyal et al. concludes that strains might indeed be “the relevant unit of interaction and 

dynamics in microbiomes, not merely a descriptive detail”  [47]. Surprisingly, however, a greater 

strain diversity can sometimes enhance predictability instead of undermining it [88]. Equally 

puzzling, the notion of a bacterial species is undoubtedly useful, despite collapsing together strains 

that famously may collectively share only 20\% of their genes [89]. Moreover, by some 
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assessments, the species-level characterization of a community appears to be too detailed and can 

be coarse-grained further [90,91], e.g., to the level of a taxonomic family  [9]. 

Rigorously defining “coarse-grainability” and understanding the conditions for its emergence is of 

critical importance: harnessing coarse-grainability is our main instrument for understanding, 

predicting or controlling the behavior of these complex systems. Can an ecosystem be coarse-

grainable for some purposes but not others? Or in some environments but not others? Can we ever 

expect the coarse-grained descriptions derived in the simplified environment of a laboratory to 

generalize to the complex natural conditions? Addressing this exciting set of general questions is 

an important challenge at the interface of theoretical microbial ecology and statistical physics. 

Here, we introduce a theoretical framework to begin addressing these questions. The novelty of 

our approach is two-fold. First, we propose a minimal model for investigating structured 

ecosystems. Much recent work studies the behavior of large microbial ecosystems in the 

unstructured regime, where the traits of interacting organisms are drawn randomly 

(e.g., [6,7,10,12,13]). However, real ecosystems assemble from pools of taxa whose trait 

distributions are highly non-random due to functional constraints, common selection pressures, or 

common descent. These factors create structure at all levels, from the distribution of genes across 

strains in microbial pangenomes  [14–16] to the distribution of function across taxa  [17,43,90,91], 

with important implications for dynamics, patterns of coexistence, or responses to 

perturbations [18–20,44]. In natural communities, taxa can often be grouped by identifiable 

functional roles, often represented by closely related species or strains. As we seek to define and 

characterize ecosystem coarse-grainability, it seems clear that this structure must play an important 

role. Our model implements such structure within a consumer-resource framework in a simple, 

principled way through trait interactions. 
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The second novelty of our approach is a framework for defining and evaluating a hierarchy of 

coarse-grained descriptions. The ultimate performance criterion for a coarse-graining scheme 

would be its ability to serve as a basis for a predictive model, capable of predicting ecosystem 

dynamics or properties. However, finding the ‘most predictive model’ is a difficult problem. Here, 

as a simpler first step, we propose an operational approach which is inspired by the experiments 

of Ref. [9] and is based on the reproducibility of experimental outcomes. Specifically, we focus 

on a particular form of coarse-graining in which taxa are grouped together into putative functional 

groups. Grouping means omitting details, and we say that details are safe to ignore if they do not 

change the outcome of some specified experiment. Importantly, as we will show, choosing 

different experiments changes which, or whether, details can be ignored. 

Specifically, we will define how ecosystems can be coarse-grainable in the weak sense, where a 

desired performance of a coarse-graining can be achieved in a given environment, and in the strong 

sense, where the performance of a given coarse-graining is maintained even as environment 

complexity is increased. We will demonstrate that the same ecosystem can be coarse-grainable 

under one criterion – even in the strong sense – and not at all coarse-grainable under another. This 

will reconcile the apparent paradox mentioned above, showing that a coarse-graining can be 

operationally valid for some purposes, despite grouping together functionally diverse strains. We 

will explain how strong-sense coarse-grainability arises in the model considered here, and show 

that this property is context-specific: a coarse-graining that works in the organisms' natural eco-

evolutionary context is easily broken if the community is assembled in the non-native environment 

or if the natural ecological diversity is removed. Finally, we will discuss the extent to which our 

findings generalize beyond our model. 
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3.2 An Eco-evolutionary Framework for a Hierarchical 
Description of the Interacting Phenotypes 

In order to study the hierarchy of possible coarse-graining schemes for ecosystems, we need an 

eco-evolutionary framework that would describe players functionally, by a list of characteristics 

that can be made longer (more detailed) or shorter (more coarse-grained). In addition, for our 

purposes we will also want an ability to tune the complexity of the environment, for example, to 

study the robustness of a coarse-graining between the simplified conditions of a laboratory and the 

more complex natural environment. In this section, we present our model implementing these two 

requirements. 

3.2.1 The Eco-evolutionary Dynamics 
A given environment presents various opportunities that organisms can exploit to gain a 

competitive advantage. Imagine a world where all such opportunities or “niches” are enumerated 

with index 𝑖𝑖 ∈ {1 … 𝐿𝐿∞}. The notation 𝐿𝐿∞ highlights that in general, one expects this to be a very 

large number, corresponding to a complete (and, in practice, unattainable) microscopic description. 

A strain 𝜇𝜇 is phenotypically described by enumerating which of these opportunities it exploits, i.e. 

by a string of numbers of length 𝐿𝐿∞ which we will denote 𝜎𝜎𝜇𝜇𝜇𝜇. For simplicity, we will assume 𝜎𝜎𝜇𝜇𝜇𝜇 

to be binary (𝜎𝜎𝜇𝜇𝜇𝜇 ∈ {0,1}): strain 𝜇𝜇 either can or cannot benefit from opportunity 𝑖𝑖. This will allow 

us to think of evolution as acting via bit flips 0 ↦ 1 and 1 ↦ 0, corresponding to the acquisition 

or loss of the relevant machinery (“trait 𝑖𝑖”) via horizontal gene transfer events or loss-of-function 

mutations. 

We will assume that the fitness benefit from carrying trait 𝑖𝑖 is largest when the opportunity is 

unexploited, and declines as the competition increases. For a given set of phenotypes present in 

the community, the ecological dynamics are determined by the feedback between strain abundance 
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and opportunity exploitation (Figure 3.1A). Briefly, the strain abundances 𝑁𝑁𝜇𝜇 determine the total 

exploitation level 𝑇𝑇𝜇𝜇 ≡ ∑ 𝑁𝑁𝜇𝜇𝜎𝜎𝜇𝜇𝜇𝜇𝜇𝜇  of opportunity 𝑖𝑖. The exploitation level determines the fitness 

benefit ℎ𝜇𝜇 ≡ ℎ𝜇𝜇(𝑇𝑇𝜇𝜇) from carrying the respective trait; we will choose ℎ𝜇𝜇(𝑇𝑇𝜇𝜇) of the form ℎ𝜇𝜇(𝑇𝑇𝜇𝜇) =

𝑏𝑏𝑖𝑖
1+𝑇𝑇𝑖𝑖/𝐾𝐾𝑖𝑖

. These ℎ𝜇𝜇, in turn, determine the growth or decline of the strains. Specifically, we postulate 

the following ecological dynamics: 

�̇�𝑁𝜇𝜇
𝑁𝑁𝜇𝜇

= �𝜎𝜎𝜇𝜇𝜇𝜇ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇
𝜇𝜇

, strain abundance 

(3.1a) 

ℎ𝜇𝜇 = ℎ𝜇𝜇(𝑇𝑇𝜇𝜇) ≡
𝑏𝑏𝜇𝜇

1 + 𝑇𝑇𝜇𝜇/𝐾𝐾𝜇𝜇
, benefit from 𝑖𝑖 

(3.1b) 
𝑇𝑇𝜇𝜇 ≡�𝑁𝑁𝜇𝜇𝜎𝜎𝜇𝜇𝜇𝜇

𝜇𝜇

, exploitation of 𝑖𝑖. 

(3.1c) 

In these equations, the parameters 𝑏𝑏𝜇𝜇 and 𝐾𝐾𝜇𝜇 describe the environment, with 𝑏𝑏𝜇𝜇 being the fitness 

benefit of being the first to discover the opportunity 𝑖𝑖 (at zero exploitation 𝑇𝑇𝜇𝜇 = 0), and the 

“carrying capacity” 𝐾𝐾𝜇𝜇 describing how quickly the benefit declines as the exploitation level 𝑇𝑇𝜇𝜇 

increases (Figure 3.1B). The quantities 𝜒𝜒𝜇𝜇 are interpreted as the “maintenance cost” of being an 

organism carrying a given set of traits; more on this below. 
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Figure 3.1 | Our eco-evolutionary framework modifies a standard model of resource competition. 
Organisms engage in ecological competition for limited resources and evolve by gaining or losing 
traits. Carrying a trait incurs a cost but enables the organism to benefit from the corresponding 
resource. Here, our novelty is to consider how traits interact with each other. Combinations that 
interact unfavorably are costly to maintain; as a result, not all phenotypes are competitive. A: A 
metabolic interpretation of our model corresponds to an ecosystem in a chemostat. A set of strains 
with abundances 𝑁𝑁𝜇𝜇 compete for a set of substitutable resources indexed by 𝑖𝑖, e.g., alternative 
sources of carbon. In this interpretation, 𝐾𝐾𝜇𝜇 correspond to resource supply rates, and ℎ𝜇𝜇 are the 
resource concentrations in the effluent. B: For this work, we adopt a more general interpretation 
where the resources 𝑖𝑖 need not be specifically metabolic. Instead, we think of 𝑖𝑖 as enumerating any 
depletable environmental opportunities that the phenotypes can exploit, which confer a benefit ℎ𝜇𝜇 
that declines with exploitation level 𝑇𝑇𝜇𝜇. We parameterize this dependence by the maximum benefit 
𝑏𝑏𝜇𝜇 and the carrying capacity 𝐾𝐾𝜇𝜇 (the exploitation level where the benefit is halved); see text. C: In 
our model, phenotypes are binary vectors described by traits they carry. The most competitive 
phenotypes (rows in the cartoon) are not random, but are shaped by pairwise trait interactions 𝐽𝐽𝜇𝜇𝑖𝑖. 
Strongly synergistic traits (𝐽𝐽𝜇𝜇𝑖𝑖 > 0) tend to co-occur, while strongly antagonistic traits (𝐽𝐽𝜇𝜇𝑖𝑖 < 0) 
are likely not carried together. Such structured phenotypes lead to structured ecosystems, as we 
investigate. 
 

The dynamics (3.1) is basically the MacArthur model of competition for 𝐿𝐿∞ substitutable 

“resources” [2,3,92]. To these dynamics we add the stochastic arrival of new phenotypes arising 

through bit flips (“mutations”), as is standard in studies of adaptive dynamics. The combined eco-

evolutionary process is simulated using a hybrid discrete-continuous method as described in 
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Section 3.6.1. As presented so far, our eco-evolutionary model is similar to, e.g., Ref.  [93]; our 

key novelty (trait interactions) will be introduced in the next section. We note, however, that 

typically the interpretation of resources in models like (3.1) is metabolic [8,10,13,29,94,95]; for 

example, 𝑖𝑖 might label the different forms of carbon available to a carbon-limited microbial 

community. Here, we adopt a more general perspective, where 𝑖𝑖 labels any depletable 

environmental opportunity, which need not be specifically metabolic. 

As an example, one way for a strain to survive in chemostat conditions is to develop an ability to 

adhere to the walls of the device  [96]. The wall surface is finite, and provides an example of a 

non-metabolic limited resource. Similarly, being physically bigger, or carrying a rare toxin could 

be a useful survival strategy, but in both cases the benefit decreases as the trait becomes widespread 

in the community. Unlike the forms of carbon, which may be numerous but are certainly countable 

and finite, the list of exploitable opportunities of this kind could be arbitrarily long (𝐿𝐿∞ → ∞), 

especially when considering the complexity of natural microbial environments. Note that, by 

construction, our model allows coexistence of a very large number of phenotypes. In many studies, 

explaining such coexistence is the aim; here, it is our starting point. Rather than asking how a given 

environment enables coexistence of a diverse community, we start from the observation that 

natural communities are extremely diverse, interpret this as evidence for the existence of a very 

large number of (potentially unknown) limiting factors, and ask whether such diversity of types 

can be usefully coarse-grained. 

Modeling fitness benefits as additive [eq. 3.1a] is certainly a simplification. It is also worth noting 

that the model (3.1) is special in that it possesses a Lyapunov function [97]; we will return to this 

point below. Nevertheless, this is a good starting step for our program, namely understanding the 
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circumstances under which coarse-grained descriptions are adequate. Most crucially, a suitable 

choice of the cost model 𝜒𝜒𝜇𝜇 will allow us to naturally obtain communities with an hierarchical 

structure of trait distributions across organisms mimicking that of natural biodiversity. 

3.2.2 A Simple Cost Model Leads to Hierarchically Structured 
Communities 

Several studies investigated dynamics like (3.1) with costs assigned randomly (e.g., [7,8,10–13]). 

Here, we seek to build a model where the phenotypes in the community are not random, but are 

hierarchically structured, reproducing phenomena such as divergent taxa belonging to identifiable 

functional groups, the fine-scale strain diversity found within a species, or the notion of “core” and 

“accessory” traits in a bacterial pangenome  [98]. For this, consider the following cost structure: 

𝜒𝜒𝜇𝜇 = 𝑐𝑐 + �𝜒𝜒𝜇𝜇𝜎𝜎𝜇𝜇𝜇𝜇
𝜇𝜇

−�𝐽𝐽𝜇𝜇𝑖𝑖𝜎𝜎𝜇𝜇𝜇𝜇𝜎𝜎𝜇𝜇𝑖𝑖
𝜇𝜇<𝑖𝑖

. 

(3.2) 

The parameter 𝑐𝑐 encodes a baseline cost of essential housekeeping functions (e.g., DNA 

replication). 𝜒𝜒𝜇𝜇 is the cost of carrying trait 𝑖𝑖 (e.g., synthesizing the relevant machinery); for most 

of our discussion, we will set 𝑐𝑐 = 0.1, and set all 𝜒𝜒𝜇𝜇 ≡ 𝜒𝜒0 = 0.5 for simplicity. The key object for 

us is the matrix 𝐽𝐽𝜇𝜇𝑖𝑖, which encodes interactions between traits and shapes the pool of viable (low-

cost) phenotypes (Figure 3.1C). As an example, the enzyme nitrogenase is inactivated by oxygen, 

so running nitrogen fixation and oxygen respiration in the same cell would require expensive 

infrastructure for compartmentalizing the two processes from each other; in our model, this would 

correspond to a strongly negative 𝐽𝐽𝜇𝜇𝑖𝑖 (carrying both traits is costly). An example for the opposite 

case of a beneficial interaction (positive 𝐽𝐽𝜇𝜇𝑖𝑖) is a branched catabolic pathway, where sharing 

enzymes to produce common intermediates reduces the cost relative to running the two branches 

independently. Crucially, in our model, the parameters 𝑐𝑐, 𝜒𝜒𝜇𝜇 and 𝐽𝐽𝜇𝜇𝑖𝑖 are the same for all organisms; 
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we will refer to them as encoding the “biochemistry” of our eco-evolutionary world. 

We now make our key choice. To set 𝐽𝐽𝜇𝜇𝑖𝑖, we generate a random matrix of progressively smaller 

elements, as illustrated in Figure 3.2A. Specifically, we will be drawing the element 𝐽𝐽𝜇𝜇𝑖𝑖 out of a 

Gaussian distribution with zero mean and standard deviation 𝐽𝐽0 𝑓𝑓(max(𝑖𝑖, 𝑗𝑗)), with a sigmoid-

shaped 𝑓𝑓(𝑛𝑛) = 1

1+exp�𝑛𝑛−𝑛𝑛
∗

𝛿𝛿 �
 (see Figure 3.2B). Throughout this work, we set 𝐽𝐽0 = 0.2, 𝑛𝑛∗ = 10 and 

𝛿𝛿 = 3. As we will see, this choice for the interaction matrix 𝐽𝐽 implements a hierarchically 

structured distribution of traits. Intuitively, since high-cost phenotypes are poor competitors, we 

can think of the interactions 𝐽𝐽𝜇𝜇𝑖𝑖 as determining the “sensible” trait associations. For strongly 

interacting traits only some combinations are competitive, resulting in traits that are mutually 

exclusive (𝐽𝐽𝜇𝜇𝑖𝑖 < 0) or that frequently co-occur (𝐽𝐽𝜇𝜇𝑖𝑖 > 0) in low-cost (viable) phenotypes (Figure 

3.1C). In contrast, a weakly interacting trait can be gained, lost, or remain polymorphic, as dictated 

by the environment. An example might be a gene encoding a costly pump that enables the organism 

to live in otherwise inaccessible (toxin-laden) regions of the habitat. Such a trait is “weakly 

interacting” if the cost of running the pump does not significantly depend on the genetic 

background. As we will see, our model will naturally give rise to hierarchically structured sets of 

phenotypes that share some “core” functions but differ in others to form finer-scale diversity, 

resembling the notions of “core” and “accessory” traits of a bacterial pangenome [98]. 
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Figure 3.2 | A simple model of trait interactions leads to hierarchically structured ecosystems. 
A, B: In our model, the traits carried by a given phenotype interact with each other to determine 
its “maintenance cost” (see text). The matrix of pairwise trait interactions 𝐽𝐽𝜇𝜇𝑖𝑖 is drawn randomly 
and is the same for all phenotypes, encoding the “biochemical constraints”; panel A shows an 
example (𝐽𝐽𝜇𝜇𝑖𝑖 is triangular with one element per trait pair 𝑖𝑖 ≠ 𝑗𝑗). We assume an interaction structure 
such that a few traits interact strongly while others interact weaker and weaker (panel B). C: An 
example of eco-evolutionary dynamics generated in our model. Shading corresponds to different 
phenotypes. Although new strains continue to emerge and die out throughout the period shown, 
they can be grouped into several coarse-grained types of approximately stable abundance (one is 
highlighted in color). D: The phenotypes present at the endpoint of the trajectory shown in C. Each 
of 27 phenotypes is a row of length 𝐿𝐿∞ = 40 (white pixels are carried traits). The seven highlighted 
strains are identical in traits 1-24. We will say that they belong to the same 𝐿𝐿∗-type”, for level of 
coarse-graining 𝐿𝐿∗ = 24. E: The number of 𝐿𝐿∗-types in the community of panel D, shown as a 
function of 𝐿𝐿∗. At a coarse-grained level, the community appears to consist of only 4 types (one of 
these is highlighted in C using color); resolving finer substructure requires 𝐿𝐿∗ > 15.  F, G: Same 
as D, E for a broader set of strains, pooled over 𝑀𝑀env = 50 similar environments. The hierarchical 
structure is maintained (if the trait matrix were randomized, the number of 𝐿𝐿∗-types would grow 
exponentially; see the dashed line). Here, we ask: in what sense, if any, could the phenotypic details 
beyond 𝐿𝐿∗ ≈ 20-25 be coarse-grained away in this model? 
 

3.2.3 Environment Defines a Strain Pool 
To build some intuition about the model defined above, consider Figure 3.2C that shows an 

example of these eco-evolutionary dynamics for one random biochemistry, and an environment 

where we set 𝑏𝑏𝜇𝜇 ≡ 𝑏𝑏0 = 1 for simplicity, and 𝐾𝐾𝜇𝜇 = 𝐾𝐾0 = 1010 to set the scale of population size 

as appropriate for bacteria. Grayscale shading corresponds to distinct phenotypes; the community 

was initialized with a single (randomly drawn) phenotype. The dynamics of Figure 3.2C illustrate 

that our framework will allow us to define a form of ecosystem stability where all the original 
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phenotypes may have gone extinct and were replaced by others, and yet at a coarse-grained level 

the ecosystem structure remains recognizably “the same”. Here, starting from about 𝑡𝑡 ≃ 105, the 

dynamics resemble a stable coexistence of several coarse-grained “species” (one is highlighted in 

color), whose overall abundance remains roughly stable even as individual strains continue to 

emerge and die out. To formalize this observation, we need the notion of coarse-grained “𝐿𝐿∗-types'', 

which we will now introduce. 

As we continue the simulation, the dynamics converge to an eco-evolutionary equilibrium (a state 

where the coexisting types are in ecological equilibrium, and no single-bit-flip mutant can invade). 

In this example, it consists of 27 coexisting phenotypes and is shown in Figure 3.2D. Note that, 

confirming our expectations, it appears to possess a hierarchical structure. The seven highlighted 

strains are identical over the first 24 components, and differ only in the “tail” (components 25-40). 

A coarse-grained description that characterizes organisms only by the first 𝐿𝐿∗ = 24 traits would 

be unable to distinguish these strains; we will say that these strains belong to the same 𝐿𝐿∗-type with 

𝐿𝐿∗ = 24. Figure 3.2E plots the number of 𝐿𝐿∗-types resolved at different levels of coarse-graining 

𝐿𝐿∗ (within the community shown in Figure 3.2D). For 𝐿𝐿∗ = 3-15, the number of types remains 

stable at just 4; the color in Figure 3.2C highlights one of them. Beyond 𝐿𝐿∗ = 15, adding more 

details begins to resolve additional types, up until 𝐿𝐿∗ = 𝐿𝐿∞ when the number of 𝐿𝐿∗-types coincides 

with the total number of microscopic strains. 

Of course, when discussing the diversity of strains one expects to find in a given environment, it 

is important to remember that no real environment is exactly static, and no real community is in 

evolutionary equilibrium. To take this into account while keeping the model simple, we will 

consider not a single equilibrium, but a collection of communities assembled in 𝑀𝑀env = 50 similar 
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environments where we randomly perturb the carrying capacity of all opportunities (𝐾𝐾𝜇𝜇 =

𝐾𝐾0(1 + 𝜖𝜖𝜂𝜂𝜇𝜇), with 𝜖𝜖 = 0.1 and 𝜂𝜂𝜇𝜇 are i.i.d. from a standard Gaussian); see Section 3.6. Figure 3.2F 

shows the set of strains pooled over the 50 ecosystems  assembled in this way. This strain pool is 

the central object we will seek to coarse-grain. We stress that its construction explicitly depends 

on the environment. (Or, more specifically, the particular random set of 𝑀𝑀env similar environments, 

but 𝑀𝑀env = 50 is large enough that the results we present are robust to their exact choice.) 

As we see in Figure 3.2F, adding more strains to the pool makes its hierarchical structure even 

more apparent. Quantitatively, the number of 𝐿𝐿∗-types (Figure 3.2G) grows much slower than if 

the traits of each phenotype were randomly permuted (the dashed control curve): microscopically, 

perturbing the environment favors new strains, but at a coarse-grained level, these new strains are 

variations of the same few types. This is precisely the behavior that we were aiming to capture in 

our model. Beyond 𝐿𝐿∗ ≈ 20-25, the number of resolved types begins to grow rapidly. Can this 

diversity be coarse-grained away? Is there a precise sense in which these tail-end traits are “just 

details”? To answer this question, we must begin by making it quantitative. 

3.3 Coarse-graining 
3.3.1 Methodology for Defining Coarse-grainability 
The 𝐿𝐿∞-dimensional description we defined represents the complete list of niches and 

opportunities present in a natural habitat. Any recreation in the laboratory is simplified, retaining 

only some of the relevant factors. We will model simplified environments as including 

resources/opportunities 1 through 𝐿𝐿 (Figure 3.3A). The parameter 𝐿𝐿 represents environment 

complexity. The other key parameter is the level of coarse-graining detail, 𝐿𝐿∗ (Figure 3.3B). For 
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each 𝐿𝐿∗, the identity and combined abundance of 𝐿𝐿∗-types provides a candidate coarse-grained 

description of the ecosystem. We seek a quantitative metric for assessing its quality. 

Ideally, this assessment would be a comparison of performance of two models: one highly detailed, 

the other coarse-grained, and our test would evaluate the prediction error for a given property of 

interest. However, what we built is not a coarse-grained model, but a hierarchy of coarse-grained 

variables. These variables could be used to build any number of models, and identifying the most 

predictive of these is a highly nontrivial task. Here we sidestep this problem by proposing an 

operational approach that evaluates a coarse-graining based on the reproducibility of outcomes of 

a specified experimental protocol. 

 
Figure 3.3 | Defining weak and strong coarse-grainability. A: The complex natural habitat is 
modeled as including a large number 𝐿𝐿∞ of exploitable resources or opportunities. In a laboratory, 
we can consider a sequence of ever-more-detailed approximations including resources 1, … , 𝐿𝐿 
(with the remaining ones set to zero). B: For each environment, the model describes the pool of 
strains we expect to encounter (the pool of 𝐿𝐿-strains; see Figure 3.2F). For a given 𝐿𝐿, the strains 
are unlikely to carry traits 𝑖𝑖 for resources not provided (𝑖𝑖 > 𝐿𝐿). As environment complexity 𝐿𝐿 
increases, the pool becomes increasingly diverse. C: The set of 𝐿𝐿-strains can be coarse-grained to 
a varying level of detail 𝐿𝐿∗ ≤ 𝐿𝐿. Let 𝑄𝑄(𝐿𝐿, 𝐿𝐿∗) be any quantitative metric (to be defined later) scoring 
the quality of the 𝐿𝐿∗-coarse-graining in the environment of complexity 𝐿𝐿. At 𝐿𝐿∗ = 𝐿𝐿, the strain 
diversity is fully resolved (no coarse-graining). The “coarse-grainability” of the ecosystem is 
encoded in the behavior of 𝑄𝑄(𝐿𝐿, 𝐿𝐿∗) for 𝐿𝐿∗ < 𝐿𝐿. Different metrics 𝑄𝑄 encode different operational 
definitions of coarse-grainability. D: A non-coarse-grainable ecosystem (sensu quality metric 𝑄𝑄). 
The coarse-graining quality remains poor unless the microscopic strain diversity is fully resolved 
(at 𝐿𝐿∗ = 𝐿𝐿). E: Weak-sense coarse-grainability: in any given environment (a fixed 𝐿𝐿, highlighted), 
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a desired quality can be achieved with a coarser-than-microscopic description (𝐿𝐿∗ < 𝐿𝐿). F: Strong-
sense coarse-grainability: the same coarse-graining (a fixed 𝐿𝐿∗, highlighted) provides the desired 
quality even as the environment complexity is increased. 
 

We will describe and contrast two protocols, each of which could be seen as verifying the validity 

of the coarse-graining, and each yielding its own metric of coarse-graining quality 𝑄𝑄(𝐿𝐿, 𝐿𝐿∗); Figure 

3.3C. The “diagonal” entries of 𝑄𝑄 (with 𝐿𝐿∗ = 𝐿𝐿) correspond to an absence of coarse-graining: the 

description of strains resolves all the traits relevant in a given environment. Coarse-grainability is 

encoded in the behavior of 𝑄𝑄(𝐿𝐿, 𝐿𝐿∗) with 𝐿𝐿∗ < 𝐿𝐿  (Figure 3.3D-F). Consider first the behavior of 

𝑄𝑄(𝐿𝐿, 𝐿𝐿∗) as a function of 𝐿𝐿∗, with 𝐿𝐿 fixed. If we observe that in a given environment, sufficient 

quality can be achieved already with 𝐿𝐿∗ < 𝐿𝐿, we will say that the ecosystem is coarse-grainable in 

the weak sense. For strong-sense coarse-grainability, we ask if the same coarse-grained description 

continues to perform well even as the environment is made more complex (i.e., instead of fixing 

𝐿𝐿 and varying 𝐿𝐿∗, we fix 𝐿𝐿∗ and vary 𝐿𝐿). Strong-sense coarse-grainability would be a highly 

desirable property, but a priori it is unclear if it is even theoretically possible. 

Crucially, these definitions depend on the choice of the operational criterion for assessing coarse-

graining validity (the experiment whose results we require to be reproducible). Below, we will 

show that the same ecosystem can be coarse-grainable in the strong sense under one criterion, and 

yet not coarse-grainable at all under another. 

3.3.2 Operational Definitions of Coarse-graining Quality 𝑸𝑸(𝑳𝑳,𝑳𝑳∗) 
In this section, we describe two “experimental” protocols, each of which could be seen as a sensible 

test of the quality of a coarse-graining. They will establish two alternative criteria for a coarse-

graining to be operationally valid, which we will then contrast. 

The Reconstitution Test 
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One possible criterion is the reconstitution test. Drawing a random representative for each of the 

𝐿𝐿∗-types in the strain pool, we seed an identical environment with the representatives we chose, 

allowing them to reach an ecological equilibrium (Figure 3.4B). If the details ignored by the 

coarse-graining are indeed irrelevant, we would expect such “reconstituted” replicates to all be 

alike. If the reconstituted communities are found to be highly variable depending on exactly which 

representative we happened to pick, this will signal that the distinctions we attempted to ignore 

are, in fact, significant. 

Quantitatively, for each 𝐿𝐿∗-type 𝜇𝜇∗, let us denote 𝑛𝑛𝜇𝜇∗
(𝛼𝛼) its final relative abundance (i.e., the fraction 

of total population size) in the reconstituted replicate 𝛼𝛼. The coefficient of variation of 𝑛𝑛𝜇𝜇∗
(𝛼𝛼) over 

𝛼𝛼 (denoted CV𝛼𝛼�𝑛𝑛𝜇𝜇∗
(𝛼𝛼)�) provides a natural measure of variability across replicates. To combine 

these into a single number, we compute the average such variability over all 𝐿𝐿∗-types 𝜇𝜇∗, weighted 

by their mean relative abundance across replicates (denoted �𝑛𝑛𝜇𝜇∗
(𝛼𝛼)�

𝛼𝛼
): 

𝑄𝑄rec = ��𝑛𝑛𝜇𝜇∗
(𝛼𝛼)�

𝛼𝛼
CV𝛼𝛼�𝑛𝑛𝜇𝜇∗

(𝛼𝛼)�
𝜇𝜇∗

. 

Since the coefficient of variation is, by definition,  CV𝛼𝛼�𝑛𝑛𝜇𝜇∗
(𝛼𝛼)� = std𝛼𝛼�𝑛𝑛𝜇𝜇∗

(𝛼𝛼)�/�𝑛𝑛𝜇𝜇∗
(𝛼𝛼)�

𝛼𝛼
 our metric 

simplifies to 𝑄𝑄rec = ∑ std𝛼𝛼�𝑛𝑛𝜇𝜇∗
(𝛼𝛼)�𝜇𝜇∗ . With this definition, a perfect reconstitution would have 

𝑄𝑄rec = 0. Conveniently, this is automatically the case if 𝐿𝐿∗ = 𝐿𝐿 (no coarse-graining). 
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Figure 3.4 | Specific criteria for assessing coarse-graining quality 𝑸𝑸(𝑳𝑳,𝑳𝑳∗). A: In this cartoon, 
the community is coarse-grained into three operational taxonomic units (OTUs), implemented in 
our model as 𝐿𝐿∗-types. B: The “reconstitution test”. Under this criterion, grouping strains into 
coarse-grained OTUs is justified if reconstituting a community from a single representative of each 
OTU yields similar communities regardless of which representatives we pick. As a quantitative 
measure, we compare the OTU abundances across replicates. C: The “leave-one-out test”. Under 
this criterion, grouping strains into coarse-grained OTUs is justified if the strains constituting OTU 
𝑋𝑋 (green in this cartoon) all behave similarly when introduced into a community missing 𝑋𝑋. As a 
quantitative measure, we compare the invasion rates of the left-out strains. 

 

The Leave-One-Out Test 
As we will see, the criterion defined above is extremely stringent and is rarely satisfied. In this 

section, we introduce a weaker version. Instead of the composition of the entire community, we 

will explicitly focus on one particular property of interest (below, the invasion rate of a strain). 

Further, instead of requiring the grouped-together strains to be interchangeable in absolute terms, 

we will ask that they behave similarly in the context of the assembled community. 

Specifically, for a given scheme grouping strains into coarse-grained types, consider assembling a 

community missing a particular coarse-grained type 𝜇𝜇∗ (the ecological equilibrium reached when 

combining all the strains in the pool, except those belonging to type 𝜇𝜇∗; Figure 3.4C). We will 

judge the coarse-graining as valid if the different strains constituting the missing type 𝜇𝜇∗ all behave 
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similarly when introduced into this community. As one example, we can compare their initial 

growth rates if introduced into the community at low abundance, called henceforth “invasion rate” 

(other possible choices include the abundance the strain will reach if established, or the level of 

niche exploitation ℎ𝜇𝜇 in the resulting community; these are shown in the Figure 3.8). If the invasion 

rates are similar, describing the community as missing the coarse-grained type 𝜇𝜇∗ would indeed be 

consistent. If, however, the invasion rates vary strongly, we will conclude that the features our 

coarse-graining is neglecting are, in fact, important. 

Quantitatively, denote the invasion rate of strain 𝜇𝜇 into a community missing type 𝜇𝜇∗ as 𝑟𝑟𝜇𝜇,𝜇𝜇∗. We 

define 

𝑄𝑄inv = �𝑛𝑛�𝜇𝜇∗  std𝜇𝜇∈𝜇𝜇∗𝑟𝑟𝜇𝜇,𝜇𝜇∗
𝜇𝜇∗

, 

where 𝑛𝑛�𝜇𝜇∗ is the relative mean abundance of strains belonging to type 𝜇𝜇∗ in the pool, and  std𝜇𝜇∈𝜇𝜇∗ 

denotes the standard deviation over all strains belonging to 𝜇𝜇∗ weighted by strain abundance in the 

pool (i.e., a strain's combined abundance observed across the set of 𝑀𝑀env environments used to 

define the pool). Once again, at 𝐿𝐿∗ = 𝐿𝐿 we automatically have 𝑄𝑄inv = 0 as this corresponds to the 

fully microscopic description (each type 𝜇𝜇∗ is represented by exactly one strain). Note that this 

averaging convention (weighted by abundance in the pool) is slightly different from that used in 

the previous section (using average abundance across the assembled replicates). Using the same 

convention for both 𝑄𝑄inv and 𝑄𝑄rec would not change our results, but would artificially inflate the 

latter with noise from low-abundance (rare) strains. (For details, see Section 3.6.3 and Figure 3.9.) 

To illustrate the difference between the two criteria, consider the statement that a community 

consisting of Tetrahymena thermophila and Chlamydomonas reinhardtii cannot be invaded by 
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Escherichia coli [99]. What meaning should we ascribe to this statement when phrased in terms of 

coarse-grained units, rather than specific strains? Under the first criterion, we would require that 

if we combine any single strain of T. thermophila, any strain of C. reinhardtii, and any strain of E. 

coli, only the first two would survive. Under the second criterion, we would combine a vial labeled 

T. thermophila, containing the entire diverse ensemble of its strains, with a similarly diverse vial 

of C. reinhardtii, and verify that the resulting community cannot be invaded by any individual 

strain of E. coli.1 

Note that in our model, the existence of a Lyapunov function [97] means the ecological 

equilibrium is uniquely determined by the environment and the identity of the competing strains; 

their initial abundance or the order of their introduction does not matter. While this is a 

simplification, this property is very useful for our purposes, since any lack of reproducibility 

between reconstituted communities is then clearly attributable to faulty coarse-graining. In a model 

where even identical phenotypes could assemble into multiple steady states, distinguishing this 

variability from the variability due to strain differences would add a layer of complexity to our 

analysis. 

3.4 Results 

3.4.1 A Coarse-graining may be Operationally Valid Despite Grouping 
Functionally Diverse Strains 

Throughout this section, we will continue to use an environment with 𝐾𝐾𝜇𝜇 ≡ 𝐾𝐾0 and 𝑏𝑏𝜇𝜇 ≡ 𝑏𝑏0 (all 𝐿𝐿∞ 

opportunities are equally lucrative). In practice, when approximating a complex environment in 

the laboratory, we try to capture the most salient features first. Thus, it would have been perfectly 

 
1 Although we use this as an example here, we should note that in the original reference [99] this statement was not 
actually meant as a species-level claim, but indeed referred to the three specific strains used in the experiment. 
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natural to instead let 𝐾𝐾𝜇𝜇 and/or 𝑏𝑏𝜇𝜇 decline with 𝑖𝑖; one would expect this to improve coarse-

grainability, and this is indeed the case (see Section 3.6.5). The motivation for our choice is two-

fold: First, keeping all 𝐾𝐾𝜇𝜇 and 𝑏𝑏𝜇𝜇 the same requires fewer parameters than choosing a particular 

functional form of decline with 𝑖𝑖. Second, the regime where no niches are obviously negligible 

will only make it more striking to find that an ecosystem can be not only coarse-grainable, but 

coarse-grainable in the strong sense. 

Figure 3.5A plots 𝑄𝑄inv(𝐿𝐿, 𝐿𝐿∗) for the leave-one-out test comparing the invasion rates of different 

strains falling into the same coarse-grained types. We find that any desired coarse-graining quality 

can be achieved by a sufficient 𝐿𝐿∗, and is almost unaffected by 𝐿𝐿. As environment complexity 

increases and becomes capable of sustaining an ever-growing number of microscopic strains, each 

𝐿𝐿∗-type becomes increasingly diverse. Nevertheless, all the strains in the same 𝐿𝐿∗-type continue to 

behave similarly by our invasion-rate-based metric; in other words, under this criterion, the 

ecosystem is coarse-grainable in the strong sense. 

 
Figure 3.5 | The same ecosystem can be coarse-grainable under one criterion, but not under 
another. A: If coarse-graining quality is evaluated using the leave-one-out test (assessing 
reproducibility of strain invasion rates), our ecosystem model is coarse-grainable in the strong 
sense: the acceptable level of coarse-graining, determined by the desired quality score (isolines of 
𝑄𝑄), is robust to environment complexity (compare to Figure 3.3F). B: In contrast, under the 
reconstitution test criterion, no amount of coarse-graining is acceptable (compare to Figure 3.3D). 
This comparison shows that a coarse-graining can be operationally valid for a given purpose (panel 
A) even when the strains it groups together are functionally diverse (panel B). Both heatmaps 
represent a single random biochemistry, same in both panels. Isolines in A are averaged over 20 
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biochemistries to demonstrate robustness (see Section 3.6.2). C: Explaining the origin of strong-
sense coarse-grainability in our model. The plot shows the scaling with 𝑖𝑖 of |ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇| (computed 
for 𝐿𝐿∗ = 30, 𝐿𝐿 = 40, and averaged across communities assembled for the leave-one-out test of 
panel A). The strong-sense coarse-grainability of panel A is ensured whenever the decay is faster 
than 1/𝑖𝑖 (dashed gray line). Intuitively, this makes the tail-end traits approximately neutral in the 
assembled community; see text. We expect this scaling to be controlled by the sigmoidal decay of 
trait interaction magnitude |𝐽𝐽𝜇𝜇𝑖𝑖|, as confirmed here (solid gray line; same as Figure 3.2B but 
normalized to a maximum of 1 to show the decay of interaction strength rather than their absolute 
magnitude). 

 

And yet, it would be wrong to conclude that the traits beyond a given 𝐿𝐿∗ are “negligible” in any 

absolute sense. This is clearly demonstrated by the reconstitution test (Figure 3.5B). If we attempt 

to reconstruct the community from its members, every detail matters: no amount of coarse-graining 

is acceptable. We will now explain this apparent paradox within our model. 

Consider a community at an ecological equilibrium, and let us focus on a particular phenotype 𝜎𝜎 

carrying one of the weakly interacting (tail-end) traits 𝑖𝑖0: 𝜎𝜎𝜇𝜇0 = 1. What would be the fitness effect 

of losing this trait? Losing the benefit ℎ𝜇𝜇0 from opportunity 𝑖𝑖0 is offset by the reduction in 

maintenance cost; for a weakly interacting trait, the contribution from the term ∑ 𝐽𝐽𝑖𝑖𝜇𝜇0𝜎𝜎𝑖𝑖𝜎𝜎𝜇𝜇0𝑖𝑖  is 

negligible, and the change in cost is simply 𝜒𝜒𝜇𝜇0. We conclude that the fitness effect of losing the 

trait is 𝛿𝛿𝑓𝑓 = 𝜒𝜒𝜇𝜇0 − ℎ𝜇𝜇0. At an evolutionary equilibrium, we would therefore have ℎ𝜇𝜇0 = 𝜒𝜒𝜇𝜇0 (the 

“functional attractor” state [8]). When this condition is satisfied, we will say that the opportunity 

or niche 𝑖𝑖0 is “equilibrated”. If a weakly interacting niche is equilibrated, carrying the respective 

trait becomes approximately neutral. 

Here, our community is not at the evolutionary equilibrium; nevertheless, a sufficiently diverse 

strain pool will similarly ensure that the opportunities corresponding to the weakly-interacting 

(tail-end) traits become approximately equilibrated: ℎ𝜇𝜇 ≈ 𝜒𝜒𝜇𝜇. For a simpler model where the 
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phenotype costs 𝜒𝜒𝜇𝜇 are drawn randomly, the mechanism for this can be understood analytically 

(the “shielded phase” of Ref.  [13] }; see also Ref.  [100]). Here, the costs are not random, but as 

long as trait interactions are weak, one expects the behavior to be similar (see SI section S6.2 in 

Ref.  [13]). This expectation is confirmed in simulations. Figure 3.5C shows the observed niche 

disequilibrium ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇 as a function of 1/𝑖𝑖. The plot confirms that the tail-end niches (1/𝑖𝑖 → 0) 

are increasingly well-equilibrated (|ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇| decays with 𝑖𝑖). The strong-sense coarse-grainability 

of Figure 3.5A is ensured whenever the decay is faster than 1/𝑖𝑖 (dashed gray line). This is because 

with this scaling, the sum of contributions from the omitted tail-end traits is bounded (see Section 

3.6.5). The analytical argument of Ref. [13] leads us to expect the disequilibrium to be controlled 

by the decaying typical magnitude of interactions |𝐽𝐽𝜇𝜇𝑖𝑖| (solid gray line). If the tail-end niches are 

equilibrated, carrying the respective traits becomes approximately neutral, and the ability of a 

strain to invade is entirely determined by its phenotypic profile over non-equilibrated niches, 

explaining the observations of Figure 3.5A. We conclude that in our model, the strong-sense 

coarse-grainability is a consequence of the faster-than-1/𝑖𝑖 decay of interaction strength in Figure 

3.2B. 

Crucially, however, this approximate neutrality applies only in the environment created by the 

assembled community, and does not mean that the distinctions are functionally negligible. For 

instance, consider the (Lotka-Volterra-style) interaction term for a given pair of strains 𝜇𝜇 ≠ 𝜈𝜈: 

𝐴𝐴𝜇𝜇𝜇𝜇 ≡
1
𝑁𝑁𝜇𝜇

𝜕𝜕�̇�𝑁𝜇𝜇
𝜕𝜕𝑁𝑁𝜇𝜇

= �𝜎𝜎𝜇𝜇𝜇𝜇𝜎𝜎𝜇𝜇𝜇𝜇
ℎ𝜇𝜇2

𝑏𝑏𝜇𝜇𝐾𝐾𝜇𝜇
=
∑ 𝜎𝜎𝜇𝜇𝜇𝜇𝜎𝜎𝜇𝜇𝜇𝜇ℎ𝜇𝜇2𝜇𝜇

𝑏𝑏0𝐾𝐾0𝜇𝜇

, 
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where we substituted 𝑏𝑏𝜇𝜇 ≡ 𝑏𝑏0 and 𝐾𝐾𝜇𝜇 ≡ 𝐾𝐾0 for our environment. Even when tail-end niches are 

equilibrated with ℎ𝜇𝜇 ≈ 𝜒𝜒𝜇𝜇 = 𝜒𝜒0, we find that each of them contributes equally to the interaction 

term: no detail is negligible. 

This argument directly relates the observed effect to the distinction between a trait that is truly 

neutral, and one that is effectively neutral in the assembled community only. A truly neutral trait, 

one incurring almost no cost and bringing almost no benefit, would have ℎ𝜇𝜇 → 0 and its 

contribution to the interaction term 𝐴𝐴𝜇𝜇𝜇𝜇 would indeed be small. And indeed, if we repeat our 

analysis for a scenario where both 𝑏𝑏𝜇𝜇 and 𝜒𝜒𝜇𝜇 decline with 𝑖𝑖, we find that neglecting the tail-end 

traits becomes an adequate coarse-graining also for the reconstitution test (see Figure 3.10). 

The conclusion from contrasting Figure 3.5A and Figure 3.5B is worth emphasizing. In the 

example we constructed, the coarse-grained description is valid sensu panel 3.5A. This means that, 

for instance, we can meaningfully say that “a community assembled of OTU#1 and OTU#2 can 

be invaded by OTU#4”. We can even measure, e.g., the invasion rate, and be assured that it is 

quantitatively reproducible, with a bounded error bar, across the many strains that constitute 

OTU#4 at the microscopic level. Despite all this, the interaction between the OTUs as coarse-

grained units is not actually definable: any specific pair of strains of OTU#1 and OTU#4 may 

interact differently with each other, as is indeed observed experimentally  [47]. 

Our focus on reproducibility of 𝐿𝐿∗-type abundances across replicates is inspired by the experiments 

Ref. [9]. To complete this parallel, we should mention that besides inoculating the same 

environment with a set of similar inocula, as we did for our reconstitution test (cf Figure 3.4B), 

one could also use the same inoculum to seed a set of similar environments. To implement this in 

our model, we use the strain pool constructed as described in Section 3.2.3 to inoculate a set of 
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environments with slight variations in the carrying capacities 𝐾𝐾𝜇𝜇 ≈ 𝐾𝐾0 drawn from a Gaussian 

distribution of width 𝜖𝜖 = 0.1. This is meant to represent the unavoidable variability present in any 

experimental replicates of the “same” environment 𝐾𝐾𝜇𝜇 ≈ 𝐾𝐾0, which can affect fitness even when 

subtle [101]. After assembling the replicate communities, we find that community composition is 

more reproducible at coarser levels of description (Figure 3.6B,C), consistent with the 

experimental observations of Goldford et al.  [9], and with the interpretation of this pattern as 

resulting from functional redundancy within coarse-grained types [90,91,102]. 

 
Figure 3.6 | Replicate communities assembled in similar environments are more reproducible 
at coarser level of description. A: A set of similar environments 𝐾𝐾��⃗ + 𝜖𝜖 (each carrying capacity 
modified by 10\% Gaussian noise) is inoculated with the same strain pool, and brought to 
ecological equilibrium. B: Equilibrium relative abundances of coarse-grained 𝐿𝐿∗-types across 20 
replicates, shown for two levels of coarse-graining. A coarser description (𝐿𝐿∗ = 5; 7 resolved 
types) is more reproducible, consistent with experimental observations  [9]. C: The variability of 
coarse-grained descriptions increases with level of detail. Variability is measured as the average 
coefficient of variation (C.V.) in relative abundance of an 𝐿𝐿∗-type over 100 replicates, weighted 
by 𝐿𝐿∗-type mean relative abundance across replicates. Dashed lines mark 𝐿𝐿∗ = 5, 30 shown in B. 
Datapoints and shading show mean ± SD over 20 random choices of biochemistry {𝐽𝐽𝜇𝜇𝑖𝑖}. All 
simulations performed with 𝐿𝐿 = 40. 
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3.4.2 Using Non-native Strain Pool Reduces Coarse-grainability 
The previous section describes a mechanism by which strain diversity can aid coarse-grainability. 

As we explained, in our model ecosystem the diverse set of strains contained within the coarse-

grained units was able to successfully equilibrate the weakly interacting niches, rendering them 

effectively neutral and leading to the behavior shown in Figure 3.5A. However, for this to occur, 

the strain pool diversity needs to be derived from a sufficiently similar set of environments, as we 

will now show. 

To see this, we repeat the leave-one-out analysis of Figure 3.5A, except now we inoculate the same 

test environment of complexity 𝐿𝐿 = 40 (using 𝐾𝐾𝜇𝜇 = 𝐾𝐾0, 𝑏𝑏𝜇𝜇 = 𝑏𝑏0 as before) with strain pools 

derived from other environments that are increasingly dissimilar to it. Specifically, following the 

procedure described in Section 3.2.3, we generate strain pools in environments with 𝐾𝐾𝜇𝜇 = 𝐾𝐾0(1 +

𝜖𝜖𝜂𝜂𝜇𝜇), where 𝜂𝜂𝜇𝜇 are drawn from the standard normal distribution, and 𝜖𝜖 is the parameter we vary. 

(The 𝑏𝑏𝜇𝜇 are left at 𝑏𝑏𝜇𝜇 = 𝑏𝑏0 for simplicity.) The results are presented in Figure 3.7, which shows the 

performance of different 𝐿𝐿∗-coarse-grainings under the leave-one-out test. 

 
Figure 3.7 | A coarse-graining scheme works best when the environment is populated by the 
native strain pool. The same test environment as in Figure 3.5A is inoculated with strain pools 
that evolved in environments increasingly further away (see text). The coarse-graining quality is 
assessed by leave-one-out experiments, and shown as a function of 𝐿𝐿∗ and environment deviation 
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𝜖𝜖 from the test condition. 𝐿𝐿 is fixed at 𝐿𝐿 = 40 for comparison with the last row of Figure 3.5A. As 
the environments for generating strain pools are modified, the traits that were previously negligible 
can no longer be coarse-grained. The same random biochemistry as in Figure 3.5A was used, and 
each pixel is averaged over 20 random environments. 

 

At 𝜖𝜖 = 0, this is identical to the protocol of Figure 3.5A. We see that describing phenotypes by 20 

traits is sufficient for the invasion rates of grouped-together strains to be consistent within an error 

bar of 𝑄𝑄 < 10−2. However, as 𝜖𝜖 is increased, and the strain pools we use are derived from 

increasingly distant environments, the same coarse-graining becomes insufficient. Instead, a 

substantially higher level of coarse-graining detail 𝐿𝐿∗ is required to maintain the desired quality. 

In summary, we find that in our model, a coarse-graining scheme works best when the environment 

is populated by the native strain pool. 

3.5 Conclusions and Discussion 
The interface of statistical physics and theoretical ecology has a long and highly influential 

tradition of studying large, random ecosystems, starting from the work of May [4]. The key insight 

of this approach is that patterns that are typical to some ensemble of ecosystems are more likely to 

be generalizable and reproducible than the details specific to any one realization. However, the 

choice of the ensemble (and in particular, adding constraints relevant for natural ecosystems) can 

affect predictions significantly  [103–109]. Which predictions of random-interaction models are 

robust to introducing more realistic structures, and conversely, which phenomena cannot be 

explained without invoking structural constraints, is an active area of research  [110]. 

Resource competition models – one of the simplest frameworks explicitly linking composition to 

function – offer a highly promising context to begin addressing these questions, with much recent 

progress. For example, it was recently shown that cross-feeding interactions structured by shared  
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“rules of metabolism” (but otherwise random) can reproduce a surprising range of experimental 

observations  [9,11]. This work made it possible to begin disentangling which experimental 

observations can be seen as evidence for nontrivial underlying mechanisms, and which can be 

reproduced already in the simplest models. 

In this work, we presented a simple framework that allows generating random ecosystems with 

community structure as a tunable control parameter. Instead of postulating a fixed architecture, 

such as a number of discrete “families” of phenotypes [11], we use a biologically motivated 

approach to derive it from functional tradeoffs, parameterized by a matrix of trait-trait interactions 

𝐽𝐽. Simple (few-parameter) choices for 𝐽𝐽 generate communities with complex structures, including 

hierarchical architectures which, at least superficially, appear to mimic those of natural 

biodiversity. Perhaps the most immediate benefit from such a framework would be to help develop 

new ways to quantify the highly multi-dimensional concept of “community structure” across 

scales, such as, for example, the structure of microbial pangenomes. 

In this spirit, here we used this framework to quantify the notion of coarse-grainability. We 

proposed a way to operationally define the quality of a coarse-grained description based on the 

reproducibility of outcomes of a specified experiment. We demonstrated that an ecosystem can be 

coarse-grainable under one criterion, while also not at all coarse-grainable under another. 

Specifically, one way to approach the coarse-graining problem is to only group together the 

individuals that are to a sufficient extent interchangeable. This is the criterion we introduced as a 

“reconstitution test”, and is the criterion implicitly assumed by virtually all compositional models 

of ecosystem dynamics [111]. However, experimental evidence [47,50–53] suggests that unless 

we are willing to resolve types differing by as few as 100 bases, this criterion is likely violated in 
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most practical circumstances. It is certainly violated when grouping strains into functional groups, 

or taxonomic species or families [89–91,112–114]. One expects, therefore, that explaining the 

practical successes of such descriptions would require a different definition of what makes a 

coarse-graining scheme adequate. 

We proposed that this can be achieved with only a subtle change to the criterion: namely, by 

requiring that the grouped strains be approximately interchangeable not in all conditions, but in 

the conditions created by the assembled community itself. As long as the strains we study remain 

in a diverse ecological context, and as long as this diversity is derived from a sufficiently similar 

environment, we find that the coarse-grained description can be consistent in the sense that the 

strains grouped together possess similar properties of interest (e.g., invasion rate, post-invasion 

abundance). 

In this paper, we focused on a case where the traits were differentiated only by the strength of their 

interactions, which established a unique hierarchy among them (a clear order in which to include 

them in the hierarchy of coarse-grained descriptions). In a more general case, the trait cost 𝜒𝜒𝜇𝜇, or 

the trait usefulness in a given environment (𝑏𝑏𝜇𝜇, 𝐾𝐾𝜇𝜇) will set up alternative, potentially conflicting 

hierarchies. We expect the model to have a rich phenomenology in this regime, which we have not 

considered here. Another obvious limitation of our analysis is that our model includes only 

competitive interactions. A simple way to extend our framework would be to include cross-feeding 

interactions; we leave this extension for future work. 

Our analysis introduced a distinction between weak-sense and strong-sense coarse-grainability 

based on whether the performance of a coarse-graining scheme is robust to increasing the 

environment complexity. We explained how strong-sense coarse-grainability arises in our model, 
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linking it to a previously described phenomenon, namely that a sufficiently diverse community 

may “pin” resource concentrations (here, the exploitation of environmental opportunities) at values 

that are robust to compositional details  [10,13,29,100]. Tracing its origin makes it clear that 

strong-sense coarse-grainability in our model is only as good as the assumption that the cost of 

carrying weakly-interacting traits is independent of the phenotypic background. Whether this 

assumption is ever a good approximation in natural ecosystems remains to be seen. Still, our 

argument provides an explicit mechanism for how coarse-grainability can not only coexist, but 

may in fact be facilitated by diversity. 

The fact that strong-sense coarse-grainability is at least theoretically possible is intriguing also for 

the following reason. Throughout this work, we interpreted 𝐿𝐿 as indexing a sequence of ever-more-

complex environments (e.g., a minimal medium with 1 carbon source; a mixture of several carbon 

sources; resuspended homogenized leaf matter; an actual leaf). An alternative perspective, 

however, is to think of a single environment of interest and take 𝐿𝐿 to be the level of detail at which 

it is modeled. Any model we could ever consider, however detailed, is necessarily incomplete. 

Consider the example of the human gut: how important is the exact geometry of the gut epithelium? 

the effect of peristalsis and flow on small-scale bacterial aggregates? the exact role of the vast 

diversity of uncharacterized secondary metabolites [115,116]? It seems plausible that the complete 

list of factors shaping this ecosystem includes many we will never even know about, let alone 

include in our models. Our analysis raises an intriguing – though at this point, purely speculative 

– question of whether the tremendous diversity of natural ecosystems might afford our models 

some unexpected degree of robustness to such unknown details. 

In conclusion, there are many reasons to believe that analyzing a species in artificial laboratory 

environments might be of limited utility for understanding its function or interactions in the natural 
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environment  [117]. Usually, however, the concern is that the laboratory conditions are too simple, 

and in reality, many more details may matter. Here, we use our model to propose that, at least in 

some conditions, the opposite can be true: understanding the interaction of two strains in the 

foreign conditions of the Petri dish may require a much more detailed knowledge of microscopic 

idiosyncrasies. Removing individual strains of a species from their natural eco-evolutionary 

context may eliminate the very reasons that make a species-level characterization an adequate 

coarse-graining of the natural diversity. 

3.6 Technical Details 

3.6.1 Simulating Eco-evolutionary Dynamics 
The eco-evolutionary world in which the dynamics take place is described by the environment 

(constant in time), the biochemistry (also constant in time), and the state of the ecosystem 

(dynamically evolving). At any given moment of time, the state of the ecosystem is described by 

the following information: (1) The identity of each of the phenotypes, described microscopically 

as vectors of length 𝐿𝐿∞; (2) The current abundance (population size) of each of these phenotypes.  

All simulations are performed in the 𝐿𝐿∞-dimensional world of complete microscopic detail; the 

environments of reduced complexity 𝐿𝐿 are implemented by zeroing out the environmental niches 

from 𝐿𝐿 + 1 onward. 

At the level of individual bacteria, for any moment in time, the next “event” to occur will be one 

of the following: (1) an individual dies; (2) an individual divides, giving rise to an identical sibling; 

or (3) an individual divides, giving rise to a mutant sibling. Of course, an individual-based 

simulation is both impractical and unnecessary; instead, we think of these dynamics as a 

combination of purely ecological updates of phenotype abundances (which can be modeled with 
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continuous ODEs), and discrete dynamics whereby some strains go extinct, and others are 

introduced into the population by mutation. 

To implement such discrete events, the standard way is to employ a Gillespie scheme  [118]. A 

slight complication here is that when overlaid with ecological dynamics, the rates of such Gillespie 

events become time-dependent (a mutation favorable right now may cease to be so as ecological 

dynamics continue). However, this complication is easily resolved using standard methods for 

implementing a hybrid stochastic-deterministic Gillespie scheme [119]. Briefly, instead of 

drawing the “time to next event”, one must draw a probability threshold, and propagate the 

continuous dynamics while integrating the rate of an event to occur, up until that accumulated 

probability crosses the threshold (see [120] for an introduction that is both short and intuitive). As 

a result, to describe our simulation we just need to define how the state-dependent rates of such 

events are computed. 

To do so, we adapt for our purposes the results of Ref.  [121]. From the evolutionary standpoint, 

the candidate new strain is a mutant that has a chance of escaping drift and become established in 

the population. The probability of becoming established is proportional to the mutation rate, the 

population size of the parent strain, and the fitness effect 𝛿𝛿𝑓𝑓 of the mutation (i.e. the growth rate2 

of the candidate new strain). Once a strain is established, the stochastic effects become negligible 

and its subsequent dynamics can be modeled deterministically. 

The simulation can be summarized with the following pseudocode: 

 
2 Note that in many evolutionary models, the fitness effect is computed relative to the (ever-increasing) mean fitness 
in the population. For us here, fitness is not an abstract property that could increase arbitrarily, but is directly defined 
as a growth rate; and limited resources automatically ensure that the population-mean growth rate is zero. 
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1. For all single mutants of existing strains, determine the rate at which they would establish 

in the population, as explicit functions of the abundances of extant strains. 

2. Propagate ecological dynamics “for an appropriate length of time” as per standard 

technique  [119]. 

3. Pick the lucky new strain among the beneficial first mutants; add it to the community at a 

population size 1/𝛿𝛿𝑓𝑓; the population of the parent strain is, for consistency, reduced by the 

same amount. 

4. Remove any strain whose abundance is below some predetermined threshold and is 

declining. (In our simulations, this threshold is set at relative abundance 10−6.) 

5. Repeat until the required simulation time has elapsed. 

The mutation rate we use is 𝜇𝜇 = 10−10 per individual per unit time. For context, recall that 

population size is set by the carrying capacity of environmental niches 𝑁𝑁 = 1010 (see Figure 

3.2C), so our choice corresponds to 𝜇𝜇𝑁𝑁 = 1. However, as explained below, the mutation rate 

parameter plays only a minor role in our analysis. 

Evolutionary Equilibrium is Not Required 
In our analysis of coarse-graining schemes, the community we study is never technically at an 

evolutionary equilibrium. We explicitly constructed our procedure to avoid making such an 

unrealistic postulate. Specifically, note that we assemble our strain pool from evolutionary 

equilibria obtained in similar environments, but we then study the interaction of these strains in 

the original, unperturbed environment, where the condition of evolutionary equilibrium was 

never imposed. 

Of course, we then observe that a sufficiently diverse set of strains derived from sufficiently similar 

environments assembles into a community that is very close to the evolutionary equilibrium also 
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in the original environment, and this proximity is largely responsible for the behaviors reported in 

this work. This, however, is not a caveat, but a feature, as we expect the same to be largely true 

for real communities as well: the large diversity of strains is quite plausibly sufficient to populate 

the available niches without requiring de novo mutations, relying exclusively on the standing 

variation. 

Mutation Rate is Not a Key Parameter 
A corollary of the previous point is that for specifically our purposes here, mutation rate is not a 

key parameter of our model. Indeed, we only invoke evolution when constructing the strain pool, 

but each of the combined states is an evolutionary equilibrium, which in this model is guaranteed 

to be unique. One small caveat is that our evolutionary process is simulated at a finite resolution, 

and considers first-mutants only. As a result, the trajectory could get stuck in a locally non-

invadable equilibrium rather than the unique true one, something that would be enhanced by setting 

the mutation rate too low. In this way, the evolutionary stochasticity (and thus the mutation rate) 

does technically play a weak role, but we found it to be essentially irrelevant for the parameters 

used here (specifically, running replicate eco-evolutionary trajectories from random initial 

phenotypes generated virtually indistinguishable final states). 

One artifact that occasionally arises when constructing a strain pool in an environment of 

complexity 𝐿𝐿 occurs when some obtained phenotypes are identical in all traits 𝑖𝑖 ≤ 𝐿𝐿 but are 

distinguishable in traits past 𝐿𝐿, which correspond to those resources/opportunities that have been 

set to zero available benefit (ℎ𝜇𝜇 = 0 by 𝑏𝑏𝜇𝜇 being set to zero for 𝑖𝑖 > 𝐿𝐿; see Section 3.6.1 above). 

Note that in our model, it is rare but perfectly reasonable for phenotypes to carry traits that offer 

no environmental benefit; this occurs whenever the contribution of trait interactions 𝐽𝐽𝜇𝜇𝑖𝑖 provides a 

net reduction of maintenance cost. (In other words, surviving strains need not be identically 0 past 
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𝑖𝑖 = 𝐿𝐿.) However, what should be true is that an 𝐿𝐿∗-type with 𝐿𝐿 = 𝐿𝐿∗ can only have one 

representative: in any environment of complexity 𝐿𝐿 ≤ 𝐿𝐿∗, the lowest-cost member in any 𝐿𝐿∗-type 

is strictly superior to all others in its 𝐿𝐿∗-type, and would outcompete them. In practice, the inferior 

strains are occasionally retained in some replicates due to the evolutionary process only 

considering first mutants. This has no effect on eco-evolutionary dynamics beyond a slight change 

to the abundance of the respective type; however, if left uncorrected, it would lead to artifacts in 

evaluating coarse-graining quality due to the artificially inflated diversity within an 𝐿𝐿∗-type. To 

correct for this, we add the following step when generating the strain pool: after collecting together 

all phenotypes from the ensemble of similar environments, we check for any 𝐿𝐿∗-types that contain 

more than one strain at 𝐿𝐿 = 𝐿𝐿∗ and, if so, remove this artifact by retaining only the superior (lowest-

cost) phenotype. 

3.6.2 Averaging in Figures 
All heatmaps shown in figures correspond to a single random biochemistry. The small amount of 

“graininess” seen in the heatmaps is caused by the quirks of exactly when the 𝐿𝐿∗-coarse-graining 

is able to resolve new subtypes. It is shown as is, with no additional averaging or smoothing. In 

contrast, the isolines overlaid on plots are meant to capture the qualitative trends transcending the 

quirks of a given biochemistry. They are computed by repeating the same analysis for 20 random 

biochemistry realizations: the 20 heatmaps are averaged, smoothed with a 1-pixel-wide Gaussian 

kernel, and the isolines are picked as contour lines of the result. 

The only exception to this procedure is Figure 3.7 which investigates the effect of perturbing the 

environment. In this figure, each pixel is an average over 20 random perturbations (of magnitude 

specified by epsilon) for a single biochemistry. 
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3.6.3 Metrics for Coarse-graining Quality 
Examples of Other Ecological Properties and their Compatibility with 𝑳𝑳∗-coarse-graining 
As described in the main text, the leave-one-out scheme judges a grouping of strains into coarse-

grained OTUs as justified if the strains constituting OTU 𝑋𝑋 all behave similarly when introduced 

into a community missing 𝑋𝑋. However, the “similarity of behavior” could itself be assessed by a 

variety of criteria. In the main text, we focused on comparing the invasion rates of the left-out 

strains. Some equally interesting alternatives include, for instance, the abundance reached by the 

invading strain (which might be zero if the strain cannot invade), or the niche occupancy in the 

resulting community. In each case, we perform the same weighting procedure as used in the main 

text when defining the leave-one-out test (𝑄𝑄inv). 

Invading strain abundance: In this example, we denote 𝑛𝑛𝜇𝜇,𝜇𝜇∗ the relative final abundance reached 

by strain 𝜇𝜇 after being introduced in a community missing the 𝐿𝐿∗-type 𝜇𝜇∗ (by construction, 𝜇𝜇 is a 

representative of 𝜇𝜇∗). Similar to the reconstitution test (for abundances), we look at the variability 

of 𝑛𝑛𝜇𝜇,𝜇𝜇∗ over all 𝜇𝜇 ∈ 𝜇𝜇∗, and define the coarse-graining quality 𝑄𝑄abd by the weighted average of 

this quantity over all 𝐿𝐿∗-types: 

𝑄𝑄abd = �𝑛𝑛�𝜇𝜇∗CV𝜇𝜇∈𝜇𝜇∗�𝑛𝑛𝜇𝜇,𝜇𝜇∗�
𝜇𝜇∗

. 

Niche occupancy post-invasion: Here, instead of looking at a compositional property (abundance 

of a particular coarse-grained type), we ask how similar the effect of the invading strains is on the 

post-invasion function of the community as a whole. The functional properties are encoded in 

community-wide niche occupancy 𝑇𝑇𝜇𝜇 – or, equivalently, in the niche benefit ℎ𝜇𝜇 at equilibrium (the 

benefit from carrying trait 𝑖𝑖). Since the environment is kept fixed, 𝑇𝑇𝜇𝜇 and ℎ𝜇𝜇 are directly related. 
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The reason we choose ℎ over 𝑇𝑇 is because in a metabolic interpretation of the resources 

(community in a chemostat), ℎ𝜇𝜇 is directly measurable as resource concentration in the effluent. 

Quantitatively, let ℎ𝜇𝜇
(𝜇𝜇,𝜇𝜇∗) be the ℎ vector of the equilibrium community after strain 𝜇𝜇 invades the 

community missing the 𝐿𝐿∗-type 𝜇𝜇∗ (again, 𝜇𝜇 is a representative of 𝜇𝜇∗). One might expect computing 

the average component-wise standard deviation of this vector (across all 𝜇𝜇 ∈ 𝜇𝜇∗) to be an 

appropriate measure of variability, but doing so artificially attenuates any variation by including 

“equilibrated” niches with ℎ𝜇𝜇 ≈ 𝜒𝜒𝜇𝜇 (see Sections 3.4.1 and 3.6.5) and thus have vanishing variation. 

We therefore focus only on the variability in the first component ℎ1
𝜇𝜇,𝜇𝜇∗. Similar to the leave-one-

out invasion rate analysis, we then compute the weighted average of this quantity over all 𝐿𝐿∗-types: 

𝑄𝑄ℎ(𝐿𝐿, 𝐿𝐿∗) = �𝑛𝑛�𝜇𝜇∗std𝜇𝜇∈𝜇𝜇∗ℎ1
𝜇𝜇,𝜇𝜇∗

𝜇𝜇∗

. 

These two new measures of coarse-graining quality, combined with the two considered in the main 

text, give four metrics 𝑄𝑄(𝐿𝐿, 𝐿𝐿∗) encoding four different questions of interest. We chose them to 

span both compositional and functional properties of a community. How amenable are these four 

questions to coarse-graining? 

The answer is presented in Figure 3.8. The panels are ordered by “degree of coarse-grainability” 

as defined in Fig Figure 3.8D-F. Our findings are consistent with the recurring observation in the 

experimental literature that functional properties tend to be more reproducible than compositional 

ones  [9,90,112]: the hierarchy of the four questions presented in Figure 3.8 can be summarized as 

saying that ecosystems are coarse-grainable in the strong sense when a coarse-graining is evaluated 

based on functional properties. 
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Indeed, the invasion rate of a missing strain (panel A) is basically a functional property of the pre-

invasion community (the growth rate of a strain is determined by the environmental conditions 

constructed by the rest of the community). Next comes the niche occupancy (panel B) – a 

functional property assessed post-invasion. Next is the abundance reached by the invading strain 

(panel C), a compositional property that we expect to be distinctly less coarse-grainable (indeed, 

recall how strain-strain interactions are strongly affected by tail-end niches). However, the 

reconstitution test is still last in the list (panel D), epitomizing the goal of a bottom-up 

compositional description and requiring the knowledge of all microscopic details. 

 
Figure 3.8 | Four questions whose compatibility with the 𝐿𝐿∗-coarse-graining scheme ranges from 
excellent to non-existent. Top row of heatmaps show coarse-graining qualities for a single random 
biochemistry, while those in the bottom row show averages over 20 random biochemistries from 
which the isolines shown in Figure 3.5 are computed. A: Invasion rate of a missing strain; coarse-
grained description sufficient. B: Niche occupancy post-invasion; coarse-grained description 
sufficient. C: Abundance reached by a strain post-invasion; coarse-graining compatibility is poor. 
D: Reconstitution test (requires functional equivalence of strains); no coarse-graining is possible. 
Note that the coarse-graining quality metrics shown in panels A-C are all assessed in the 
framework of the leave-one-out test as defined in the text. 
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Weighting by Pool Abundance versus Replicate Community Abundance 
Recall that the reconstitution scheme (Figure 3.4B) evaluates a grouping of strains into coarse-

grained OTUs based on the ability of the coarse-graining to precisely reconstitute replicate 

communities from representatives of each OTU. If the replicate communities are similar in 

composition, then we deem the coarse-graining to be an adequate grouping. Specifically, we 

quantify this in terms of a weighted average coefficient of variation in type relative abundance 

(𝑛𝑛𝜇𝜇∗) at ecological equilibrium across replicates (𝑄𝑄rec). In the main text, we choose to perform the 

weighting of each type by its mean relative abundance over replicates, rather than by its mean 

abundance in the pool (as used in the leave-one-out scheme). This choice avoids artificially 

increasing 𝑄𝑄rec with noise from rare, low-abundance types (Figure 3.9). To see this 

mathematically, consider a low-abundance 𝐿𝐿∗-type, 𝜇𝜇∗0 that is rarely observed across 𝑀𝑀 replicate 

communities: say, 𝜇𝜇∗0 has abundance 𝜖𝜖 in only 1 replicate. When 𝑀𝑀 is large, the coefficient of 

variation is approximately CV ≈ 𝜖𝜖/√𝑀𝑀
𝜖𝜖/𝑀𝑀

≈ √𝑀𝑀. In the case of weighing by replicate-mean 

abundance, 𝑄𝑄rec is simply the sum of standard deviations to which the rare type contributes 𝜖𝜖/√𝑀𝑀, 

which is very small if 𝜖𝜖 is small compared to 𝑀𝑀. In the alternative case of weighing by pool-mean 

abundance, the contribution from the rare type's CV, 
𝑁𝑁�𝜇𝜇∗0

∑ 𝑁𝑁𝜇𝜇∗𝜇𝜇∗
√𝑀𝑀, may or may not be small 

depending on the relative abundance of the strains that constitute type 𝜇𝜇∗0 in the pool, inflating the 

noise from its rare appearances. 
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Figure 3.9 | Comparison of weighting 𝐿𝐿∗-type coefficient of variations (C.V.) in 𝑄𝑄rec by a type's 
mean abundance either as observed across replicate reconstituted communities (A) or in 
constructing the strain pool (B). The latter weighting inflates the noise of rare (low abundant) 
strains causing an increase in 𝑄𝑄rec, which indicates larger typical variability within 𝐿𝐿∗-types. Each 
panel shows the same biochemistry seed as used in Figure 3.5. 

 

3.6.4 Coarse-graining Truly Neutral Traits 
One simple sanity-check of our framework is to make the tail-end niches 𝑖𝑖 → 𝐿𝐿∞ not just weakly 

interacting, but genuinely close to neutral. A distinction that makes almost no difference in either 

cost or benefit should surely be negligible for all questions, including the “reconstitution test”. To 

test this, we repeat the analysis for a model where we use the same declining sigmoid-shaped 

function 𝑓𝑓(𝑛𝑛) to scale down not only the trait interactions (cf. Figure 3.2A,B), but also the trait 

cost 𝜒𝜒𝜇𝜇 and benefit 𝑏𝑏𝜇𝜇. The result is shown in Figure 3.10. As expected, we find that all four 

example properties and criteria we consider are now coarse-grainable in either the strong or weak 

sense (this figure is to be compared with Figure 3.8). 
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Figure 3.10 | Reproducing Figure 3.8 for a model where tail-end niches are not just weakly 
interacting, but are also increasingly neutral (bring almost no benefit 𝑏𝑏𝜇𝜇 → 0 and incur almost no 
cost 𝜒𝜒𝜇𝜇 → 0); see text. As expected, phenotypic diversity in the corresponding traits can be 
adequately coarse-grained away no matter the criteria (compare to Figure 3.8). Again, top row of 
heatmaps show coarse-graining qualities for a single random biochemistry, while those in the 
bottom row show averages over 20 random biochemistries. 

 

3.6.5 Effectively Neutral Traits and Asymptotic Scaling of 𝑸𝑸inv(𝑳𝑳,𝑳𝑳∗) 
As described in the main text, with respect to the invasion rates of strains in leave-one-out 

experiments, our ecosystem is coarse-grainable in the strong sense, meaning that a given 𝐿𝐿∗-coarse-

graining maintains a desired quality even as more diversity is resolved with increasing 

environment complexity 𝐿𝐿. In other words, the variability of invasion rates between strains within 

𝐿𝐿∗-types can be made arbitrarily small with a sufficient level of coarse-graining (𝐿𝐿∗), independent 

of the environment complexity. This section presents the formal analysis underlying this result. 

Recall that 𝑄𝑄inv(𝐿𝐿, 𝐿𝐿∗) measures the typical invasion rate variability between strains within 𝐿𝐿∗-

types so that 𝑄𝑄inv = 0 indicates a perfect coarse-graining, which trivially occurs when 𝐿𝐿∗ = 𝐿𝐿. Put 

mathematically, for invasion rate to be a strong-sense coarse-grainable property, it must satisfy the 

following criterion: for some sufficient 𝐿𝐿∗ < 𝐿𝐿, there exists some finite (possibly 𝐿𝐿∗-dependent) 
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constant 𝑀𝑀(𝐿𝐿∗) such that 𝑄𝑄inv(𝐿𝐿, 𝐿𝐿∗) < 𝑀𝑀(𝐿𝐿∗) for any 𝐿𝐿. We first analyze only the invasion rate 

variability between strains within some 𝐿𝐿∗-type, from which the same analysis applies to any 𝐿𝐿∗-

type. 

The invasion rate of strain 𝜇𝜇 is determined by the pre-invasion niche availabilities ℎ𝜇𝜇 set by the 

community missing type 𝜇𝜇∗: 

𝑟𝑟𝜇𝜇,𝜇𝜇∗ = �𝜎𝜎𝜇𝜇𝜇𝜇ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇

𝐿𝐿

𝜇𝜇=1

. 

For a given 𝐿𝐿∗, all strains within a type 𝜇𝜇∗ possess identical traits up to 𝑖𝑖 = 𝐿𝐿∗ so that the differences 

in invasion rates follow from differences in traits 𝑖𝑖 > 𝐿𝐿∗. Let then 𝑟𝑟.,𝜇𝜇∗ denote the identical 

contributions to invasion rate from traits 𝑖𝑖 ≤ 𝐿𝐿∗ in order to isolate the variable part: 

𝑟𝑟𝜇𝜇,𝜇𝜇∗ = 𝑟𝑟.,𝜇𝜇∗ + �𝜎𝜎𝜇𝜇𝜇𝜇(ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇)
𝐿𝐿

𝜇𝜇>𝐿𝐿∗
+ ��𝐽𝐽𝜇𝜇𝑖𝑖𝜎𝜎𝜇𝜇𝜇𝜇𝜎𝜎𝜇𝜇𝑖𝑖

𝜇𝜇<𝑖𝑖

𝐿𝐿

𝑖𝑖>𝐿𝐿∗
. 

For the coarse-grainability criterion to hold, we need to show that each of these sums converge as 

𝐿𝐿 → ∞. Dealing first with the trait-trait interaction piece (𝐽𝐽𝜇𝜇𝑖𝑖 terms), we define the finite sum 𝑆𝑆𝑖𝑖 ≡

∑ 𝐽𝐽𝜇𝜇𝑖𝑖𝜎𝜎𝜇𝜇𝜇𝜇𝜇𝜇<𝑖𝑖  and take 𝐿𝐿 → ∞ so that the double sum is converted into a series of finite sums, 

∑ 𝑆𝑆𝑖𝑖𝜎𝜎𝜇𝜇𝑖𝑖∞
𝑖𝑖>𝐿𝐿∗ . In order for this series to converge, we must have |𝑆𝑆𝑖𝑖| fall off faster than 1/𝑗𝑗. To 

determine the scaling of the 𝑆𝑆𝑖𝑖, note that the terms of each finite sum are Gaussian distributed with 

mean �𝐽𝐽𝜇𝜇𝑖𝑖� = 0 and sigmoidally decaying variance ⟨𝐽𝐽𝜇𝜇𝑖𝑖2 ⟩ (see Section 3.2.2). Therefore, each finite 

sum is essentially a random walk of terms that on average sum to 0 ± �𝑗𝑗�⟨𝐽𝐽𝜇𝜇𝑖𝑖2 ⟩, where for large 𝑗𝑗 
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(as 𝐿𝐿 tends to infinity) the scatter goes like ±�𝑗𝑗e−𝑖𝑖 due to the sigmoidal decay of trait interaction 

strength. With the 𝑆𝑆𝑖𝑖 thus falling off exponentially, we indeed have convergence: 

��𝐽𝐽𝜇𝜇𝑖𝑖𝜎𝜎𝜇𝜇𝜇𝜇𝜎𝜎𝜇𝜇𝑖𝑖
𝜇𝜇<𝑖𝑖

𝐿𝐿

𝑖𝑖>𝐿𝐿∗
= � 𝑆𝑆𝑖𝑖𝜎𝜎𝜇𝜇𝑖𝑖

𝐿𝐿

𝑖𝑖>𝐿𝐿∗
→ 𝑀𝑀𝐽𝐽(𝐿𝐿∗) < ∞    as     𝐿𝐿 → ∞. 

(3.3) 

Similarly, for the non-interaction piece to converge as 𝐿𝐿 → ∞, we must have |ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇| ∼ 1/𝑖𝑖𝛼𝛼 with 

𝛼𝛼 > 1. Figure 3.11 shows the scaling of the typical cost-benefit deviation ⟨|ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇|⟩ with1/𝑖𝑖, 

where the average is over (left-out) types with the same weighting as used in the main text. Plotted 

with the simulation data are visual guides that show the scaling of the convergence condition (1/𝑖𝑖, 

dashed 1:1 line) and the scaling of the trait interaction sigmoid used to generate 𝐽𝐽𝜇𝜇𝑖𝑖 (solid gray 

line). We see that for a sufficient level of coarse-graining (𝐿𝐿∗ = 30, black points) the data indeed 

falls off faster than 1/𝑖𝑖, verifying that 

�𝜎𝜎𝜇𝜇𝜇𝜇(ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇)
𝐿𝐿

𝜇𝜇>𝐿𝐿∗
→ 𝑀𝑀ℎ(𝐿𝐿∗) < ∞    as    𝐿𝐿 → ∞. 

(3.4) 

 

 
Figure 3.11 | Asymptotic scaling of the typical cost-benefit deviation (|ℎ𝜇𝜇 − 𝜒𝜒𝜇𝜇|) in the leave-one-
out scheme. For weakly interacting traits (large 𝑖𝑖), the corresponding niche benefits become 
effectively neutral when sufficient diversity is present in the community missing an 𝐿𝐿∗-type (black 
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points; 𝐿𝐿∗ = 30), vanishing exponentially (cf. trait interaction decay |𝐽𝐽𝜇𝜇𝑖𝑖| plotted as a solid gray 
line) such that their sum converges as described in expression (3.4). When 𝐿𝐿∗ is too small (e.g., 
𝐿𝐿∗ = 3; yellow points), insufficient diversity remains after removing an 𝐿𝐿∗-type such that the sum 
will typically no longer converge (terms scaling like dashed 1/𝑖𝑖 line) and coarse-graining quality 
is poor. Both coarse-grainings are for an environment of complexity 𝐿𝐿 = 40 and the same 
biochemistry as in Figure 3.5. 

 

This result follows from two contributing factors: both (1) weak 𝐽𝐽𝜇𝜇𝑖𝑖 and (2) phenotypic diversity 

in the tail-end traits. Ref.  [13] has demonstrated that when a community is seeded with a 

sufficiently diverse strain pool consisting of unstructured, purely random phenotypes (𝜎𝜎𝜇𝜇𝜇𝜇) the 

community exhibits a collective phase where strain abundances will adjust to drive fitness benefits 

to match costs, ℎ𝜇𝜇 ≈ 𝜒𝜒𝜇𝜇 (effectively neutral traits in the so called “S-phase”). To see the presence 

of this phase in the leave-one-out context, first note that the pool of phenotypes generated within 

our eco-evo framework are essentially random and unstructured in those traits that are weakly 

interacting (small 𝐽𝐽𝜇𝜇𝑖𝑖) as observed in the example shown in Figure 3.2F. Second, as 𝐿𝐿∗ increases 

and more strains are resolved, fewer strains are removed in leaving out an 𝐿𝐿∗-type, increasing the 

diversity of the remaining community. Figure 3.11 demonstrates the effect of this point: for small 

𝐿𝐿∗, the community to be invaded is not diverse enough for weakly interacting traits to be considered 

effectively neutral (ℎ𝜇𝜇 ≉ 𝜒𝜒𝜇𝜇) and therefore cannot be ignored (𝐿𝐿∗ = 3, yellow points), unlike the 

large 𝐿𝐿∗ regime (𝐿𝐿∗ = 30, black points). 

Together, (3.3) and (3.4) imply that the typical invasion rate variation between strains is 

asymptotically bounded by some constant 𝑀𝑀(𝐿𝐿∗) that is independent of 𝐿𝐿, enabling coarse-

grainability in the strong sense. 
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Chapter 4: Coarse-grainability in vitro versus in 
silico 

The theory work presented in the previous chapter provided a means for generating random 

ensembles of structured ecosystems, enabling the theoretical investigation into many new exciting 

questions that were previously inaccessible: e.g., processes shaping microbial pangenomes, or 

ecosystem coarse-grainability. Continuing with the focus on defining and exploring the question 

of ecosystem coarse-grainability, in this chapter I generalize the previously introduced coarse-

graining procedure to be model-independent and develop a framework for identifying an 

appropriate level of description for predicting a given ecosystem property of interest. By 

considering any possible partitioning of taxa as a valid coarse-graining, I can readily apply the 

framework presented here on experimental data. Using recent data from experiments that tune 

species richness of microbial communities, I explicitly test the hypothesis of the previous chapter 

that coarse-grained descriptions should be more predictive in highly diverse ecological contexts. 

My results provide the first empirical evidence of diversity-enhanced coarse-grainability – the 

hope of “emergent simplicity” sentimentalized by the statistical physics perspective. Completing 

the loop back to theory, I touch on the difficulties in reproducing this empirical observation in 

classic, unstructured models of ecology. This work is currently unpublished. 

4.1 Introduction 
Sequencing-based technologies allow resolving the composition of microbial ecosystems to strain-

level detail; however, coarser representations are often found to be more reproducible and more 

predictive of community-level properties. For example, Goldford et al. have demonstrated that 

both community-level function and composition at the taxonomic level of families are significantly 

more stable across replicate communities of reconstituted microbiomes than the highly variable 
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strain- or species-level  [9]. Although this suggests that coarse-grained composition could serve as 

predictors, useful coarse-graining schemes need not be taxonomic or phylogenetic. Indeed, many 

examples have shown community dynamics and function can be well-captured by coarse-graining 

diverse sets of taxa into just a handful of functional classes, which typically are not 

monophyletic  [45,46,122]. How do we formalize examples like these? The general principles for 

selecting an appropriate level of description and identifying predictive groupings for modeling 

remain elusive. 

The notion of “functional guilds” used in classical ecology  [123–128] provides hope for a possible 

path forward. Given the observed functional stability in microbial ecosystems due to shared 

metabolic capabilities across diverse taxa  [90,129–131], it seems plausible that a similar idea 

could be employed to characterize these systems in simpler terms of a small set of functional roles 

instead of the overall composition. However, determining the constituents of functional groups has 

proven difficult in practice, tending to be more of an “art” that often requires expert knowledge of 

the specific system of interest. The difficulty stems from the lack of clarity in defining relevant 

traits on which to form functional groups [128,132]. Adding to the challenge, most defined traits 

contributing to function are hard to measure, especially in a community context. For example, 

performing metabolomics is costly and the results are not straightforward to parse compared to 

techniques for measuring composition. 

To begin addressing such challenges, I develop a framework based on a particular form of coarse-

graining in which taxa are partitioned into putative functional groups, where the combined 

abundances of taxa in each group serve as a coarse-grained description. This approach leverages 

the often observed correlations between composition and function; similar to other statistical 

approaches that have recently shown promising progress  [133,134]. The framework presented 
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here systematically compares all possible coarse-grained descriptions by explicitly quantifying 

their prediction power and information content. I demonstrate that coarse-grained descriptions can 

provide similar predictiveness as microscopic, but at a fraction of the entropy budget, enabling the 

identification of an optimal “good-enough” description for predicting a property of interest. By 

showing how the selected optimum can decrease in complexity as a function of community 

diversity, this framework can distinguish between fundamentally different mechanisms underlying 

the notion “emergent simplicity” in microbial ecology. Applying the framework to experimental 

data from synthetic microbial communities  [135,136] explicitly reveals how ecological diversity 

can enhance our ability to coarse-grain ecosystems, providing direct evidence that the hope of 

“emergent simplicity” is likely to be realized in the highly diverse context of natural communities. 

Finally, I discuss how this empirical observation is an example of the theoretical concept of 

functional attractors in microbial ecology. Moreover, I argue that this phenomenon is likely 

difficult to capture in canonical ecological models with parameters drawn from random ensembles, 

highlighting the importance of both community structure and diversity in determining coarse-

grainability. 

4.2 A Framework for Quantifying Coarse-grainability 
For the sake of concreteness, imagine the following experimental setup: after assembling a set of 

𝑁𝑁 communities indexed by 𝜇𝜇 = 1, … ,𝑁𝑁, measure some functional property 𝑌𝑌𝜇𝜇 (e.g., production of 

methane, or some metabolite), as well as the microscopic composition (abundance of each strain 

𝑛𝑛𝜇𝜇𝜇𝜇, where the strains are indexed 𝑖𝑖 = 1, … ,𝑃𝑃); see Figure 4.1A. 

The implementation of this experimental setup can be performed in a variety of ways. For the 

purposes of this work, here I will consider the 𝑁𝑁 communities to be assembled from 𝑁𝑁 different 
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subsets of strains sampled from a fixed library (e.g., isolates stored in the fridge of a lab), 

inoculating the same medium for each community. This is the setup of the Clark et al. 

experiment  [135] on which we will apply our framework in Section 4.3.2 below. The control 

parameter of this setup is community diversity (sometimes referred to as “species richness”). For 

example, one can consider low-diversity communities inoculated with only a few strains at a time, 

or higher-diversity communities inoculated with many strains at a time. An alternative 

implementation could instead hold diversity fixed and tune the media conditions (environment) as 

a control parameter. In this case, the 𝑁𝑁 communities are assembled from the same diverse 

inoculum, but the environment selects strains based on their growth in different media conditions. 

The general theoretical framework presented below applies to either implementation; the only 

inputs are the functional property 𝑌𝑌𝜇𝜇 and the microscopic composition 𝑛𝑛𝜇𝜇𝜇𝜇 of each community. 

 
Figure 4.1 | General experimental context and the hope of coarse-grainability. A: Subsets of 
strains are sampled from a fixed library (e.g., bacterial isolates stored in a lab) to assemble 
communities that are brought to ecological equilibrium. At steady-state, the microscopic 
composition of each community is measured as the abundances of each strain 𝑛𝑛𝜇𝜇 (𝑖𝑖 labeling the 
strains), as well as a community-level function of interest 𝑌𝑌𝜇𝜇 (𝜇𝜇 labeling the sample communities). 
This experimental setup can be implemented in various ways, but in any case, the goal is to learn 
the relationship between community composition and function. B: Example illustration of a 
predictive coarse description. Fine-scale strain abundances do not obviously correlate with 
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observed function, but group abundances 𝑛𝑛�1,𝑛𝑛�2 (combined abundance of taxa within a functional 
group) do. 

 

Many examples have established that, even if the microscopic description is available, coarser 

representations are often still predictive of properties of interest (community-level 

functions)  [45,46]. This is illustrated in Figure 4.1B, where if the communities are ordered by the 

amount of property 𝑌𝑌 measured (e.g., how much methane was produced), then what is typically 

observed is that the microscopic composition is highly variable. But if one knew how to color taxa 

into just two groups (e.g., those that produce methane in green), then one would notice that the 

combined abundance of methanogens predicts the amount of methane in each community. This is 

the hope of coarse-grainability we consider here in this work, which motivates asking: “What is 

the simplest description sufficient to predict 𝑌𝑌?”. The framework I will now present converts this 

question from an intuitive language to well-defined quantitative statements. 

4.2.1 Coarse-graining Scheme: Constructing Sets of Variables 
To make predictions about properties and behaviors of a system requires two choices: (1) a set of 

variables that describe the possible states of the system, serving as predictors for the property of 

interest; (2) a model formulated in terms of these variables. Both are, to an extent, an art, relying 

on expert knowledge and intuition. Though difficult to implement in practice, there does exist 

well-developed theoretical guidance for the choice of model. Once the variables are specified, 

model complexity can be guided by rigorous quantitative principles (e.g., Bayesian model 

selection). This is the conventional question in modeling ecology, where the variables are fixed 

(e.g., species abundances) and the focus is on selecting an appropriate complexity of the model. In 

contrast, the question of coarse-grainability is concerned with the comparison between choices of 

variables. In contrast to model selection, the principles of selecting the level of detail in the 
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variables remain elusive. Therefore, to make progress in filling this gap, the framework presented 

here will instead fix a model class (see below) and systematically tune between sets of variables 

that are detailed versus coarse-grained. In doing this, I will demonstrate how to identify the optimal 

level of description given a model class, an observable of interest, and ecological conditions. 

Here, the particular form of coarse-graining on which I focus is in terms of compositional 

variables: taxa are grouped together into putative functional groups and the group abundances 

serves as coarse-grained variables. In general, a microscopic description is set by the resolution of 

the measurement technique in experiment, but for simplicity, here I will call the microscopic units 

in the framework “strains”. To obtain a coarse-grained description from this, I partition strains into 

a set of non-overlapping groups (denoting the partitioning as Ψ), and compute the combined 

abundance of each group (Figure 4.2A): for each 𝛼𝛼 in Ψ, 𝑛𝑛�𝛼𝛼𝜇𝜇 ≡ ∑ 𝑛𝑛𝜇𝜇𝜇𝜇𝜇𝜇∈𝛼𝛼 , where again 𝜇𝜇 labels 

the sample community. To illustrate an example of this procedure, I could describe the 

composition of each community in the above experimental setup with family-level abundances 

instead of specifying abundances of individual strains. However, although taxonomy provides one 

natural hierarchy of coarse-grained description along which to tune, useful coarse-graining 

schemes need not be taxonomic. For example, Ref.  [122] has shown that the dynamics of chitin-

degrading communities is well-captured by coarse-graining taxa into three functional classes 

(“degraders”, “exploiters”, and “scavengers”), none of which is monophyletic. In general then, any 

grouping of strains is a valid coarse-graining to consider, and therefore there is a need for some 

means to compare coarse-grainings. I now show a systematic way of doing this that enables 

identifying useful coarse-grained descriptions for predicting a property of interest. 



75 
 

 
Figure 4.2 | Defining and scoring a (compositional) coarse-graining scheme. A: Here we focus 
on coarse-graining community composition by partitioning the microscopic taxa into (non-
overlapping) putative functional groups. A partitioning Ψ can be any grouping of strains, and maps 
the set of microscopic variables 𝑛𝑛𝜇𝜇 to a set of coarse-grained variables 𝑛𝑛�𝛼𝛼 by summing the 
abundances of strains 𝑖𝑖 within each group 𝛼𝛼 defined by Ψ (see text). B: We evaluate a coarse-
graining by quantifying its prediction power for a property of interest 𝑌𝑌 and information content 
(the complexity of the description it provides). Specifically, we formulate a model of a specified 
model class in terms of the coarse-grained variables, and compute the prediction error ℰ(Ψ) as the 
standard out-of-sample root-mean-square error (RMSE) of the best trained model; information 
content 𝐼𝐼(Ψ) is simply quantified as the entropy of the partitioning (see text). With these, metrics 
any coarse-graining Ψ can be plotted on a prediction-information plane (light green point cloud). 
Generically, due to insufficient data for constraining more complex models, this point cloud will 
curve up as depicted: the microscopic model from Ψ𝑀𝑀 overfits and performs worse than the model 
with zero information based on Ψ𝑍𝑍 (see text). This example of overfitting shows the classic reason 
for choosing a coarse-grained description. The Pareto front (bold green line) highlights the most 
efficient coarse-grainings and will serve as the key feature we focus on in this work. C: Even when 
data is sufficient for training the microscopic model to its lowest prediction error possible, it is still 
imperfect due to model limitation. This enables the possibility for coarse-grainings to be similarly 
predictive but at a fraction of the entropy budget; identifying an optimal point Ψ𝐺𝐺 . When the Pareto 
front qualitatively behaves in this fashion, we say the ecosystem is coarse-grainable for predicting 
a given property. 

 

4.2.2 Evaluating a Coarse-graining: Predictive Power & Information 
Content 

The first natural way in which to compare coarse-grainings is by the information they contain or 

how complex of a description they provide. Explicitly, I quantify this in terms of the information 

content 𝐼𝐼(Ψ) of a coarse-graining Ψ, which is the mutual information between the coarse-grained 

label and the identity of the strain, 𝐼𝐼(Ψ) = −∑ 𝑝𝑝𝛼𝛼
(Ψ)log 𝑝𝑝𝛼𝛼

(Ψ)
𝛼𝛼 , where 𝑝𝑝𝛼𝛼

(Ψ) is the number of strains 
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that Ψ assigns to class 𝛼𝛼 divided by the total number of strains in the library 𝑃𝑃. Note that this 

quantity is the entropy of the partitioning Ψ, and encodes the level of detail or complexity of 

description: resolving every strain is a description with the largest information content. 

Another natural aspect by which to compare coarse-grained descriptions is their predictive power. 

To quantify this, I will specify a fixed model class, and access the out-of-sample prediction error 

ℰ(Ψ) by computing the standard root-mean-square error (RMSE) of the best trained model for 

predicting 𝑌𝑌 in terms of the coarse-grained variables 𝑛𝑛�𝛼𝛼. For the purposes of presenting the general 

framework, the specific choice of model class is not of concern here; the key point is that once I 

specify a model class, any set of coarse-grained variables has a well-defined prediction error, 

enabling the selection of an optimal coarse-grained description within the specified class of 

models. For example, whether I choose a Lotka-Volterra model, or a machine learning algorithm, 

in any case this framework aims to determine which input variables to use (e.g., species 

abundances versus family abundances). 

4.2.3 Prediction vs. Information Diagram and Coarse-grainability 
For each coarse-graining Ψ, evaluating 𝐼𝐼(Ψ) and ℰ(Ψ) yields a point in a scatter plot that I will 

call the prediction-information diagram (Figure 4.2B). To parse the information it contains, first 

note that if no compositional information is available, the best prediction for 𝑌𝑌will typically be its 

mean value, resulting in a prediction error of ℰ0 ≡ ℰ(Ψ𝑍𝑍) = std(𝑌𝑌); see in Figure 4.2B the point 

labeled Ψ𝑍𝑍 for zero information (all taxa are combined into just one group). This point and its 

associated error provide a natural performance ceiling, above which clearly corresponds to 

overfitting. On the other extreme is the microscopic description Ψ𝑀𝑀 (the one with maximal 

information where all taxa resolved in separate groups). If the amount of data is insufficient to 

properly train the model on microscopic variables, its out-of-sample prediction error could be 
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worse than the ℰ0 ceiling; this is how one would recognize the overfitting regime as depicted in 

Figure 4.2B. Avoiding overfitting is one valid reason to use simpler (less detailed) descriptions; 

however, this reason is already well-understood, and in the quest to understand the emergent 

predictive power of coarse models I will go beyond this benefit. I will thus work in the regime of 

sufficient data, where ℰ(Ψ𝑀𝑀) < ℰ0. 

Crucially, even with sufficient data, the microscopic prediction will generally remain imperfect: 

even when the description is exhaustive, prediction is still limited by model class. In other words, 

just because the microscopic description is the one that contains all the information about the 

system, that does not necessarily mean we know how to use this information. Figure 4.2C 

illustrates a result that follows from this: coarser descriptions may provide similar predictive power 

at a fraction of the entropy budget (bold green Pareto front of Figure 4.2C), identifying the simplest 

“good-enough” description ΨG for a desired error ℰ. If the coarse-graining Pareto front (optimal ℰ 

for a given 𝐼𝐼) behaves in this way, I will say that our ecosystem is coarse-grainable for predicting 

property 𝑌𝑌. If instead the coarse-graining Pareto front behaved more like the red curve of Figure 

4.2C, the ecosystem would be deemed non-coarse-grainable for the given property. Thus, this 

framework enables the delineation of which observables are coarse-grainable versus not within the 

scope of a model class. Note that model-class limitation is relevant for any model, as any model 

omits some underlying complexity. 

4.3 Results 
So far this work has noted how coarse-grainability encoded in the Prediction-Information diagram 

depends on the choice of model class and the property of interest, leaving a less intuitive 

determining factor to explore in detail below: the dependence of coarse-grainability on ecological 

conditions. The investigation below focuses on the role of ecological context, specifically 
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community diversity, in shaping the Prediction-Information diagram. First, I will demonstrate the 

value of the framework presented above by illustrating its capacity for mapping out a potentially 

rich conceptual space; namely, the capability to distinguish between fundamentally different 

mechanisms underlying the notion of “emergent simplicity” in microbial ecology. Then, because 

all the components of the framework are measurable in experiments, I will show how prediction-

information diagrams behave for empirical data. Excitingly, by applying the framework to 

available datasets, I find that a higher-diversity community can be more efficiently described with 

a simpler model, despite its nominally larger complexity. Finally, I discuss the potential sources 

of this empirical observation based on plausible biological mechanisms for the particular 

experimental system, as well as propose a more general mechanism based on the theoretical 

concept of functional attractors. 

4.3.1 Nuancing the Notion of “Emergent Simplicity” in Microbial 
Ecology 

To ask how the Pareto front changes as a function of community diversity, I will return to the 

experimental setup I described above. Again, low-diversity corresponds to randomly sampling 

subsets of a few strains at a time, while high-diversity means sampling many strains at a time. An 

important note to make at this point is that in each case strains are sampled from the same library. 

Using the same library to assemble low- and high-diversity communities allows for comparing the 

prediction-information diagrams of each context on the same set of axes because the microscopic 

model is the same for both. To see this, imagine using first-order linear regression as the model 

class and the library consists of 50 strains; then, in each case the microscopic model is 50 

parameters (one coefficient for each strain). The question then becomes: is this, or any coarse-

grained model, more predictive in the high-diversity context or low-diversity context? 
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One hope inspired by a statistical physics perspective is that in a higher diverse context, despite 

being nominally more complex, there might be some form of emergent simplicity possibly due to 

self-averaging. In the framework presented here, this would correspond to the identified simplest 

“good-enough” description Ψ𝐺𝐺  of Figure 4.2C decreasing in complexity as we increase diversity. 

Though evidence of emergent simplicity in microbial ecosystems has been reported  [9], the term 

has been used loosely, but my framework allows the notion to be further refined. The prediction-

information diagrams can delineate multiple scenarios under which the optimal complexity of 

description might decrease with community diversity; two are shown in Figure 4.3. Both can be 

realized in a resource-competition model, and today, both would be conflated under the term 

“emergent simplicity”. However, they correspond to fundamentally distinct mechanisms: model 

limitation (Figure 4.3A) and the more exciting emergent simplicity in the strict sense Figure 4.3B.  

In the case of Figure 4.3A, although one can manage to use a simpler and simpler description, this 

is out of desperation since descriptions perform worse overall. This could correspond to a situation 

where the specified model class is more and more limited as more species are added because maybe 

higher order interactions increasingly matter but they are not included in the model. Figure 4.3B 

shows the opposite trend, where a simpler description can be more predictive than it was in low-

diverse context. 

 
Figure 4.3 | Framework for quantifying coarse-grainability distinguishes mechanisms of 
“emergent simplicity”. Tracking the prediction-information Pareto front of coarse-grainings as a 
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function of community diversity (number of strains sampled from library in each subset). As 
diversity increase, the optimal coarse-grained description (green point) may become simpler (naïve 
sense of “emergent simplicity”; see text) in two different ways.  A: The optimum performs worse 
and worse because overall the specified model class becomes more limited at higher diversity. B: 
More excitingly, the optimum not only becomes simpler, but also becomes more predictive in a 
higher diversity context: emergent simplicity in the strict sense. This framework avoids conflating 
these fundamentally different scenarios in which optimal descriptions become simpler.  

 

Distinguishing between these mechanisms is essential as they call for qualitatively different 

methods for improving prediction accuracy: a better microscopic model or a better effective model, 

respectively. Note again that for this result I have explicitly assumed the regime of sufficient data 

for model training; considering any data limitation would only make these behaviors more 

pronounced from symptoms of overfitting. Although this conceptual space can be explored in 

silico, is there any direct experimental evidence for the phenomenon of diversity-enhanced coarse-

grainability? 

4.3.2 Synthetic Gut Communities Exhibit Diversity-Enhanced Coarse-
grainability 
The dataset to which I apply this coarse-graining framework comes from experiments published 

in Clark et al.  [135], which are essentially the same as the cartoon setup I described above. In their 

experiments, the library of taxa consisted of 25 species representing the major phyla of the human 

gut. They assemble synthetic communities in a defined medium using subsets of the 25 species, 

and then measure composition and function. In their work, the primary focus was on the production 

of butyrate, a well-characterized metabolite known for its many health benefits in the human 

gut  [137–140]. In addition to this community function, they also measure the concentration of 3 

other fermentation products: acetate, lactate, and succinate. Altogether, this provides 4 functional 

properties from which we can generate prediction-information diagrams and test the hypothesis 

that ecological diversity can facilitate coarse-grainability. 
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Figure 4.4 plots the estimated Pareto fronts (solid lines with error bars) of the prediction-

information diagrams for each observable measured in communities of low diversity (1-5 species 

present) and high diversity (>20 species present); see Section 4.5.1 for details on an algorithm for 

deducing Pareto fronts in the space of coarse-grainings. Prediction error was computed using the 

standard out-of-sample RMSE of a first-order linear regression ansatz, with each point being 

normalized by the zero-information prediction ℰ0 in the respective diversity context. Although this 

specific choice to use the linear regression class of models may seem too simplistic, the reasons 

for this choice are two-fold: (1) regression models are widely used for mapping composition to 

function (in contrast to predicting abundance itself, which is the goal of Lotka-Volterra models) 

and their performance has been validated in the original reference  [135]; (2) the simplicity of a 

regression ansatz provides the tractability for deducing the coarse-graining Pareto front from the 

microscopic model itself (see Section 4.5.1). 

 
Figure 4.4 | Empirical examples of diversity-enhanced coarse-grainability (emergent 
simplicity). For each measured function (fermentation products) of the Clark et al. dataset, coarse-
grained descriptions become more predictive in high diverse communities (>20 species) than they 
were in the low-diversity context (1-5 species).  The inferred Pareto front (solid lines with error 
bars; see Section 4.5 for technical details) of each panel shifts down and to the left with increasing 
community diversity (compare to Figure 4.3B). Prediction power of each description was 
evaluated using a first-order linear regression model class, and RMSE values were normalized by 
the zero-information prediction error ℰ(Ψ𝑍𝑍) to fairly compare the two levels of diversity. Each 
point shows the median ± SD across random 50-50 splits of the data into training and testing sets. 
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Dashed lines show results for the same procedure performed on randomized data (see Section 4.5.4 
for technical details). 

 

Comparing low-diversity versus high-diversity in Figure 4.4, we consistently see across 

observables that the Pareto front shifts down and to the left in the prediction-information plane, 

indicating that simpler coarse-grained descriptions become more predictive at higher diversity. 

These results support the hypothesis that ecosystems can be more coarse-grainable at higher 

diversity, at least for predicting concentrations of fermentation products in communities. To test 

how surprising these observations are, each panel of Figure 4.4 also plots the Pareto front deduced 

after randomly permuting the abundance data for each species, shuffling only the samples in which 

each given species was present (Figure 4.4 dashed lines; see Section 4.5.4 for technical details). 

Indeed, this stringent randomization test breaks the diversity-enhanced coarse-grainability 

signature, resulting in the Pareto front shifting in the opposite direction when going from a low 

diverse context to a higher diverse context. Separately, looking under the hood of the prediction-

information diagrams, scatter plots show that measured function indeed correlates better with the 

deduced coarse-grained variables (see Figure 4.8), further confirming the observations of Figure 

4.4. Section 4.5.6 below provides another empirical example of diversity-enhanced coarse-

grainability in a separate, independent dataset. 

4.4 Conclusions and Discussion 
Despite the functionally relevant diversity present at all levels of resolution in microbial 

ecosystems [47], there exist numerous examples where coarse representations can predict 

community-level functions without a full microscopic knowledge  [45,46]. However, expert 

knowledge and intuition in each particular instance have been the primary means of identifying 

useful coarse-grained variables thus far. Quantitative principles for selecting an appropriate level 
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of description for modeling these systems, as well as a general understanding of the relative roles 

environment, community structure, and ecological context play in determining coarse-grainability, 

remain elusive. 

In this work, I present a general framework for systematically comparing all possible 

compositional coarse-grained descriptions by quantifying their information content and their 

power to predict a functional property of interest. I show how this framework can be used to 

delineate observables for which an ecosystem can be coarse-grainable or not by way of enabling 

the identification of an optimal level of description within a given model class. Finally, by 

nuancing the ways in which the complexity of the selected optimum can decrease with increasing 

community diversity, I further demonstrate the framework’s capacity for exploring emergent 

coarse-grainability in microbial ecosystems. Applying the framework to experimental data in 

which community diversity (species richness) is treated as a control parameter, I present empirical 

evidence for diversity-enhanced coarse-grainability: simpler coarse-grained descriptions become 

more predictive in a higher diverse context, despite being nominally more complex. 

Uncovering this striking phenomenon provides hope for one day understanding microbial 

ecosystems in their natural ecological contexts, but one naturally wonders why it works. 

Unraveling the explicit mechanism underlying the empirical observation of emergent coarse-

grainability presented here is beyond the reach of the framework in which it was demonstrated. 

Because I employ the simple model class of linear regression, the mappings from community 

composition to function are purely correlatory; the predictions a given description produces are 

not routed in any causal mechanism. However, by leveraging the statistical correlations between 

composition and function, the efficient coarse-grained descriptions constituting the Pareto fronts 

of Figure 4.4 have the potential for generating mechanistic hypotheses to probe with further 
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experiments. In fact, the results of Figure 4.4A for predicting butyrate production are consistent 

with the mechanistic explanation provided in Clark et al. (see Section 4.5.5 for further details): the 

butyrate-producing species Anaerostipes caccae alters its metabolism in a high-diversity context 

from a low butyrate producing per unit biomass state to high butyrate production per unit biomass 

depending on environmental pH and resource competition  [135]. In some sense, only experiment 

can tell us the mechanistic story behind each property that exhibits diversity-enhanced coarse-

grainability. For the dataset considered here, this thinking would mean that this effect presented 

by each observable (butyrate, acetate, lactate, and succinate) corresponds to 4 different mechanistic 

stories, each with their own idiosyncratic details. But perhaps there is a more general rule 

governing emergent coarse-grainability that encompasses each manifestation of the effect. 

 The concept of functional attractors from theoretical ecology  [8,102] serves as a promising 

foundation for building a general understanding of emergent coarse-grainability. Though there has 

yet to be any direct supporting evidence from experiments, the theoretical statement posits that the 

collective functioning of ecosystems approaches an attractive state in the high diversity limit, 

regardless of their microscopic composition. I propose that the empirically observed diversity-

enhanced coarse-grainability shown here is an example of functional attractors at play outside of 

just being conceptualized in theoretical models.  

Figure 4.5A illustrates the idea of functional convergence in the context of the Clark et al. dataset, 

where the space of functional behaviors is unstructured in low-diversity communities but 

converges to some structured, low-dimensional manifold at higher diversity. The high-

dimensionality of the unstructured low-diversity functional space would require descriptions with 

high information content for predicting community function. In contrast, if the accessible 

functional space collapses to a structured “banana” for higher diverse communities (as depicted), 
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and a compositional feature happens to correlate with its principal coordinate, this would explain 

the enhanced predictive power provided by coarse-grained composition that emerges. 

 
Figure 4.5 | Empirically observed emergent simplicity is consistent with functional attractor 
mechanism at high diversity. A: This cartoon illustrates the concept of a functional attractor in 
the 4-dimensional space of fermentation product concentrations measured in Clark et al. [135]. 
The attainable functions spanned by communities of low-diversity resembles an unstructured ball 
that fills out the full dimensionality of the space (left axes). In contrast, high-diversity communities 
assemble to some functionally attractive state, converging to a lower-dimensional manifold (or 
“banana”-fold if you will). If compositional features happen to correlate with the primary 
functional axis along the “banana”, this would explain the observed enhancement in coarse-
grainability at high-diversity shown in Figure 4.4. The next few panels exhibit evidence in support 
of this argument. B: Principal component analysis of the functional data (butyrate, acetate, lactate, 
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succinate concentrations) measured by Clark et al. in low- and high-diversity communities 
confirms that the functional space is substantially lower-dimensional in the high-diversity context, 
with a single component (PC1) explaining >80% of the variance. C: Scattering the projections of 
fermentation product data along PC1 obtained from PCA on high-diversity communities against 
measured pH (for communities in which it’s reported). The resulting (negative) correlation 
suggests that environmental pH could be the functional “banana” coordinate determining the 
location in the 4-dimensional space illustrated in panel A. D: To relate compositional features to 
the suspected functional attractor, we perform a linear regression (as done throughout this work) 
of PC1 on the microscopic description (individual species abundances). Coloring the fitted 
coefficients of each species by their roles in shaping environmental pH (as defined by Clark et al.) 
further confirms the link between PC1 and pH, and is contained in compositional features. This 
result is consistent with the hypothesis that a functional attractor is responsible for the emergent 
coarse-grainability present in the experimental data analyzed here. 

 

The available data from the Clark et al. experiment cannot explicitly determine whether or not the 

above argument is responsible for the results presented in this work, but Figure 4.5B-D provides 

some indirect supporting evidence. First, applying standard principal component analysis on the 

measured functions (butyrate, acetate, lactate, and succinate concentration; see Figure 4.5B) shows 

that the functional space is much lower dimensional in high-diversity communities than in low-

diversity, with ~85% of the functional variance converging along the first principal component 

(PC1). Second, drawing from the mechanistic insights reported in the original reference  [135], in 

Figure 4.5C I scatter the computed PC1 against pH in those high-diversity communities in which 

it was measured. The resulting (negative) correlation implicates the contribution of pH in 

determining the concentration of all 4 fermentation products, nominating pH to be a candidate 

causal link between these functional readouts. Indeed, the role of environmental pH in shaping 

metabolic rates of fermentation has been suggested elsewhere  [141,142]. Finally, to connect this 

plausible mechanistic feature to community composition (albeit still in a correlatory manner), I fit 

the microscopic description (no grouping of species) using a first-order linear regression model to 

PC1 (using same methods described in 4.5.1). Figure 4.5D shows the fitted coefficients of each 

species, quantifying their contribution to PC1. Coloring each species by their identified 
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relationship with environmental pH in Clark et al. further supports the connection between PC1 

and pH, as well as their correlation with community composition (species abundance). Note that 

these observations I present in Figure 4.5B-D are only consistent with the functional attractor 

picture, but still do not fully explain the phenomenon of diversity-enhanced coarse-grainability. 

The argument I thread above is speculative and requires further experimental validation. 

As a final point, it’s worth further contextualizing the empirical observations presented here by 

situating them relative to the current scope of theoretical models of ecology. First, the commonly 

used and influential Lotka-Volterra class of models, which express the dynamics of community 

composition through a pairwise interaction matrix encoding processes such as predation or 

cooperation, seems ill-suited for studying questions concerned with coarse-graining ecosystems. 

Specifically, the dependence of coarse-grainability on diversity is likely difficult to capture in 

general within the Lotka-Volterra class of models. This essentially follows by definition of these 

models: any reasonable property of interest (e.g., total biomass or equilibrium abundance) can be 

trivially related to community composition as a linear combination in terms of the interaction 

coefficients, and since these are assumed to be context-independent, it is clear that diversity cannot 

affect coarse-grainability (see Section 4.5.7 for further discussion). Second, the functional attractor 

concept described above originates from work analyzing the infinite diversity limit of random 

ecosystems within the setting of a consumer-resource model parameterized by an unstructured 

ensemble [8]. Though the question of coarse-grainability was not explicitly addressed in the 

original work, it seems clear that exploring the concept of coarse-graining in ecosystems requires 

incorporating community structure in some way. The model for studying ensembles of random, 

structured ecosystems presented in Chapter 3 provides a stepping stone in this direction, with the 
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potential for disentangling the relative roles community structure and diversity play in shaping 

coarse-grainability. 

4.5 Technical Details 

4.5.1 Training and Testing of Linear Regression Models 
As noted in the main text, any model class can be considered within the framework presented in 

Section 4.2; one just needs to be specified in order to explicitly compute the prediction error of a 

given description. The model class I chose for analyzing coarse-grained descriptions of the Clark 

et al. dataset in this work was first-order linear regression for reasons listed in Section 4.3.2. In 

this specific context, the linear regression models generally take the following form: 

𝑌𝑌�𝜇𝜇 = �̃�𝜆0 + � �̃�𝜆𝛼𝛼𝑛𝑛�𝛼𝛼𝜇𝜇
𝛼𝛼∈Ψ

, 

where 𝑌𝑌�𝜇𝜇 is the model’s prediction of property 𝑌𝑌 measured in the 𝜇𝜇th community and �̃�𝜆𝛼𝛼 are the 

regression coefficients of each coarse-grained group to be determined by fitting to a training 

dataset. 

Each regression model (coarse-grained and microscopic) is trained and tested on the same 

randomly drawn datasets. After accounting for replicate communities in each diversity bin (see 

below), 50% of communities are randomly designated for model training/fitting and the other 50% 

are reserved for testing/validating. Model fitting was performed using the standard ordinary least-

squares method of MATLAB’s ‘fitlm’ algorithm. The predictions of the fitted model where then 

compared to the measured values of the test set using standard root-mean-square error. This was 

repeated for 100 random 50-50 splits of the data, taking the median and standard deviation across 

these splits as the values for ℰ(Ψ) and error bars plotted in Figure 4.4.  
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4.5.2 Deducing the Pareto Front of Efficient Coarse-grainings 
The Pareto front of coarse-grainings in the prediction-error plane correspond to the coarse-grained 

partitions Ψ with minimal prediction error ℰ for a given amount of information 𝐼𝐼. Ideally, we 

would like to know this exactly. The brute force approach of performing an exhaustive search 

through the space of coarse-grainings becomes practically infeasible computationally when library 

of strains becomes large. This is because the number of possible ways to partition the strains 

becomes exponentially large: for 𝑆𝑆 strains, the total number is the Bell number 𝐵𝐵𝑆𝑆, which is too 

large to enumerate fully. For example, the 25 taxa used in the Clark et al. already results in 𝐵𝐵25 ≃

5 × 1018. This necessitates developing search algorithms to efficiently explore this vast landscape. 

With the tractability a linear regression ansatz provides, the efficient coarse-grainings making up 

the Pareto front can be deduced from the microscopic model itself, as I describe below. In general, 

because the microscopic description corresponds to resolving each taxa into separate groups, the 

microscopic model will not be available when the number of taxa is very large or data is scarce for 

model fitting. Fortunately, the Clark et al. dataset contains enough sample communities in each 

diversity bin to constrain the microscopic model of 25 species, permitting the following deduction 

procedure. 

In the context of linear regression, the coarse-graining procedure I consider here (partitioning taxa 

into groups and combining the corresponding input variable by summing their abundance) can be 

mapped to a regularization scheme. Figure 4.6A illustrates this interpretation for the simplest case 

of first-order linear regression, but the mapping straightforwardly extends to higher-order terms. 
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Figure 4.6 | A: In the context of a linear regression model class, the coarse-graining scheme we 
develop in this work maps onto a regularization scheme. The trivial example depicted in this panel 
illustrates how grouping strains in a given coarse-graining, such that each strain in a given group 
is now prescribed the same coefficient �̃�𝜆𝛼𝛼, is equivalent to regularizing the coefficients of the 
microscopic model. B: Plotting example coefficients 𝜆𝜆𝜇𝜇 for each species before coarse-graining 
shows that efficient coarse-grainings can be inferred from the microscopic model (again for first-
order linear regression). In this illustration, there are two clear groups to form a two-variable 
coarse-grained model with coefficients �̃�𝜆𝛼𝛼. Error bars correspond to uncertainty in fit. 

 

Efficient coarse-grainings then correspond to grouping strains with similar regression coefficients. 

Let 𝜆𝜆𝜇𝜇 denote the estimated coefficients of the regression model fit to microscopic variables 

(individual strains 𝑖𝑖). For illustration purposes, imagine the values of these coefficients are found 

to be as depicted in Figure 4.6B. From this coefficient structure we can immediately deduce which 

two-group coarse-graining would perform best: ∑ 𝜆𝜆𝜇𝜇𝑛𝑛𝜇𝜇𝜇𝜇 ≈ �̃�𝜆1 ∑ 𝑛𝑛𝜇𝜇𝜇𝜇∈𝛼𝛼1 + �̃�𝜆2 ∑ 𝑛𝑛𝜇𝜇𝜇𝜇∈𝛼𝛼2 . Thus, 

identifying an efficient coarse-graining reduces to a clustering problem. Specifically, I implement 

a generalized K-means clustering algorithm where the cost function accounts for the uncertainty 

carried by each coefficient estimate: cost(Ψ) = ∑
𝜆𝜆𝑖𝑖−�𝜆𝜆𝑗𝑗�𝛼𝛼𝑗𝑗=𝛼𝛼𝑖𝑖

𝜎𝜎𝑖𝑖𝜇𝜇 , where angular brackets denote 

averaging over all taxa assigned to the same group. In order to cluster regression coefficients in a 

sensible fashion, I standardize the measured abundances of each species (input variables) to have 

0 mean and unit variance in all regression fitting so that all 𝜆𝜆𝜇𝜇 are on the same scale. To obtain 
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accurate estimates initially, the microscopic regression models are fit on all the data before 

deducing the Pareto front coarse-grainings via this clustering procedure. 

4.5.3 Mid-Diversity Communities from Clark et al. 
To avoid clutter, Figure 4.4 only shows the results of applying the coarse-graining framework to 

communities of low-diversity (sampling subsets of 1-5 species) and of high-diversity (>20 species) 

measured in the Clark et al. experiment. Their original work also measured communities of 

intermediate species richness, from which we form a third bin we call mid-diversity (10-15 

species). Applying the same methods described above, Figure 4.7 shows the coarse-graining Pareto 

front for predicting each measured function for all three diversity bins. Despite idiosyncrasies in 

each case, overall the cross-over from low- to high-diversity qualitatively appears to be continuous 

with some potentially rich behavior/trends to explore in future work. 

 
Figure 4.7 | Replotting the inferred Pareto fronts in low- and high-diversity contexts of Figure 4.4 
with the addition of those inferred from data measured in mid-diversity communities (10-15 
species) in the Clark et al. experiments. 

 

4.5.4 Randomization Tests 
Checking that the emergent coarse-grainability observed in Figure 4.4 is not purely due to chance, 

I compare the results to Pareto fronts deduced after randomizing the dataset. For designing a 

stringent randomization test, one seeks to shuffle the data in such a way that breaks the observed 
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effect, while preserving as much of the original structure present in the data. To apply this 

sentiment in the Clark et al. dataset, I aim to keep the abundance statistics of each species across 

communities fixed; so for each species, I randomly permute its abundance in communities in which 

the species is initially present. For this reason, the randomization of low-diversity communities 

(light gray dashed line in Figure 4.4) only slightly breaks the coarse-grainability observed in the 

non-randomized Pareto front presumably because in monocultures and cocultures, the dominate 

structure is contained in the presence-absence of species. 

4.5.5 Scattering Measured Function versus Coarse-grained Variables 
Further checking the results of Figure 4.4, I convert the information encoded in the prediction-

information diagrams into more digestible scatter plots shown in Figure 4.8. Plotting the measured 

function in low-diversity and high-diversity communities versus the predictive coarse-grained 

variables (combined species abundance) identified by the respective high-diversity Pareto front, 

one can see that indeed coarse-grained composition correlates better with function in a higher 

diverse context. The left column of panels indicate which coarse-grained description is being 

plotted on the x-axis of the scatter plots. Each selected coarse-graining consists of two groups: the 

combined abundance of taxa in group 1 are shown in orange, while group 2 is colored purple; each 

with the same y-axis. 
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Figure 4.8 | Scatter plots of community function (concentration of fermentation products) versus 
coarse-grained (group) abundance measured in low-diversity (left column) and high-diversity 
(right column) communities. As described in Section 4.2.2, species abundances (measured as OD 
in Clark et al.) are summed to give the group abundances that are plotted. Groups 1 and 2 are 
obtained from the Pareto fronts inferred for predicting each observable in high-diversity, and are 
therefore consist of different species across panels (see text). The stronger correlation between 
coarse-grained compositional variables and function at high diversity verifies the results of Figure 
4.4. 
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The highly efficient (very low entropy) coarse-graining for predicting butyrate corresponds to the 

species Anaerostipes caccae (AC) in a group by itself and all others in group 2. As noted in Clark 

et al., AC is capable of producing butyrate, whose presence or absence strongly determines the 

concentration of butyrate in high-diversity communities, despite being 1 of 5 butyrate producing 

species used in their work. Digging into this further, Clark et al. performed sought out to decipher 

the mechanism behind this observation and found two key lines of evidence explaining this 

behavior: (1) the 4 other butyrate producing species are inhibited by the production of hydrogen 

sulfide from a non-butyrate producer Desulfovibrio piger (DP); (2) AC switches its metabolic 

behavior depending on environmental pH and availability of energy resources set by other 

community members, modulating its production of butyrate. Although this reasoning aids in 

checking the consistency of the framework’s output, it’s worth noting that the coarse-graining 

framework independently re-discovered this correlation without incorporating any of the 

mechanistic knowledge. 

Since the other fermentation products (acetate, lactate, and succinate) were not the primary focus 

of the original work by Clark et al., there is less mechanistic support for the predictive coarse-

grainings for these functions. Searching elsewhere for biological justification, I find that my results 

are at least consistent with observations in the literature. For example, group 1 for predicting 

acetate concentration consists of just the single butyrate-producing species Eubacterium rectale 

(ER), which is reported to be a net consumer of acetate when producing butyrate  [143]. As for 

succinate, the major bacterial group that employs the succinate route in forming fermentation end 

products is the phyla Bacteroidetes  [143]; consistent with the fact that more than half the 

constituent species of group 1 in the predictive coarse-grained description for succinate. It’s worth 

re-emphasizing that the groupings identified within the framework developed here are not direct 
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functional groups given the correlative (not necessarily casual) nature of the analysis; further 

experimental investigation is required to solidify any mechanistic links.  

4.5.6 Diversity-enhanced Coarse-grainability in an Independent Dataset 
As far as I am aware, the next best microbial dataset currently available in which species richness 

(diversity) is varied over a reasonable range (at least an order of magnitude) for defining low- and 

high-diversity regimes comes from experiments presented in Kehe et al.  [136]. The community 

function of interest in this work was the promotion of a known plant symbiont Herbaspirillum 

frisingense measured in terms of the microbes abundance. Synthetic communities were assembled 

from soil isolates, ranging from 1 to 14 strains sampled at a time (including the symbiont strain).  

Unlike the Clark et al. dataset, which provides information of species abundance, the only 

compositional information available from this experiment is reported presence or absence of each 

species in a given community. The generality of the framework I present allows for this data to 

still be a valid input: rather than the coarse-grained variables being combined abundances of taxa 

within a group, they instead indicate when any member of the group is present or if all are absent. 

Mimicking as best as possible the diversity bins defined for the Clark et al. dataset, communities 

in which 1-5 strains are present is taken as low-diversity, and high-diversity is taken as 

communities with >10 strains present. Applying the same methods for generating Pareto fronts in 

the prediction-information plane as outlined above, I observe that this independent dataset also 

exhibits diversity-enhanced coarse-grainability as shown in Figure 4.9. Although it is (perhaps 

more) remarkable that this system is more coarse-grainable at higher diversity given the very 

minimal compositional information, I am unfortunately unable to check if this empirical 

observation is consistent with the theoretical functional attractor picture because only one function 

was measured. 
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Figure 4.9 | The independent dataset from Kehe et al.  [136] provides another empirical example 
of diversity-enhanced coarse-grainability. In this case, predicting the abundance of a focal strain 
is more coarse-grainable in high diversity communities than in low diversity communities. Pareto 
fronts are inferred via the same procedure used for analyzing the Clark et al. dataset; i.e., points 
and error bars are median ± SD across (normalized) RMSE of linear regression models trained on 
100 random 50-50 splitting of the data into training and testing sets. 

 

4.5.7 Lotka-Volterra Models and Coarse-grainability 
As mentioned in Section 4.4, the Lotka-Volterra class of ecological models aim at describing the 

dynamics of abundances of taxa. A standard form of this type of model can be expressed as 

�̇�𝑛𝜇𝜇 = 𝑛𝑛𝜇𝜇 �𝑟𝑟𝜇𝜇 −�𝐴𝐴𝜇𝜇𝑖𝑖𝑛𝑛𝑖𝑖
𝑖𝑖

�, 

where 𝑛𝑛𝜇𝜇 are again abundances of the microscopic taxa (e.g., strains), 𝑟𝑟𝜇𝜇 is a context-independent 

growth rate of taxa 𝑖𝑖, and 𝐴𝐴𝜇𝜇𝑖𝑖 are context-independent interactions between taxa 𝑖𝑖 and taxa 𝑗𝑗. I now 

catalogue obvious observables of interest one might aim to predict about a given community and 

argue that each cannot exhibit the phenomenon of diversity-enhanced coarse-grainability. 
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The coarse-grainability of the first several community-level properties are trivially independent of 

community diversity. Each can be seen by inspection. First, consider trying to predict the invasion 

rate of a strain 𝑖𝑖 (e.g., a pathogen) into an assembled community missing 𝑖𝑖, denoted as 𝜌𝜌𝜇𝜇. The 

ability of the focal strain to invade is simply given by the growth rate set by the equilibrium 

abundances 𝑛𝑛𝑖𝑖∗ of those strains in the assembled community: 𝜌𝜌𝜇𝜇 = 𝑟𝑟𝜇𝜇 − ∑ 𝐴𝐴𝜇𝜇𝑖𝑖𝑛𝑛𝑖𝑖∗𝑖𝑖 . Notice that this 

being a linear combination of strain abundances means that the coarse-grainability of this property 

in a regression model class is trivially determined by the choice of 𝐴𝐴𝜇𝜇𝑖𝑖. Similarly, obtaining the 

equilibrium condition of the Lotka-Volterra dynamics for a strain that does not go extinct, the 

equilibrium abundance of a focal strain in a community is also a trivial linear combination of strain 

abundances: 

𝑛𝑛𝜇𝜇∗ =  
𝑟𝑟𝜇𝜇 − ∑ 𝐴𝐴𝜇𝜇𝑖𝑖𝑛𝑛𝑖𝑖∗𝑖𝑖≠𝜇𝜇

𝐴𝐴𝜇𝜇𝜇𝜇
. 

Likewise, it then follows that the total biomass of a community at equilibrium ∑ 𝑛𝑛𝜇𝜇∗𝜇𝜇  is also a trivial 

observable in this sense. 

One can, however, imagine the following nontrivial observable. Reconsider the idea of attempting 

to invade an already assembled community with an initially absent strain 𝑖𝑖, but rather than focusing 

on its invasion rate, instead consider trying to predict its abundance at a new equilibrium post-

invasion as a function of the pre-invasion abundances of the old equilibrium. Here, this property 

is not as straightforward as the above examples because the new equilibrium abundance of any 

given strain is determined by the abundances of the surviving strains at this new equilibrium, which 

in general could be an entirely different set of species or entirely different abundances. Exploring 

this in simulations of a Lotka-Volterra model of the form studied in  [109,110], I mimic the 
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experimental design of Clark et al. and assemble communities of low-diversity (1-5 strains) and 

high-diversity (21-25 strains), with parameters drawn from random ensembles per standard 

protocols: 𝐴𝐴𝜇𝜇𝑖𝑖 are normally distributed. Figure 4.10 shows the E-I diagram for predicting the 

equilibrium abundance of a focal strain after its introduction to pre-assembled communities in each 

diversity context. This proof-of-principle exploration and the examples catalogued above 

demonstrates the challenge of capturing emergent coarse-grainability within models of random, 

unstructured ecosystems. 

 
Figure 4.10 | An example of random, unstructured ecosystems within a Lotka-Volterra model are 
not necessarily any less coarse-grainable for predicting focal strain abundance in high-diversity 
communities (see text). This example illustrates the difficulty in capturing emergent coarse-
grainability in this standard model of ecology.  
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Chapter 5: Summary and Outlook 
The previous chapters contribute to the symbiotic interface shared by statistical physics and 

theoretical ecology and evolution – biology’s yin-and-yang. Part of the rich history of this interface 

has come from physicists drawing on techniques from other areas, such as disordered systems, to 

describe eco-evolutionary phenomena with an ensemble approach. This effort has seen a great deal 

of success, providing interpretation of broad statistical trends observed across ecosystems and 

distinguishing which patterns can and cannot be captured in simple, null models of unstructured 

populations. Identifying the failure modes enables the exciting opportunity to begin pushing the 

scope of current concepts in theoretical physics by generating new frameworks and techniques for 

tackling these challenges. This dissertation focuses on one such problem area that falls outside the 

range of conventional statistical physics methods: addressing the observed structures in highly 

diverse ecosystems and their coarse-grainability. 

As discussed throughout the previous chapters, until recently, all models and analytical 

frameworks of large-𝑁𝑁 (diverse) ecology hinge on unstructured random ensembles to describe 

ecosystems, omitting the key ingredient responsible for predictive coarse-grained descriptions in 

empirical examples. Moreover, the renormalization group construction used to explain the 

emergence of predictive effective models in physics has no known analogue in an ecological 

context. Although developing a new general framework for the statistical physics of structured, 

heterogeneous complex systems would fill this gap, this dissertation provides only a step toward 

this long-term goal. Collectively, the key contributions of the chapters I present above consist of 

two frameworks: (1) a modeling framework that uses evolution for organically generating 

ensembles of random, structured ecosystems; (2) a theoretical framework for investigating the 

emergent coarse-grainability of such ecosystems. I use these developments to theoretically and 
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empirically demonstrate that simple coarse-grained descriptions counterintuitively emerge in 

higher diverse communities, and suggest that coarse-grainability is maximized when an ecosystem 

is assembled in its natural environment. 

This body of work highlights the importance of incorporating structure in models of diverse 

ecosystems, focusing specifically on the observed structure in functional trait distributions across 

taxa. Ecosystems exhibit many other forms of structure that influence evolution and responses to 

perturbations. For example, bacterial communities found in nature are often spatially structured, 

forming biofilms or other spatially organized architectures. Numerous investigations into the 

evolutionary dynamics of microbes find qualitatively different outcomes when tracking 

populations in spatially heterogeneous communities grown on a petri dish versus in a well-mixed, 

homogeneous environment of a test tube  [144–146]. In addition to space, microbial communities 

also self-organize into temporal structures due to differing rates and efficiencies of resource 

utilization, segmenting time into “temporal niches”: each taxa has a boom period then a bust 

period [21,147,148]. What is a general framework that encapsulates each of these mechanisms of 

structure? And how do we extend the powerful analytical techniques provided by the statistical 

physics of disordered systems from unstructured to structured regimes? Answering these questions 

provides an exciting opportunity to advance both theoretical ecology/evolution and physics.  
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Appendix A: Appendix of Chapter 2 
Here I show supplemental (unpublished) results from the “toolbox model” of evolution I present 

in Chapter 2. 

A.1 Evolved Genotypes versus Random Genotypes 
As described in the Chapter 2, when a genotype adapts to an environment in the “toolbox model”, 

its evolution is dominated by an “improve it or lose it” feedback loop: genetic systems of higher 

usage (expression) mutate, improve and become used even more, while lesser used systems are 

used less and less becoming obsolete. Through this process, evolution imprints structure on a 

genotype and its expression, and the properties of evolved genotypes are atypical compared to 

randomly sampled genotypes of similar fitness.  

To show this, I generate two sets of genotypes and contrast their distributions of system usage (i.e., 

the coefficients of row vectors in the genotype matrix). In order to make a fair comparison, each 

set of genotypes fall within the same fitness band (see Figure A.1A), but each set is obtained in 

different ways: one set consists of randomly drawn genotype matrices that happen to fall above a 

fitness threshold (chosen to be -0.5 based on the parameters of Chapter 2 and the limitations of the 

naïve sampling method I use here); the other set consists of genotypes that evolved to the specified 

fitness threshold from an initially random matrix (generally of lower fitness). Plotting the overall 

usage distribution across all genotypes within the respective sets in Figure A.1B, one can see that 

the typical genotype from an unstructured ensemble uses the majority of its system vectors �⃗�𝛿𝜇𝜇; 

fitting the target environment 𝛿𝛿�⃗  is a cooperative effort from each system. In contrast, the 

distribution of the evolved set indicates the corresponding ensemble of structured genotypes are 

clearly atypical relative to those drawn randomly at similar fitness. Instead, evolved genotypes 
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consist of many unused systems that have lost out to others in the competition for expression 

described in Chapter 2. 

 
Figure A.1 | Sets of randomly drawn genotypes (A) and evolved genotypes (B) (see text) have 
distinct expression distributions (right column of panels) despite falling within the same narrow 
band of fitness (left column of panels). Evolved genotypes are atypical from the point of view of 
the random genotype usage distribution because many systems are unused (peak at 0) due to the 
feedback loop mechanism investigated in Chapter 2 leaving evolved genotypes to rely on 
effectively fewer systems. 

 

The next section analytically calculates the distribution of expression for randomly drawn 

genotypes using the cavity method from the statistical physics of disordered systems. Although 

this nicely characterizes the unstructured regime, the applicability of such analytical techniques 

begins to break down once genotypes evolve. This highlights the need for extensions and 

generalizations of these techniques to structured ensembles shaped by evolution. 

  



A.2 Cavity Calculation for Toolbox Model

Minimization Conditions
Given an L-dimensional target vector E⃗ and a random incomplete set of K basis vectors e⃗i, find the linear combination
of the basis vectors that best fits the target vector subject to the constraint that all coefficients ai are non-negative. In
other words, we need to solve the following constrained minimization problem,

min
{ai≥0}

∥∥∥∥∥∑
i

aiei − E⃗

∥∥∥∥∥
2

. (A.1)

This is equivalent to finding the {ai} such that

f :=

L∑
µ=1

(Eµ −
K∑
j=1

ajeµj)
2 (A.2)

is a minimum. This occurs when the {ai} satisfy the following conditions:
either

ai > 0

∂f

∂ai
=

∑
µ

eµi(Eµ −
∑
j

ajeµj) = 0 (A.3)

or

ai = 0

∂f

∂ai
=

∑
µ

eµi(Eµ −
∑
j

ajeµj) < 0. (A.4)

Consumer Resource Model Mapping
To begin setting up the cavity calculation, it is useful to map the optimization problem onto the dynamics of a consumer
resource model (CRM) whose equilibrium solutions correspond to the minimum of our optimization. It turns out that
the following CRM equations do the job:

ȧi = ai
∑
µ

eµiRµ (A.5)

Ṙµ = Eµ −Rµ −
∑
j

ajeµj (A.6)

Notice that at steady state, Ṙµ = 0 implies

Rµ = Eµ −
∑
j

ajeµj

Inserting this into the steady state condition for (5), we find the same minimization conditions of the optimization
problem from above:

0 = ai

∑
µ

eµiEµ −
∑
µj

eµieµjaj

 .
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Cavity Calculation
Because we are interested in the performance of a randomly drawn genome (i.e., a random binary matrix) in a random
target environment, our problem is to solve for the statistical distribution of solutions to the optimization problem (1)
given statistical properties of Eµ and eµi. That is, given the mean and variance of the distribution for Eµ and eµi, what
is the resulting distribution of the ai and Rµ. To do this, we borrow an approach from statistical physics known as the
"Cavity Method" and apply it to the CRM equations (5) and (6). The basic idea behind the method is as follows:

• Assume that we know the equilibrium solutions to CRM equations for a system of size K − 1 genes and L− 1-
dimensional target for a given realization of parameters

• Now introduce a new gene and component to the target vector so that the system size increases to K by L, which
can be seen as a perturbation of order 1/K

• Assume that the new equilibrium solutions to the larger system respond linearly around the old equilibrium
solutions

• Solve for the equilibrium of the newly introduced gene expression, a0, and residual, R0

• Since the introduced gene and target component could have been any of the original genes or components, these
solutions are self-consistency equations for the entire system. So by solving for the statistical properties of the
a0 and R0, we are effectively solving for the distribution for any of the ai/0 and Rµ/0.

For the sake of expanding to linear order in perturbations, we rewrite the CRM equations with an added auxiliary
parameter, gi, whose use will become apparent when we begin taking derivatives:

1

ai
ȧi =

∑
ν

eνiRν − gi, 1 ≤ i ≤ K (A.7)

Ṙµ = Eµ −Rµ −
∑
j

ajeµj , 1 ≤ µ ≤ L. (A.8)

To evaluate the scaling of terms and how the large sums will average and fluctuate, it is useful to write the genome
entries as

eµi ≡ µe + σedµi, (A.9)

where we know µe = p and σ2
e = p(1 − p) since the genome is composed of i.i.d. binomial random variables.

Moreover, by this definition we must require that ⟨dµidνj⟩ = δµνδij . Equations (7) and (8) now become

1

ai
ȧi = µe

∑
ν

Rν + σe

∑
ν

dνiRν − gi (A.10)

Ṙµ = Eµ −Rµ − µe

∑
j

aj − σe

∑
j

dµjaj . (A.11)

To make the scaling of the first two sums in (10) and (11) a bit more apparent, define

1

L

∑
ν

Rν ≡ ⟨R⟩

1

K

∑
j

aj ≡ ⟨a⟩.

Inserting these into the CRM equations we obtain

1

ai
ȧi = Lµe⟨R⟩+ σe

∑
ν

dνiRν − gi (A.12)

Ṙµ = Eµ −Rµ −Kµe⟨a⟩ − σe

∑
j

dµjaj , (A.13)
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where Lµe⟨R⟩ and Kµe⟨a⟩ are both O(1) because ⟨R⟩ ∼ 1
L and ⟨a⟩ ∼ 1

K , respectively.
Assuming we have solved for the steady state solutions to this K by L system, we now introduce the i = 0 gene

and µ = 0 component and study how this affects the system:

1

ai
ȧi = Lµe⟨R⟩+ σe

∑
ν ̸=0

dνiRν − gi + σed0iR0

Ṙµ = Eµ −Rµ −Kµe⟨a⟩ − σe

∑
j ̸=0

dµjaj − σedµ0a0.

A subtle, but important, point should be mentioned here but won’t prove useful until later. As was mentioned in
the logic outline of the cavity method, we are interested in the new steady-state solutions to (12) and (13) under this
perturbation, some of which will have ai = 0. That said, the sum in the Ṙµ = 0 equation is really over K∗ = ϕK

terms (i.e.,
∑K∗

j=1 dµjaj), where ϕ is the fraction of genes that have nonzero expression (ai > 0) after the perturbation.
Returning to the introduced gene and component, we can think of these additional terms as effective perturbations

to the parameters Eµ and gi,

1

ai
ȧi = . . .− (gi + δgi)

Ṙµ = Eµ + δEµ − . . . .

Given the perturbation is small enough, which is the case for larger and larger K and L since the perturbation is of
order 1 / "system size", we assume that the new steady state solutions respond linearly around the old (e.g., denoted
by āi and āi/0, respectively):

āi ≈ āi/0 +
∑
ν

∂āi
∂Eν

δEν +
∑
j

∂āi
∂gj

δgj

R̄µ ≈ R̄µ/0 +
∑
ν

∂R̄µ

∂Eν
δEν +

∑
j

∂R̄µ

∂gj
δgj ,

where δgi ≡ −σed0iR̄0 and δEµ ≡ −σedµ0ā0 for the present case. Inserting the linear response expansion into the
steady state form of the i = 0 and µ = 0 equations of the CRM we obtain

0 = ā0

[
Lµe⟨R⟩+ σe

∑
ν

dν0R̄ν/0 − σ2
e ā0

∑
ν,µ

dν0dµ0
∂R̄ν

∂Eν

−σ2
eR̄0

∑
ν,j

dν0d0j
∂R̄ν

∂gj
− g0 + σed00R̄0


0 =E0 − R̄0 −Kµe⟨a⟩ − σe

∑
j

d0j āj/0

+ σ2
e ā0

∑
ν,j

d0jdν0
∂āj
∂Eν

+ σ2
eR̄0

∑
i,j

d0jd0i
∂āj
∂gi

− σed00ā0

Ignoring the a0 = 0 solution for the moment, we solve for a0 and R0

ā0 =
Lµe + σe

∑
ν dν0R̄ν/0 − σ2

eR̄0

∑
ν,j dν0d0j

∂R̄ν

∂gj
− g0 + σed00R̄0

σ2
e

∑
ν,µ dν0dµ0

∂R̄ν

∂Eν

(A.14)

R̄0 =
E0 −Kµe⟨a⟩ − σe

∑
j d0j āj/0 − σed00ā0 + σ2

e ā0
∑

ν,j d0jdν0
∂āj

∂Eν

1− σ2
e

∑
i,j d0jd0i

∂āj

∂gi

(A.15)

This concludes the "setup" of the cavity method. In the sections that follow we will look at the averages and fluctuations
of (16) and (17) to obtain the statistical distributions of a0 and R0 from which we will solve self-consistent equations
for the moments of these distributions numerically.
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Distribution of Gene Usage
We ask what are the statistical properties of an ensemble of genomes and targets, each randomly drawn from model
specified distributions. At first glance it looks like a nightmare to compute the expected value or variances of (14) and
(15) because of the large double sums in both the numerator and denominator. However, these sums can be thought of
as random walks that lead to self-averaging to some universal value, simplifying things tremendously. All that is left to
do then is to check that the averages and variances of the approximate (14) and (15) have the appropriate scaling that
has been found by both numerical and analytical means. To simplify the notation a bit, we define the susceptibilities
of our variables to the effective perturbations,

χµν ≡ R̄µ

∂Eν
χiν ≡ ∂āi

∂Eν

νµj ≡
R̄µ

∂gj
νij ≡

∂āi
∂gj

.

Let us first focus on (14), the distribution of gene usage. Denote the double sum in the denominator as

SχR :=
∑
ν,µ

dν0dµ0
∂R̄ν

∂Eµ
. (A.16)

We can split SχR up into sums over different indices and identical indices:

SχR =
∑
µ

d2µ0χµµ +
∑
ν ̸=µ

dν0dµ0χνµ

Although we have seen in the numerics that the sign of ∂āi

∂Eν
is correlated to the value of eνi, this doesn’t matter here

because it is safe to assume that these derivatives and eν0 (the perturbation) are uncorrelated. This holds for the other
derivatives in the other sums as well. Having said that, the average of (16) is

⟨SχR⟩ = K

γ
χ,

where χ ≡ ⟨χµµ⟩. From numerics (see Appendix A for a scaling table of all variables) we know that χ ∼ O(1), which
implies that ⟨SχR⟩ ∼ O(K). OTOH, the variance of (16) is

var(SχR) =
K

γ
var(χµµ) + (

K

γ
)2var(χµν).

Here numerics tell us var(χµµ) ∼ O( 1
K2 ) and var(χµν) ∼ O( 1

K ) so that to leading order in K, var(SχR) ∼ O(K).
These results follow from the random walk nature of these sums over terms that alternate in sign due to the standard
normal random variable dµi. Despite having much fewer terms, the "diagonal" terms coherently add while the "off-
diagonal" terms cancel out on average but contribute fluctuations subleading in K, resulting in a sum that self-averages
to

SχR ≈
∑
µ

d2µ0χµµ ±O(
√
K) ≡ K

γ
χ. (A.17)

Since the fluctuations in (17) are subleading in K, this contribution can be neglected in the large K limit as the
denominator of (14) tends to a the universal value σ2

e
K
γ χ.

Now for the double sum in the numerator over mixed indices that we will denote

SνR :=
∑
µ,j

dµ0d0jνµj . (A.18)

Because the indices are mixed, there are no "diagonal" terms, so the statistics of the dµi leave us with (18) having
mean 0, ⟨SνR⟩ = 0. Again, over an ensemble of genome and target realizations, the dνi and νµj we assume to be
uncorrelated such that the variance of (18) is simply

var(SνR) =
K2

γ
var(νµj).
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Because var(νµj) ∼ 1
K2 (see Appendix A), the variance scales as var(SνR) ∼ O(1). The final piece to determining

the scaling of this term in (14) is to account for the statistics of the common R̄0 factor out front. Whether R̄0 and the
double sum are correlated random variables or not, we find that

var(R̄0SνR) ∼ 1

K

since var(R̄0) ∼ O(1/K). Just as we did for SχR , we summarize the behavior of the SνR term as a mean plus
fluctuations:

σ2
eR̄0

∑
µ,j

dµ0d0j
∂R̄ν

∂gj
≈ 0±O(

1√
K

). (A.19)

Before we continue any further with simplifying (14), we should first check that the scaling of both sides of the
equation are consistent. On the left hand side, since we could have picked any gene from the original genome to be the
"introduced" gene, we know that a0 should have the same statistics as any of the other gene expression states. From
appendix A, the mean and variance of a0 scale as 1/K and 1/K2, respectively. We now turn to the scaling of the
numerator of (14) term by term:

• Lµe⟨R⟩ ∼ O(1)± 0

• σe

∑
ν dν0R̄ν ∼ O(1)± 1 *

• σ2
eR̄0

∑
µ,j dµ0d0j

∂R̄ν

∂gj
≈ 0±O( 1√

K
)

• g0 is an auxiliary parameter that will be set to zero to solve the self-consistency equations in the next section,
but was a parameter of order 1 in simulations.

* the fluctuations could be O(1/
√
K) if the terms in the sum are uncorrelated, but we know that in order for the scaling

of the variance to work out the sum must have correlated terms to give rise to fluctuations up order 1.
So overall, combining the above scaling of the numerator and denominator scaling in (17), the scaling of the right
hand side of (14) has an average that is of order 1/K and variance of order 1/K2 as desired. Now all that is left to do
is to formally write down the distribution of a0. Since (18) has mean 0 and vanishing variance in the limit of large K,
we can neglect this term from the numerator of (14). This leaves us with a constant, Lµe⟨R⟩, and the single sum and
auxiliary parameter, σe

∑
ν dν0R̄ν − g0, where the sum now includes the ν = 0 term. As was alluded to in the above

sections, we are not interested in any single solution set to the optimization problem or CRM equations, but rather the
statistics of the solutions, such as the average residual or the spread of gene expression. To do this, we consider the
parameters, such as the gi, being drawn randomly from an arbitrary distribution with mean g and variance σ2

g (though
it must be well-behaved in some sense – see ref. on cavity method for Lotka-Volterra or Pankaj’s paper for discussion).
Moreover, the sum

∑
ν dν0R̄ν can be seen as a sum over the steps of a random walk. With this in mind, let

gi ≡ g + δgi

such that, by the central limit theorem,
−δg0 + σe

∑
ν

dν0R̄ν (A.20)

is approximately a Gaussian random variable with mean 0 and variance

σ2
a0

= σ2
g + σ2

eLqR,

where qR ≡ 1
L

∑
ν R̄

2
ν . We can then define

σa0
za ≡ −δg0 + σe

∑
ν

dν0R̄ν , (A.21)

where za ∼ N (0, 1). Finally, including the possible a0 = 0 solution, the distribution for gene usage is a truncated
Gaussian:

a0 =
max [0, Lµe⟨R⟩ − g + σa0

za]

σ2
e
K
γ χ

. (A.22)
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Distribution of Residuals
We follow the same procedure in finding the gene usage distribution. Now consider equation (15). Define the double
sum

Sχa :=
∑
ν,j

d0jdν0
∂āj
∂Eν

=
∑
ν,j

d0jdν0χjν . (A.23)

Again, because of mixed indices, ⟨Sχa⟩ = 0. As before, we assume terms in the sum are uncorrelated so that the
variance is simply

var(Sχa) =
K2

γ
var(χjν) ∼ O(1),

where the scaling is informed by the numerics (Appendix A). A slight subtlety arises in evaluating the variance of
the term that contains the double sum Sχa that didn’t come up in the previous section. The reason for this subtlety is
because, unlike the Rµ, a0 is not a zero mean random variable. Therefore, the variance can be written as

var(ā0Sχa) = var(ā0var(Sχa) + ⟨a0⟩2var(Sχa).

Then scaling of the correspond term in the numerator is

σ2
e ā0

∑
ν,j

d0jdν0χjν ≈ 0±O(
1

K
).

Next, using the same foregoing assumptions, we compute the average and variance of the sum over like indices from
the denominator denoted as

Sνa :=
∑
i,j

d0id0j
∂āj
∂gi

=
∑
j

d20jνjj +
∑
j ̸=i

d0id0jνji. (A.24)

As was mentioned in the subtle remark following (12) and (13), the sum over j is over K∗ = ϕK terms. Therefore,
the average and variance are found to be

⟨Sνa⟩ = ϕKν

var(Sνa) ≈ ϕKvar(νii) + ϕ2K2var(νij),

where ν ≡ ⟨νjj⟩. By the scaling of the response derivatives in Appendix A, the scaling of the average and variance
goes like ⟨Sνa⟩ ∼ O(1) and var(Sνa) ∼ O(1/K). Together, the term corresponding to the sum is on average

σ2
e

∑
i,j

d0id0j
∂āj
∂gi

≈ σ2
e

∑
j

d20jνjj ±O(
1√
K

)

≡ σ2
eϕKν ±O(

1√
K

).

We see in both double sums, Sχa and Sνa , that the fluctuations get arbitrarily small in the large K limit so that we can
replace these sums by their average values. Altogether so far this simplifies (15) to

R̄0 =
E0 −Kµe⟨a⟩ − σe

∑
j d0j āj/0 − σed00ā0

1− σ2
eϕν

. (A.25)

As was done for (14), we check both sides of (25) to confirm the scaling is consistent. But before we do that, we
make one last substitution to make the scaling of the RHS more straightforward. Let

E0 ≡ E +
δE0√
K

,

where we assume that ⟨E0⟩ ≡ E ∼ O(1) and var(E0) ∼ O(1/K). Then, since the fitting of the genome to the target
leads to E ≃ Kµe⟨a⟩, we can reason that

E0 −Kµea⟩ ≃
δE0√
K

∼ O(
1√
K

).

Finally, the scaling of the RHS term by term is as follows:
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• the difference, E0 −Kµe, has mean 0 and variance O(1/K)

• σe

∑
j d0j āj ≃ 0±O( 1√

K
)

• the denominator is O(1).

Therefore, the mean and variance of the RHS is 0 and O(1/K), respectively, which agrees with the scaling of the
residual statistics from Appendix A:

⟨R0⟩ ∼
1√
K

, var(R0) ∼
1

K
.

All that is left to do now is arrive at the formal expression for the residual distribution. To do this, we make use of
the central limit theorem as was done in the previous section for the same reasons. Using the definition of E0 above,

δE0√
K

− σe

∑
j

d0j āj

is approximately a Gaussian random variable with mean 0 and variance

σ2
R0

=
σ2
E

K
+ σ2

eKqa, (A.26)

where qa ≡ 1
K

∑
j ā

2
j . Define

δE0√
K

− σe

∑
j

d0j āj ≡ σR0
zR,

where zR ∼ N (0, 1) so that the distribution of residuals is a Gaussian random variable,

R0 =
E −Kµe⟨a⟩+ σR0

zR
1− σ2

eϕKν
. (A.27)

Self-Consistency Equations
Although (22) and (27) give us the distributions we sought out for, they are in terms of 7 unknowns: {ϕ, ⟨a⟩, ⟨R⟩, qa, qR, χ, ν}.
Because every gene and residual component is statistically equivalent to gene i = 0 and component µ = 0, we can
write self-consistent equations by evaluating the moments of (22) and (27) and solving numerically. OTOH, the
derivatives are found by directly evaluating the appropriate derivatives of (22) and (27):

χ =
∂R̄

∂E
=

1

1− σ2
eϕKν

(A.28)

ν =
∂ā

∂g
= − γ

σ2
eKχ

. (A.29)

Now, to compute the moments it is useful to define new variables

∆g ≡ Lµe⟨R⟩ − g

σa0

∆E ≡ E −Kµe⟨a⟩
σR0

,

and the functions

wa
j (∆) :=

∫ ∞

−∆

dz√
2π

e−
z2

2 (z +∆)j

wR
j (∆) :=

∫ ∞

−∞

dz√
2π

e−
z2

2 (z +∆)j .

120



Now, with these definitions in mind, we note that for random variable y = max
[
0, a

c + b
cz
]

with z a standard normal
random variable, then the moments of y are given by

⟨yj⟩ =
∫ ∞

−∆

dz
[
p(z)y(z)j

]
=

(
b

c

)j ∫ ∞

− a
b

dz√
2π

e−
z2

2 (z +
a

b
)j . (A.30)

(30) allows us to concisely write the remaining self-consistency equations to go with (28) and (29):

ϕ = wa
0(∆g) (A.31)

⟨a⟩ = σa0
γ

σ2
eKχ

wa
1(∆g) (A.32)

⟨R⟩ = σR0

1− σ2
eϕKν

wR
1 (∆E) (A.33)

qa =

(
σa0

γ

σ2
eKχ

)2

wa
2(∆g) (A.34)

qR =

(
σR0

1− σ2
eϕKν

)2

wR
2 (∆E). (A.35)

To summarize, our goal is: given a parameter set {E, σE , g, σg, µe, σe,K, L}, find the unknowns {ϕ, ⟨a⟩, ⟨R⟩, qa, qR, χ, ν}
by numerically solving (28), (29), (31) - (35).

Comparing Theory with Simulation
The self-consistency equations were solved using MATLAB’s vpasolve function. To compare the distribution of gene
usage predicted by the cavity approach against simulated data, a Gaussian pdf was constructed using the mean and
variance predicted by (32) and (34) rather than constructing the full truncated distribution of (22). Of course this only
tells us approximately how well the Gaussian portion of (22) agrees with data. The agreement of the "δ-peak" that
comes from the truncation (due to the nonnegativity constraint on the ai) was evaluated by comparing the fraction of
nonzero ai, denoted by ϕ, to the fraction of simulated ai that were nonzero. 1 − ϕ gives us an idea of the height of
the "δ-peak". These were the only two comparisons between the cavity result and simulation, although others might
include looking at the distribution of residuals, predicted fitness, etc.

The simulations were performed as follows. For a given set of parameters (note: gi = 0∀i because these are
auxiliary parameters, and the eµi are binomial random variables such that µe = p and σ2

e = p(1 − p)), 50 random
genomes were optimized in the least-squares sense to fit a given target vector. The target vector was chosen to be a
noisy target centered around 1; i.e., E⃗ = (1, 1, . . . , 1) + ϵ ∗ η⃗, where η⃗ is a random vector drawn from a standard
normal distribution and ϵ is a parameter that sets the strength of the Gaussian noise. After obtaining the expression
coefficients from the fitting process, the ai from the 50 trials were collected together, producing the simulated samples
of the expression distribution. From this, the relevant statistics were computed. The following figures show the
comparison between theory and simulation for parameters p = 0.35, ϵ = 0.1, and K = 20. The other parameter,
γ and thus L, was varied over a range from 0.1 to 0.8. Comparisons were made for other parameters as well and
agreement was seen across the board, although if necessary, a more thorough and systematic test could be performed
to see for which range of parameters the agreement begins to fail.
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Figure A. 2: Comparing theoretically computed moments of usage/expression distribution with simulated data.

Appendix A: Scaling Table
Some numerical and some analytical arguments for the scaling of variables are presented in what follows, and all
results are summarized in a table at the end of this section. First, I present analytical arguments for how gene expression
ai and residual components Rµ scale.

Scaling of Gene Expression
Rewriting random variables and parameters in terms of standard normal variables, let

ai ≡ a+ σaαi

Eµ ≡ E + σEϵµ, (A.36)

where the new variables satisfy

⟨αi⟩ = 0 = ⟨ϵµ⟩
⟨αiαj⟩ = δij

⟨ϵµϵν⟩ = δµν .

Fitting a random genome, G = {eµi}, to the target means on average

⟨
∑
i

aieµi ≃ Eµ⟩. (A.37)
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Figure A. 3: Comparing theoretical usage/expression distributions in terms of moments computed from cavity cal-
culation with distributions of simulated data. Panels correspond to varying K/L ratio. Note that the discrepancy
due to the peak at 0 expression (a = 0) when K/L is large is actually captured by the cavity calculation: the peak
corresponds to the fraction with nonzero expression ϕ shown in previous figure.

Inserting (36) into (37) yields
⟨a

∑
i

eµi + σa

∑
i

eµiαi ≃ E + σeϵµ⟩. (A.38)

Obviously the scaling of the random variables ai will depend on the scaling we choose for the target statistics. In our
simulations we chose E = 1 and σ2

E ∼ O(1/K). Equating mean and scatter of (38) allows us to read off the scaling.
The mean is simple:

a
∑
i

eµi ≃ E =⇒ a ∼ O(
1

pK
).

For the scatter, we need to do a bit more work. First, we square both sides to put it in terms of variances, and then
separate out the diagonal and off-diagonal statistics:

⟨σ2
a

∑
i

e2µiα
2
i

∑
i̸=j

eµieµjαiαj

 ≃ σ2
Eϵ

2
µ⟩

⇒ σ2
a

∑
i

⟨e2µi⟩⟨α2
i ⟩+

∑
i ̸=j

⟨eµi⟩⟨eµj⟩⟨αiαj⟩

 ≃ σ2
E
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=⇒ σ2
a

∑
i

⟨e2µi⟩ ≃ σ2
E .

Noting that we choose elements of the genome matrix from a binomial distribution so that ⟨e2µi⟩ = p, we conclude
that the variance of gene expression scales as σ2

a ∼ O(1/pK2), or simply σ2
a ∼ 1/K2.

Scaling of Residuals
Here we make use of both numerics and analytics to find the scaling of the average residual component and their
variance. Empirically, we have found that for a fixed K/L ratio, the fitness of a random K by L genome is independent
of size of K and L. That is, ∥∥∥∥∥∑

i

aie⃗i − E⃗

∥∥∥∥∥
2

∼ const., (A.39)

where the constant depends on the given K/L ratio. Recall that at equilibrium in the CRM

Rµ = Eµ −
∑
i

eµiai

so that (39) can be rewritten as ∥∥∥R⃗∥∥∥2 =
∑
µ

R2
µ ≃ L⟨R2

µ⟩ ∼ const.,

which implies ⟨R2⟩ ∼ O(1/K). Moreover, because the fitting process minimizes the residual components to roughly
Rµ ≈ 0, we can assume that the mean ⟨R⟩ vanishes faster than the scatter such that ⟨R2⟩ is a good estimate for σ2

R.
Then the variance also scales as σ2

R ∼ O(1/K). We have checked numerically the assumption that the mean vanishes
faster than the scatter and found that ⟨R⟩ ∼ γ/K, where γ ≡ K/L.

Scaling of Response Coefficients
The following plots present the results of simulations used to determine the scaling of derivatives such as ∂ai

∂Eµ . Nu-
merical solutions of both the perturbed and unperturbed CRM dynamics (5) and (6) were found using MATLAB’s
ode45 solver. Steady-state values of variables were approximated and a threshold of 10−9 was used to determine if a
steady-state value for ai was 0 or not. These ai = 0 were removed from the system of equations and the corresponding
linear, equilibrium system was solved exactly. If any of the ai from these solutions are negative, this indicates that
our estimate of which ai to be 0 is too conservative and these negative ai were set to 0. Finally, the derivatives were
computed numerically by taking the first finite difference between the perturbed and unperturbed solutions over the
size of the perturbation.

Note, we assume the response to perturbations is in the linear regime so that we can perturb parameters Eµ and gi
separately. Because the variables ai and Rµ scale with K themselves, we used re-scaled variables αi and rµ to work
with quantities of order 1. A fixed ratio of γ = 0.2 was chosen, while K and L varied accordingly. The density of the
random binary genomes was selected to be p = 0.5, and for simplicity we chose a homogeneous target (i.e., σ2

E = 0).
Because all genes and residual components follow the same statistics, we only perturb one component of the target
E1 + δE1 and one auxiliary parameter g1 + δg1. To ensure the scaling of the response derivatives were not due to a
perturbation that scales with K (as is the case in the cavity method), we used a fixed perturbation of 10−3 for all K as
well. Finally, we use bootstrapping to estimate the error on the variance of derivatives.
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δg perturbation: averages

Figure A. 4: Numerical analysis of response variable means scaling with perturbation in cavity method. Each panel
shows responses to small (magenta) perturbations and perturbations of size relevant to genome size (adding one
gene/system to genome of already K genes/systems; in blue).
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δE perturbation: averages

Figure A. 5: Numerical analysis of response variable means scaling with perturbation in cavity method. Each panel
shows responses to small (magenta) perturbations and perturbations of size relevant to genome size (adding one
gene/system to genome of already K genes/systems; in blue).
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δg perturbation: variances

Figure A. 6: Numerical analysis of response variable variance scaling with perturbation in cavity method. Each
panel shows responses to small (magenta) perturbations and perturbations of size relevant to genome size (adding one
gene/system to genome of already K genes/systems; in blue).
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δE perturbation: variances

Figure A. 7: Numerical analysis of response variable variance scaling with perturbation in cavity method. Each
panel shows responses to small (magenta) perturbations and perturbations of size relevant to genome size (adding one
gene/system to genome of already K genes/systems; in blue).

Summary of Scaling Behaviors

variables:

⟨R⟩ ∼ γ

K
, σ2

R ∼ 1

K

⟨a⟩ ∼ 1

pK
, σ2

a ∼ 1

pK2
.

scaled responses:

⟨ ∂ᾱj

∂Eµ
⟩ ∼ 1

K
, ⟨ ∂r̄µ

∂Eν
⟩ ∼ 1, ⟨ ∂r̄µ

∂Eµ
⟩ ∼ K

⟨∂ᾱi

∂gi
⟩ ∼ 1, ⟨∂ᾱj

∂gi
⟩ ∼ 1

K
, ⟨∂r̄µ

∂gi
⟩ ∼ 1

K
.
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var

(
∂ᾱj

∂Eµ

)
∼ 1, var

(
∂r̄µ
∂Eν

)
∼ K, var

(
∂r̄µ
∂Eµ

)
∼ 1

var

(
∂ᾱi

∂gi

)
∼ 1

K
, var

(
∂ᾱj

∂gi

)
∼ 1

K
, var

(
∂r̄µ
∂gi

)
∼ 1.

inserting back the scaling aj ≡ αj

pK , Rµ ≡ γ
K rµ:

⟨ ∂āj
∂Eµ

⟩ ∼ 1

K2
, ⟨∂R̄µ

∂Eν
⟩ ∼ 1

K
, ⟨∂R̄µ

∂Eµ
⟩ ∼ 1

⟨∂āi
∂gi

⟩ ∼ 1

K
, ⟨∂āj

∂gi
⟩ ∼ 1

K2
, ⟨∂R̄µ

∂gi
⟩ ∼ 1

K2
.

var

(
∂āj
∂Eµ

)
∼ 1

K2
, var

(
∂R̄µ

∂Eν

)
∼ 1

K
, var

(
∂R̄µ

∂Eµ

)
∼ 1

K2

var

(
∂āi
∂gi

)
∼ 1

K3
, var

(
∂āj
∂gi

)
∼ 1

K3
, var

(
∂R̄µ

∂gi

)
∼ 1

K2
.
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