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Professor Obi L. Griffith, Chair 

 

In the era of advanced ability to perform complex genomic sequencing, precision oncology has 

been adopted as the ideal paradigm for optimization of outcomes for patients with cancer. 

However, despite technological advances in all aspects of the massively parallel sequencing 

pipeline, the application of precision oncology to every clinical workflow has been unattainable. 

Suboptimal adoption of custom medicine within oncology is attributable to the annotation 

bottleneck, which currently demands inordinate manual and computational requirements for 

completion. Alleviation of the annotation bottleneck requires co-development of bioinformatic 

strategies and analysis knowledgebanks to automate variant identification and variant annotation 

for clinical utility. The body of work presented here provides validated methods to alleviate the 

annotation bottleneck within the precision oncology pipeline. The introduction describes the 

specific aspects of the massively parallel sequencing pipeline that require development. 

Subsequently, we present three tools (DeepSVR, a Manual Review Standard Operating 

Procedure, and OpenCAP) that were developed to improve upon existing methods for variant 

Erica Barnell
xii



 

 

 

identification and annotation. DeepSVR provides a machine learning approach to improve 

automated somatic variant calling by reducing false positives associated with sequencing 

pipelines that are observable by manual reviewers. The Manual Review Standard Operating 

Procedure provides a systemic and standardized approach for manual review of aligned 

sequencing reads for sequencing data with paired tumor and normal samples. Finally, the Open-

sourced CIViC Annotation Pipeline (OpenCAP) serves as a software to create rationally 

designed clinical capture panels that are linked to clinical relevance summaries to improve 

library preparation and clinical annotation. The combined utility of these three tools for 

alleviation of the analysis bottleneck are demonstrated using a clinical example. Specifically, we 

developed a targeted clinical capture panel (MyeloSeq) to evaluate recurrent mutations observed 

in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). The MyeloSeq 

sequencing pipeline incorporated many of the tools described above for variant identification and 

annotation and provides a succinct output report for physician consumption. When surveying 

physicians who utilize the MyeloSeq panel, we observed that over 44% of physicians changed 

their treatment protocol based on the MyeloSeq results. This included 39 new therapeutics 

prescribes, 4 definitive diagnoses, and 13 changes in treatment plan (stem-cell transplant versus 

chemotherapy) based on prognostic indicators. This example demonstrates that the developed 

tools help alleviate the analysis bottleneck within precision oncology and will improve 

physician’s ability to integrate precision medicine into clinical workflow.
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Chapter 1: Introduction 

1.1 The massively parallel sequencing pipeline can be used 

for precision oncology 

1.1.1 Introduction to precision oncology and the massively parallel sequencing 

pipeline 

Precision medicine is a broad topic that encompasses all aspects of customizing patient protocols 

to individuals. Precision oncology is the application of precision medicine to cancer patients. One 

example of precision oncology is the identification of variants that are characteristic to the 

individual’s tumor and employing custom therapy protocols to improve outcomes. Over the last 

few decades, technological advancements and changes in the healthcare infrastructure have 

permitted the integration of precision oncology into clinical practice, which has improved the 

treatment for many patients with cancer.  

 Some initial research that highlighted the potential of precision oncology was derived 

from The Human Genome Sequencing project, which was completed in 2000 and required global 

collaboration from over 20 groups. Using a shotgun sequencing strategy, the project identified 

30,000-40,000 protein-coding genes and 1.4M single nucleotide polymorphisms (SNPs).1 The 

completion of this project was a revolutionary milestone, however the work required to fully 

analyze the information contained within the sequence proved to be more extensive than the 

sequencing itself, resulting in minimal direct clinical benefit.1 In retrospect, the most valuable 

outcome from the project was the development of next-generation or massively parallel 

sequencing (MPS). This method for high-throughput sequencing was implemented near the 

https://paperpile.com/c/92aiQS/RwC7
https://paperpile.com/c/92aiQS/RwC7
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conclusion of The Human Genome Sequencing Project and allowed for early completion of the 

project.2 Since the development of high-throughput approaches, the sequencing cost of the human 

genome has plummeted from $100M in 2001 to $1,000 as of 2015.3 

 Reduction in the cost of sequencing has made it possible to develop sequencing-based 

approaches for diagnosis and treatment of disease. In theory, and in academia, precision medicine 

tools developed over the last 15 years have demonstrated success with regards to treating patients 

based on genetic, environmental, and behavioral factors.4 Individual cases and small cohorts have 

provided substantial evidence that clinical practice and patient outcomes are improved when 

employing precision medicine to treat patients. However, it has been unattainable to scale this 

process for every individual.5 This is in part due to the exponential growth of clinically relevant 

information that impacts patient care. For each patient, millions of base pairs must be sequenced, 

hundreds of variants must be called, and all must be evaluated for actionability. This process 

requires extensive computing power for data processing and storage, a high manual burden for 

variant identification and review, and a cohort of experts for summarization and execution.6 

Successful development of processes that improve these components within precision oncology 

will facilitate the incorporation of precision medicine into clinical practice. 

 The following chapter provides an overview of the MPS pipeline and existing obstacles 

that hinder the current workflow. Specifically, we describe methods for sample procurement, 

nucleic acid extraction, library preparation / targeted enrichment strategies, various sequencing 

strategies, somatic variant calling, variant refinement, variant annotation, and variant reporting. 

We describe the outstanding issues associated with each step in the MPS pipeline with a specific 

emphasis on the annotation bottleneck. The annotation bottleneck, which is described in detail 

below, refers to the manual processes of variant identification, variant annotation, and report 

https://paperpile.com/c/92aiQS/uR3O
https://paperpile.com/c/92aiQS/9JcH
https://paperpile.com/c/92aiQS/4D1R
https://paperpile.com/c/92aiQS/1Hw3
https://paperpile.com/c/92aiQS/S6f0
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generation. We ultimately propose solutions to alleviate the annotation bottleneck through 

development of bioinformatic tools that automate the involved steps. It is our hope that these tools 

could be used to increase the impact and utility of precision oncology for cancer patients. 

1.1.2 Sample procurement 

Sample acquisition requires obtaining a relatively pure tumor sample, ideally for comparison 

against a pure matched-normal sample. Variants identified in the tumor sample are typically 

compared to variants in the normal sample to label relevant mutations as either somatic or 

germline. Two broad classes of tumor samples include those from solid tumors and hematologic 

tumors. 

 Solid Tumors can be evaluated using a tumor biopsy or surgical resection. Samples can be 

analyzed fresh, or they can be subsequently prepared as formalin-fixed paraffin-embedded (FFPE) 

tissue. Although these approaches seem similar, the downstream analysis can be affected 

dramatically between different protocols. Processing in FFPE samples can potentially alter the 

DNA, which might change the variants called in the downstream analysis.7 In addition to 

processing issues, many samples are a heterogeneous composition of normal tissue, immune cells, 

and sub-clonal tumor tissue.8 The dynamic interaction between cancerous cells and adjacent 

healthy cells results in the blending of DNA and RNA transcripts from the various cell populations, 

thereby complicating the variant calling pipeline. Finally, underrepresentation of tumor cells in the 

biopsy can result in false negatives with regards to variant identification. This is especially true 

when evaluating solid tumors using a liquid biopsy approach (e.g., circulating tumor cells), low-

burden tumors (e.g., sarcomas), and tumors that have variants of low variant allele frequency 

(VAF). 

https://paperpile.com/c/92aiQS/ix3x
https://paperpile.com/c/92aiQS/k89B
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 Hematologic tumors can be evaluated using a blood sample or bone marrow biopsy. 

Unique challenges with hematologic sequencing include reduced tumor tissue purity and lack of 

normal tissue purity (e.g., blood cell infiltration into the tissues).9 Additionally, blood samples 

show differential escape of tumor cells from the bone marrow. Samples from the peripheral blood 

might differ from stem cells trapped in the bone marrow, which typically harbor primary mutations 

initiating the malignant transformation.10 Lack of consistency with tumor sampling can prevent 

comparison across tissues or between different tumor types and can alter the downstream genetic 

analysis. 

1.1.3 Nucleic acid extraction 

Nucleic acid purification requires cell lysis, binding of nucleic acid, washing off non-nucleic acid 

material, drying of nucleic acid, and elution into a buffer or water. There are many commercially 

available kits that can perform manual nucleic acid purification and these steps can also be 

automated using commercially available equipment. Below each step is briefly described: 

● Lyse: Tissue samples are typically extracted and stored as whole cells. The lysis step is 

used to disrupt the cellular membrane to expose the nucleic acid (DNA and RNA). Lysis 

buffer typically comprises a chaotropic agent, which breaks the hydrogen bond network 

between water molecules and optionally a surfactant to lower surface tension between 

membrane components and nucleic acid-containing solution. Some chaotropic agents can 

include: guanidium thiocyanate or magnesium chloride. 

● Bind: After nucleic acid has been suspended in solution, it can be reversibly bound to a 

positively charged material for purification. These materials can include magnetic 

particles, columns, filters, silica beads, or organic solvent-based methods. 

https://paperpile.com/c/92aiQS/tst0
https://paperpile.com/c/92aiQS/lDIr
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● Wash: Once the nucleic acid is bound to a positively charged material, remaining 

substances in the lysate are washed from solution. A washing solution does not disrupt the 

covalent bond between the nucleic acid and the positively charged material used for 

purification. 

● Dry: To ensure proper elution, bound nucleic acid typically needs to be completely devoid 

of all liquid. This can be accomplished through evaporation or, to avoid degradation, 

alcohols have been used to expedite the drying step. 

● Elute: Elution buffers are solvents that displace the nucleic acid from the positively 

charged material. These buffers are used for purification and concentration of the nucleic 

acid into a solution. 

● Cleanup: Elutions can be optionally treated with either RNAse or DNAse to eliminate 

nucleic acid that is not being used in the pipeline. This further reduces noise associated 

with the sample and generates a purified solution of the material being analyzed. 

After the nucleic acid generation step, assessment of quantity and quality of the final elution is 

typically performed. This can be accomplished using spectrophotometry and/or 

electropherograms. Spectrophotometry measures a substance’s ability to absorb a specific 

wavelength, which in turn is a proxy for concentration and purity. Electropherograms measure the 

nucleic acid concentration and size using a fluorescent spectrum. Both metrics can be used to 

ensure sample quality for downstream processing. 

1.1.4 Library preparation and target enrichment strategies 

Library construction is required to prepare input for the massively parallel sequencing (MPS) 

pipeline. This process consists of three steps: 1) genomic fragmentation, 2) ligation to custom 



 

 

6 

linkers (e.g., adapters), and 2) polymerase chain reaction (PCR) amplification. Below each step is 

briefly described: 

● Genome fragmentation: Fragmentation involves breaking the DNA into smaller pieces. 

Genomic fragmentation can be accomplished using physical or chemical means. Physical 

fragmentation methods include sonication, nebulization, or enzymatic reactions. Chemical 

fragmentation relies on hydroxyl radicals to break DNA into fragments. Relative to 

physical fragmentation, chemical fragmentation can accommodate more material, but can 

induce false positives through novel mutations or transversion artifacts. 

● Adaptor ligation: Adaptors are chemically synthesized double stranded DNA molecules 

that make sequencing reactions possible. Adaptors are ligated to DNA fragments and may 

include sequences to allow binding to a flow cell, sequencing primer sites, sample indexes, 

unique molecular identifier (UMI) sequences, etc. These adaptors are ultimately sequenced 

and might require removal prior to alignment, depending on the alignment strategy. 

● PCR amplification: The PCR amplification process creates many copies of a specific 

DNA (or complementary DNA) segment. PCR requires first denaturing double-stranded 

DNA (dsDNA) to create single-stranded DNA (ssDNA) using heat. Subsequently, primers 

bind to targeted ssDNA fragments and DNA polymerase initiates the elongation of ssDNA 

to create a copied dsDNA. Amplification is typically performed at multiple steps in the 

sequencing pipeline. 

After PCR amplification, target enrichment strategies can be optionally employed to generate a 

more specific collection of DNA fragments for sequencing. These enrichment strategies are often 

performed on the constructed sequence library or incorporated into a library construction step. One 

type of target enrichment strategy includes hybridization capture. This process requires designing 
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specific probes that bind to regions of interest for isolation (e.g., use of strepavidin Beads in 

combination with biotinylated DNA). Genomic DNA that is not bound to the capture probes will 

be washed away during elution. The remaining DNA, which is enriched for regions of interest, is 

amplified using PCR and sequenced. A second type of target enrichment strategy includes 

amplicon enrichment. Amplicon enrichment entails amplifying regions of interest by PCR using 

sets of primer sequences designed to target specific genomic loci. This method does not eliminate 

background noise but rather it preferentially amplifies regions of interest. There are several other 

types of targeted enrichment strategies that can be used for custom projects. 

 Library preparation and target enrichment strategies can also employ unique molecular 

identifiers (UMIs), which are short sequences or molecular tags that can increase acuity in 

downstream variant calling. Typically, these molecular identifiers are added prior to amplification 

to tag individual DNA molecules observed in the sample. This allows the individual to assign all 

amplification products to a single originating DNA molecule after sequencing. Through a process 

of consensus read formation, individual sequencing-related errors can be discounted, decreasing 

the effective error-rate of sequencing. UMI-based sequencing can take on many forms, each unique 

to the individual library preparation. 

1.1.5 Massively parallel sequencing approaches 

Sequencing is the final step in the data production part of a genomic analysis pipeline. The most 

commonly used sequencing technique is so-called next-generation (NGS) or high-throughput 

sequencing, which evaluates millions of sequences in parallel to dramatically reduce time and cost 

of the analysis. There are at least two platforms, that are approved for clinical utility, that harness 

the power of next-generation sequencing to efficiently evaluate tumor samples: 1) Illumina 

sequencing, and 2) ThermoFisher ION Torrent. Illumina sequencing anneals individual reads to a 
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bead or plate using DNA adaptors and the molecule is amplified through PCR. Amplified reads 

are sequenced by individually adding single fluorescently tagged and blocked-nucleotides to the 

complementary DNA sequence and exposing the nucleotide to light to produce a characteristic 

fluorescence. These blocked-nucleotides can then be unblocked to allow for an additional base to 

bind and the process is repeated until the whole complementary sequence is elucidated. This 

platform has a high accuracy rate, can evaluate 50-300 base-pairs per read, and has a very high-

throughput run (millions to billions of reads per flow cell). Each run takes approximately 2-3 days 

to complete for as little as $1,000 per 30x whole genome sample. ThermoFisher ION Torrent 

evaluates hydrogen atoms emitted during polymerization of base pairs, which can be measured as 

a variation in the solution’s pH. This method has a low error rate for substitutions and point 

mutations, and it is relatively inexpensive with a fast turn-around for data production (2-7 hours 

per run). However, the platform has higher error rates for insertions and deletions, it cannot read 

long chains of mononucleotides, and it cannot currently match the throughput of the Illumina 

sequencing platform. 

 More recently, a newer class of sequencing technology, called third generation sequencing, 

has been developed to address several issues that currently exist with next-generation sequencing 

(NGS). Specifically, third generation sequencing platforms (e.g., PacBio and NanoPore) allow for 

sequencing of longer reads at a reduced cost relative to NGS-based approaches. PacBio utilizes 

hairpin adaptors to create a loop of DNA that can be fed through an immobilized polymerase to 

add complementary base pairs. As each nucleotide is held in the detection volume by the 

polymerase, a light pulse identifies the base. This platform requires high quality intact DNA with 

highly controlled fragmentation and can read strands up to 1Mb in length. Oxford NanoPore 

Sequencing utilizes biological transmembrane proteins that translocalize DNA. Measurement of 



 

 

9 

changes in electrical conductivity as the DNA passes through the pore elucidates sequence reads. 

This platform can evaluate variable length reads and is inexpensive relative to other technologies. 

Specifically, the MinION device is completely portable, commercially available, and can evaluate 

20-100MB per run. The tradeoff is its low fidelity rate of only ~85%. 

 For each sequencing platform described above, there are several broad classes of 

sequencing strategies that can be employed. This includes broad capture of the entire genome 

(whole genome sequencing), capture of all protein coding exons (whole exome sequencing), or 

targeted capture of desired loci of the genome (targeted sequencing). Other applications of 

sequencing include evaluation of transcribed nucleic acid (RNA-sequencing) and evaluation of 

nucleic acid released into the blood (circulating tumor cells, or cell-free DNA). These methods 

and applications of sequencing technology are expanding in the face of reduced sequencing costs 

and increased read accuracy and length. 

1.1.6 Alignment and automated variant calling 

Following generation of raw sequence read data, alignment to the reference genome is the next 

step within the sequencing pipeline. The reference genome approximates the complete 

representation of the genetic sequence for the 4 billion base pairs of human DNA. Using a 

representative assembly prevents the need to build an assembly each time a genome is sequenced, 

however, there are trade-offs to this approach. Specifically, due to single nucleotide 

polymorphisms (SNPs) (and large-scale variants) intrinsic to an individual, the reference genome 

does not perfectly match any one person. Further, due to repetitive elements (duplications, inverted 

repeats, tandem repeats), the reference genome is likely incomplete or incorrect in places. 

Therefore, new genome assemblies are constantly being built to improve our ability to resolve the 

true human genome sequence. Most recently, GRCh3711 was published in 2009 and GRCh3812 

https://paperpile.com/c/92aiQS/edZb
https://paperpile.com/c/92aiQS/ZsAu
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was published in 2013. Alignment to the reference genome can be performed using various 

alignment software and, generally speaking, alignment strategies can either optimize accuracy or 

processing time. Optimal solutions include either Smith-Waterman13 or Needleman-Wunsch14 

alignment strategies, which are computationally expensive and process read strands slowly. 

Alternatively, fast solutions include hash-based algorithms such as Burrows-Wheeler 

transformation15, which create shortcuts to reduce alignment time with minimal reduction in 

accuracy. 

 The next step in the typical cancer sequencing pipeline is to use paired tumor and normal 

alignments for germline and somatic variant calling. Germline variant calling consists of 

identifying single nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural 

variants (SVs) that are intrinsic to the normal tissue. An example of a germline variant calling 

software is the Genome Analysis Tool Kit (GATK)16, which can be used for all types of variants 

described above. Somatic variant calling is a similar process, but it requires the variant to be 

exclusively observed in the tumor tissue and not present in the germline (i.e., normal) tissue. 

Somatic variant calling may involve looking for single nucleotide variants (SNVs), insertions and 

deletions (indels), copy number variants (CNVs), structural variants (SVs), and loss of 

heterozygosity (LOH), depending on the type of sequencing performed. These different types of 

variants can be identified by using various software (e.g., Strelka17, MuTect18, VarScan19, Manta20, 

and CNVKit21). 

1.1.7 The impact of the massively parallel sequencing pipeline 

The development of the massively parallel sequencing pipeline is increasingly sufficient for 

processing clinical samples in real-time for application to precision oncology. The main factors 

https://paperpile.com/c/92aiQS/3JnK
https://paperpile.com/c/92aiQS/uPaG
https://paperpile.com/c/92aiQS/Uict
https://paperpile.com/c/92aiQS/JPeZ
https://paperpile.com/c/92aiQS/2XGJ
https://paperpile.com/c/92aiQS/Sk3f
https://paperpile.com/c/92aiQS/kTku
https://paperpile.com/c/92aiQS/FDUe
https://paperpile.com/c/92aiQS/kZNq
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contributing to this, as outlined above, include reduction in cost of sequencing and full automation 

of the pipeline. As mentioned, the cost of sequencing continues to drop as technology evolves, 

which has been inversely correlated with implementation of MPS-based assays within the clinic. 

This is because successful reimbursement is a meaningful driver of change in healthcare. 

Demonstrating improvements in outcomes from sequencing approaches are still necessary to 

increase reimbursement rates for MPS-based tools. Automation of the MPS platform has also 

increased use of sequencing approaches in healthcare. To employ change in the clinic, physicians 

require that results are provided in a relatively short time frame (i.e., days). This ensures that the 

change in therapy induced by the sequencing results provides full benefit to the patient. Recent 

advancements in sequencing technology and software has permitted the development of pipelines 

that can generate aligned sequencing data in the requested time frame5,22, which has increased the 

use of these pipelines in a clinical setting. These two factors have contributed to advancing 

diagnostic tools that directly impact patient care and patient outcomes. 

1.2 The variant refinement and annotation bottleneck 

hinders adoption of precision oncology 

1.2.1 The somatic variant refinement bottleneck 

The output from automated variant calling software is a list of variants that deviate from the 

reference genome or between tumor and normal samples. Although each program has unique flaws 

and benefits, in general, one of the biggest problems with automated somatic and germline 

software is the high burden of false positives in the final report. Therefore, outputs from the 

automated software require substantial variant refinement prior to variant annotation. Specifically 

for somatic variants, somatic variant refinement is required to identify a high-quality list of variants 

https://paperpile.com/c/92aiQS/wPj6+1Hw3
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associated with an individual’s tumor. This can be accomplished by employing heuristic filters on 

various sequencing metrics and / or manual review of aligned sequencing reads. Heuristic filtering 

can include setting minimum thresholds for sequencing metrics such as variant allele frequency 

(VAF), total coverage, allele read count, or allele read depth. For example, a typical sequencing 

strategy might recommend that variants require at least 20X coverage in both the tumor and normal 

sample with a VAF >5%. These numbers can be adjusted based on the experiment and the reagents 

employed on the samples. Manual review of somatic variants requires direct visualization of 

aligned sequencing reads using a genomic viewer such as Integrative Genomic Viewer (IGV).23 

This process can be used to manually filter out variants attributable to sequencing and alignment 

artifacts.  

 Although somatic variant refinement is an important part of the sequencing pipeline, there 

are many issues associated with the existing procedures. First, manual review it is incredibly time-

consuming and expensive. To illustrate the existing manual review burden using a standard cancer 

genomics workflow, a previously conducted breast cancer study24 will be used as an example. In 

this study, 10,112 variants were identified via automated somatic variant callers, 1,066 variants 

were filtered using heuristic cutoffs, and 9,046 variants required manual review. Assuming 

experienced manual reviewers can evaluate 70-100 variant per hour (personal observation), this 

study would have required >100 hours for manual review. Another issue with manual review is a 

high level of inter- and intra-lab variability / error due to individual bias and level of experience. 

This is likely attributable, at least in part, to underreporting of manual review procedures and lack 

of consensus on proper protocols for the process. Improvement in the variant refinement process 

in terms of standardization and systematization would prime the MPS pipeline for improved 

clinical utility. 

https://paperpile.com/c/92aiQS/0HTn
https://paperpile.com/c/92aiQS/fMKE
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1.2.2 The variant annotation bottleneck 

After identifying a putative list of high-quality tumor-defining variants, variant annotation is 

required to understand the therapeutic, prognostic, diagnostic, and predisposing implications of 

the variants as they relate to the patient’s tumor. This process requires both defining the clinical 

relevance of a variant and generating a clinical report that is easily accessible by researchers and 

physicians. Currently, the process of variant annotation is the largest bottleneck within precision 

oncology.25 The annotation process requires a complex and expensive manual analysis to ascertain 

clinical relevance of genomic findings. Further, this process is not standardized across and between 

institutions.26 Components required to improve the annotation bottleneck include co-development 

of bioinformatic tools and variant knowledgebases that effectively elucidate and annotate clinically 

actionable variants from sequencing data. 

1.3 Existing approaches to alleviate the annotation bottleneck 

within precision oncology 

1.3.1 Existing knowledgebases are insufficient for building precision oncology 

tools 

For successful variant annotation, large knowledgebases must be generated to store the clinical 

data for consumption. There are currently many approaches for building variant annotation 

knowledgebases, each with their own benefits and drawbacks. The three main types of 

knowledgebases, which are described in detail below, include: government-sponsored variant-

observation knowledgebases, academic variant interpretation knowledgebases, and industry 

variant interpretation knowledgebases. 

https://paperpile.com/c/92aiQS/DIo5
https://paperpile.com/c/92aiQS/I3KW
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Government-sponsored variant-observation knowledgebases have been developed to assist 

with open-access variant annotation. Examples of these databases include ClinVar27; The Cancer 

Genome Atlas (TCGA), Genomic Data Commons (GDC)28; and the Catalogue Of Somatic 

Mutations In Cancer (COSMIC)29. ClinVar is a crowd-sourced, free, and open knowledgebase that 

compiles genetic variants in disease. The database captures submissions of variant observations 

from clinical workflows across all human disease and with highly variable curation of clinical 

relevance (from none to expert-panel moderated). The GDC, COSMIC, and other similar databases 

systematically document observed cancer variation and provide a sense of their tumor-specific 

prevalence. Although some of these variant calls have external validation,30 most do not provide 

any curated significance of their clinical relevance. Despite the fact that few variants within the 

databases have expert-curated interpretations and there is no focus on clinically actionable variants 

with regard to cancer, government-sponsored databases do have free public access and they are 

typically funded for regular updates and feature development. 

Academic variant interpretation knowledgebases are knowledgebases that are generated 

and maintained by large academic centers or institutions. Currently, there are at least seven 

different academic knowledgebases that have been developed with a focus on clinical 

interpretation of cancer variants. These knowledgebases include: OncoKB31, Precision Medicine 

Knowledgebase (PMKB) 32, and the Cancer Genome Interpreter (CGI)33, among others. These 

knowledgebases were developed by experts within the field, and many have high quality data with 

interpretations for variants. However, the majority of these databases use a domain expert curation 

model, which is ultimately unsustainable as the knowledge within the field continues to grow. 

Additionally, most of these resources require log-in, have no public application programming 

https://paperpile.com/c/92aiQS/wDTc
https://paperpile.com/c/92aiQS/ExZW
https://paperpile.com/c/92aiQS/ABXRl
https://paperpile.com/c/92aiQS/9ZEw
https://paperpile.com/c/92aiQS/2XF5X
https://paperpile.com/c/92aiQS/CyBpV
https://paperpile.com/c/92aiQS/7UxKZ
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interface, limit data use through restricted licenses, and some have no detailed or human-readable 

clinical interpretation or summary of variants.  

Industry variant interpretation knowledgebases are commercially available databases that 

analyze tumor samples and provide information to clinicians on cancer variants. Foundation 

Medicine34 and Guardant Health are two of the most relevant resources used within industry for 

variant annotation. Typically, industry platforms charge for use and are either reimbursed by the 

patients or by insurance companies. Although these knowledgebases have provided convincing 

evidence that they improved patient treatment, all data for these companies is restricted access and 

methods for variant identification and interpretation are typically unavailable. For example, 

FoundationOne CDx (produced by Foundation Medicine) does not publish methods for panel 

development and clinical variant annotation. The FDA filing states that the assay evaluates: 1) 

genomic locations associated with 15 FDA-approved drugs, 2) 324 genes of interest, and 3) two 

genomic signatures (microsatellite instability and tumor mutational burden). However, the specific 

genes, transcript versions, and hotspots used for evaluation are not well described. The lack of 

transparent molecular details regarding the commercial assays hinders advancements in research 

and development. 

1.3.2 CIViC serves as an optimal knowledgebase for variant curation and 

annotation 

Of all existing knowledgebases, we believe the Clinical Interpretations of Variants in Cancer 

(CIViC - www.civicdb.org) serves as the optimal knowledgebase for variant curation and 

annotation.35 The CIViC database is a fully open, free-to-use knowledgebase, which incorporates 

clinical evidence associated with a biomedical publication. Evidence supporting specific clinical 

interpretations is gathered via crowdsourced curation followed by expert review and moderation. 

https://paperpile.com/c/92aiQS/VewY
http://www.civicdb.org/
http://www.civicdb.org/
https://paperpile.com/c/92aiQS/QwpD
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All submissions, revisions, moderations, and comments on CIViC entries are tracked and 

displayed through the CIViC web interface, providing transparency and clear provenance of all 

content in the knowledgebase. The CIViC knowledgebase was built to permit both consumption 

(i.e., searching, browsing, and downloading) of existing entries as well as curation of new content. 

The knowledgebase has been organized into a four-level hierarchy: Genes, Variants, Evidence 

Items, and Assertions, whereby each level has its own knowledge model (Figure 1.1).  

Figure 1.1 Overview of the CIViC knowledge model for the exploration of existing data and 

content curation. The CIViC knowledge model consists of four interconnected levels that 

contribute to the content within CIViC: Genes (blue), Variants (orange), Evidence (yellow), and 

Assertions (green). Each broadly defined variant is associated with a single gene but can have 

many lines of evidence linking it to clinical relevance. 

 All data created using these knowledge models are available through a web interface 

(www.civicdb.org) and an application programming interface (API, 

https://griffithlab.github.io/civic-api-docs). Additionally, all data within CIViC can be moderated 

via public curation. Adding content involves submitting new Evidence Items or Assertions that 

http://www.civicdb.org/
https://griffithlab.github.io/civic-api-docs
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subsequently undergo revision and review. Editing content involves adding or revising the clinical 

summary and / or its associated features. 

 Within CIViC, a set of structured knowledge models have been developed to formally 

represent cancer variant interpretations. At the Gene-level, the CIViC interface displays the Gene 

Name, Gene Summary, an external link to The Drug Gene Interaction Database36, useful citations 

on the overall clinical relevance of the gene, and link-out details from MyGene.info37. At the 

Variant-level, the CIViC interface shows the Variant Summary, Variant Type, HGVS expressions, 

ClinVar IDs, the Variant Evidence Score, representative Variant Coordinates / Transcript, 

associated Assertions, and external data from MyVariant.info37. These two CIViC features provide 

high-level summaries of the Gene and Variant Records that currently exist within the database. 

 The foundational unit of the CIViC knowledge model is the CIViC Evidence Item (EID). 

Evidence Items follow a structured model with 12 required fields (Gene name, Variant Name, 

Source Type, Variant Origin, Disease, Evidence Statement, Evidence Type, Evidence Level, 

Evidence Direction, Clinical Significance, and Trust Rating) and several additional optional fields 

(e.g., Associated Phenotypes). Based on the Evidence Type, additional required or optional fields 

become available (e.g., Predictive Evidence Types require a Drug Name). Evidence Items serve 

as an easily readable clinical statement derived from a publication to support a variant’s 

implication in clinical relevance. 

 Within CIViC, clinical interpretation occurs at the Assertion-level. CIViC Assertions 

summarize the clinical relevance of a variant in a specific disease context using a collection of 

Evidence Items. Assertions are further categorized by type, whereby four different Assertion 

Types are supported in the CIViC framework: Predictive, Diagnostic, Prognostic, and 

Predisposing. Each CIViC Assertion include a Gene, Variant, Variant Origin, Disease, Assertion 

https://paperpile.com/c/92aiQS/azvF
https://paperpile.com/c/92aiQS/JnFP
https://paperpile.com/c/92aiQS/JnFP
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Type, Assertion Direction, Clinical Significance, a short clinical Summary, and a longer 

Description. Fields unique to Assertions include annotation with clinical guidelines such as 

Association for Molecular Pathology (AMP) Tier and Level, American College of Medical 

Genetics and Genomics (ACMG) codes, National Comprehensive Cancer Network (NCCN) 

guideline/version, Food and Drug Administration (FDA) approvals/diagnostics, Associated 

Phenotypes, Drug names, and Drug Interaction Types. 

 At all levels of the CIViC knowledgebase, curation practices and clinical interpretations 

align with existing guidelines approved by cancer variant interpretation consortiums. For example, 

Predictive, Prognostic or Diagnostic Assertions utilize the somatic variant interpretation 

guidelines, providing an Association for Molecular Pathology (AMP) Tier (I-IV) and Level (A-

D).38 Similarly Predisposing Assertions utilize the American College of Medical Genetics and 

Genomics (ACMG) guideline classifications (Pathogenic, Likely Pathogenic, Likely Benign, 

Benign and Variant of Unknown Significance), their predicate ACMG evidence codes (i.e., PVS1, 

PP2, etc.), and rules for combining criteria.39 

 CIViC’s unique framework could serve as a platform to impact the precision oncology 

pipeline. The structured data models are linked to a public API that can be accessed remotely to 

pull data required for variant annotation. Additionally, all submissions and revisions are public 

with links to the publication supporting clinical claims, which permits transparency. The database 

allows for external curation to alleviate the annotation bottleneck but requires expert moderation, 

which provides credibility to variant annotations. In summary, given the unique features of the 

CIViC knowledgebase, data within CIViC could be effectively used to automate variant 

annotation. 

https://paperpile.com/c/92aiQS/ttAq
https://paperpile.com/c/92aiQS/BJyDL
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1.3.3 Genomic reporting and genomic literacy in healthcare 

Once a list of annotated somatic variants has been identified for cancer patients, the information 

must be effectively communicated to oncologists. The ability to relay relevant findings to 

oncologists in a timely manner has been an incredible challenge within oncology.26 

Misinterpretation and overinterpretation of genomic findings is prevalent in the field for both 

direct-to-consumer genomic tests and those under laboratory developed test (LDT) regulation.40,41 

Additionally, interpretation of reports by physicians is highly variable, which leaves room for error 

in correctly applying clinical outcomes to treatment protocols.42 Finally, there is minimal training 

regarding the communication of complex genomic information to patients. As a result, patients 

can become confused by genomic terminology and are unable to make informed decisions about 

their treatment and disease.43 There is a need to generate standardized reports to facility oncologist 

and patient understanding of variant interpretation to improve the quality of care. 

1.3.4 Other outstanding issues within the annotation bottleneck 

With recent expansion of pan-cancer sequencing efforts, in both research and clinical settings, 

there has been a rapid increase in the number of variants that require clinical annotation.44–48  Given 

the existing computational and manual requirements for variant identification and interpretation 

described above, there is a severe need to automate and normalize clinical classification of somatic 

variants.49,50 This can be accomplished through building automated tools that incorporate 

automated approaches to improve annotation practice. Specifically, software can be built to 

eliminate false positive variants identified by traditional automated callers. Additionally, for the 

remaining variants that require manual review, a standardized guideline can be developed and 

validated to ensure that variants are being properly identified. Subsequently, existing databases 

https://paperpile.com/c/92aiQS/I3KW
https://paperpile.com/c/92aiQS/In6c+fYCk
https://paperpile.com/c/92aiQS/mqaB
https://paperpile.com/c/92aiQS/XDyi
https://paperpile.com/c/92aiQS/U90x2+RykF+0sCdl+Q3bnc+apaCC
https://paperpile.com/c/92aiQS/laYVi+jNMW3
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can be used to build automated annotation software that generated variant annotation reports for 

physician use. For example, variant annotations contained by the CIViC knowledgebase can be 

used to build highly accessible variant annotation reports for integration into patient care. Utility 

of these reports can be validated by surveying oncologists who use genomic data for altering 

treatment protocols for their patients. This dissertation will attempt to address these issues through 

building and validating the aforementioned bioinformatic tools for alleviation of the annotation 

bottleneck within precision oncology. 
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Chapter 2: A deep learning approach to automate 

refinement of somatic variant calling from cancer 

sequencing data 

2.1 Preamble 

The following chapter has been published: 

Ainscough, B.J.*, Barnell E.K.*, Griffith, M., Rohan, T.E., Govindan, R., Mardis, E.R., 

Swamidass. J.S., Griffith O.L. Deep Learning Approach to Automating Somatic Variant 

Refinement.  A deep learning approach to automate refinement of somatic variant calling from 

cancer sequencing data. Nature Genetics, November 5, 2018.  

As an author of the published manuscript, and in compliance with the editorial policies at Nature 

Genetics, the cited publication is included in full in the following chapter. The Author 

Contributions are included within the publication (Chapter 2.9); however, I would like to 

distinguish my role from the other first-author in this study. Both co-first authors contributed 

figures, tables, code, and assisted with packaging and implementing the ultimate model used for 

automated refinement. Ben Ainscough was responsible for collecting data and performing 

preliminary model development. I was responsible for understanding inter-reviewer agreement, 

validating the models using independent testing sets, and developing a tutorial/documentation for 

DeepSVR. 

2.2 Summary 

Cancer genomic analysis requires accurate identification of somatic variants in sequencing data. 

Manual review to refine somatic variant calls is required as a final step after automated processing. 

However, manual variant refinement is time-consuming, costly, poorly standardized, and non-

reproducible. Here, we systematized and standardized somatic variant refinement using a machine 
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learning approach. The final model incorporates 41,000 variants from 440 sequencing cases. This 

model accurately recapitulated manual refinement labels for three independent testing sets (13,579 

variants) and accurately predicted somatic variants confirmed by orthogonal validation sequencing 

data (212,158 variants). The model improves on manual somatic refinement by reducing bias on 

calls otherwise subject to high inter-reviewer variability. 

2.3 Introduction 
Somatic variant callers are commonly used to identify somatic variants from aligned sequence 

reads in cancer genomics studies and in clinical cancer assays.5 These callers attempt to statistically 

model sample purity, sequencing errors, zygosity, ploidy, and other factors. Post-processing of 

called variants is an approach we term ‘somatic variant refinement’ and is an important, and 

distinct, next step from variant calling. Somatic variant refinement eliminates false positives from 

a candidate somatic variant list through heuristic filtering and manual review. Heuristic filtering 

includes setting project-specific thresholds for sequencing features such as read coverage depth, 

variant allele fraction (VAF), base quality metrics, and others. Manual review requires direct 

examination of aligned reads using a genomic viewer such as Integrative Genomic Viewer 

(IGV)23,51 to identify false positives that are consistently missed by automated somatic variant 

callers. 

 Somatic variant refinement remains indispensable for accurate analysis of cancer data, 

especially as cancer genomics is brought into the clinic, where variants are used to guide 

therapy.38,52 Manual reviewers look for patterns that are neglected or unavailable to standard 

variant callers to alter confidence in a variant call. For example, confidence is reduced if: all 

supporting reads are oriented in the same read direction; a variant is supported exclusively by 

overlapping reads from short DNA fragments; a variant is located in or near homopolymer 

https://paperpile.com/c/92aiQS/1Hw3
https://paperpile.com/c/92aiQS/0HTn+XoZw
https://paperpile.com/c/92aiQS/ttAq+HxYg
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stretches, short repeats, or other low-complexity sequences; supporting reads indicate multiple 

mismatches relative to the reference genome; variant support is identified in the normal data track; 

variant support occurs exclusively at the ends of sequencing reads; in addition to other factors. If 

the number of problematic variant reads at a locus is high, a reviewer may label a variant identified 

by a somatic variant caller as a false positive. 

 In our experience, somatic variant refinement can dramatically improve the quality of final 

variant calls by eliminating large percentages of false positives from automated callers. However, 

despite extensive use of somatic variant refinement in clinical and translational genomics, filtering 

and refinement protocols are usually unstated or only briefly mentioned. Some illustrative 

examples of this reporting are, “mutations … were called with MuTect and filtered with oxidation 

and panel of normal samples filters to remove artefacts,”53 or, ‘all indels were manually reviewed 

in IGV.’54 These excerpts exemplify a prevalent history of under-reporting variant refinement 

details from our institute and others.55–57 

 Discrepancies in manual review procedures may result in significant inter- and intra-lab 

variability and error. To address the issue of reproducibility, our group generated a standard 

operating procedure for somatic variant refinement through the use of manual review.58 However, 

even with complete conformity of manual review standard operating procedures, the process is 

time-consuming and expensive. Automated somatic variant callers can identify thousands of 

variants per cohort, which corresponds to hundreds of hours of manual review by a highly trained 

staff.24 Machine learning could automate somatic variant refinement and essentially eliminate this 

bottleneck, reducing the required time and expense associated with variant identification. 

 Current software used for automated somatic variant calling includes VarScan,59 

SAMtools,60 Pindel,61 Sniper,62 Strelka,17 and MuTect,18 among others. To improve on these 

https://paperpile.com/c/92aiQS/rfeG
https://paperpile.com/c/92aiQS/DLQ1
https://paperpile.com/c/92aiQS/SQA6+rulM+IqRk
https://paperpile.com/c/92aiQS/mecG
https://paperpile.com/c/92aiQS/fMKE
https://paperpile.com/c/92aiQS/D8fd
https://paperpile.com/c/92aiQS/7zYC
https://paperpile.com/c/92aiQS/qFbe
https://paperpile.com/c/92aiQS/8O0m
https://paperpile.com/c/92aiQS/2XGJ
https://paperpile.com/c/92aiQS/Sk3f
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algorithms, researchers have incorporated machine learning models to reduce the false positive 

rate intrinsic to automated somatic variant callers.63,64 These initial attempts show promise for 

using machine learning approaches for somatic variant refinement; however, use of small training 

datasets (fewer than 3,000 variants) and limited number of cancer types prevents extrapolation of 

existing models onto a wide variety of sequencing data.65 

 Here we present a robust model that automates somatic variant refinement. We show that 

use of this model could substantially reduce a major bottleneck in cancer genomic analysis while 

improving reproducibility and inter-lab comparability in genomic studies and in clinical settings. 

This model is built on a training dataset of 41,000 variants from 21 studies, with 440 cases derived 

from nine cancer subtypes. All cases include paired tumor and normal samples that have been 

sequenced, evaluated for somatic variants using automated callers, and manually reviewed by 

individuals (an estimated 585 hours of manual effort). For each variant, we assembled 71 features 

to train the model including cancer type, sample type, tumor / normal read depth, tumor / normal 

VAF, base quality, mapping quality, etc. To our knowledge, this is the largest dataset assembled 

to develop a machine learning approach for somatic variant detection. This dataset includes both 

solid and hematological malignancies, covers a broad range of average mutation burden, and 

includes data from multiple different sequencing pipelines (Table 2.1). This broad representation 

supports the generalizability of machine learning for somatic variant refinement. 
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Table 2.1 Machine learning model development included a variety of different approaches. 

The cancer sequence data used to develop machine learning models included a variety of different 

tumor subtypes, sequencing approaches and manual review calls. 

Malignancy Training set Hold out test set Total 

Leukemia (n = 243) 5,815 2,877 8,692 

Lymphoma (n = 23) 1,263 628 1,891 

Breast (n = 135) 8,986 4,320 13,306 

Small-cell lung (n = 18) 9,177 4,601 13,778 

Glioblastoma (n = 17) 844 412 1,256 

Melanoma (n = 1) 185 100 285 

Colorectal (n = 1) 842 419 1,261 

Gastrointestinal stromal (n = 1) 70 31 101 

Malignant peripheral nerve sheath (n = 1) 288 142 430 

Total 27,470 13,530 41,000 

    

Sequencing methods Training set Hold out test set Total 

Capture sequencing 9,479 4,755 14,234 

Exome sequencing 9,367 4,677 14,044 

Genome sequencing 8,624 4,098 12,722 
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Variant calls Training set Hold out test set Total 

Somatic 12,266 6,115 18,381 

Ambiguous 7,189 3,454 10,643 

Fail 5,909 2,945 8,854 

Germline 2,106 1,016 3,122 

 

2.4 Methods and experimental procedures 

2.4.1 Training data 

We assembled manual variant refinement data from 21 different cancer genomic studies conducted 

at the McDonnell Genome Institute (MGI), including 11 genomic discovery cohorts, 1 clinical 

trial, and 9 case studies.22,55,66–75 Samples present in multiple studies were eliminated by removing 

all sample pairs with more than 70% co-occurrence of genomic mutations. In total, 440 sample 

pairs were evaluated, with 266 samples derived from hematologic malignancies and 174 samples 

derived from solid tumors (Table 2.1). Samples were only included if paired tumor/normal 

sequencing data and manual somatic variant refinement calls were available. Sequencing data from 

this cohort were analyzed using standard cancer genome pipelines at the McDonnell Genome 

Institute over a period of several years.5 Briefly, sequencing data were produced using genome, 

exome, or custom capture sequencing. Reads were aligned to reference genome hg19/GRCh37 

using Burrows–Wheeler aligner (BWA)76 or BWA-MEM,77 duplicates were marked by Picard,78 

and variants were called with SAMtools60 or (predominantly) the union of SAMtools and 

VarScan.19 Variants identified by automated callers were annotated and subjected to false positive 

https://paperpile.com/c/92aiQS/SQA6+wPj6+kKC6+h7HS+3AEr+YaHe+LIZu+be1e+cDds+qYJS+bPuo+BtAL
https://paperpile.com/c/92aiQS/1Hw3
https://paperpile.com/c/92aiQS/UQAZ
https://paperpile.com/c/92aiQS/ySjJ
https://paperpile.com/c/92aiQS/BADp
https://paperpile.com/c/92aiQS/7zYC
https://paperpile.com/c/92aiQS/kTku


 

 

27 

filtering strategies such as removal of variants with low VAF (for example, < 5%) or low coverage 

(for example, < 20×). Much of the raw sequencing data from these 21 cancer genomic studies is 

publicly available, and all variant calls, manual review data, and associated features required for 

model development are provided in a publicly available GitHub repository (see 2.9 Data 

Availability). 

Manual variant refinement for all projects was performed by individuals at the MGI, who 

recently described a standard operating procedure for this process.58 In this operating procedure, 

reviewers manually refine variants using four distinct classes: ‘somatic’—a variant that has 

sufficient sequence read data support in the tumor in the absence of obvious sequencing artifacts; 

‘ambiguous’ —a variant with insufficient sequence read data support to definitively classify the 

variant; ‘germline’—a variant that has sufficient support in the normal sample beyond what might 

be considered attributable to tumor contamination of the normal; and ‘fail’—a variant with low 

variant sequence read data support and/or reads that indicate sequencing artifacts, yet has 

acceptable variant coverage. In accordance with the standard operating procedure, as reviewers 

call variants, they often provide additional notes or tags describing the reason for each call. 

Germline and fail calls represent two distinct types of failure for somatic variant calling. 

However, since germline and fail calls rarely invoke different downstream analysis procedures, 

they were merged into one class called ‘failed’. Therefore, the machine learning model was 

developed for ‘somatic’, ‘ambiguous’, and ‘fail’ classes. All manual variant refinement results 

were standardized to a one-based coordinate system using the convert_zero_one_based Python 

tool. Relevant metrics were extracted from the bam files using bam-readcount. Bam file metrics 

were merged with cancer type and reviewer information. All continuous features were normalized 

to fall between 0 and 1 using Scikit-learn’s MinMaxScaler.79 All categorical variables were one-

https://paperpile.com/c/92aiQS/mecG
https://paperpile.com/c/92aiQS/U0Ni
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hot boolean indexed to split any feature with n categories into an n column boolean array. 

Following processing, the training dataset included 71 features. 

2.4.2 Model development and analysis 

Logistic regression, random forest, and deep learning were tested as alternative models for somatic 

variant refinement. A logistic regression model was implemented using the keras library. Scikit-

learn was used to implement the random forest model.79 The random forest was trained using the 

parameters n_estimators = 1,000 and trees max_features = 8. The deep learning model was 

implemented using the keras library as a feed-forward neural network with the input layer equaling 

the number of features, four hidden layers with 20-node hidden layers, and an output layer equaling 

the three outputs (somatic, ambiguous, fail). The input and hidden layers used a hyperbolic tangent 

(tanh) activation function, the output layer used a softmax activation function. Categorical cross-

entropy was used as a loss function and the Adam optimizer was used over 700 epochs with a 

batch size of 2,000. L2 regularization was used with a weight of 0.001. 

To compare model performance, one-versus-all receiver operator characteristic curves 

were generated, and area under the curve metrics (AUC) were quantified using scikit-learn. We 

used multiple out-of-sample model validation strategies on the 41,000-variant dataset. We 

randomly selected two thirds of the data to serve as a training set and the remaining one-third 

served as the hold out test set. On the training set, we performed tenfold cross-validation for model 

selection and hyper-parameter tuning. When models and hyper parameters were selected, a model 

was trained on the training set and evaluated against the hold out test set to understand model 

performance. Model performance was decomposed by performing a cross-tabulation analysis on 

data features including reviewer, disease type, and sequencing depth (Appendix 1, Table S1). 

https://paperpile.com/c/92aiQS/U0Ni
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Reliability diagrams were used to determine if model outputs could be interpreted as the 

probability of a manual variant refinement call. Model output, which was a continuous value, was 

plotted for 10 equally distributed bins that were separated by whether the model’s output matched 

or did not match the manual variant refinement call. For each bin, we calculated the ratio between 

the number of sites where the model agreed with the call and the total number of sites in the bin. 

It is expected that if the model output estimates a well-scaled probability, then the calculated ratio 

will be correlated to an identity line (x = y). Pearson correlation coefficient was used to test for a 

well-scaled probability using the scipy.stats.pearsonr function.80 

Feature importance for the deep learning model was calculated by using the cross-validation 

dataset. Each of the 71 features was independently shuffled and change in average AUC was 

determined by comparing baseline performance to shuffled performance. The random forest 

feature importance metric was obtained from scikit-learn’s built in feature_importances_ 

parameter on a trained random forest model. 

2.4.3 Validation of model performance by independent sequencing data with 

orthogonal validation 

To assess model performance on orthogonal sequencing data, we evaluated variant calls from a 

single AML case, AML31, that had extensive orthogonal validation sequencing. Genome 

sequencing data (average coverage = 312×) were previously produced for AML31 and evaluated 

using seven different variant callers. Orthogonal custom capture validation sequencing (average 

coverage = 1,000×) was used to validate the 192,241 variants identified by any of the seven variant 

callers (MuTect, Seurat, Shimmer, Sniper, Strelka, VarScan, Bassovac).22 Variants identified as 

somatic by orthogonal sequencing (the ‘Platinum SNV List’) were considered true positives 

(n = 1,343). Variants that were identified by only one of the seven callers, but not validated by 

https://paperpile.com/c/92aiQS/0KHc
https://paperpile.com/c/92aiQS/wPj6
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orthogonal custom capture sequencing, were considered false positives (n = 190,898). Features 

were obtained from genome sequencing bam files for every site that was called by at least one of 

seven variant callers in the original study and had been selected for targeted re-sequencing 

(n = 192,241). The random forest and deep learning models were used to predict calls for each of 

the sites in the AML31 dataset and ROC figures were used to illustrate model performance. 

Validation data were also obtained from TCGA exome sequencing data that had orthogonal 

validation.30 Using the minor allele frequency (MAF) file 

(mc3.v0.2.9.CONTROLLED_lt3_b.maf) described by Ellrot et al.,30 we identified a cohort of 

19,917 variants from 106 tumor/normal pairs for model validation (Appendix 1, Table S2). This 

cohort was identified by removing un-powered validation, non-exonic variants, and potential 

germline calls from the original MAF file. Additionally, eligible variants required original 

identification via exome sequencing and orthogonal validation via targeted capture (target_status 

≠ ‘NaN’). Variants were labeled as true positives if they passed the Broad Institute’s initial quality 

check (that is, ‘FILTER’ = ‘PASS’) and were statistically powered (that is, 

‘target_status’ = ‘_powered’). Variants were labeled as false positives using the following tools: 

DetOxoG, strand bias, The Broad Institute’s Panel of Normals, and ExAC47. Any TCGA sample 

that had at least 20 false positives and 20 false negatives validated on TCGA exome data via 

targeted capture was eligible for classifier validation. To test model performance on these data, we 

trained a deep learning model on the entire training dataset and made predictions for all variants 

in the independent test samples. We assessed the model performance using ROC curves as outlined 

above. To overcome batch effects associated with new data, we re-trained the model 15 times 

using incremental amounts of the test data (0%–75% with 5% increments) and employed the new 

model on the remaining variants. 

https://paperpile.com/c/92aiQS/9ZEw
https://paperpile.com/c/92aiQS/9ZEw
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2.4.4 Validation of model performance by independent sequencing data with manual review 

To assess model robustness when employed on external data, an independent test dataset was 

assembled from 37 additional paired tumor/normal cases (13,579 variants) that were not included 

in the training set (Appendix 1, Table S3). Model development, variant predictions, and accuracy 

metrics were employed as described in the orthogonal validation analysis. 

2.4.5 Annotations of clinical relevance 

All variants identified as somatic by either manual somatic refinement or by the deep learning 

classifier (n = 21,100) were evaluated for clinical significance. MR-specific calls were defined as 

variants identified as somatic by the manual review pipeline but labeled as ambiguous or fail by 

the classifier. Classifier-specific calls were defined as variants identified as ambiguous or fail 

during manual review but identified as somatic by the classifier. Variants were annotated using 

the CIViC database.35 To evaluate overlap with the CIViC database, coordinates were queried 

from the CIViC interface using the public API. Given that not all variants within CIViC can be 

analyzed using whole genome or whole exome sequencing, we used the provided Sequence 

Ontology IDs to filter out variants that cannot be analyzed using DNA-sequencing, such as 

‘increased expression’ or ‘methylation’. Using coordinates queried from the CIViC interface, we 

determined overlap between discrepant calls and CIViC annotations. 

2.4.6 Re-review of conflicting calls 

A subset of variants whereby the original manual review call disagreed with the classifier call were 

re-reviewed using IGV. Using a standard operating procedure for manual review setup and 

execution,58 we created IGV snapshots for 40 clinically relevant MR-specific calls, 53 clinically 

relevant classifier-specific calls, 43 non-clinically relevant MR-specific calls, and 43 non-

clinically relevant classifier-specific calls. These 179 variants were manually re-reviewed by seven 

https://paperpile.com/c/92aiQS/QwpD
https://paperpile.com/c/92aiQS/mecG
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individuals who were blinded from original manual review calls. To analyze the 179 discordant 

variants, a consensus call was established as the ‘true label’ by aggregating the seven calls provided 

by blinded individuals. To be considered a consensus, the most common choice had to exceed any 

other choice by at least two votes. Any other distribution of votes resulted in that variant being 

classified as ‘no consensus’. 

2.4.7 Statistical tests used 

All plots were produced using the MatPlotlib library.81 ROC curves were generated, and AUC 

metrics were calculated using scikit-learn. To assess reviewer agreement, we used Fleiss’ Kappa 

statistic, which is a statistic that lies between -1 and 1 where a Kappa statistic at or below 0 

indicates poor agreement and above 0 indicates good agreement. For reliability diagrams, the 

binomial proportion confidence intervals were calculated for each bin. Pearson correlation 

coefficient comparing colored points to the diagonal line was calculated to assess the output of the 

respective model. Pearson correlation coefficient was used to test for a well-scaled probability 

using the scipy.stats.pearsonr function. 

2.5 Results  

2.5.1 Data assembly and standardization 

The 41,000 called and reviewed variants used to train the model were derived from 440 individual 

tumors, which represent nine cancer types. Sequencing methods were evenly split between capture 

sequencing (14,234 variants), exome sequencing (14,044 variants), and genome sequencing 

(12,722 variants). Among all manually reviewed variant calls, 18,381 were confirmed as somatic, 

10,643 were assessed as ambiguous, 8,854 as failed, and 3,122 as germline. The training data 

https://paperpile.com/c/92aiQS/9Bk2
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include both hematopoietic (10,583 variants) and solid tumors (30,417 variants), which often have 

distinct characteristics during manual variant refinement (Table 2.1). 

2.5.2 Model development 

Three models were developed (logistic regression, random forest, and deep learning) using the 

41,000-variant dataset. To guard against overfitting, we randomly selected one-third of the dataset 

as a hold out test set and used the remaining two-thirds as a training set. Using a tenfold cross-

validation strategy, all three models (logistic regression, random forest, and deep learning) 

achieved better than random performance on variant classification. The logistic regression model 

demonstrated the worst performance (average area under the curve (AUC) = 0.89) and limited 

ability to classify ambiguous calls (AUC = 0.79). Both random forest and deep learning models 

performed well across all classes attaining an average AUC of 0.98 and 0.96, respectively (Figure 

2.1a). Performance of the hold out test set mirrored the tenfold cross validation (example of deep 

learning output in Appendix 2, Figure S1a). For the hold out test set, decomposition of model 

performance based on disease, reviewer, and sequencing depth showed no change in model 

performance for the deep learning and random forest models (example of deep learning cross-

tabulation analysis in Appendix 1, Table S1). 

 Reliability diagrams were used to determine whether model outputs could be interpreted 

as a well-scaled probability. Comparing the reliability diagrams for each model indicated that the 

random forest model and the deep learning model produced outputs that are most closely scaled to 

a probability. The random forest model and the deep learning model yielded Pearson correlation 

coefficients (r) of 0.99 and 1.00, respectively (Figure 2.1b). The logistic regression model output 

was most divergent from a well-scaled probability with r = 0.29. When reliability diagrams were 

plotted independently for each class (somatic, ambiguous, and fail) for the deep learning and 
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random forest models, all classes produced well-scaled outputs (example of deep learning output 

in Appendix 2, Figure S2). 

 

Figure 2.1 Deep learning and random forest models during 10-fold cross validation. a 

Comparison of performance of three machine learning models via receiver operating 

characteristic (ROC) area under the curve (AUC). Performance was parsed by the three 

classification classes (ambiguous, fail, and somatic) for cross validation data (n=27,470 variants). 

b Graphs depict how model outputs scaled to a probability (between 0 and 1) using cross 

validation data (n=27,470 variants). Bar graphs show 10 equally distributed bins of model output. 

The bar graphs plot the number of model calls that agree and disagree with the manual review 

call. The diagonal line indicates a perfectly scaled probabilistic prediction. The colored points 

display the ratio of predictions that agree with the call to the total number of predictions for a 

given bin. Binomial proportion confidence intervals were calculated for each bin. Pearson’s 

correlation coefficient comparing colored points to the diagonal line was calculated to assess the 

output of the respective model.   

2.5.3 Feature importance 

The feature importance analysis determined which features were important for making model 

predictions. For the deep learning model, feature importance was ranked using the average change 

in the AUC after randomly shuffling individual features. For the random forest model, the built-in 
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feature importance metric was used. To assess how manual reviewers rank feature importance, 

seven experienced manual reviewers at our institute ranked the top 15 (of 71) features that were 

most important in their manual review decision-making process. Feature ranks were normalized, 

and average importances across the seven reviewers were used to determine feature importance 

for manual reviewers. All three lists were rank normalized for comparison. Comparison shows that 

the models rely on many features that expert manual reviewers also use to make classification 

decisions (Figure 2.2). The random forest feature importance was moderately correlated to the 

deep learning and manual reviewer feature importance (Pearson r = 0.47 and 0.50, respectively). 

The deep learning importance was only weakly correlated with manual reviewer survey results 

(Pearson r = 0.17). Of note, both the random forest model and the deep learning model ranked 

reviewer identity higher than reviewers themselves ranked this feature. Similarly, cancer type was 

ranked as an important feature for both models but was not ranked highly by manual reviewers. 
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Figure 2.2 Machine learning models and manual reviewers feature use when making 

classifications. a Features ranked as important by random forest and deep learning models were 

also ranked highly by experienced manual reviewers (n=71 features). Human manual reviewer 

feature importance was determined by asking 7 individuals to rank feature importance. Single 

feature impact for the deep learning model was obtained by training a model on the entire training 

dataset (n=27,470 variants) then shuffling each feature individually and calculating the mean 

ROC AUC for all three variant classes. The change in mean ROC AUC for all classes was sorted 

and plotted. Random forest feature importance was obtained via scikit-learn’s feature importance 

parameter. All feature importance metrics were ranked normalized. The random forest feature 

importance is moderately correlated to the deep learning and manual reviewer feature importance 

(Pearson’s r= 0.47 and 0.50 respectively). The deep learning importance was weakly correlated 

with manual reviewer survey results (Pearson’s r=0.17). The top 30 (of 71) most important 

features are shown. 

 We hypothesized that the cancer type feature was mediated by differences between liquid 

and solid tumors. Specifically, the concentration of leukemia cells in normal tissue for patients 

with high circulating counts is higher than in solid tissue malignancies with circulating tumor 

cells.82 This contamination ultimately increases the risk that a somatic variant will be mis-called. 

To test this hypothesis, we collapsed the cancer type features to a single solid/liquid boolean. Using 

https://paperpile.com/c/92aiQS/RYFi
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the deep learning model as an example, the tenfold cross-validation performance for models 

trained with individual tumor types was similar to models trained with a simplified tumor type 

(solid/liquid boolean) (Appendix 2, Figure S1b). 

2.5.4 Inter-reviewer variability 

Reviewer identity was highly ranked by both the deep learning and random forest models, 

indicating reviewer-specific patterns in manual review. To quantify the variability between manual 

reviewers, we had three independent reviewers call a random subset of 176 sites from the training 

dataset. This resulted in three independent review calls for each of the 176 variants. Reviewers 

achieved fair agreement with a Fleiss’ Kappa statistic of 0.37.83 When evaluating all calls in the 

inter-reviewer variability analysis, 77.3% showed good or acceptable agreement (that is, all three 

reviewers agreed on the call or reviewers only disagree between ambiguous and somatic or 

ambiguous and fail calls) (Figure 2.3a). Model performance was correlated with reviewer 

agreement such that when all three reviewers called a variant as somatic, the model produced a 

high somatic probability (average output > 0.8). Conversely, when all reviewers agreed that a call 

was fail, the model produced a low somatic probability (average output < 0.2). As expected, in 

situations where there was inter-reviewer variability, the model produced a wider distribution of 

somatic probabilities (Figure 2.3b-c). Together, these results indicate that there is as much as 

22.7% disagreement among reviewers, especially on ambiguous calls. 

https://paperpile.com/c/92aiQS/DqJW
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Figure 2.3 Model confidence closely parallels reviewer confidence. When reviewers exhibit 

strong agreement on a variant call, the model outputs confident probabilities (>0.8 or <0.2), 

whereas when reviewers exhibit inter-reviewer variability for a variant call, the model outputs 

inconclusive probabilities (0.2 > and < 0.8). a Bar graphs show binned agreement of 3 reviewers 

for 176 variants. The x-axis outlines all possible permutations of agreement among three 

reviewers. The y-axis outlines the frequency of each permutation. ‘S’ denotes a somatic call, ‘A’ 

denotes an ambiguous call, and ‘F’ denotes a fail call. ‘SSS’ is the case where all three reviewers 

call the same variant somatic and the other permutations follow a similar pattern (e.g., ‘SAF’= 

somatic, ambiguous, fail). It is considered (1) good agreement when all three reviewers agree, (2) 

acceptable agreement when reviewers only disagree between ambiguous and somatic or 

ambiguous and fail calls, (3) and poor agreement when one reviewer calls a variant somatic while 

another calls a variant fail. b Violin plots of deep learning somatic probability whereby the 

horizontal lines indicate the occurrence of a probability, and the width indicates the distribution 

of probabilities (n = 528 variants [176 variants for each of the 3 reviewers]). c Violin plots of 

random forest somatic probability whereby the horizontal lines indicate the occurrence of a 

probability, and the width indicates the distribution of probabilities (n = 528 variants [176 

variants for each of the 3 reviewers]). 
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 Model outputs that do not depend on reviewer identity are most desirable to reduce the 

impact of idiosyncratic criteria on ultimate calls. Therefore, new models were developed after 

removing the reviewer feature from the training data to assess performance in situations when the 

reviewer is unknown. Using the deep learning model as an example, tenfold cross-validation with 

all 71 features resulted in an average AUC of 0.960, whereas tenfold cross-validation without the 

reviewer feature resulted in an average AUC of 0.956. This experiment illustrates expected 

performance on de novo data that does not include a reviewer feature (Appendix 2, Figure S1c). 

3.5.5 Independent sequencing data with orthogonal validation 

To validate model performance on unfiltered ‘raw’ variant calls, deep learning and random forest 

models were used to predict manual review labels for 192,241 putative somatic variants in the 

acute myeloid leukemia case (AML31) described by Griffith et al.24 This case study had deep 

(312×) genome sequencing data as well as ultra-deep (1,000×) orthogonal custom capture 

validation for all 192,241 predicted variant sites. Variants validated by the custom capture data 

were considered true positives and those that failed validation were considered false positives 

(Appendix 1, Table S2). When comparing somatic model predictions to validation sequencing 

results, the deep learning model and the random forest model achieved receiver operating 

characteristic (ROC) AUCs of 0.95 and 0.96, respectively (Figure 2.4a). 

 Additional sequencing data were obtained from The Cancer Genome Atlas (TCGA) 

dataset. Specifically, we obtained a cohort of 106 TCGA tumor-normal pairs that had original 

exome sequencing and subsequent targeted orthogonal validation.30 This cohort comprised eight 

cancer types and 19,917 total variants, whereby 17,109 were true positives and 2,808 were false 

positives (Appendix 1, Table S2). When employing the deep learning model on this dataset, 

average ROC AUC for each cancer type ranged from 0.724–0.878, and average ROC AUC for all 

https://paperpile.com/c/92aiQS/9ZEw
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variants was 0.78 (Figure 2.4b-c). To overcome batch effect, orthogonal validation calls were 

randomly selected in increments of 5% (from 0%–75%) to include in re-training the model. The 

newly trained model was used to predict calls for remaining variants in the TCGA dataset. When 

re-training the model using incremental amounts of the testing set, the total AUC improved. After 

incorporating 20% of the TCGA data, the model attained a ROC AUC of 0.90 and when 

incorporating 75% of the TCGA data, the model attained a ROC AUC of 0.93 (Figure 2.4d). 

 

Figure 2.4 Machine learning models accurately predict orthogonal validation sequencing 

results. a A single AML case with 312X genome sequencing had 7 automated somatic variant 

callers identify 192,241 putative somatic variants. Orthogonal sequencing at ~1,000X was 

performed for all 192,241 variants to identify true positives and false positives. The random forest 

and deep learning models predicted labels for all variants using the 312X genome sequencing data 

as input. Model accuracy was determined by comparing model predictions to orthogonal 
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sequencing labels. b Box plots describe the median ROC AUC for each of 8 TCGA cancer types 

(n=106 tumor/normal pairs; n=19,917 variants). Each dot represents a single TCGA 

tumor/normal pair, the centre represents the 50th percentile, the lower and upper limits of the box 

represent 25th and 75th percentiles, respectively, and whiskers represent data minimum and 

maximum. The table below the boxplots shows information on the total number of samples assayed 

and the distribution of true positive and false positive calls for each cancer type. c ROC AUC for 

all TCGA data (n = 19,917 variants) using the deep learning classifier trained on the 41,000 

variants described in Table 1. d. Change in ROC AUC after retraining the deep learning model 

with increments of the TCGA data. TCGA data was partitioned in random stratified increments of 

5% (from 0-75%) and used to train a new model (increments = 1,327 variants). The x-axis outlines 

the number of test variants included in re-training. The y-axis plots the resulting model’s ROC 

AUC. 

2.5.6 Independent sequencing data with manual review validation 

To test model performance on external manual review data, three independent datasets were 

obtained whose characteristics differed from the training set. These datasets included 4 small-cell 

lung cancer (SCLC) cases with 2,686 variants, 14 follicular lymphoma (FL) cases with 1,723 

variants, and 19 head and neck squamous cell carcinoma (HNSCC) cases with 9,170 variants 

(Appendix 1, Table S3). The SCLC cases were sequenced independently from the training set 

SCLC cases, utilized different methods for automated somatic variant calling, and were reviewed 

by new manual reviewers. The FL cases had a unique distribution of call classes (50.2% somatic, 

49.8% fail, and 0% ambiguous) when compared to the training set (44.8% somatic, 29.2% fail, 

and 26% ambiguous). The HNSCC cases represented a new tumor type and were aligned to a 

different version of the human reference genome (GRCh38). 

 For the deep learning model, ROC AUC for independent test sets (n = 37 cases) ranged 

from 0.78–0.92 for somatic variants, 0.74–0.92 for failed variants, and 0.43–0.47 for ambiguous 

variants (Figure 2.5). When re-training the model using incremental amounts of the testing set, as 

described above, model performance improved. For the deep learning model, inclusion of 

approximately 250 manual review calls restored performance to levels observed in cross-validation 
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(Figure 2.5). Initial model performance for the deep learning model outperformed the random 

forest model, especially for somatic and fail variants (Appendix 2, Figure S3). 

 

Figure 2.5 The deep learning model performance on three independent test sets. a ROC 

curves outlining model performance on 4 small cell lung cancer (SCLC) cases with 2,686 variants 

and independent test set correction through model re-training to overcome batch effects associated 

with new manual reviewers, new sequencers and a new alignment strategy. b ROC curves outlining 

model performance on 14 follicular lymphoma (FL) cases with 1,723 variants and independent 

test set correction through model re-training to overcome batch effects associated with different 

frequencies of manual review classes. c ROC curves outlining model performance on 19 head and 

neck squamous cell carcinoma (HNSCC) cases with 9,170 variants and independent test set 



 

 

43 

correction through model re-training to overcome batch effects associated with alignment to a 

different reference genome (GRCh38). 

2.5.7 Analysis of clinically relevant variants 

The deep learning model was used to assess whether machine learning algorithms for variant 

analysis could improve detection of clinically actionable variants mislabeled by manual refinement 

strategies. Of the 21,100 variants identified as somatic by either the deep learning model or by 

manual review, there were 16,722 variants that were called as somatic by both methods, 1,659 

manual review (MR)-specific variants, and 2,719 classifier-specific variants (Figure 2.6). 

 

Figure 2.6 Manual review misclassifications recovered by the deep learning model. The Venn 

diagram illustrates variants identified as somatic by manual review (MR-specific), by both 

pipelines (Both), and by the deep learning classifier (Classifier-specific). For these three groups, 

the number of variants that have direct overlap with CIViC annotations and the total number of 

evidence items associated with all variants within each group are shown. These evidence items 
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are parsed by those that convey variant sensitivity to a drug, variant resistance to a drug, variant 

that confers better or worse prognosis, variant that confers disease diagnosis, and variant that 

shows predisposing evidence for disease. The manual re-review panel shows the number of 

clinically relevant variants that agreed with the classifier call upon re-review by seven individuals.  

 Discordant variants (MR- or classifier-specific) were evaluated for clinical relevance using 

the Clinical Interpretations of Variants in Cancer database (CIViC).35 Each annotation within 

CIViC is based on evidence summaries that detail therapeutic, prognostic, predisposing, or 

diagnostic implications in cancer. After filtering extraneous evidence summaries (see 2.4 Methods 

and experimental procedures), there were 425 clinically relevant CIViC annotations. Using these 

CIViC annotations, 40 classifier-specific variants were identified that were clinically actionable. 

These 40 variants were associated with 100 evidence items related to therapeutic sensitivity, 18 

evidence items related to therapeutic resistance, 54 evidence items that detailed prognostic 

information, 17 evidence items that indicated diagnostic information, and one evidence item that 

supported predisposition to cancer. If we assume that the classifier more accurately predicts the 

true variant label, this would represent an 8.9% increase in detection of clinically relevant variants. 

Using relevant CIViC annotations, 53 manual review-specific variants were identified as clinically 

actionable. Of these manual review-specific variants, 90 evidence items related to therapeutic 

sensitivity, 25 evidence items related to therapeutic resistance, 87 evidence items detailed 

prognostic information, and 18 items illustrated diagnostic information. If we again assume that 

the classifier call is more accurate relative to the original manual review call, this would represent 

an 11.8% reduction in mislabeled, clinically relevant calls. 

 Blinded retrospective review of these mislabeled variants in IGV confirmed confidence in 

model predictions. Four examples of manual review miscalls that were originally labeled as 

somatic but were failed by the classifier are shown in Appendix 2, Figure S4. Two examples of 

manual review miscalls that were originally labeled as ambiguous or fail by manual reviewers but 

https://paperpile.com/c/92aiQS/QwpD
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were identified as somatic by the classifier are shown in Appendix 2, Figure S5. In Appendix 2, 

Figure S5a, two clinically relevant PIK3CA variants were missed due to the manual reviewer 

assuming that two adjacent variants on the same strand were considered multiple mismatches. In 

Appendix 2, Figure S5b, a TP53 variant was missed in an AML case due to the manual reviewer’s 

lack of awareness that hematologic cancers can have tumor cell contamination in normal tissue. 

2.5.8 Analysis of discrepant calls 

The classifier agrees with manual review in 89.3% (35,622/41,000) of calls; however, there were 

4,378 variants (10.7%) for which the original manual review call was discrepant with the classifier 

call. To understand features influencing discrepant calls, unbiased manual re-review was 

performed on 179 discordant variants. Seven individuals proficient in manual review re-reviewed 

IGV snapshots of the 179 variants. For each variant, a consensus call was determined (see 2.4 

Methods and experimental procedures). When comparing the original manual review and 

classifier calls to the consensus call, 51 variants (28.5%) showed call-agreement between the 

consensus call and classifier call, and 53 variants (29.6%) showed call-agreement between 

consensus call and the original manual review. Additionally, 34 variants (19.0%) showed 

disagreement between the consensus call, the classifier call, and the original manual review call, 

and 41 variants (22.9%) had no consensus (Appendix 2, Figure S6). Of the 93 discrepant clinical 

variants evaluated during re-review, 50 variants were classified as either ‘no agreement’ or ‘no 

consensus’. Therefore, we estimate that approximately 5.8% of all clinically relevant variant calls 

are fundamentally ambiguous, even on re-review. 
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2.6 Discussion 

The random forest and deep learning models achieved high (average AUCs > 0.95) classification 

performance across all variant refinement classes (somatic, ambiguous, and fail), whereas the 

logistic regression model demonstrated reduced performance (average AUC = 0.89), particularly 

with the ambiguous class. High performance of model predictions confirms that an automated 

strategy can reduce the need for manual variant refinement. In addition, maintenance of 

performance after elimination of the manual reviewer feature further demonstrated that the trained 

model can be used on de novo data without reviewer information (Appendix 2, Figure S1c). 

 The deep learning and random forest models also showed high accuracy (AUCs > 0.95) 

when classifying independent sequencing data with orthogonal validation. The AML31 case 

outlined by Griffith et al.22 had two unique features that made it optimal for assessing model 

performance. First, variants had manual review calls for both the original genome sequencing and 

the ultra-deep orthogonal sequencing. Second, the ultra-deep orthogonal sequencing was 

performed on all variants (false positives and true positives) called by automated somatic variant 

callers, allowing for quantification of both sensitivity and specificity. 

 With regards to the TCGA orthogonal validation datasets, the deep learning model showed 

initial reduction in average AUC (AUC = 0.78) relative to cross-validation performance. We 

hypothesized that reduction in accuracy was attributable to methods used for classifying TCGA 

false positives. Specifically, TCGA false positives were filtered by eliminating variants caused by 

8-Oxoguanine (OxoG) DNA lesions using the DetOxoG tool,84 eliminating variants with strand 

bias, and eliminating germline variants using a panel of normals. Since these features are not 

typically available to manual reviewers, they were not incorporated into the original model. Re-

https://paperpile.com/c/92aiQS/wPj6
https://paperpile.com/c/92aiQS/d0LQ
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training with TCGA false positives allowed the model to learn new sequencing features that 

improve its ability to recognize false positives, ultimately restoring model accuracy (AUC = 0.93). 

Given these findings, we are hopeful that development of a model that incorporates these data will 

improve somatic variant refinement and eventually reduce the need for orthogonal validation 

sequencing. 

 For the independent sequencing data with manual review validation, we also observed a 

decrease in model performance. However, when re-training the model with as few as 250 calls, 

model performance was restored (Figure 2.5). Therefore, when employing the classifier on new 

datasets, we recommend manually reviewing or performing validation sequencing for a small 

subset of variants called via statistical variant callers (for example, 5% of all data) to re-train the 

classifier and improve performance. Our group has provided a command line interface to allow 

individuals to train a custom deep learning classifier, prepare data, and classify variants. The deep 

learning model was selected as the optimal method for somatic variants refinement due to its 

increased accuracy when employed on validation sets. 

 These results together show that a machine learning model can effectively automate 

somatic variant refinement. Standardization and systematization of this process decreases the 

human variability associated with manual refinement and increases the reproducibility of variant 

calling. In addition, automation of variant refinement eliminates a labor bottleneck, and its 

associated costs, allowing any number of somatic variant calls to be evaluated in a negligible 

amount of time. Finally, since the model offers probabilistic output, an economic framework can 

be used to set thresholds for confirmatory follow up testing, allowing investigators to optimize 

experimental design to improve accuracy within budgetary constraints.85 

https://paperpile.com/c/92aiQS/MS78
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 To illustrate the extent of this advance, we compared the manual review burden in a 

standard cancer genomics workflow with a workflow that utilizes the machine learning classifier. 

In a previously conducted breast cancer study,24 10,112 variants were identified via automated 

somatic variant callers. In this example, 1,066 variants were filtered using heuristic cutoffs, and 

9,046 variants required manual review. Given that experienced reviewers can evaluate 70–100 

variants per hour, manual review for this study would have taken ~90–130 hours. Using the 

machine learning approach, 5% of the data (~500 variants) would require manual review. This 

manual review data would be used to re-train the model and correct for associated batch effects. 

This manual review would require approximately 5 hours. In this example, the manual review 

burden would be reduced from ~100 hours to ~5 hours, detailing the considerable improvement in 

efficiency. 

 Through the re-review analysis, we showed that inter-reviewer variability affects variant 

detection, which can ultimately impact patient care. Many of the variants with high inter-reviewer 

variability and/or no consensus call had clinical significance. We believe that in these cases, an 

automated model can provide an unbiased and probabilistic output for variant classification, 

thereby eliminating reproducibility issues associated with manual refinement. In instances where 

the model makes an ambiguous call for a variant of clinical relevance, we recommend manually 

reviewing these variants to make a definitive call. 

 This model does have some limitations. Given the identified inter-reviewer variability 

associated with manual variant refinement calls, the training data likely contain a substantial 

amount of noise that might impact model performance. Moreover, there are sources of data that 

can be used to build better models. In an ideal scenario, highly accurate orthogonal validation 

sequencing would be performed to determine somatic variant status. Unfortunately, validation 

https://paperpile.com/c/92aiQS/fMKE
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sequencing has a large monetary and tissue material expense, limiting our ability to use these types 

of data in the training set. Lastly, while the training data were produced using a varied array of 

capture strategies, libraries, Illumina sequencing instruments, and somatic variant callers, the 

model will likely require evaluation and some amount of retraining for non-Illumina sequencing 

instruments and divergent somatic variant analysis pipelines. It is also possible that the model has 

learned various other institutional batch-effects from our sequencing and analysis workflows. 

However, our results suggest that retraining with a small number of supplemental calls from an 

independent dataset may be sufficient to overcome these effects. We anticipate improving this 

model by adding genomic and sequencing features such as proximal sequence complexity (for 

example, presence of repeat regions), functional prediction (for example, conservation based 

variant impact scores), and other indicators associated with false positives.86,87 

 In conclusion, persistent weaknesses in variant calling pipelines remain, especially in an 

era of constantly changing and variable sequencing data quality. Sophisticated context-specific 

pattern matching abilities of humans are still needed to refine and confirm somatic variant calls, 

which is expensive and laborious. We show that with a relatively small amount of project-specific 

review for model retraining that most manual review can be replaced with an automated classifier 

approach, providing more reproducible and refined calls for clinically relevant variants. 

2.7 Acknowledgements 

We would like to thank A. Petti, G. Chang, T. Li, C. Miller, L. Trani, R. Lesurf, Z. Skidmore, K. 

Krysiak, A. Ramu, and F. Gomez for assisting in data assembly. We also acknowledge L. Trani 

for performing manual review and for valuable discussion on the project. We gratefully 

acknowledge L. Wartman, J. DiPersio, M. Jacoby, B. Van Tine, R. Fields, B. Tan, S. Chi, D. 

https://paperpile.com/c/92aiQS/uZRD+NE0X


 

 

50 

Gutmann, and T. Ley for sharing genomic data that made this project possible. We also would like 

to thank the patients and their families for their selfless contribution to the advancement of science. 

Part of this work was performed as part of the Washington University School of Medicine 

Genomics Tumor Board, which was funded with private research support from the Division of 

Oncology and the McDonnell Genome Institute. E. Barnell was supported by the National Cancer 

Institute (T32GM007200 and U01CA209936). T. Rohan received support from NIH/NCI 

(R01CA142942) and the Breast Cancer Research Foundation. Select sample data was funded by 

the Genomics of AML PPG (T. Ley, PI, P01 CA101937). A. Wagner was supported by the 

National Cancer Institute (NIH NCI F32CA206247). B. Ainscough was supported by the Siteman 

Cancer Center. S. Swamidass is funded by the National Library of Medicine (NIH NLM 

R01LM012222 and NIH NLM R01LM012482) and acknowledges support from the Institute for 

Informatics at Washington University School of Medicine. M. Griffith is funded by the National 

Human Genome Research Institute (NIH NHGRI R00HG007940). O. Griffith is funded by the 

National Cancer Institute (NIH NCI K22CA188163 and NIH NCI U01CA209936). 

2.8 Author Contributions 

B.J.A. designed the study, assembled and cleaned training data, performed feature engineering, 

designed model architecture, tuned hyperparameters, performed model training and analysis, 

performed manual review, assembled validation data, wrote code, created figures, and wrote the 

manuscript. E.K.B. designed the study, performed manual review, performed model training and 

analysis, performed clinical data analysis, assembled validation data, wrote code, created figures, 

and wrote the manuscript. P.R. and K.M.C. wrote code, performed manual review, and edited the 

manuscript. A.H.W. wrote code. T.E.R., R.G., R.U., G.P.D, and T.A.F. shared genomic data that 



 

 

51 

was used in training the model and revised the paper.  M.G., E.R.M., S.J.S., and O.L.G. designed 

the study, supervised the project and revised the paper. 

2.9 Data Availability 

All analysis, preprocessing code, readcount training data, manual review calls, and trained deep 

learning and random forest models are available on the DeepSVR GitHub repository. The raw 

sequencing data are publicly available for most projects included in this study. Users can access 

the classifier command line interface via our open-sourced GitHub repository and can install the 

package through Bioconda49. After installation, the tool can be used to (1) train and save a deep 

learning classifier, (2) prepare data for training a classifier or classification, and (3) classify data 

using either the provided deep learning model or a custom model. A walkthrough of this process 

is available on the DeepSVR GitHub Wiki.  
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Chapter 3: Standard operating procedure for somatic 

variant refinement of sequencing data with paired 

tumor and normal samples 

3.1 Preamble 

The following chapter has been published: 

Barnell E.K., Ronning P., Campbell K.M., Krysiak K., Ainscough B.J., Sheta L.M., Pema S.P., 

Schmidt A.D., Richters M., Cotto K.C., Danos A.M., Ramirez C., Skidmore Z.L., Spies N.C., 

Hundal J., Sediqzad M.S., Kunisaki J., Gomez F., Trani L., Matlock M., Wagner A.H., Swamidass 

S.J., Griffith M., Griffith O.L. Standard operating procedure for somatic variant refinement of 

sequencing data with paired tumor normal samples. Genetics in Medicine, October 5, 2018.  

 

As an author of the published manuscript, and in compliance with the editorial policies at Genetics 

in Medicine, the cited publication is included in full in the following chapter. My role in this project 

was to develop the standard operating procedure (SOP), create figures for all variant annotations, 

design and execute the SOP efficacy study, and assemble the manuscript. A complete list of author 

contributions is included within the publication (Chapter 3.8).  

3.2 Summary 

Following automated variant calling, manual review of aligned read sequences is required to 

identify a high-quality list of somatic variants. Despite widespread use in analyzing sequence data, 

methods to standardize manual review have not been described, resulting in high inter- and intra-

lab variability. The manual review standard operating procedure (SOP) presented here consists of 

methods to annotate variants with four different calls and 19 tags. The calls indicate a reviewer’s 

confidence in each variant and the tags indicate commonly observed sequencing patterns and 

artifacts that inform the manual review call. Four individuals were asked to classify variants prior 
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to, and after, reading the SOP and accuracy was assessed by comparing reviewer calls with 

orthogonal validation sequencing. After reading the SOP, average accuracy in somatic variant 

identification increased by 16.7% (p value = 0.0298) and average inter-reviewer agreement 

increased by 12.7% (p value < 0.001). Manual review conducted after reading the SOP did not 

significantly increase reviewer time. This SOP supports and enhances manual somatic variant 

detection by improving reviewer accuracy while reducing the inter-reviewer variability for variant 

calling and annotation. 

3.3 Introduction 

Large genome centers, such as the McDonnell Genome Institute, use a wide variety of sequencing 

workflows. Typically, extracted nucleic acid is subjected to fragmentation; size selection; KAPA 

(Wilmington, MA), Swift (Ann Arbor, MI), IDT (San Jose, CA), or Illumina (San Diego, CA) 

library preparation protocols (end-repair, tailing, ligation, amplification, etc.); NimbleGen (Basel, 

Switzerland) or IDT custom/exome capture; and subsequent sequencing via Illumina HiSeq 

2500/4000 or Novaseq 6000. The sequencing workflow typically follows methods described by 

Griffith et al.22 Subsequently, the bioinformatics pipeline requires alignment to the reference 

genome (GRCh37/38) via Burrows–Wheeler Aligner (BWA)76 or BWA-MEM and postprocessing 

of aligned sequencing reads. Postprocessing requires deduplication of reads via Picard78 and 

automated somatic variant calling using the intersection or union of Mutect,18 SomaticSniper,88 

Strelka,17 VarScan19 or others. A multi-caller approach is used to identify a preliminary list of 

high-quality somatic variants from aligned sequence data.89–91 The bioinformatics pipeline can be 

implemented using the Genome Modeling System.5 

https://paperpile.com/c/92aiQS/wPj6
https://paperpile.com/c/92aiQS/UQAZ
https://paperpile.com/c/92aiQS/BADp
https://paperpile.com/c/92aiQS/Sk3f
https://paperpile.com/c/92aiQS/8RL2
https://paperpile.com/c/92aiQS/2XGJ
https://paperpile.com/c/92aiQS/kTku
https://paperpile.com/c/92aiQS/Yy4V+qPzo+tJvK
https://paperpile.com/c/92aiQS/1Hw3
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 Automated pipelines can identify and filter many false variant calls that result from 

sequencing errors, misalignment of reads, and other factors; however, additional refinement of 

somatic variants is often required to eliminate variant caller inaccuracies. This additional 

refinement is critical because inaccurate identification of variants can lead to poor patient 

management and missed therapeutic opportunities, as outlined in the Association for Molecular 

Pathology (AMP) guidelines for interpretation and annotation of somatic variation.38,52 Therefore, 

manual inspection of somatic variants identified by automated variant callers (i.e., manual review) 

is an important aspect of the sequencing analysis pipeline and is currently the standard for variant 

refinement. Manual review allows individuals to incorporate information not considered by 

automated variant callers. For example, a trained eye can discern misclassifications attributable to 

overlapping errors at the ends of sequence reads, preferential amplification of smaller fragments, 

or poor alignment in areas of low complexity. Due to computational limitations, automated 

methods for variant refinement are in early stages of development and manual review remains 

integral to variant identification workflows.25 

 Despite extensive use of manual review in clinical diagnostic and molecular pathology 

settings,65,92,93 somatic variant refinement strategies are often unstated or only briefly mentioned 

in studies that report postprocessing of automated variant calls53,54,93–95 Lack of formalized 

procedures for the sequencing pipeline, and specifically for somatic refinement, permits high 

levels of inter- and intra-lab variability and can hinder reproducibility of results.95 Thus, 

development of a procedure to standardize and systematize somatic variant refinement would 

improve the overall quality of sequencing analysis pipelines. 

 Here we present a standard operating procedure (SOP) for manual review of paired 

tumor/normal samples to help standardize somatic variant refinement. We first detail instructions 

https://paperpile.com/c/92aiQS/HxYg+ttAq
https://paperpile.com/c/92aiQS/DIo5
https://paperpile.com/c/92aiQS/k1H5+0WC4+vYvD
https://paperpile.com/c/92aiQS/vYvD+DLQ1+rfeG+XJ0Y+Re2b
https://paperpile.com/c/92aiQS/Re2b
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for downloading and using the publicly available Integrative Genomics Viewer (IGV)23,96 and 

IGVNavigator (IGVNav) software to properly visualize somatic variants during manual review. 

We also show that adoption of a standardized method for somatic variant refinement through this 

manual review SOP improves the accuracy of somatic variant calls and reduces overall inter-

reviewer variability. 

3.4 Methods and experimental procedures 

3.4.1  Setting up manual review using IGV 

The Integrative Genomics Viewer (IGV) is a high-performance genomic data visualization tool. 

This SOP reviews IGV (v2.4.8) components that can be used to conduct manual review of variants 

identified by automated somatic variant callers. While we have chosen IGV to develop our SOP, 

many of the following concepts are applicable to other genomic viewers.97–99 The IGV desktop 

application is available for all major operating systems. 

 The IGV interface is composed of three main panels: (1) Genome Ruler, (2) Data Tracks, 

and (3) Genome Features (Figure 3.1). The Genome Ruler provides navigation features to center 

a genomic locus of interest. A dropdown menu provides reference genome selection, the variant 

coordinates show the current field of view, the zoom buttons expand/contract the field of view, 

and other buttons provide additional display and navigation control. Within the Data Tracks 

section, each horizontal track represents one experiment, sample, or annotation. In Figure 3.1, a 

normal BAM track and a tumor BAM track are loaded. For BAM files, each data track consists of 

a coverage track and individual read alignments. Reads ideally represent a single originating 

molecule that was sequenced and aligned to a reference. In default settings, sequenced bases that 

disagree with the aligned reference sequence are highlighted. The Genome Features section 

https://paperpile.com/c/92aiQS/0HTn+vs2I
https://paperpile.com/c/92aiQS/P4mQ+CnME+Y8Xo
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provides reference information that can be used to supplement manual review. The reference DNA 

and protein sequence tracks are loaded by default. Optionally loaded tracks from the IGV server 

will typically appear in the Genome Features section. 

IGV supports a variety of input files for sequence data visualization. The File dropdown menu 

details the various supported input files. Indexed BAMs can be efficiently accessed from a local 

file system. Alternatively, the Load from URL option permits direct URL input from a web service. 

The Load from Server option downloads tracks from supported data sets (e.g., the Cancer Genome 

Atlas, Ensembl, etc.). 

 

Figure 3.1 Example of the Integrative Genomics Viewer (IGV) interface with associated 

features. The IGV interface is divided into three parts. The Genome Ruler details information 

about the genome assembly being visualized (Reference Genome), the coordinates currently being 

visualized (Variant Coordinates), and other navigation/display controls (e.g., Popup Text 

Behavior, Zoom In and Out, etc.). In this example, a portion of human chromosome 1 (build 37) 

is shown. The central section of IGV displays Data Tracks. In this case, short read DNA alignment 

data (e.g., BAM files) are shown for normal and tumor samples and are colored by read strand. 

Mismatches with the reference genome are highlighted by base: adenine (green), cytosine (blue), 

guanine (orange), and thymine (red). Coverage tracks summarize the total read depth at each base 

position. The Genome Features section shows the reference sequence itself, the amino acids for 

the three possible reading frames, and the gene associated with this locus (PTCHD2 in this 

example). The default gene track available with IGV is shown (RefSeq). Many other data formats 

and sources can be loaded as data tracks or genome features. 
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3.4.2  Setting up manual review using IGVNav 

IGVNav software (a Python applet/plugin for IGV), announced here, is available for download 

under an open access license (GNU) from GitHub (https://github.com/griffithlab/igvnav). When 

initiated, the user is prompted to open an input file for manual review. The input file is a tab 

delimited, 0- or 1-based BED-like file with the following columns: chromosome, start coordinate, 

stop coordinate, reference allele, variant allele, call, tags, and notes. For variants that have not yet 

been manually reviewed, the call, tags, and notes columns should be blank (Figure 3.2b). IGVNav 

features are shown in Figure 3.2a. The navigation bar permits movement through the input variant 

list. The “S” button sorts alignments by base so that variants appear at the tops of data tracks. 

Below the navigation bar is the current variant being visualized and the total number of variants 

in the input file. Editing this section and selecting the Go button will navigate to a specific variant 

of interest. The three horizontal bars display coordinate information for the current variant. The 

first bar details the chromosome, start, and stop position; the second bar shows the reference allele; 

and the third bar shows the variant allele. The Call section allows the manual reviewer to select 

one of the following: somatic (S) (Appendix 3, Figure S1), germline (G) (Appendix 3, Figure 

S2), ambiguous (A) (Appendix 3, Figure S3), or fail (F) (Appendix 3, Figure S4). The Tags 

section allows manual reviewers to annotate variants with commonly observed sequencing 

patterns. Tags can be used for any call (S, G, A, or F); however, they are especially important for 

ambiguous and fail calls to indicate the call rationale. Descriptions of calls and tags can be found 

in Table 1. The IGVNav interface also contains a Notes section, which allows for free text. At any 

point during a manual review session, the calls, tags, and notes can be saved to the original input 

file using the Save button (Figure 3.2c). 
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Figure 3.2 Example of the Integrative Genomics Viewer Navigator (IGVNav) interface with 

associated features. a IGVNav is a simple plugin for IGV that provides a separate application 

window for recording results of manual review. The 1-Base? button can be selected for 1-base 

input files (default is 0-base). The “S” button will sort the read sequences in the data tracks so 

that mismatches appear at the top. The navigation bar displays variant information and allows for 

movement between variants. The Call, Tags, and Notes sections allow manual reviewers to 

annotate variants (Table 3.1), which is reflected in the output file. The Save button is used to 

update the output file. b An IGVNav input file consists of a header line and data for the first five 

columns (chromosome [chr], start coordinate [start], stop coordinate [stop], reference allele 

[ref], and variant allele [var]). Each line represents a variant that will be individually visualized 

using IGV. c During manual review, the input file is updated by clicking on the Save button. This 

will print the call, tags, and notes associated with individual variants to the original input file. 

3.4.3 Step-by-step guide: setting up IGV and IGVNav for manual review 

Manual review setup involves six discrete steps (Figure 3.3a). First, an IGV session should be 

opened, and the appropriate reference genome should be selected/loaded. The reference genome 

species and build must match those used for alignment. Second, the IGV session should be 

populated with data tracks. When tumor DNA, normal DNA, and other DNA or RNA read 

alignments are available, they can all be loaded within a single IGV session. Step 3, optionally, 
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allows for population of additional tracks that can assist in manual review. Step 4, also optional, 

recommends that tracks be colored by reads (right click on data track →  Color alignments by →  

read strand) and the centered locus is visualized (View →  Preferences →  Alignments →  Show 

center line). After initial setup of IGV, step 5 requires opening IGVNav and step 6 requires loading 

the manual review input file. 

3.4.4 Step-by-step guide: performing manual review 

After initial setup, seven additional steps must be followed to properly review each variant (Figure 

3.3b). First, the variant must be located by either using the navigation bar in IGVNav or by 

manually inserting coordinates into the IGV Genome Ruler. Variant-supporting reads can be 

visualized at the top of each data track by clicking the “S” button in IGVNav, or by using IGV 

options (right click on data track → Sort alignments by → base). 

Step 2 evaluates the quantity of variant support. Selecting the locus of interest within the coverage 

track will ascertain strand direction, total coverage, and variant allele frequencies (VAFs). Strand 

direction might indicate a Directional (D) artifact (Appendix 3, Figure S5). Total coverage might 

indicate No Count Normal (NCN) (Appendix 3, Figure S6), Low Count Normal (LCN) 

(Appendix 3, Figure S7), or Low Count Tumor (LCT) (Appendix 3, Figure S8). VAFs might 

indicate Multiple Variants (MV) (Appendix 3, Figure S9) or Low Variant Frequency (LVF) 

(Appendix 3, Figure S10). 

 Step 3 evaluates the quality of variant support. Directly visualizing reads identifies 

Multiple Mismatches (MM) (Appendix 3, Figure S11) or High Discrepancy Regions (HDR) 

(Appendix 3, Figure S12). Reads that are translucent or transparent indicate Low Mapping (LM) 

quality (Appendix 3, Figure S13). Mapping quality information can be viewed by clicking on the 

read in question and viewing the Mapping section (e.g., Mapping = Primary @MAPQ 0). Base 
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quality can also be evaluated in this popup in the Base section (e.g., Base = A @ QV 41). Similar 

to mapping quality, base quality is reflected by the transparency of the letter. The final part of step 

3 is to ensure lack of variant support in normal track(s), (i.e., Tumor in Normal [TN] [Appendix 

3, Figure S14]). 

 Step 4 requires identifying sequencing artifacts. First, toggle between View as pairs (right 

click each data track → View as pairs) to visualize Short Inserts (SI/SIO) (Appendix 3, Figure 

S15). Then use the zoom in (“+”) and zoom out (“–”) buttons on the Genome Ruler to identify 

Adjacent Indels (AI) (Appendix 3, Figure S16), High Discrepancy Regions (HDR) (Appendix 3, 

Figure S12), exclusive support from reads with Same Start/Ends (SSE) (Appendix 3, Figure 

S17), and support only at the Ends of reads (E) (Appendix 3, Figure S18). Finally, evaluating the 

reference sequence elucidates low complexity regions such as Mononucleotide repeats (MN) 

(Appendix 3, Figure S19), Dinucleotide repeats (DN) (Appendix 3, Figure S20), and Tandem 

Repeats (TR) (Appendix 3, Figure S21). If reviewer concerns cannot be described with previously 

defined tags, the reviewer can use the Ambiguous Other (AO) tag and comment in the Notes 

section (Appendix 3, Figure S22). 

Steps 5 through 7 require synthesizing available information to manually review the variant. This 

involves selecting a call, tag(s), and optionally, providing free text in the Notes section of IGVNav. 
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Figure 3.3 Step-by-step instructions for setting up and executing somatic variant refinement 

via manual review. a Method for setting up Integrative Genomics Viewer (IGV) and Integrative 

Genomics Viewer Navigator (IGVNav) for manual review. b Method for analyzing each variant 

during manual review. 
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3.4.5 Validation of the manual review SOP 

We assessed whether the manual review SOP improved accuracy of somatic variant refinement 

using an acute myeloid leukemia (AML) case with genome sequence data, extensive variant 

calling, and orthogonal validation (Figure 3.4).22 To emulate normal conditions for genome 

sequencing manual review, we down-sampled the unaligned BAM files to 30× and 50× coverage 

for normal and tumor samples, respectively. Sequencing data was aligned to the reference genome 

(GRCh38) and variants were detected using the McDonnell Genome Institute’s cancer genomics 

workflow.100 Using the union of MuTect18 and VarScan,19 143,042 potential variants were 

identified. A subset of these variants (n = 5,090) had orthogonal validation sequencing at ~1,000× 

coverage. Coordinates from the platinum variant list, published by Griffith et al., were lifted over 

to GRCh38 and used to label 1,186 variants as true positives (TPs). The remaining 3,904 variants 

were labeled as false positives (FPs). A random subset of 300 variants (150 TPs; 150 FPs) were 

selected for manual review. After receiving basic instruction on how to set up IGV and call variants 

using the required four classes (S, G, A, F), blinded novice reviewers manually reviewed 200 

variants in two batches of 100 using the down-sampled genome sequencing BAM files. 

Subsequently, the reviewers read the SOP and reviewed two more batches of 100 variants. The 

final batch of 100 variants were among the 200 assessed prior to reading the SOP. Accuracy was 

assessed by comparing the manual review calls with the orthogonal validation labels. Inter-

reviewer variability was calculated by developing a correlation matrix for all four calls across the 

four reviewers for each variant. Correlation for identical calls was 1, correlation for conflicting 

calls (e.g., fail and somatic) was 0, and correlation for semi-conflicting calls (e.g., fail and 

ambiguous) was 0.5 (Appendix 4, Table S1). The sum of the matrix was divided by the maximum 

possible score (i.e., 16 points) to create a relative metric for inter-reviewer agreement. The average 

https://paperpile.com/c/92aiQS/wPj6
https://paperpile.com/c/92aiQS/N5Nm
https://paperpile.com/c/92aiQS/Sk3f
https://paperpile.com/c/92aiQS/kTku
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agreement scores from before and after reading the SOP were compared. To determine if reviewers 

were using tags appropriately, tags assigned to false positives by novice reviewers were compared 

with gold standard tags created by expert reviewers for false positives reviewed after reading the 

SOP (Figure 3.4a). 

 

Figure 3.4 Validation of the manual review standard operating procedure (SOP). a 

Sequencing data from an acute myeloid leukemia (AML) case was used to test the impact of the 

SOP on accurately identifying somatic variants. A total of 300 variants that had genome 

sequencing and orthogonal sequencing were identified for the experiment. Four novice reviewers 

assessed 200 variants prior to and after reading the SOP to determine improvement in accuracy, 

reduction in inter-reviewer variability, change in reviewer time per variant, and appropriate use 
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of tags. b Reviewer accuracy was assessed before and after reading the SOP. The bar plot shows 

accuracy stratified by reviewer and the box plot shows the reviewers’ cumulative median 

accuracy. c Box plot showing the median inter-reviewer agreement before and after reading the 

SOP. Agreement for each variant was calculated by assessing the correlation between the four 

reviewer calls using a correlation matrix as described in the Methods. d Box plot showing the 

median time required to conduct manual review before and after reading the SOP. e Frequency 

diagram showing the number of reviewers that correctly annotated false positive variants with 

gold standard tags, parsed by tag. AI Adjacent Indel, D Directional, DN Dinucleotide repeat, E 

End of reads, HDR High Discrepancy Region, LM Low Mapping, LVF Low Variant Frequency, 

MM Multiple Mismatches, MN Mononucleotide repeat, MV Multiple Variants, SSE Same Start 

End, TN Tumor in Normal, TR Tandem Repeat. 

3.5 Results 

3.5.1 Annotations observed during manual review 

Screenshots were created for the 22 annotations used during manual review (Appendix 3, Figure 

S1-S22). The illustrations and comments emphasize IGV features that highlight sequencing 

patterns, describe cautions for challenging tumor types, and indicate deviations from standard 

protocol. 

3.5.2 Analysis of four variant calls 

This SOP and IGVNav software support four classes of variant calls: somatic (S), germline (G), 

ambiguous (A), and fail (F) (Table 3.1). For a call to be labeled as somatic, the variant must have 

sufficient read data support in the tumor with absence of obvious sequence artifacts (Appendix 3, 

Figure S1). Conversely, a germline variant is an alteration that has sufficient support in the normal, 

beyond what can be attributable to tumor contamination (Appendix 3, Figure S2). Barring 

inadequate sequencing depth and/or impact from copy-number alterations, the VAF for germline 

variants should be near 100% or 50% in both the normal and tumor tracks, indicative of 

homozygosity or heterozygosity, respectively. Ambiguous calls should be made when there is 

insufficient evidence to confidently label a variant with any other call class. The example in 
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Appendix 3, Figure S3 shows no support for the variant in the normal track and 14 reads of 

support in the tumor. However, most of the reads are on negative strands and some have multiple 

mismatches. If a reviewer has any residual doubt about failing a variant, then the variant should 

be labeled ambiguous. To fail a variant, the reviewer must confidently determine that the variant 

was called because of a sequencing or analysis artifact. For example, Appendix 3, Figure S4 

details a variant that was erroneously identified by an automated caller because reads had been 

aligned to a high discrepancy region. 

Table 3.1 List and description of Integrative Genomics Viewer Navigator (IGVNav) features 

Call Name Call Description 

Somatic S Variant has sufficient support in the tumor with absence of obvious sequencing 

artifacts 

Germline G Variant that has sufficient support in the normal sample beyond what is considered 

attributable to tumor contamination of the normal 

Ambiguous A Variant does not meet acceptable criteria for any other label 

Fail F Variant with low variant support and/or reads that indicate sequencing artifacts 

   

Tag Name Tag Description 

Adjacent Indel AI Variant is attributable to misalignment caused by a nearby insertion or deletion 

Ambiguous Other AO Variant is surrounded by inconclusive genomic features that cannot be explained by 

other tags 

Directional D Variant is only (or mostly) found on reads in the same direction (positive or 

negative) 

Dinucleotide 

repeat 

DN Variant is adjacent to a region in the reference genome that has two alternating 

nucleotides (e.g., TGTGTG…) 

End of reads E Variant is only seen close to the end (within 30 base pairs) of variant-supporting 

reads 

High Discrepancy 

Region 

HDR Variant is supported by reads that have other recurrent mismatches across the track 

and in multiple tracks 

Low Count 

Normal 

LCN Variant has inadequate coverage in the normal track, thus preventing effective 

comparison with the tumor track 
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Low Count 

Tumor 

LCT Variant has inadequate coverage in the tumor track, thus preventing effective 

comparison with the normal track 

Low Mapping 

quality 

LM Variant is mostly supported by reads that have low mapping quality 

Low Variant 

Frequency 

LVF Variant has low variant allele frequency (VAF) samples 

Multiple 

Mismatches 

MM Variant is supported by reads that have other mismatched base pairs 

Mononucleotide 

repeat 

MN Variant is adjacent to a region in the reference genome that has a single-nucleotide 

repeat (e.g., AAAAAA…) 

Multiple Variants MV Variant locus has read support for three or more alleles 

No Count Normal NCN Variant has no coverage in the normal track, thus preventing effective comparison 

with the tumor track 

Short Inserts SI Variant is found mostly on small nucleic acid fragments whereby sequencing from 

each end results in overlapping reads 

Short Inserts 

Only 

SIO Variant is exclusively found on small nucleic acid fragments such that sequencing 

from each end results in overlapping reads 

Same Start End SSE Variant is only observed in reads that start and stop at the same positions 

Tumor in Normal TN Variant has read support in the normal track 

Tandem Repeat TR Variant is adjacent to a region in the reference genome that has three or more 

alternating nucleotides (e.g., GTGGTGGTG…) 

 

3.5.3 Analysis of 19 variant tags 

It is especially important to annotate fail and ambiguous calls with 1 or more of the 19 tags on the 

IGVNav interface (Table 3.1). Each tag represents a sequencing pattern or artifact that is 

commonly observed during manual review. These patterns can arise during DNA fragmentation, 

library construction, sequencing, read alignment, or variant calling. Alternatively, some concerns 

observed during manual review can be caused by simple structural aberrations or more complex 

issues intrinsic to the tumor being evaluated. Below, we describe how these concerning reads are 

created within the sequencing pipeline and detail the resulting pattern observed in IGV. 
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 The tumor type and tissue origin can play a role in generating patterns observed during 

manual review. For example, hematologic tumors or highly metastatic tumors can cause Tumor in 

Normal (TN) patterns due to the presence of tumor cells in the normal biopsy (Appendix 3, Figure 

S14). Generally, it is important to characterize the average level of contamination across an 

individual sample to determine an acceptable threshold for TN. Tumor sample preparation can also 

impact manual review through sequencing of degraded nucleic acids (e.g., formalin-fixed, 

paraffin-embedded samples)101 giving rise to Short Inserts (SI) or Short Inserts Only (SIO). When 

generating paired-end reads, degraded and/or short molecules will produce two sequences that 

have overlapping alignments. This can exaggerate variant support because most variant callers will 

consider the overlapping alignments as two independent pieces of evidence, despite representing 

a single originating DNA fragment (Appendix 3, Figure S15). Short inserts can be visualized in 

IGV by viewing reads as pairs and looking for horizontal gray bands (representing overlap) in the 

middle of the paired read alignments. 

 Additional errors can arise during fragmentation, library construction, and enrichment. 

DNA quality and quantity, capture reagent balance and efficiency, sample balance in multiplexed 

preparations, and other factors can impact the uniformity of coverage for a given sample. For 

example, a selection bias might skew which molecules are amplified/sequenced, resulting in an 

uneven distribution of sequencing (coverage) across the desired genome space.102 These errors are 

labeled as No Count Normal (NCN) (Appendix 3, Figure S6), Low Count Normal (LCN) 

(Appendix 3, Figure S7), and Low Count Tumor (LCT) (Appendix 3, Figure S8). NCN and LCN 

are defined by no or few reads in the normal tracks and LCT is defined by few reads in the tumor 

track. Also, given that many real variants have a low VAF, due to tumor heterogeneity or low 

purity tumors, the combination of Low Variant Frequency (LVF) (Appendix 3, Figure S10) and 

https://paperpile.com/c/92aiQS/7wN7
https://paperpile.com/c/92aiQS/rgNe
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LCT can prevent a true variant from being confidently called. Our lab has often adopted a 

minimum VAF threshold of 5% and a coverage threshold of 20 reads for both the tumor and normal 

tracks. The rationale for the normal track coverage threshold is that if a sequencing artifact is 

present at a relatively low frequency (<5% occurrence), and if the normal track has <20 reads, it 

is difficult to confidently rule out the presence of a sequencing artifact. For experiments with 

higher average coverage, the minimum VAF threshold can be reduced accordingly. 

 After fragmentation and library preparation, nucleic acids are amplified using polymerase 

chain reaction (PCR), which can introduce Directional (D) and Same Start/End (SSE) artifacts. 

Directional artifacts occur when variant support is only apparent on reads in a specific direction 

(i.e., positive or negative). Typically, this occurs because the sequencing context affects the 

polymerase in one direction more than the reverse complement (Appendix 3, Figure S5).103 SSE 

artifacts occur when a molecule is preferentially amplified and not removed through read 

deduplication programs.104 This artifact can be confirmed when all variant support reads have the 

same (or very similar) start and end position after alignment (Appendix 3, Figure S17). 

 The next step in the pipeline is sequencing. Sequencing errors are defined as nucleotides 

misread by the sequencing instrument, which can be caused by inefficiencies in sequencing 

chemistry, technical errors made by the camera system, interference from neighboring clusters, 

instrument software errors, etc. One type of sequencing error, “dephasing,” occurs when a 

nucleotide without a proper 3’ -OH blocking group is incorporated or is not properly cleaved. The 

affected fragment(s) lose synchrony with the cluster, contributing to background noise.105 Ends of 

reads (E), which occurs when variant support is exclusively found at the end of read sequences 

(within 30 base pairs), is indicative of a dephasing error (Appendix 3, Figure S18).106 These errors 

occur with low probability; however, as the read length increases, the summation of errors can 

https://paperpile.com/c/92aiQS/anKN
https://paperpile.com/c/92aiQS/ny3d
https://paperpile.com/c/92aiQS/xxdF
https://paperpile.com/c/92aiQS/mEqB
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pollute the light signal. Because the light signal is used to calculate quality scores, the 

asynchronous signal should decrease sequence base quality, which may assist in elucidating 

artifacts caused by dephasing errors. 

 Many artifacts arise from incorrect alignment of sequence reads to a reference genome. 

These artifacts include Mononucleotide repeats (MN), Dinucleotide repeats (DN), Tandem 

Repeats (TR), High Discrepancy Regions (HDR), Low Mapping (LM), Multiple Mismatches 

(MM), Adjacent Indel (AI), and Multiple Variants (MV). MN (Appendix 3, Figure S19), DN 

(Appendix 3, Figure S20), and TR (Appendix 3, Figure S21) are attributable to regions of low 

complexity adjacent to the variant locus. They typically occur when there is a base pair deletion 

or insertion adjacent to one, two, or greater than two base pair repeats, respectively. HDR, LM, 

MM, and MV occur when single reads map to multiple and/or incorrect regions. This is typically 

caused by (1) homologous sequences at multiple loci, (2) highly variable regions between or within 

individuals (e.g., variable, diversity, and joining (VDJ) regions in immune cells), (3) high error 

rates in reads, and/or (4) errors in the reference genome. HDRs are apparent when multiple reads 

contain the same mismatches with the reference genome at various locations (Appendix 3, Figure 

S12). LM can be determined by looking for translucent reads (Appendix 3, Figure S13). MM is 

used when variants are supported by reads that disagree with the reference genome at multiple loci 

across the same read, indicating low sequencing quality or misalignment (Appendix 3, Figure 

S11). Similarly, MV is defined by read support for three or more different alleles at a given locus, 

which might indicate poor quality or misaligned reads (Appendix 3, Figure S9). AI is used when 

a structural variant or a small indel in a repetitive region causes local misalignment and creation 

of an apparent single-nucleotide variant (SNV)/indel (Appendix 3, Figure S16). Observing these 

artifacts requires careful scrutiny of the reference genome, base quality, and mapping quality. 
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 In rare instances, if the pre-existing tags cannot adequately annotate a variant, it can be 

labeled as Ambiguous Other (AO). Given that this tag is nondescriptive, it is recommended to 

include free text in the Notes section to justify the tag and associated variant call. In the example 

provided (Appendix 3, Figure S22), the insertion variant shows a low complexity region with 

increased G/C content that is not contained within a tandem repeat region. This observation can 

be annotated using the AO tag. 

3.5.4 Validation of the manual review SOP 

Manual review performed by novice reviewers after reading the SOP improved identification of 

somatic variants by 16.7% (77.4% vs. 94.1%; p value = 0.0298) (Figure 3.4b) and increased the 

average inter-reviewer correlation score by 12.7% (80.7 points vs. 93.4 points; p value < 0.0001) 

(see Methods) (Figure 3.4c). The SOP did not significantly impact time required to conduct 

manual review (Figure 3.4d). Additionally, correct use of tags was observed for annotations made 

after reading the SOP. When evaluating 86 false positives that had 238 tags confirmed by expert 

reviewers, 143 tags were correctly identified by at least three novice reviewers and only 36 tags 

were missed by all reviewers (Figure 3.4e). 

3.6 Discussion 

Identification and interpretation of variants is crucial for conducting translational research and 

guiding clinical management of cancer patients.38 In general, implementation of this SOP has 

improved variant identification consistency, limiting the total number of false positives requiring 

downstream analysis. Given that variant annotation remains a major bottleneck in translational and 

clinical research.35,45 reduction in false positives should substantially improve the overall 

https://paperpile.com/c/92aiQS/ttAq
https://paperpile.com/c/92aiQS/RykF+QwpD
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efficiency of lab operations. Therefore, we advocate that others adopt a standardized process for 

variant refinement such as the SOP presented here. 

 There are intrinsic limitations associated with manual review that will not be rectified by 

this SOP. First, manual reviewers have reported reviewer fatigue, especially when evaluating 

tumors with a high variant burden. Second, despite extensive training, some amount of inter-

reviewer variability will likely remain, especially for ambiguous variants. Third, manual review 

of variants might change over time as an individual begins to recognize the idiosyncrasies 

associated with a particular tumor subtype or sequencing platform. Finally, the scope of this SOP 

is limited to the manual review of somatic SNVs/indels in situations where tumor/normal samples 

are available; although, many of the aspects of the protocol, including setup and assessment, can 

be directly applied to other analyses (e.g., structural variant assessment). It is our intent to 

continuously improve this protocol through subsequent revisions 

(https://doi.org/10.1101/266262). This will include developing an SOP for tumor-only samples, 

incorporating features that improve somatic variant refinement, and developing machine learning 

approaches to alleviate manual review burden. 

 Many of the existing limitations of manual review could be addressed by automating 

somatic variant refinement. This would further standardize the massively parallel sequencing 

pipeline and reduce the labor burden required to identify putative somatic variants. Advancements 

in computational approaches provide an opportunity for the development of such a process. 
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Chapter 4: Open-sourced CIViC annotation pipeline 

(OpenCAP) to identify and annotate clinically relevant 

variants using single molecule molecular inversion 

probes 

4.1 Preamble 

The following chapter has been accepted as a manuscript for publication: 

Barnell E.K., Waalkes A., Mosior M.C., Penewit K., Cotto K.C., Danos A.M., Sheta L.M., 

Campbell K.M., Krysiak K., Rieke D., Spies N.C., Skidmore Z.L., Pritchard C.C., Fehniger T.A., 

Uppaluri R., Govindan R.G., Griffith M., Salipante S.J., Griffith O.L. Open-sourced CIViC 

annotation pipeline (OpenCAP) to identify and annotate clinically relevant variants using single 

molecule molecular inversion probes. JCO Clinical Cancer Informatics, Accepted. September 

3rd, 2019.  

As an author of the published manuscript, and in compliance with the editorial policies at JCO 

Clinical Cancer Informatics, the cited publication is included in full in the following chapter. My 

role in this project was to develop the OpenCAP software, generate an exemplary panel for 

validation, and assemble the manuscript for publication. A complete list of author contributions is 

included within the publication (Chapter 4.8).  

4.2 Summary 

Clinical targeted sequencing panels are important for identifying actionable variants for cancer 

patients; however, existing approaches do not provide transparent and rationally-designed panels 

to accommodate the rapidly growing knowledge within oncology. We used the Clinical 

Interpretations of Variants in Cancer database (CIViC; https://civicdb.org) to develop an Open-

sourced CIViC Annotation Pipeline (OpenCAP; https://opencap.org). OpenCAP provides methods 

to identify variants within the CIViC database, build probes for variant capture, employ probes on 
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prospective samples, and link somatic variants to CIViC clinical relevance statements. OpenCAP 

was tested using a single-molecule molecular inversion probe (smMIP) capture design on 27 

cancer samples from 5 tumor types. In total, 2,027 smMIPs were designed to target 111 eligible 

CIViC variants (61.5 kb of genomic space). When compared to orthogonal sequencing, CIViC 

smMIP sequencing demonstrated a 95% sensitivity for variant detection (n=61/64 variants). 

Variant allele frequencies for variants identified on both sequencing platforms were highly 

concordant (Pearson correlation=0.885; n=61 variants). Moreover, for individuals with paired 

tumor/normal samples (n=12), 182 clinically relevant variants missed by orthogonal sequencing 

were discovered by CIViC smMIPs sequencing. The OpenCAP design paradigm demonstrates the 

utility of an open-source and open-access database built on attendant community contributions 

with peer-reviewed interpretations. Use of a public repository for variant identification, probe 

development, and variant interpretation provides a transparent approach to build dynamic next-

generation sequencing–based oncology panels. 

4.3 Introduction 

Despite recognition that genomics plays an important role in tumor prognosis, diagnosis, and 

treatment, scaling genetic analysis for routine analysis of most tumor specimens has been 

unattainable.5,107 Barriers preventing widespread incorporation of genomic analysis into treatment 

protocols include: costs associated with genomic sequencing and analysis,25 computational 

limitations preventing timely identification of relevant variants,25 and rapidly evolving knowledge 

of the clinical actionability of variants.108 Technological improvements in sequencing and data 

analysis continue to reduce these first two limitations, however, less progress has been made in 

integrating dynamic genomic annotation into clinical workflows. Over 22% of oncologists have 

https://paperpile.com/c/92aiQS/AVtQg+1Hw3
https://paperpile.com/c/92aiQS/DIo5
https://paperpile.com/c/92aiQS/DIo5
https://paperpile.com/c/92aiQS/Vu19W
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acknowledged limited confidence in their own understanding of how genomic knowledge applies 

to patients’ treatment and 18% reported testing patients’ genetics infrequently.109 In the face of 

exponential growth in clinically relevant genomic findings, driven by precision oncology efforts, 

there will likely be increased inability for physicians to command the most current information, 

resulting in increasing delay between academic discovery and clinical utility. This information gap 

has been described as the “interpretation bottleneck”.45,108,109   

Alleviating the interpretation bottleneck will require co-development of targeted 

sequencing panels, bioinformatic tools, and variant knowledgebases that effectively elucidate and 

annotate clinically actionable variants from sequencing data.110,111 These requirements each raise 

separate challenges. With regards to targeted panel development, commercial and academic pan-

cancer clinical gene capture panels have now become commonplace, with at least two obtaining 

Food and Drug Administration (FDA) approval (FoundationONE CDx34 [Cambridge, MA] and 

MSK-IMPACT112 [New York, NY]). Even so, few panels indicate how genomic loci are selected 

for panel inclusion, and none have proposed a sustainable or scalable mechanism to allow for panel 

evolution over time in response to knowledge advances in molecular oncology. With regards to 

bioinformatic tool development, the OncoPaD113 portal provides one of the only methods to create 

rational designed panels by linking clinically relevant variants to genomic loci based on a cohort 

of tumor samples, however, this database is not directly linked to actively updated clinical 

interpretations with detailed underlying evidence. The final challenge of building knowledgebases 

for variant interpretation perhaps poses even greater and more persistent challenges. Commercial 

entities typically rely on the manual curation and organization of research findings into structured 

databases, which are expensive to create and maintain, forcing companies to limit public access or 

to charge for use. The resulting lack of transparency creates inefficiencies in the field through 

https://paperpile.com/c/92aiQS/TK4OQ
https://paperpile.com/c/92aiQS/Vu19W+TK4OQ+RykF
https://paperpile.com/c/92aiQS/hATlW+Ohmo6
https://paperpile.com/c/92aiQS/VewY
https://paperpile.com/c/92aiQS/pzBE9
https://paperpile.com/c/92aiQS/bfWP1
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unnecessary replication of curation effort and suboptimal communication with clinicians, 

ultimately hindering development of effective patient treatment plans. Separately, governmental 

and academic institutions have developed variant interpretation resources like COSMIC29, 

ClinVar27, and cBioPortal114,115 that have drastically improved research efforts and academic 

discovery, however, these resources do not have well-supported (evidence-based) clinical 

relevance summaries for cancer variants that can be easily accessed and utilized by physicians. 

Several resources provide detailed clinical interpretation of cancer variants (e.g., oncoKB31, JAX 

Clinical Knowledgebase116, and others) but these databases are either limited by license restrictions 

or closed curation models. 

To address these limitations, we developed a method to identify, capture, and annotate 

variants using the Clinical Interpretation of Variants in Cancer (CIViC) database 

(http://www.civicdb.org/). The CIViC database is a freely-accessible (public domain content), 

publicly curated, expert-moderated, repository of therapeutic, prognostic, predisposing, and 

diagnostic information in precision oncology.35 The database provides a powerful platform for 

panel development and variant annotation for several reasons: 1) each variant within CIViC is 

described by clinical relevance summaries linked to medical literature, 2) history of curation within 

CIViC is stored and publicly available to all users, and 3) CIViC has an open-source, open-access 

applied programming interface (API) for external query. Using the CIViC database and API, we 

developed the Open-sourced CIViC Annotation Pipeline (OpenCAP) for creating custom capture 

panels, executing capture panel sequencing on prospective samples, identifying variants from 

sequencing data, and annotating variants for clinical relevance. An exemplary clinical capture 

panel was created using OpenCAP to demonstrate utility. Specifically, variants within the CIViC 

database were identified based on clinical relevance and single-molecule molecular inversion 

https://paperpile.com/c/92aiQS/ABXRl
https://paperpile.com/c/92aiQS/wDTc
https://paperpile.com/c/92aiQS/D1UrL+h8S6k
https://paperpile.com/c/92aiQS/2XF5X
https://paperpile.com/c/92aiQS/y8EKi
http://www.civicdb.org/
https://paperpile.com/c/92aiQS/QwpD
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probes (smMIPs) were designed to target variants of interest. This panel was employed on cancer 

samples to evaluate design and identified somatic variants were compared to orthogonal 

sequencing. Variants identified via smMIPs capture were linked back to the CIViC database for 

clinical annotation (Figure 4.1). Ultimately, this method could be used to rapidly and efficiently 

link variants to clinical relevance summaries, enabling the development of custom capture panels 

for a variety of clinical and research scenarios. 

 

Figure 4.1 Methods for CIViC smMIPs development and validation using OpenCAP. The 

first series describes CIViC smMIPs development. Variants were selected using sequence ontology 

IDs and the CIViC Variant Evidence Score. Subsequently, eligible variants were categorized based 

on length and smMIPs reagents were designed to target regions of interest. The second series 

describes sample selection and sequencing methods. In total, there were 22 tumor samples derived 

from 5 tumor subtypes. Of these 27 samples, 15 had tumor and paired normal samples and 7 were 

tumor-only samples. The third series shows the analysis used to validate the CIViC smMIPs 

design. Variants were called using the pipeline described in the methods, accuracy was attained 

by comparing variants observed on original sequencing to variants observed using the CIViC 

smMIPs capture panel. Variant allele frequencies across both platforms were also compared.  
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4.4 Results  

4.4.1 Identification of eligible CIViC variants for smMIP targeting 

At the time of the CIViC smMIP capture panel design, there were 988 variants from 275 genes 

within the CIViC database with at least one evidence item. After filtering based on the Variant 

Evidence Score and the SOID (see Appendix 5), smMIPs were designed to cover all eligible 

CIViC variants. A set of 2,097 probes were developed and tested on control samples. Of these, 70 

probes showed poor capture efficiency and were eliminated from the panel. Removal of the 

underperforming probes affected 32 variants across 16 genes. The final capture reagent targeted 

111 CIViC variants spanning ~61.5 kb of genomic space (Appendix 6, Table S1). When 

compared to other pan-cancer panels, the CIViC capture panel showed high overlap with 

previously defined clinical variants. For example, the CIViC smMIPs capture panel covered 10 of 

the 13 well-defined variants on FoundationOne CDx (EGFR - Exon 19, L858R, and T790M; BRAF 

- V600E/K; ERBB2 Amplification; KRAS G12/13; BRCA1; and BRCA2).117 The 3 variants on 

FoundationOne CDx that were not originally covered by the smMIPs panel (KRAS wildtype, 

NRAS wildtype, and ALK rearrangements) have all since attained a Variant Evidence Score that 

would be sufficient for inclusion in a panel built today Of the 111 targeted variants, 71 required 

hotspot targeting, 14 variants required sparse exon tiling, and 26 required full exon tiling. The 111 

variants covered by the CIViC smMIPs capture panel were based on 1,168 clinically relevant 

evidence items whereby 820 (70%) evidence items predicted response to a therapeutic, 232 (20%) 

detailed prognostic information, 52 (4%) indicated diagnostic information, and 64 (6%) evidence 

items supported predisposition to cancer (Figure 4.2). 

https://paperpile.com/c/92aiQS/yVvta
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Figure 4.2 Regions targeted by the CIViC single molecule molecular inversion probes 

(smMIPs). Variants that were eligible for CIViC smMIPs development were divided into various 

coverage methods based on sequence ontology identification number (SOID) and length. The bar 

graph shows the total number of evidence items used for each of the groups parsed by the evidence 

type. 

4.4.2 Tumor samples used to validate CIViC smMIPs design 

Samples used to validate the CIViC smMIPs capture panel design were derived from 5 different 

cancer genomic studies (Appendix 6, Table S2). Tumor and paired normal samples were obtained 

from 5 individuals with head and neck squamous cell carcinoma (HNSCC), 9 individuals with 

small cell lung cancer (SCLC)74, and 1 individual with Hodgkin's lymphoma (HL). Tumor-only 

samples were obtained from 1 individual with HL, 1 individual with acute myeloid leukemia 

(AML)22, and 5 individuals with colorectal cancer (CRC). In total, 37 samples were evaluated from 

https://paperpile.com/c/92aiQS/bPuo
https://paperpile.com/c/92aiQS/wPj6
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22 individuals. Samples from the CRC cohort were formalin fixed paraffin embedded (FFPE) and 

all other samples were fresh frozen tissue. 

Each of the 22 individuals had previously undergone whole exome or whole genome 

sequencing, somatic variant calling, and somatic variant refinement via manual review (see 

Appendix 5). Considering original sequencing there were 12,602 putative somatic variants called 

for these 22 samples. The average variant burden was 573 variants per sample with a range of 2 to 

3,900 variants per sample. Variant coordinates from these samples were compared to the genomic 

region covered by the CIViC smMIP capture panel to determine potential validating variants. In 

total, there were 84 variants identified via original sequencing that overlapped with the CIViC 

smMIPs capture panel. 

4.4.3 smMIP sequencing and data analysis 

Initial quality check 

The average number of tags captured for all samples was 5.4 million (standard deviation = 3.3 

million tags). One HNSCC normal sample failed smMIPs capture, two HNSCC tumor samples 

had significantly fewer reads than the rest (i.e., >1 standard deviation), and one HL tumor sample 

had reduced tag complexity relative to the rest (i.e., <600,000 unique captured smMIPs). 

Sequencing failure for these four samples was attributable to poor template quality/quantity and 

not attributable to the capture reagents. All other samples passed sequencing quality checks. Post 

quality check, 31 samples derived from 19 individuals were eligible for reagent validation. These 

samples had 65 variants derived from orthogonal sequencing that had overlap with the CIViC 

smMIPs coverage (Figure 4.3). The average consensus read depth for these 65 variants was 2,942 

reads (std = 4,697 reads). 
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Accuracy of CIViC smMIP variant identification compared to exome or genome variant 

identification 

Of the 65 variants identified on exome sequencing, all but 4 were also identified using CIViC 

smMIP sequencing (Figure 4.3). One variant was missed due to lack of adequate coverage, two 

variants were missed due to low performing probes, and one variant was retrospectively considered 

ineligible due to smMIPs design (see Appendix 5). After removing this variant from the list of 

eligible variants, the CIVIC smMIP capture sequencing attained a 95% sensitivity for variant 

detection (n = 64 variants).  

 

Figure 4.3 Waterfall plot showing extensive overlap between variants. Each column represents 

a sample that had original exome or whole genome sequencing with subsequent orthogonal 

validation using the CIViC smMIPs sequencing. Rows represent mutated genes across all samples. 

Numbers within each box represent the variant allele frequency (VAF) observed on original exome 
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or whole genome sequencing. Green boxes indicate that a variant was observed by CIViC smMIPs 

and validated with original exome or whole genome sequencing. Tan boxes indicate that the 

variant was observed on original exome or whole genome sequencing but not identified via the 

CIViC smMIPs capture panel. The left panel indicates the number of samples containing a 

mutation in the indicated gene. 

 

VAF correlation between CIViC smMIPs sequencing and exome or genome sequencing 

Variant allele frequencies (VAF) obtained via original sequencing were compared to the VAF 

obtained using the CIViC smMIPs. To compare VAF quantitation across platforms, the 19 variants 

obtained from samples that failed CIViC smMIPs sequencing quality check were eliminated 

(Figure 4.4A). Subsequently, we eliminated the four variants that were not validated using the 

CIViC smMIPs reagents (Figure 4.4B). When comparing original VAF to CIViC smMIPs VAFs, 

Pearson correlation for the remaining 61 variants was 0.885. There were several variants whereby 

the VAF observed by the CIViC smMIPs sequencing was lower than that observed by the original 

sequencing. These outliers were not associated with tumor type, sequencing mass input, average 

coverage, presence of matched normal, or sample type (Figure 4.4C-F). 
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Figure 4.4 Variant allele frequencies (VAFs) observed using original sequencing compared 

to smMIPs sequencing.  Each column represents a sample that had original exome or whole 

genome sequencing with subsequent orthogonal validation using the CIViC smMIPs sequencing. 

Rows represent mutated genes across all samples. Numbers within each box represent the variant 

allele frequency (VAF) observed on original exome or whole genome sequencing. Green boxes 

indicate that a variant was observed by CIViC smMIPs and validated with original exome or whole 

genome sequencing. Tan boxes indicate that the variant was observed on original exome or whole 

genome sequencing but not identified via the CIViC smMIPs capture panel. The left panel indicates 

the number of samples containing a mutation in the indicated gene. 

4.4.4 Analysis of variants only identified using CIViC smMIP sequencing 

Using samples that had sequencing data for both tumor and matched normal (n = 12 samples), we 

evaluated whether the targeted CIViC smMIP sequencing could identify clinically relevant 

variants that had not been observed by the original sequencing. There were 273 variants recovered 

by CIViC smMIP sequencing that were not identified using original sequencing. After manually 

reviewing these variants within the original exome or genome alignments, 55 variants (20.1%) 

were identified as germline mutations. smMIP sequencing VAF distribution at 50% and 100% 

further supported that these variants were germline polymorphisms (Figure 4.5A). An additional 
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36 variants (13.2%) were thought to be caused by pipeline artifacts and attributable to assumptions 

underlying automated callers or alignment problems. The majority of these artifacts were 

associated with nucleotide repeats in the reference sequence (Figure 4.5B). There were 171 

(62.6%) variants called as somatic using CIViC smMIPs that did not have any variant support on 

the original sequencing. For these variants, we calculated the binomial probability that ≤3 reads 

would support the variant given the original coverage (number of chances to get a variant 

supporting read) and the observed smMIPs variant allele frequency (likelihood that a read would 

show variant support). If the binomial probability of ≤3 variant-supporting reads was >95%, then 

it was considered statistically unlikely that a variant would be called using original sequencing 

data. Using this calculation, 162 variants (94.7%) showed insufficient coverage in the original 

sequencing for detection (Figure 4.5C). Finally, 11 variants (4.2%) were not called as somatic on 

original sequencing but did show some variant support in those original sequencing data. The 

VAFs observed on original sequencing data were strongly correlated with the VAFs observed 

using CIViC smMIP sequencing (Pearson r = 0.92) (Figure 4.5D). Reviewing manual review files 

from the original sequencing, we observed that 6 of these variants failed manual review due to low 

VAF, 4 variants had not been called by automated somatic variant callers, and 1 variant failed 

manual review due to a perceived sequencing artifact. In summary, there were 182 potentially 

clinically relevant somatic variants missed by original sequencing, primarily due to insufficient 

coverage, that contained CIViC variant annotations.  



 

 

85 

 

Figure 4.5 Analysis of variants rescued by CIViC smMIPs sequencing for samples. There 

were 217 variants called as somatic by the CIViC smMIPs sequencing that were not identified by 

the original sequencing. All variants were manually reviewed using both CIViC smMIPs 

sequencing data and original sequencing data. (A) During manual review 55 variants were 

identified as germline. A histogram shows that the distribution of the smMIPs VAF for these 

germline variants are observed at 50% and 100% VAF, indicating heterozygosity and 

homozygosity, respectively. (B) An additional 36 variants were identified as sequencing artifacts. 

Most artifacts were either mononucleotide repeats (MN), dinucleotide repeats (DN), or tandem 

repeats (TR). Other artifacts include multiple mismatches (MM) or multiple variants (MV). (C) 

During manual review, 162 variants did not show any support in the original sequencing data. 

Most unsupported variants did not have sufficient coverage to be detected based on a binomial 

probability of at ≤3 variant-supporting reads (see Methods). (D) The remaining 11 variants had 

variant support in original sequencing but were not called as somatic in final original annotation. 

The scatter plot shows correlation between original VAF and CIViC smMIPs VAF for these 

variants. 
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4.4.5 Annotation of CIViC smMIPs capture panel somatic variants using 

OpenCAP 

Using the OpenCAP annotation software, we developed clinical interpretation reports for all 

variants observed using the CIViC smMIPs capture panel. In total, there were 1,340 variants 

observed across the 19 samples that passed smMIPs sequencing. Of the 1,340 variants observed, 

127 had direct matches (chromosome, start, stop, reference, variant) with CIViC annotations 

(average = 6.7 variants/sample). An illustrative OpenCAP output report that displays most 

OpenCAP features, including CIViC Variant Descriptions and CIViC Assertions, was created 

using a previously-reported patient from the literature118 (Appendix 7, Figure S1). For each 

identified clinical variant, links to external databases, CIViC Variant Descriptions, associated 

CIViC Assertions, and associated CIViC Evidence Items are provided. Associated Evidence items 

provide a brief description of the clinical relevance, links to CIViC Evidence Items (EIDs) and 

associated citations.  

4.5 Discussion 

The Open-sourced CIViC Annotation Pipeline (OpenCAP) (https://opencap.org/) is a resource 

for users to develop a custom capture panel that can be easily linked to actively maintained clinical 

relevance summaries. The methods described by OpenCAP to build a clinical capture panel offer 

several advantages relative to existing design paradigms. Use of an open-source database provides 

a systematic mechanism to survey existing literature within precision oncology to identify variants 

that are relevant for capture. Additionally, the public API permits rapid mapping of identified 

somatic and germline variants to CIViC clinical relevance summaries. Most importantly, the 

variants covered by CIViC and associated clinical summaries can be updated in real-time as 

https://paperpile.com/c/92aiQS/RHRSS
https://opencap.org/
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knowledge is entered into the database to accommodate new information discovered within the 

field of precision oncology.  

The smMIP capture method for sequencing provides inherent error correction capability, 

scalability to detect ultrasensitive variation, and cost effectiveness within a modular design. 

Combining the public access CIViC database with an ultrasensitive and versatile capture reagent 

provides an advantageous and principled method for building precision oncology capture reagents. 

This approach could enable a standardized framework for detecting and interpreting cancer-

relevant genomic variation, lowering barriers to use of genomic analysis in the clinical practice of 

oncology. For maximal flexibility, OpenCAP describes methods for using both unique molecular 

identifiers (UMI) and non-UMI-based probes to capture variants of interest. 

The CIViC smMIPs capture panel used Variant Evidence Scores and Sequence Ontology 

IDs to identify variants of interest for targeting. However, alternate filtering strategies have been 

outlined in OpenCAP documents. Regardless of variants targeted for capture, the presented 

research helped to show that CIViC variants and variant coordinates can be used for accurate 

capture panel design (95% detection accuracy with Pearson r2 of 0.885 for VAFs). This finding 

helps to validate that the methods described in OpenCAP can be used to accurately interrogate 

desired variants of interest. 

Like all targeted reagents, the preliminary CIViC smMIP design has limitations that can 

be addressed with future iterations. First, the reagent design is limited by the current knowledge 

within CIViC. Extensive curation from certain groups (e.g., the University Health Network 

curation of VHL variants) disproportionately increases representation for certain genes, cancers 

and variant types. Conversely, lack of curation in certain areas show a disproportionate decreased 

representation. To address existing curation disparities, CIVIC has joined the Variant 
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Interpretation for Cancer Consortium (VICC)119 to integrate multiple variant interpretation 

knowledgebases into a single meta-knowledgebase. Successful execution of the aims outlined by 

the VICC would result in harmonization of information from CIViC, the Cancer Genome 

Interpreter33, Clinical Knowledgebase120, MolecularMatch, OncoKB31, and Precision Medicine 

Knowledgebase32, and others. This would allow users to leverage variant interpretations across 

multiple platforms for building custom capture panels that are linked to clinical relevance 

summaries. 

In summary, the methods described here validate that community curated data on clinically 

relevant cancer variants can provide a systematic and dynamic method for capture reagent design. 

The curated coordinates in the database accurately map to desired variants, and probes designed 

using these coordinates show accurate recapitulation of the genomic landscape described by 

orthogonal sequencing. It is our hope that OpenCAP will provide the research community with a 

novel method to develop next-generation sequencing–based oncology panels. 

4.6 Methods and experimental procedures 

4.6.1 Development of operating procedure for OpenCAP 

The Open-sourced CIViC Annotation Pipeline (OpenCAP) was built to guide users through the 

development of a custom capture panel linked to CIViC clinical relevance summaries 

(www.opencap.org). OpenCAP consists of five sections, each with examples and user tutorials. 

The first section describes CIViC (www.civicdb.org) and directs users through the CIViC web 

interface. The next section describes methods for building a custom capture panel, which includes 

identifying pertinent variants within the CIViC database and targeting those variants with probes 

using curated genomic coordinates. Subsequently, OpenCAP gives a high-level overview of the 

https://paperpile.com/c/92aiQS/Ew4Yf
https://paperpile.com/c/92aiQS/7UxKZ
https://paperpile.com/c/92aiQS/bGipc
https://paperpile.com/c/92aiQS/2XF5X
https://paperpile.com/c/92aiQS/CyBpV
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massively parallel sequencing pipeline, which includes brief summaries for sample procurement, 

nucleic acid generation, library preparation, and high-throughput sequencing. The final sections 

describe identifying variants from raw sequencing data and annotating those variants for clinical 

relevance. 

4.6.2 Determining eligible CIViC variants for smMIP capture 

Variants in CIViC were filtered using their Variant Evidence Score (required >20 points) and 

Sequence Ontology IDs (must be “DNA-based”) (see Appendix 5). Variants were also filtered if: 

1) all evidence supported only germline clinical relevance, 2) evidence was directly conflicting, or 

3) a majority of evidence in a container variant (e.g., MUTATION) pointed to a hotspot that was 

already being covered. The remaining variants were eligible for the CIViC smMIPs capture panel. 

4.6.3 Designing smMIPs for the CIViC capture reagents 

Variants were further categorized by length. If the variant length was <250 base pairs, the variant 

was eligible for hotspot targeting. If the variant was >250 base pairs, the variant required either 

sparse or full tiling of the protein coding exons (see Appendix 5). For all variants, smMIPs were 

designed and synthesized as previously described121 with the single alteration that the “-

double_tile_strands_separately”122 flag was used with the MIPgen tool to separately capture each 

strand of DNA surrounding the target. 

4.6.4 Rescue and annotation of clinically relevant variants 

Variants called using the CIViC smMIP capture panel were compared to variants called using 

original sequencing for samples that had matched tumor and normal sequencing. All genomic loci 

were manually reviewed58 using both the smMIPs aligned BAM files and the original aligned 

BAM files. Variants only identified using smMIPs sequencing were grouped into four categories: 

https://paperpile.com/c/92aiQS/W8ZUa
https://paperpile.com/c/92aiQS/saINq
https://paperpile.com/c/92aiQS/mecG
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1) germline polymorphism, 2) pipeline artifact (low variant support or poor mapping), 3) variant 

support on smMIP sequencing but no support on original sequencing, or 4) variant support on both 

smMIP sequencing and original sequencing. For variants that showed support on smMIPs 

sequencing but no variant support on original sequencing, the binomial probability was used to 

assess if ≤3 variant-supporting reads would be detected with 95% confidence using the original 

coverage and the observed smMIPs VAF. 
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Chapter 5: Use of a clinical sequencing panel to 

influence treatment decisions for patients with AML 

5.1 Preamble 

The following chapter has been assembled as a manuscript for publication: 

Barnell E.K., Skidmore Z.L, Krysiak K., Newcomer K.F., Anderson S.R., Wartman L.D., Oh 

S.T., Welch J.S., Stockerl-Goldstein K.E., Vij R., Cashen A.F., Pusic I., Westervelt P., Abboud 

C.N., Ghobadi A., Uy G.L., Schroeder M.A., Dipersio J.F., Spencer D., Duncavage E., Ley T.J., 

Griffith M., Jacoby M.A., Griffith O.L.. Use of a clinical sequencing panel to influence treatment 

decisions for patients with AML. Prepared for Leukemia on September 10th, 2019.  

The MyeloSeq targeted capture panel is a laboratory developed test that is performed through the 

Pathology Department at the Washington University School of Medicine. This project evaluated 

how genomics impacted the development of treatment protocols for physicians. My role in this 

project was to collect data, analyze the results, and assemble the manuscript for publication. A 

complete list of author contributions is included within the manuscript (Chapter 5.8). The data 

presented here represents a work in progress and will be updated prior to final publication. 

5.2 Summary 

Targeted sequencing panels are being increasingly used within precision oncology by physicians 

to support clinical decisions. However, despite widespread use of sequencing for variant 

identification, the clinical use of such results is not well described. To elucidate the impact of 

genomic data on directing treatment decisions, we surveyed physicians who ordered a targeted 

panel (MyeloSeq®) for their patients. Specifically, we evaluated 346 MyeloSeq® reports that were 

generated for patients with hematologic malignancies. For the 122 cases with a definitive diagnosis 

of acute myeloid leukemia (AML), excluding cases with acute promyelocytic leukemia, a survey 

was sent to the treating physician to determine if the MyeloSeq®️ results altered the patient’s 
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treatment plan. For the 114 cases in which physicians responded to the survey, 50 (44%) resulted 

in changes to treatment plan based on the MyeloSeq® results. Specifically, 38 new drugs were 

prescribed to target variants that were observed, 9 physicians altered consolidation therapy based 

on residual variant burden or high / low-risk variants, and 4 physicians used the MyeloSeq® panel 

to inform the patient’s disease status. As observed here, the MyeloSeq® capture panel greatly 

influenced the physician decision and the ultimate treatment plan for the patient, which has direct 

implications in patient outcomes. Therefore, physicians should consider the use of targeted 

sequencing panels to inform treatment decision making in AML cases, although the benefit of 

testing has not yet been proven in prospective clinical trials. 

5.3 Introduction 

The integration of genomic information to individualize cancer treatment and improve patient 

outcomes is an area of interest within oncology.123 Methods for obtaining genomic information 

includes in-house testing, which typically occurs at larger academic institutions, or outsourced 

assessment through commercial labs (e.g., Foundation Medicine, Guardant Health, etc). The 

genomic data can be obtained from single-gene testing, targeted sequencing panels, or 

comprehensive (whole-genome or whole-exome) sequencing approaches.  

All sequencing data used for cancer assessment, regardless of source or size, requires 

variant identification and annotation. Many single-gene tests are FDA-approved and have 

associated companion diagnostics that designate a specific cancer subtype and indication. For 

example, LeukoStrat CDx® identifies FLT3 variants to indicate response to Rydapt (midostaurin) 

or Xospata (gilterinib).124 The vast majority of variant identification and annotation is performed 

by Laboratory Developed Tests (LDTs),125 whereby results are provided to the ordering physician 

https://paperpile.com/c/92aiQS/AO9y
https://paperpile.com/c/92aiQS/TWBjl
https://paperpile.com/c/92aiQS/5TncB
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in the form of a clinical report. These reports typically contain highly complex data that requires a 

certain level of genomic literacy to understand.126,127 Lack of report standardization, inadequate 

genomic training42,128, limited infrastructure to support oncologists123,129, and limited resources 

(e.g., low reimbursement rates and lack of access to clinical trials) have been shown to dramatically 

hinder the impact of sequencing data on clinical care.130 The result is a discrepancy between the 

identification of clinically actionable variants131 and implementation of change in treatment 

protocols.123,132 

Use of sequencing data for the evaluation of acute myeloid leukemia (AML), is particularly 

complex due to its genetic heterogeneity. Over 250 recurrently mutated genes and specific hotspot 

variants have been described as clinically relevant within AML.133 Additionally, the prognostic 

significance of an individual gene may be dependent on cooperative co-variants in multiple other 

genes,134 thus currently available single gene variants tests (FLT3-ITD, NPM) may be insufficient 

to guide prognosis. Many pathogenic variants (e.g., within FLT3, IDH2, and IDH1) have been 

used as predictive markers for FDA-approved targeted therapeutics to supplement or augment 

treatment.135–137 Other studies have used molecular markers, such as TP53 variant status, to select 

the most appropriate chemotherapy for induction of remission.71 Beyond the use of single 

molecular markers for evaluation of disease, multi-targeted approaches are being developed to 

further assess patient outcomes. Specifically, quantification of the variant allele frequency (VAF) 

of all tumor-associated variants has been used to detect measurable residual disease (MRD) and 

predict both relapse risk68 and survival outcomes138. Other uses of multiple molecular markers for 

disease assessment includes evaluation of cytogenetic abnormalities to signify molecular 

remission and predict relapse-free survival.139,140 

https://paperpile.com/c/92aiQS/f5rTz+sFmhX
https://paperpile.com/c/92aiQS/mqaB+DI6q
https://paperpile.com/c/92aiQS/AO9y+aUd3P
https://paperpile.com/c/92aiQS/Scxz9
https://paperpile.com/c/92aiQS/tChe0
https://paperpile.com/c/92aiQS/AO9y+16IR2
https://paperpile.com/c/92aiQS/rE5nw
https://paperpile.com/c/92aiQS/sI3An
https://paperpile.com/c/92aiQS/k5Do6+yiXjO+DndPU
https://paperpile.com/c/92aiQS/be1e
https://paperpile.com/c/92aiQS/3AEr
https://paperpile.com/c/92aiQS/IFNHi
https://paperpile.com/c/92aiQS/uqHf5+54m3J
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These new advancements in genomic understanding are slowly being integrated into 

standard treatment protocols for patients with AML. Current treatment recommendations for 

young (<60) and otherwise healthy AML patients include induction of remission via cytotoxic 

regimen of anthracycline and cytarabine.141 Subsequently, patients receive consolidation therapy 

of either high-dose cytarabine (HiDAC) or upfront allogeneic stem cell transplant (SCT) for 

patients who achieve complete remission post-induction therapy. Recommendations for 

consolidation therapy are based on a variety of factors. Typically, patients with low relapse risk 

are treated with HiDAC, and patients with high relapse risk are more likely to be considered for 

SCT in first complete remission.142–144 This is because SCT is associated with the lowest risk of 

relapse; however, it confers a considerable chance of morbidity, largely driven by graft-versus host 

disease, and treatment-related mortality.142,143,145 Traditionally, stratification of relapse risk for 

directing consolidation includes assessment of pathological findings (i.e., blasts counts), 

cytogenetics, European LeukemiaNet (ELN) classification146, NCCN-based risk assessment147, 

and other demographic information.148 As mentioned, genomic findings are now playing a larger 

role in governing selection of induction therapy, selecting targeted therapy to induce remission, 

and stratifying risk of relapse to dictate the method of consolidation therapy, and in some cases to 

justify deviation from the traditional treatment pathway. 

Genomic data is undoubtedly impacting treatment decisions for cancer patients; however, 

the extent of influence is not well documented. This study attempts to quantify the impact of 

sequencing data on directing treatment protocols for patients with AML by observing a cohort of 

patient / physician pairs whereby the patient’s tumor is being assessed using a targeted clinical 

capture panel (MyeloSeq®). The MyeloSeq® capture panel evaluates 40 recurrently mutated 

genes or gene hotspots in AML and myelodysplastic syndrome (MDS). For each of 122 AML 

https://paperpile.com/c/92aiQS/Ik2nd
https://paperpile.com/c/92aiQS/qsCpp+cwEDg+y8JXw
https://paperpile.com/c/92aiQS/qsCpp+cwEDg+r9EdA
https://paperpile.com/c/92aiQS/53NO3
https://paperpile.com/c/92aiQS/yZ8pP
https://paperpile.com/c/92aiQS/zkWXW
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patients (excluding patients with promyelocytic leukemia) who received a MyeloSeq® panel 

assessment, we surveyed the treating physician on their use of MyeloSeq® results in making 

treatment decisions. Specifically, we queried for the use of targeted therapeutics based on observed 

variants, variant impact in directing consolidation therapy (stem cell transplant versus HiDAC 

consolidation), and other uses of the data that changed the original treatment plan. Using these 

surveys, we observed that 44% of all treatment protocols were altered based on the MyeloSeq® 

results. This includes 33 cases where one or more new targeted therapeutics was prescribed, 13 

cases where consolidation therapy was altered based on high- or low-risk variants, and 4 cases 

where a definitive diagnosis was made based on observed variants. Additional non-indicated uses 

of the MyeloSeq® panel, including measurable residual disease testing and clonal / sub-clonal 

tracking, were also noted and analyzed in detail. Together these results indicate that a multi-

targeted capture panel can be used to influence treatment plans for patients with AML. 

5.4 Results  

5.4.1 Identification of variants in myeloid malignancies by the MyeloSeq® 

Panel 

Over an approximately 8-month period (August 17th, 2018 to April 9th, 2019) at the Washington 

University School of Medicine, 346 MyeloSeq® reports from 325 unique patients were generated 

with a median time to return of results of 15 days (range = 4 to 90 days). In total, there were 824 

total variants observed in the 40 targeted genes across the 346 samples with a MyeloSeq® report 

(Appendix 8, Figure S1). The median number of failed genes across all reports was 2 genes (range 

= 0 to 24 genes). WT1 (n = 211 cases), CUX1 (n = 197 cases), and CEBPA (n = 111 cases) were 

genes that most frequently failed coverage requirements (Appendix 9, S3). Gene failure was 
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attributable to specific gene regions that were recurrently difficult to target using existing reagents. 

The distribution of patient diagnoses for which a MyeloSeq® report was generated is shown in 

Figure 5.1A-B. The most common diagnoses were myelodysplastic syndrome (MDS) and acute 

myeloid leukemia (AML), and the next most common diagnoses were essential thrombocytopenia 

(4.0%), clonal cytopenia of undetermined significance (3.7%), chronic myelomonocytic leukemia 

(3.5%), and primary myelofibrosis (3.5%). Across all samples, the most commonly mutated genes 

were TET2 (n = 105 variants), DNMT3A (n = 72 variants), TP53 (n = 68 variants), ASXL1 (n = 57 

variants), RUNX1 (n = 46 variants), SRSF2 (n = 43 variants), and FLT3 (n = 38 variants) 

(Appendix 8, Figure S1). There were 71 samples (20.5%) that had no variants detectable by 

MyeloSeq®, the majority of which (64.7%) were from patients with an ultimate diagnosis of MDS.  

 

Figure 5.1 Distribution and relative frequency of patient diagnoses. (A) Distribution and (B) 

relative frequency of hematologic disorders for the 346 samples evaluated with the MyeloSeq® 

panel. The diagnosis is based on the ultimate diagnosis made for the patient. AML with acute 
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promyelocytic leukemia (APL) subtype (designated by a light blue bar under the AML distribution 

bar chart) were not eligible for analysis with a MyeloSeq® panel.  

5.4.2 Patterns of MyeloSeq® panel usage in patients with acute myeloid 

leukemia 

From all 346 MyeloSeq® reports generated, there were 124 samples from patients with a definitive 

diagnosis of AML, two of which were APL and were excluded from further study. Median duration 

for these MyeloSeq® reports to be generated was 15 days (range = 4 to 88) (Table 5.1). The non-

APL AML samples (n = 122 samples) were derived from 109 unique patients who were under the 

care of 14 unique physicians in the Section of Leukemia and Bone Marrow Transplantation, 

Division of Oncology, Department of Medicine of Washington University. There were 11 patients 

for which 2 MyeloSeq® panels had been ordered for the same patient and 1 case for which 3 panels 

had been ordered for the same patient. The clinical characteristics of the 109 unique patients (Table 

5.1) and the academic credentials of the treating physicians (Table 5.1) are also shown. Of the 109 

unique patients, if multiple MyeloSeqs® were ordered, the earliest available test was used.  

Table 5.1 Overview of demographics for patients diagnosed with acute myeloid leukemia 

PATIENT CHARACTERISTICS (n = 109) 

Diagnosis of AML - Count, (%) 
     De-novo AML 
     History of Myelodysplastic Syndrome (MDS) 
     Therapy-related AML 

 
n = 59 (54.1%) 
n = 31 (28.4%) 
n = 19 (17.4%) 

Age Median - Median, (Range) 65 years (23 to 90 years) 

Gender 
     Male 
     Female 

 
n = 58 (53.2%) 
n = 51 (46.8%) 

REPORT CHARACTERISTICS (n = 122)  

Time for Report Generation - Median (Range) 15 days (4 to 88 days) 
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The gene variant frequencies for all AML samples in this cohort reflected the expected 

genomic landscape of AML (Figure 5.2).133,134 Of the 122 samples, 33 showed DNMT3A variants, 

31 had FLT3 variants, 24 had TET2 variants, and 22 showed TP53 variants. In total, 37/40 genes 

interrogated by the MyeloSeq® panel were observed in at least one AML case. Only 13 samples 

showed no variants on MyeloSeq®, 8 of which were acquired from patients who were determined 

to be in clinical remission, confirmed by bone marrow biopsy. 

 

 

Figure 5.2 Distribution of variants in AML cases. (A) The first panel displays a heatmap of the 

distribution of variants in all the AML cases reported. Each row represents a single gene, and 

each column represents a MyeloSeq case report (n = 122). Each colored square represents if a 

variant was observed in the designated gene. Colors indicate the variant type. If there was more 

https://paperpile.com/c/92aiQS/sI3An+rE5nw
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than one variant observed per case, the most deleterious variant, based on the variant effect 

prediction (VEP)34 was listed. The bottom bar indicates the FLT3 status for all 122 patients. The 

bar color indicates the type of FLT3 variant (ITD vs. TKI). (B) The second panel displays the 

percent of all cases whereby a variant was observed on the gene. Each row represents a single 

gene, and the color indicates the variant type. Again, if more than one variant was observed per 

case, the most deleterious variant was listed. 

MyeloSeq® panels were ordered at different timepoints during the disease course (Figure 5.3). For 

the first MyeloSeq® ordered, the most common time point was at diagnosis of AML (n = 65; 54%). The 

next most common time point was during induction therapy (n = 19; 15.7%). 7 were ordered during 7 + 3 

induction, 10 were ordered during treatment with Decitabine, and 2 were ordered during treatment with 

Vyxeos. Additionally, 11 MyeloSeq® panels were ordered during or after consolidation chemotherapy and 

4 were ordered after a stem cell transplant. Typically, if a second or third MyeloSeq® panel was ordered, 

it was ordered during consolidation / salvage therapy (n = 10 / 12; 83.3%). Of note, all patients (n = 9) that 

had non-traditional induction therapy (i.e., Clinical Trial or Other Induction Therapy) had a MyeloSeq® 

test performed at diagnosis of disease. 

 

 

Figure 5.3 Alluvial plot demonstrating the disease course for all 108 patients evaluated with 

the MyeloSeq panel. The disease course was split into 5 phases. Past history indicates if the 

patient had a history of myelodysplastic syndrome (MDS) or therapy-related AML. Diagnosis of 

AML indicates the 108 patients included in the study. Each patient (except for one) had an 

induction therapy (e.g., 7 + 3, decitabine, vyxeos, or other), and most patients (75 / 108) had 
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consolidation or salvage therapy. These consolidation / salvage therapies included: 1) 

consolidation chemotherapy (i.e., HiDAC, Ventoclax, Decitabine), 2) stem cell transplant (Donor 

lymphocyte infusion, Allogeneic SCT, matched unrelated donor SCT, Cytokine-induced Memory-

like NK Cell infusion, etc.), 3) enrollment into a clinical trial, or 4) salvage chemotherapy (e.g., 

CLAM, MEC, Targeted Therapeutic, DART). Outcomes for each patient included remission, 

persistent disease, or death. Lack of one-to-one mapping between sections is due to incomplete 

disease course. The red boxes within each section indicate if a MyeloSeq®️ was ordered for a 

patient. The value within the box indicates the number of patients that had a MyeloSeq®️ ordered 

at a specific time point given a specific disease course (e.g., 21 patients had a MyeloSeq®️ ordered 

at diagnosis with disease course of de-novo AML and 7+3 induction therapy). The majority of 

MyeloSeqs®️ were ordered at diagnosis and most patients that strayed from traditional therapy 

(e.g., other induction therapy or clinical trial recruitment) had a MyeloSeq ordered prior to 

enrollment.  

 

5.4.3 Changes in treatment regimens in response to single variants observed on 

MyeloSeq® 

Physicians provided survey responses for 120 of the 122 AML samples, which represents a 98.3% 

response rate. Of the 120 cases with survey responses, 6 were ineligible for further analysis. 

Specifically, 2 patients were lost to follow-up, 3 patients declined treatment, and 1 patient pursued 

care at an outside hospital. Of the remaining 114 cases that were eligible, physicians indicated that 

they changed their therapeutic plan based on the MyeloSeq® results for 43.8% of all cases (n = 

50) (Figure 5.4A). In 33 of these 50 cases, physicians indicated that they recommended therapy 

based on the mutated gene identified by MyeloSeq® panel results (Figure 5.4B).  A 

hypomethylating agent was started for 14 cases based on a TP5371 or TET2149,150 variant, kinase 

inhibitors (midostaurin or gilteritinib) were used in 12 patients with a FLT3 variant151 and 1 patient 

with a KIT variant152, and IDH1 / IDH2 inhibitors were used in 8 cases153. Of these six genes 

(TP53, TET2, FLT3, KIT, IDH1, IDH2) that resulted in a therapeutic intervention, only 3 have 

FDA-approved companion diagnostics.154 There were 3 additional patients enrolled into clinical 

trials based on observed MyeloSeq® variants. Two patients had ASXL1 variants, which supported 

https://paperpile.com/c/92aiQS/be1e
https://paperpile.com/c/92aiQS/LcAez+8c5oz
https://paperpile.com/c/92aiQS/N9Llu
https://paperpile.com/c/92aiQS/6ZoXT
https://paperpile.com/c/92aiQS/45Of8
https://paperpile.com/c/92aiQS/KBzkT
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enrollment into a cytokine induced memory-like (CIML) natural killer (NK) cells study, and one 

patient was enrolled in a clinical trial that uses residual disease to guide consolidation therapy 

based on observed MyeloSeq® variants.  

The MyeloSeq® report was also used for prognostic indications. Specifically, 2 patients 

were offered a transplant based on TP53 variant status, 1 patient went to transplant based on 

DNMT3A variant status, 1 patient was offered stem cell transplant based on observation of 

measurable residual disease (MRD+), and 1 patient received a Donor Lymphocyte Infusion (DLI) 

based on clonal tracking. Additionally, 5 cases had low-risk profiles determined by either bi-allelic 

CEBPA variants, KIT variants, or other methods (e.g., no high-risk variants observed). For these 

patients, chemotherapy was recommended for consolidation (Figure 5.4B).  

Four physicians used the MyeloSeq® reports to inform diagnosis of disease. One physician 

used the report to confirm AML from a previous diagnosis of MDS, two physicians confirmed 

relapse in patients that had negative bone marrow biopsies, and one physician used the MyeloSeq® 

results to confirm remission (Figure 5.4B). 
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Figure 5.4 Impact of MyeloSeq® report in changing treatment protocols for patients. (A) In 

total, 346 cases were enrolled as part of the study whereby 121 had a definitive diagnosis of AML. 

Of those 121 cases, 119 had a reported survey. Six cases were ineligible for analysis (e.g., Lost to 

Followup, Refused Treatment). Of all 113 eligible cases, 50 cases (44%) have a documented 

change in therapy based on the MyeloSeq® report. (B) Among all 50 cases whereby therapy was 

altered, it was reported that 39 new therapies were introduced, 13 MyeloSeq® reports provided 

prognostic information, and 4 MyeloSeq® reports were used to confirm a diagnosis. For 

physicians that did not use the MyeloSeq® results to inform decision making, 14 stated that there 

were no actionable variants, 8 physicians mentioned that the patient died before results were 

returned, 6 mentioned that the report did not alter their predetermined treatment path (i.e., 

confirmed current treatment protocol), and 34 did not provide a reason for their response. (C) 

There were 14 physicians who contributed at least one survey to this study. In general, there were 

no major outliers with regards to the number of eligible surveys and number of cases whereby the 

physician changed the therapeutic plan. 
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5.4.4 Cases with no change in treatment regimens in response to MyeloSeq® 

reports 

There were 64 cases where the physician noted that he or she did not change their therapeutic plan 

based on the MyeloSeq® report. The majority of cases (n = 34) did not state a reason for why the 

results were not used. Of the reasons cited for lack of use, the most common was that there were 

no actionable variants observed by MyeloSeq® (n = 14). 8 physicians mentioned that the report 

took too long, and that the patient expired prior to receiving results. Additionally, 7 physicians 

mentioned that the MyeloSeq® results did not provide additional information and merely 

confirmed what was already known about the patient. For example, the presence of high-risk 

variants detected by cytogenetics would have led the physician to recommend hematopoietic stem 

cell transplant regardless of the MyeloSeq® results (Figure 5.4B). 

There were 14 physicians who provided at least one eligible survey for this study 

(Appendix 9, Table S4). The total number of eligible surveys completed by each physician and 

the total number of cases where the physician changed his or her plan is shown in Figure 5.4C. In 

general, there was high participation from all physicians with no noticeable differences between 

physician behaviors. 

5.4.5 Multi-target and obscure uses of the MyeloSeq® capture panel results 

In addition to the clear changes in therapy as described above, the interaction between variants 

observed on MyeloSeq® were also used to direct care. For example, in one case, the physician 

mentioned that the combination of DNMT3, NPM1, and FLT3 ITD variants observed on Myloseq® 

implied that the patient had aggressive disease, which required immediate transplant. For another 

patient, a GATA2 variant was observed at a 52% VAF, which required a subsequent skin biopsy 
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to confirm lack of germline predisposition for disease. The physician noted that even though he 

did not change his treatment plan based on the MyeloSeq® report, there would have been treatment 

implication if there had been a germline polymorphism present. Finally, an additional physician 

noted that the results from 2 MyeloSeq® tests performed on the same patient, before and after 

consolidation therapy, showed that all variants cleared, except for a DNMT3A mutation. This 

variant had an original VAF of 42% and a persistent VAF of 43% after consolidation. MRD testing 

on her bone marrow at the same time was negative. The clearance of all previous variants and her 

cytogenetic abnormality, with the exception of the DNMT3A R882H variant with a VAF of 42%, 

suggested that the variant is evidence of age-related clonal hematopoiesis with an increased risk 

of relapse over time. The combination of data informed the plan to not transplant, despite the 

persistence of a single DNMT3A variant. This patient was closely monitored for relapse due to the 

noted increased risk. 

5.4.6 Evaluation of patients who completed multiple MyeloSeq® panels at 

varied timepoints 

There were 12 patients who had multiple MyeloSeq® panels ordered at different times during their 

disease course (Figure 5.5, Appendix 8, Figure S2). In many of these cases, it was observed that 

physicians used the MyeloSeq® panels for non-indicated use. For example, in Figure 5.5A, the 

physician ordered a MyeloSeq® panel at diagnosis and prior to induction chemotherapy. At this 

second time point, the physician stated that the patient had been on IDHIFA (enasidenib) to target 

the IDH2 variant observed at diagnosis, however the second MyeloSeq® report showed residual 

disease with an IDH2 variant allele frequency (VAF) of 39%. Given a lack of response to the 

targeted therapy, it was mentioned that a new approach might be used for future salvage. Figure 

5.5B demonstrated a case where the physician obtained 3 MyeloSeq® panels for the patient. The 
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first MyeloSeq® demonstrated relapse post-transplant with 4 detected variants. Subsequently, a 

MyeloSeq® test was ordered during remission after salvage therapy where there was no 

measurable residual disease. Two months later, during a disease-free interval, the physician 

ordered a third MyeloSeq® test, which showed recurrence of disease despite no excess blasts on 

the bone marrow biopsy (BMBx). The physician noted the requirement for a second stem cell 

transplant based on the MRD and MyeloSeq® results. Figure 5.5C showed how a physician used 

multiple MyeloSeqs®️ to follow the patient’s response to a donor lymphocyte infusion (DLI). After 

3 months, the MyeloSeq® report showed that VAFs for all observed variants were reduced by 7-

23%, which indicated response to treatment. In this case, the physician noted that further reduction 

in the tumor burden would indicate success of the stem cell transplant. Finally, Figure 5.5D 

showed how the physician used the MyeloSeq® reports to demonstrate extramedullary relapse in 

a patient with negative BMBx findings. Specifically, the initial BMBx performed at an outside 

hospital was evaluated using the MyeloSeq® panel. Subsequently, the patient developed peri-

esophageal lesions, which were biopsied and also evaluated using the MyeloSeq® panel. It was 

observed that the extramedullary disease showed presence of some original variants (NF1 and 

EZH2), loss of other variants (DNMT3A) and three novel variants (CUX1, PTPN11, and WT1). 

These data confirmed relapse and demonstrated novel variants that were not originally present in 

the primary tumor, some of which have clinical implications.155,156 The complete set of cases with 

multiple MyeloSeq® reports are provided in Appendix 8, Figure S2. 

https://paperpile.com/c/92aiQS/eNXUv+T5PvX
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Figure 5.5 Use of multiple MyeloSeq® reports to alter treatment plans for patients with 

AML.  Each panel represents a single patient where multiple MyeloSeq® panels were ordered. 

The plot indicates the variants observed with associated variant allele frequencies (VAFs). Each 

time point is labeled with associated bone marrow biopsy (BMBx) results and measurable residual 

disease (MRD) results, if available. Below each graph is a direct quote from physicians who 

ordered the report. (A) This example showed how the MyeloSeq® panel assessed for residual 

disease, to indicate require treatment with salvage therapy. (B) The second example demonstrated 

how MyeloSeq® results influenced the decision to initiate a second stem cell transplant (SCT) 

despite the patient being in clinical remission based on bone marrow biopsy results. (C) The third 

example showed how the MyeloSeq® panel was used to track efficacy of a donor lymphocyte 

infusion (DLI). (D) The final example demonstrates how the MyeloSeq® panel was used to 

diagnose extramedullary recurrence given a negative bone marrow biopsy. 
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5.5 Discussion 

This study reviews the utility of the MyeloSeq® clinical capture panel to inform treatment 

decisions for patients with AML. We showed that physicians changed their treatment plan in 44% 

of all eligible cases based on the MyeloSeq® results. Specifically, the genomic data influenced the 

prescription of targeted therapeutics, altered the consolidation therapy recommendations (HiDAC 

vs. stem cell transplant vs. other), and provided a definitive diagnosis of disease. Of the physicians 

that did not use the MyeloSeq® panel to change a specific treatment protocol (n = 64 cases), 21 

stated that the panel was still informative in some manner (e.g., reaffirmed existing decision or no 

targetable variants were identified). This indicates that in this study, the genomic data was 

informing treatment decisions at a much higher rate than previously cited studies.157 

It was observed that physicians used the MyeloSeq® panel in ways that were out of scope 

of the intention and indications claimed by the LDT. For example, there were 12 cases (10% of all 

AML cases) whereby the physician ordered at least two MyeloSeq® panels for the same patient at 

different times during the disease course. In these cases, physicians were typically monitoring 

measurable residual disease (MRD) and evaluating clonal / sub-clonal populations. MRD 

positivity and clonal evolution have known implications in patient outcomes and are important for 

optimizing patient care.68,158 Additionally, although 65 MyeloSeq® reports were generated at 

initial diagnosis (54%), more than 40% of all reports were requested at relapse or during remission. 

The results from this study also demonstrate that a multi-target assay that evaluated many 

recurrently mutated variants is preferred to single-variant diagnostics. Specifically, it was observed 

that the broad usage of the MyeloSeq® test supports the use of a multi-target approach for 

assessing disease. Specifically, only 21 cases (18%) revealed a variant that had an associated FDA-

https://paperpile.com/c/92aiQS/ZD0Gv
https://paperpile.com/c/92aiQS/3AEr+uRh2M
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approved companion diagnostic (LeukoStrat CDx for FLT3, Abbott RealTime for IDH1, and 

Abbott RealTime for IDH2). However, in the majority of cases where therapy was changed, the 

physician either utilized a variant that does not have an FDA-approved diagnostic, or the physician 

assessed multiple variants to inform decisions. 

The use of a tumor-only panel was observed to be a limitation of this approach. 

Specifically, lack of a germline / normal reference prevents variants from being definitively called 

as putative somatic and many variants being observed are potentially single nucleotide 

polymorphisms or de-novo germline variants. In one case, a possible germline variant (GATA2) 

was identified leading to further genetic testing for the patient to confirm somatic versus germline 

variant status. Introduction of a matched-normal sample could improve the variant calling pipeline 

and overall annotation of variants in the analysis. 

The results from this study demonstrate that genomic data from targeted capture panels are 

providing physicians with information that is directly impacting patient care. On the surface it is 

clear that capture panels can identify variants that have associated targeted therapeutics or that 

provide prognostic indications, however, here we show that genomic data is being used more 

extensively by physicians. Multiple-analyte diagnostics like the MyeloSeq® panel have 

capabilities to monitor for residual disease or show expansion of tumor subclones over time. They 

can be used to improve sensitivity of remission status and indicate relapse prior to the onset of 

symptoms. Given the rapid turn-around time (~2 weeks) and the accuracy of the UMI-based 

sequencing approach, the MyeloSeq® capture panels, and other similar types of capture panels, 

have the potential to improve upon traditional assays (e.g., bone marrow biopsy or PCR-based 

diagnostics) for certain indications. Based on these initial data, it is clear that the measurement of 

genetically defined variants could provide an optimal and more accurate method to classify 
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patients according to their risk of recurrence. This study provides justification for use of the 

MyeloSeq® LDT, or a similar UMI-based capture panel at all points in the disease course for 

patients with AML. 

5.6 Methods and experimental procedures 

5.6.1 Study design and patient eligibility 

This study was conducted at the Washington University School of Medicine after approval by the 

institutional review board. Patients were eligible for assessment if a MyeloSeq® gene panel was 

ordered by a provider at any point in their treatment between August 17th, 2018 and April 9th, 

2019. The MyeloSeq® panel is a targeted sequencing assay that evaluates 40 genes and gene 

hotspots that are recurrently mutated in myeloid malignancies (www.meyloseq.com; Appendix 9, 

Table S1). For each patient found to have a definitive diagnosis of acute myeloid leukemia (AML), 

excluding those with acute promyelocytic leukemia (APL) subtype, a survey was sent to the 

treating physician. The physician was instructed to complete a 16-question survey, which queried 

how the physician used the MyeloSeq® panel, if at all, to inform treatment decisions (Appendix 

9, Table S2). In instances where the provider indicated a change in therapy but did not indicate 

the reason for change, the rationale was identified and confirmed via independent chart review of 

the patient. 

5.6.2 MyeloSeq® processing 

The panel utilizes an amplicon capture-based enrichment with unique molecular identifier (UMI) 

for ultra-high variant sensitivity that targets an approximately 98,000 base-pair space. The 

MyeloSeq® panel is recommended for the following conditions: Acute Myeloid Leukemia 

(AML), Myelodysplastic Syndrome (MDS), Cytopenia, Clonal Cytopenia of Undetermined 

http://www.meyloseq.com/
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Significance (CCUS), Clonal Hematopoiesis of Indeterminate Significance (CHIP), 

Myeloproliferative neoplasm (MPN), and Myeloid Disorder. Specimens were obtained from bone 

marrow aspirate, peripheral blood, or DNA extracted from fresh tissue. All steps of sample 

processing were performed in College of American Pathologists (CAP)-accredited, Clinical 

Laboratory Improvement Amendments (CLIA)-certified clinical diagnostic laboratories. 

Target enrichment for the MyeloSeq® assay used a commercially available, targeted, next-

generation sequencing approach (HaloplexHS, Agilent Technologies). Preparation consisted of 1) 

enzymatic fragmentation; 2) strand-specific ligation of sequencing primers, sample indexes, 10-

bp degenerate molecular barcodes, and a biotin tag to single DNA molecules; 3) rapid liquid-phase 

enrichment of target loci using paramagnetic streptavidin-coated beads; and 4) on-bead PCR 

amplification. Sequencing was performed using the Illumina MiniSeq sequencing platform. 

Analysis of the sequence data was performed by aggregating individual reads with identical UMIs 

into consensus reads using customized GATK16 software. The minimum read family size was 5 

reads and consensus bases had to be in at least 2/3 of the reads in the read family. 

Variant calling for the MyeloSeq® assay was performed using a computational pipeline 

that employs custom-built tools created at Washington University. Sequencer generated FASTQ 

files are first demultiplexed and aligned to the reference genome (GRCh37.2). Overall reads must 

exceed 1,000,000 total reads with >98% aligned. During this process, UMI sequences are added 

to the BAM file. Once aligned, a custom Java-based tool collapsed reads into read families and 

collapsed BAMs were used with standard variant calling tools, including Varscan219, Platypus159, 

and Pindel61. Quality check (QC) required mean unique coverage to exceed 500 reads. Genes 

passed QC thresholds if >90% of positions within the targeted region had >50x coverage. These 

programs detected single nucleotide substitutions (SNVs), insertions or deletions (indels) up to 

https://paperpile.com/c/92aiQS/JPeZ
https://paperpile.com/c/92aiQS/kTku
https://paperpile.com/c/92aiQS/K9d5y
https://paperpile.com/c/92aiQS/qFbe
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10bp, and FLT3 internal tandem duplication (ITD) insertions between 21 and 108 bp. Initial variant 

annotation was performed using the Variant Effect Predictor tool (VEP).160 Annotation was 

augmented by using a custom VCF file with variants identified in the AML The Cancer Genome 

Atlas data set as well as variants observed in 3 published sequencing reports that evaluated patients 

with MDS.161–163 The final output from the VEP annotation is an annotated VCF file and a text file 

with variant information. Variant identification was subject to the following thresholds and cutoffs: 

1) variants must be nonsynonymous, 2) 2% minimum VAF and 5 variant reads with support on 

each strand (FLT3 ITD alleles require 1 read on each strand), 3) amplicons must have at least 5 

reads assigned to it during consensus bam formation, and 4) 0.1% maximum population allele 

frequency (MAX_AF across all populations) for reporting as a potential somatic variants (1000 

genomes, ExAC, gnomAD databases) OR presence in a custom MDS/AML variant database. 

5.6.3 MyeloSeq® annotation and physician survey 

MyeloSeq® reports were generated using annotated Variant Call Format (VCF) files, Binary 

Alignment Map (BAM) files, preliminary clinical annotation, and quality metrics. Briefly, tier 1 

(variants with strong clinical significance) and tier 2 variants (variants with potential clinical 

significance),126 filtered variants (i.e., variant allele frequency <2%), and variants of unknown 

significance were manually reviewed for clinical relevance. These variants were used to generate 

a clinical assertion that summarizes all relevant findings. Information in the assertions included 

interpretation from National Comprehensive Cancer Network (NCCN) guidelines, WHO 

recommendations, and outcome data from high-quality journals, as it relates to disease prognosis 

and therapeutic sensitivity / response. Reports were reviewed by faculty members from the 

Washington University Department of Pathology & Immunology and signed-out within the secure 

https://paperpile.com/c/92aiQS/Pe8tB
https://paperpile.com/c/92aiQS/pHbVM+9S28b+4VVgj
https://paperpile.com/c/92aiQS/f5rTz
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network. The final report was integrated into the patient’s electronic medical record (EMR) for 

review by the treating physician. 
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Chapter 6: Conclusion 

6.1 Preamble 

The preliminary steps in massively parallel sequencing (MPS) workflows (i.e., sample 

procurement, nucleic acid extraction, library preparation, and sequencing), have now been highly 

automated with platforms that permit high-throughput evaluation. However, the subsequent steps 

of alignment / variant calling, somatic variant refinement, and clinical annotation, are not 

standardized between and across laboratories and they require extensive manual labor to complete. 

Collectively, these steps are referred to as the annotation or analysis bottleneck.25,45 The focus of 

this research was to develop bioinformatic tools that alleviate the analysis bottleneck within 

precision oncology (Figure 6.1). First, it was observed that automated somatic variant calling of 

aligned sequencing reads is deeply flawed and results in many false positives that are attributable 

to sequencing artifacts. As a response, DeepSVR, which is a deep learning somatic variant 

refinement algorithm, was built to eliminate false positives associated with automated somatic 

variant calling. Second, it was recognized that manual review of potential somatic variants is 

required within the MPS pipeline. However, methods for manual review are underreported and not 

standardized, which results in lack of reproducibility and highly variable manual review strategies 

between institutions. Therefore, a Standard Operating Procedure was developed and validated to 

optimize manual review of somatic variants. It was also observed that variant annotation and report 

generation was a highly manual process with high variability between and across institutions. To 

address existing issues with variant annotation, the Open-sourced Clinical Annotation Pipeline 

(OpenCAP) was developed to generate clinically relevant capture panels linked to automated 

clinical reports for physician use. Finally, many of these variant calling and reporting strategies 

described above were tested using the MyeloSeq®️ capture panel. This study demonstrated the 

https://paperpile.com/c/92aiQS/DIo5+RykF


 

 

115 

utility of genomic data in driving change within treatment protocols to improve patient care. 

Collectively, we validated that these resources would reduce the manual labor required to execute 

the precision medicine pipeline to hopefully improve the ability for physicians to deliver optimal 

care to their patients. 

 

Figure 6.1 Tools to address the annotation bottleneck within precision oncology. The 

precision oncology pipeline is composed of at least seven discrete steps. The first four steps 

(sample procurement, nucleic acid extraction, library preparation, and massively parallel 

sequencing) are all optimized and high-throughput processes. The three following steps 

sequencing (alignment / automated variant calling, somatic variant refinement, and clinical 

annotation) still require an immense amount of manual labor to properly execute. Combined, these 

steps are referred to as the annotation bottleneck. The research outlined here describe three tools 

that alleviate the annotation bottleneck. DeepSVR is a machine learning approach to improve 
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automated somatic variant calling; the manual review standard operating procedure standardizes 

the manual review process required for somatic variant refinement; and the Open-sourced 

Clinical Annotation Pipeline (OpenCAP) develops automated clinical reports for physicians using 

the CIViC database. Execution of genomic report generation was validated using the MyeloSeq®️ 
clinical capture panel. These resources reduce the manual labor required to execute the precision 
medicine pipeline. 

6.2 Summary and future direction for presented 

bioinformatic tools 

6.2.1 DeepSVR is a machine learning approach that successfully recapitulate 

manual review of aligned sequencing reads 

Automated somatic variant callers have known issues with identifying true somatic variants. 

Specifically, many variants called as somatic by traditional software are subsequently determined 

to be false positives by manual review or orthogonal sequencing. This occurs because traditional 

variant callers use simplistic algorithms that consider a minimal number of features for calling 

variants as somatic. To improve upon existing automated somatic variant calling software, we 

developed DeepSVR, which is a machine learning approach that recapitulates manual review 

labels. The algorithm was built using 41,000 manually reviewed variant calls derived from 405 

tumors across 9 tumor subtypes. The model demonstrated high accuracy when performing internal 

cross-validation (ROC AUC = 0.96) and when evaluating a hold-out test set (ROC AUC = 0.96). 

The model also demonstrated high performance when comparing model labels to orthogonal 

sequencing data (n = 212,158; ROC AUC = 0.95). This model was packaged as a python 

application and made public via BioConda. Subsequently, a usage tutorial was made available on 

GitHub. The software could be integrated into the variant calling pipeline to identify the majority 

of false positives called by automated variant callers. This would dramatically reduce the labor 



 

 

117 

required to define and annotate variants associated with an individual’s tumor and would improve 

the accuracy of clinical reports generated from sequencing data. 

6.2.2 Manual review standard operating procedure (SOP) improves accuracy 

and reproducibility of somatic variant refinement 

After automated somatic variant calling, manual review is required for defining a putative list of 

true somatic variants associated with a patient’s tumor. Although manual review is a very 

important step in the MPS pipeline, guidelines for proper execution are not well described. 

Therefore, we developed a manual review SOP to provide guidance on the manual review of 

aligned sequencing reads to determine if a variant called by automated somatic variant callers is a 

true somatic variant or a false positive. This SOP first describes data visualization setup using IGV 

and IGVNav. Subsequently, the SOP describes methods for review of individual variants. This 

includes making a variant call (somatic, ambiguous, fail, or germline) and, if needed, annotating 

variants using tags (e.g., low mapping, high discrepancy region, etc.) or notes (e.g., dinucleotides, 

SNP, etc.) to describe observations made during manual review. In this SOP, we also provide 

Supplemental Materials, which contain examples and descriptions of all calls and tags. The SOP 

was validated by evaluating manual review performance that was completed by novice reviewers. 

These reviewers assessed somatic variants before and after reading the SOP and manual review 

labels were compared to the true variant status, which was determined via orthogonal sequencing. 

This validation showed that the SOP improves somatic variant identification by 16.7% and 

increased inter-reviewer agreement by 12.7%.  Therefore, this research demonstrated that the 

manual review SOP improves the somatic variant refinement step in the MPS pipeline. 
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6.2.3 The open-sourced CIViC Annotation Pipeline (OpenCAP) permits 

development of rationally designed clinical capture panels linked to clinical 

relevance summaries 

Clinical annotation is a severe bottleneck within the precision oncology pipeline. For each cancer 

patient, there can be hundreds of true somatic variants that all require annotation and prioritization 

to optimize a custom treatment protocol for each individual. There are several issues with the 

existing methods used for clinical annotation. First, surveying the literature to obtain all 

information about a specific variant is time consuming and expensive. Typically, it is difficult for 

annotators to access and review all required data associated with a variant and they therefore miss 

critical information needed for evaluation. Second, condensing all information into a single 

actionability statement is convoluted and many variants have confounding or conflicting evidence 

that add complexity to variant annotation. Additionally, evidence from various sources should not 

be weighted equally and therefore cannot be combined into a single statement. Finally, generating 

a report in a timely fashion that is easily readable by physicians is not straightforward. Physician 

literacy with regards to genomic data can be limited and interpretation of reports is highly 

variable.42,164 To address these issues, we presented the Open-sourced CIViC Annotation Pipeline 

(OpenCAP), which is an online tool that can build clinically relevant capture panels and generate 

clinical reports using variant coordinates. These reports contain information about the variant (e.g., 

MyVariant.info, coordinates, HGVS expressions, etc.), clinical information (Variant Descriptions, 

and Assertions), as well as evidence support linked to publications (i.e., PubMed IDs and ASCO 

IDs) in the form of Evidence Items. The OpenCAP software was tested using a validation panel 

and 27 individuals with known exome / genome sequencing. The panel built using OpenCAP 

https://paperpile.com/c/92aiQS/tH2N+mqaB
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showed 95% sensitivity in detecting variants observed on original sequencing and all variants were 

successfully analyzed by the software (Appendix 7; Figure S1). OpenCAP will serve as a tool 

that can automate variant annotation to eliminate the need for literature search and manual report 

generation. 

6.2.4 The MyeloSeq® capture panel demonstrates clinical utility of genomic 

testing 

The MyeloSeq® clinical capture panel is an LDT diagnostic that evaluates 40 genes recurrently 

mutated in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Using the 

MyeloSeq® clinical capture panel, we demonstrated that successful genomic identification and 

annotation greatly impacted clinical care of cancer patients. Specifically, we surveyed physicians 

who used the MyeloSeq® panel for their patients and observed that 44% of physicians changed 

their treatment plan based on MyeloSeq® Results. Changes in treatment protocols included adding 

39 targeted therapeutics to patients with a targetable variant, altering consolidation therapy in 10 

cases based on prognostic information, and confirming AML relapse, or remission for 4 cases 

where a definitive diagnosis was not possible based on bone marrow biopsy alone. The reported 

response rate from MyeloSeq® panel was elevated relative to previously cited response rates for 

other types of genomic data.123,165 These results provide evidence that alleviation of the annotation 

bottleneck improves ability for physicians to identify actionable variants and incorporate their 

implications into patient treatment protocols. 

https://paperpile.com/c/92aiQS/4ilZ+AO9y
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6.3 Future Direction of Existing Projects 

6.3.1 Additional features required for the DeepSVR to improve usage and 

accuracy 

Currently, DeepSVR is designed to assess variants that were called based on sequencing data from 

paired tumor and normal samples. Although several deviations from the testing set were assessed 

(e.g., different tumor types, alignment to an alternate reference genome, etc.), there are many 

situations that are not currently supported. For example, the algorithm cannot evaluate tumor-only 

variants and it cannot incorporate additional support from other sample types (e.g., sequencing 

data from a metastatic tumor or RNA sequencing data). To incorporate these situations, we will 

need to train the model with novel variant features such as population-level data (e.g., minor allele 

frequencies) and sequencing context (e.g., sequence conservation, or proximity to repeat 

elements). Additionally, the algorithm is exclusively provided on a python-based platform and is 

not available for other types of coding platforms such as R. These feature limitations reduce total 

usability for individuals who wish to incorporate the algorithm into their sequencing pipelines. 

Therefore, supplementing existing software with additional features that increase utility for these 

common use-cases would be important to optimize integration into workflows. 

6.3.2 Improvements of the manual review standard operating procedure to 

increase utility 

Although the manual review SOP addresses many issues associated with the existing refinement 

paradigm, there are several additional features that could be implemented to improve the existing 

version of the SOP. The current version provides instructions for visualizing sequencing data using 

IGV with paired tumor / normal samples. It is our hope to augment this SOP by adding instruction 



 

 

121 

for tumor-only samples, samples with additional sequencing data (e.g., primary tumors from 

different timepoints, metastatic samples, RNA sequencing, circulating tumor cells, etc.), and 

samples with different sequencing approaches (e.g., targeted amplicon sequencing). Additionally, 

we could comment on other common genomic visualization software such as Savant, Trackster, 

BamView to assist individuals who do not use IGV for genomic visualization. Other developments 

could include integration of variant annotation into the SOP and into IGVNav. This would require 

variant annotation with software such as Variant Effect Predictor (VEP) and using the output from 

this software to inform manual review calls. For example, variants could be annotated with 

gnomAD values using VEP and we could provide guidance on how these values could be used to 

inform manual review calls. We could subsequently add features to the IGVNav software to 

indicate that these annotations informed the ultimate call of the variant.  

6.3.3 Expanding Open-sourced CIViC Annotation Pipeline (OpenCAP) for 

development of rationally designed clinical capture panels linked to clinical 

relevance summaries 

OpenCAP serves two main functions for users. The first allows for the generation of custom 

capture panels that are linked to clinically relevant variant knowledge. There are several limitations 

associated with this portion of the software. For example, OpenCAP only pulls variants from a 

single database (CIViC) and is limited by the features that are incorporated into CIViC variant 

curation. This could be improved by incorporating additional variant curation databases such as 

OncoKB, PMKB, and the CGI, and using variant data that are not available in CIViC (e.g., VEP 

annotations, or dbSNP frequencies). OpenCAP’s second function is to generate clinically 

actionable reports for physician use. There are also many limitations associated with the annotation 
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feature of the software. Specifically, that output reports only generate annotation if the variant 

observed in the patient had a direct overlap with the CIViC database (chromosome, start, stop, 

reference allele, and variant allele). There is need to support categorical variants, which are a 

collection of variants that fit a named category (e.g., KRAS G12/G13, EGFR Exon 20 Insertion, 

and PIK3CA Mutation). Additionally, there have been requests to incorporate information about 

interaction between variants. For example, the presence of two specific variants has a different 

clinical implication relative to when variants are observed in isolation. This type of information 

should also be made available in OpenCAP reports. 

6.3.4 Expanding the MyeloSeq®️ panel results to broader applications 

The MyeloSeq®️ capture panel was used to determine how physicians use genomic data to change 

treatment protocols for their patients. Through surveys, we demonstrated that genomic data was 

used in the treatment of AML to inform prescription of targeted therapeutics, methods for 

consolidation therapy, and diagnosis of disease status. Beyond these direct clinical implications, 

the genomic data was also used for residual disease monitoring, confirmation of extramedullary 

relapse, and evaluating for efficacy of therapy. Although these preliminary results demonstrated 

how genomic data impacts treatment, there are several limitations and future directions that could 

be tested to bolster these claims. Specifically, this study evaluated a single disease (AML) at a 

single institution. Additionally, the test was being offered at a large academic institution with 

highly knowledgeable physicians and extensive genomic resources. Expanding to smaller sites, 

non-academic institutions, and local hospitals could inform the scalability, general applicability, 

and broader impact of this type of test. Additionally, the research focused exclusively on 

hematologic malignancy and specifically focused on AML. This disease has a well-defined 

genomic landscape with known implications in disease. AML has several FDA-approved targeted 
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therapeutics, many on-going clinical trials based on observed variants, and described prognostic 

indications based on genomic data. Therefore, the results from this study might not be easily 

extrapolated to other disease states. It will be important to assess the utility of other types of 

genomic diagnostics in terms of changing treatment protocols for those cohorts of individuals.   

6.4 Remaining barriers and future horizon within precision 

oncology 

In theory, precision oncology is an elegant and obvious method for optimizing treatment protocols 

for patients. In practice, however, the components and logistics required to effectively actualize 

precision oncology are extensive. In this research, we described many of the technological barriers 

preventing adoption of precision oncology and presented solutions to some of these barriers. 

However, there are additional challenges that must be overcome to further improve the depth and 

breadth of precision oncology. These include providing increased access to therapy, broader access 

to clinical trials, and improved education for patients and physicians.166  

Treatment modalities that harness precision oncology are not widely accessible to all 

populations. Targeted therapeutics tend to be much more expensive than traditional cytotoxic 

chemotherapies and are therefore typically not first-line treatment unless patients can afford to pay 

out-of-pocket expenses.167 Additionally, many of these medications are not be accepted by all 

insurance policies and are not available to people without insurance.168 Beyond added expense, 

biologics or targeted therapies, such as monoclonal antibodies, typically require special drug 

delivery (e.g., injections), which requires regular access to larger hospitals or clinical care centers 

that have training and experience with these drugs.  

https://paperpile.com/c/92aiQS/9m4M
https://paperpile.com/c/92aiQS/gxmM
https://paperpile.com/c/92aiQS/tsV9
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In addition to medication access, clinical trial enrollment also results in differential care 

for underrepresented populations. Specifically, there are known issues with recruiting women and 

minorities into clinical trials.169 Lack of women and minorities in these trials means that the clinical 

trial results do not reflect the ultimate performance of the tests for these patient populations. It also 

means that women and minorities do not have equal opportunity for enrollment in these clinical 

trials and therefore have a reduced access during drug development. Given that pharmaceuticals 

have a long path to market, this discrepancy in enrollment could significantly impact care for years 

or even decades. Both of these issues prevent the optimization of precision oncology for 

individuals with variants that might respond to the treatment modalities being tested in the clinics. 

In addition to the bias against women and minorities, rural populations are also underrepresented 

in clinical trial outcomes.170 Similar to issues described above, rural populations have reduced 

access to large academic hospitals and an inability to regularly attend appointments, which makes 

them less desirable to enroll into clinical trials.171 The outcome is a systemic bias against certain 

populations with reduced access to targeted therapy for cancer care. 

Beyond known health disparities that hinder access to customized medicine, lack of health 

literacy among patients and the medical care team creates persistent obstacles in properly 

executing on precision oncology. There are three specific educational gaps that exist within 

precision oncology: 1) physician health literacy, 2) patient health literacy, and 3) communication 

between patients and their providers. It is recognized that there is a gap in knowledge with regards 

to genomic understanding at the physician level.164 Specifically, provider specialty, location, years 

of practice, and the type of genomic services all impact the ability for physicians to understand 

genetic information. Finally, even when physicians understand and effectively act on the genomic 

data, their ability to convey this information to their patients is limited.43,172,173 This ultimately 

https://paperpile.com/c/92aiQS/419B
https://paperpile.com/c/92aiQS/IWkY
https://paperpile.com/c/92aiQS/x5Nc
https://paperpile.com/c/92aiQS/tH2N
https://paperpile.com/c/92aiQS/F7Hb+XDyi+Ord5
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limits the ability for patients to effectively understand their disease, which impacts the decision 

making process and appropriate path of care for the patient and their family. 

In summary, beyond the technological barriers preventing implementation of precision 

oncology to clinical workflows, it is important to consider the social aspects that also hinder 

adoption. As we continue to improve sequencing and annotation technology, it will be necessary 

to build infrastructure that supports all patients, regardless of race, ethnicity, social status, or 

geographic location. This can potentially be accomplished through mandating equal representation 

within clinical trials, improving the educational tools for patients and physicians, and providing 

universal access to healthcare. Complete adoption of customized medicine will require a concerted 

effort by the entire community to embrace the intangible and more abstract challenges that prevent 

adoption of precision oncology to every clinical workflow. 
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Appendix 1. Chapter 2 Supplementary Tables 
 

Table S1. Cross-tabulation performance on hold out test set parsed by reviewer, disease, 

normal depth, and tumor depth. 

 Feature S A F AUC 

Reviewer Reviewer 1 1282 871 1347 0.968 

Reviewer 2 4757 2511 2601 0.965 

Reviewer 3 62 59 9 0.926 

Reviewer 4 14 13 4 0.979 

Disease AML 872 581 1424 0.971 

GST 14 13 4 0.979 

MPNST 6 12 124 0.993 

SCLC 2465 1463 673 0.962 

Breast 2319 600 1401 0.956 

Colorectal 12 283 124 0.757 

GBM 150 205 57 0.908 

Lymphoma 242 238 148 0.964 

Melanoma 35 59 6 0.895 

Normal 

Depth 

X < 0.010 3101 1179 2360 0.960 

0.018 > X > 0.010 1465 856 661 0.970 

X > 0.018 1549 1419 940 0.967 

Tumor 

Depth 

X < 0.010 6042 3392 3885 0.966 

0.018 > X > 0.010 43 49 57 0.948 

X > 0.018 30 13 19 0.944 
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Table S2. Distribution of orthogonal validation calls from the AML31 case and the 106 The 

Cancer Genome Atlas (TCGA) tumor/normal pairs used to assess model performance. 
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Table S3. Distribution of manual review calls from the 37 cases used to assess model 

performance by independent sequencing data with manual review. 

Cancer Type Tumor/Normal 

pairs 

Call Count Total 

Small Cell Lung 

Carcinoma (SCLC) 
4 

Somatic 2,526 

2,686 Fail 145 

Ambiguous 15 

Follicular 

Lymphoma (FL) 
14 

Somatic 865 

1,723 Fail 858 

Ambiguous 0 

Head and Neck 

Squamous Cell 

Carcinoma 

(HNSCC) 

 

19 

  

Somatic 1,986 

9,170 Fail 6891 

Ambiguous 293 

 13,579 
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Appendix 2. Chapter 2 Supplementary Figures 
 

Figure S1. The deep learning model performs well on the hold out test set (n=13,530 

variants), 10-fold cross validation with a simplified disease feature (n=27,470 variants), and 

10-fold cross validation with the reviewer feature removed (n=27,470 variants). a) ROC 

curve and reliability diagram performance of the deep learning model on the hold out test set 

with all 71 described features. b) ROC curve and reliability diagram performance of the deep 

learning model 10-fold cross validation set with the cancer type simplified to solid versus liquid 

tumor status. c) ROC curve and reliability diagram performance of the deep learning model 10-

fold cross validation set with the reviewer feature removed. 
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Figure S2. Deep learning model outputs from the hold out test set (n=13,530 variants) are 

well-scaled across all predicted classes (ambiguous, fail, and somatic). The correlation 

between the model output and the manual review call was assessed for all three different classes 

of calls (ambiguous, fail, and somatic). For each class, model outputs were binned into 10 groups 

ranging from 0.00-1.00. For each bin, the total number of manual review calls that agree and 

disagree with the individual class were plotted. The ratio of agreement to disagreement was 

plotted for each bin and compared to the identity line (x=y) using the Pearson's correlation 

coefficient (r). 
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Figure S3. The deep learning model performs better than the random forest model on 

independent sequencing data with manual review labels (n=4 small cell lung cancer cases 

with 2,686 total variants). a) ROC curves outlining deep learning and random forest model 

performances on independent sequencing data with manual review labels (n=4 small cell lung 

cancer cases with 2,686 total variants). b) Curves showing batch effect correction after retraining 

machine learning models with incremental subsets of variants from the independent sequencing 

data. Independent sequencing data was partitioned in random stratified increments of 5% (from 

0-75%) and used to train a new model (increments = 179 varians). The x-axis outlines the 

number of independent variants included in training. The y-axis plots the resulting model’s ROC 

AUC. The ambiguous class shows significant stochasticity due to low representation in the test 

dataset (n=15 variants). 

 

  



 

 

149 

Figure S4. IGV snapshots of clinically relevant variants that were original labeled as 

somatic by manual reviewers but were subsequently identified as fail using the deep 

learning model and manual re-review. a) Failure due to short inserts and directional artifacts. 

b) Failure due to multiple variants artifacts. c) Failure due to multiple mismatches across variant-

supporting reads. d) Failure due to ends of reads artifact. 
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Figure S5. IGV snapshots of clinically relevant variants that were original labeled as fail or 

ambiguous by manual reviewers but were subsequently identified as somatic using the deep 

learning model and manual re-review. For each snapshot, the normal tracks and the tumor 

tracks show aligned reads that were obtained from normal tissue and the tumor tissue, 

respectively. Variant summaries obtained from CIViC show gene name, variant type, variant 

coordinates, clinical summary, and relevant clinical action items. a) Original reviewer 

conservatively labeled both PIK3CA variants as ambiguous due to multiple mismatches in reads, 

however, both variants appear to be somatic and occur at known cancer driver hotspots 

(E542K/E545K). b) Original reviewer failed this variant due to high levels of variant reads in the 

normal track, however, given that this variant was derived from a hematologic malignancy, this 

level of tumor in normal is permissible. 
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Figure S6. Variants that show disagreement between the classifier and original manual 

review demonstrates high levels of inter-reviewer variability. Of the 10.7% of variants that 

disagree with the original manual review, call, 179 variants were sampled to conduct manual re-

review. When comparing the classifier call to the re-review consensus call, 42.9% of variants 

showed high inter-reviewer variability and/or inability to determine a consensus. 
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Appendix 3. Chapter 3 Supplementary Figures 
 

Figure S1. Example of a Somatic variant (S). Somatic calls are made when the variant has 

sufficient support in the tumor track with absence of obvious sequencing artifacts. In this 

example, the variant is presumed to be a real somatic variant. When evaluating the reference 

sequence in the Genome Features section, the reference allele is a cytosine (C). The alignments 

and coverage in the DNA tumor track show that approximately 20% of reads support a variant 

adenine (A) allele (green). Importantly, there are no reads supporting the variant in the normal 

sample, indicating that the variant is a somatic variant rather than a germline polymorphism. 

Using the gene annotation track, we can predict that this (C>A) base change would result in an 

ATG (M; Methionine) to ATT (I; Isoleucine) missense variant in the PANK4 gene (Note: this 

gene is transcribed on the negative strand).  

 

 
 

Helpful Hints:  

1. Somatic variants, due to impure tumor samples, will typically have VAF less than 50%. However, the latter 

is not a strict rule because random sampling, copy-number alterations, loss of heterozygosity, and other 

factors can sometimes produce somatic VAF at or above 50%.  

2. If the expected variant is not visualized during manual review, it is possible that: 1) IGV is not focused on 

the correct coordinates, 2) the genome version is incorrect, or 3) the supporting reads have been lost due to 

down-sampling.   
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Figure S2. Example of a Germline variant (G). Germline calls are made when the variant has 

sufficient support in the normal track beyond what is considered attributable to tumor 

contamination of the normal. In this example, the variant is presumed to be a germline 

polymorphism. The reference allele is a guanine (G), however reads in the DNA normal/tumor 

tracks support a thymine (T) allele. This indicates that the variant is likely a homozygous 

germline polymorphism. The Single Nucleotide Polymorphisms (SNPs) Track provides further 

support that the variant in question is a common polymorphism. 

 
 

Helpful Hints:  

1. Typically, germline variants present with a Variant Allele Frequency (VAF) near 50% or 100%,  

2. indicating hetero- or homozygosity, respectively.  

3. Bulk tumors typically contain some normal cells. Therefore, given adequate depth, 100% VAF in a non-

purified tumor sample should be suspicious and is likely a homozygous germline polymorphism.  

4. To view the SNPs Track in the Genome Features section, use the “Load from Server” feature in IGV. 

Examples for loading this track are shown below:  

 

GRCH37: “File” > “Load from Server...” > “Annotations” > “Variation and Repeats” > “dbsnps1.4.7”  

GRCH38: “File” > “Load from Server...” > “Annotations” > “Common Snps 1.4.2”  

 

If the variant in question is also in the SNPs Track, then it is most likely germline. Clicking on, or hovering 

over, the grey bar in the SNPs Track will create a popup with additional information about the germline 

SNP. 5) A germline call after somatic variant caller filtering is suspect and might reveal underlying issues 

with the analysis pipeline being used.  
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Figure S3. Example of an Ambiguous variant (A). Ambiguous calls are made when the variant 

in question could be a true somatic variant, but the reviewer is not confident due to sequencing 

features, genomic context, and/or, corresponding reads. In this example, the variant has support 

from fourteen reads, but most are on negative read strands (93%). Additionally, several of the 

supporting reads have multiple mismatches indicating potentially low-quality reads. More 

information would be required to call this variant somatic or fail, therefore, the correct label is 

ambiguous.  

 

 
 

Helpful Hints:  

1. Using Tags and Notes can help individuals understand why variants were labeled as ambiguous.  
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Figure S4. Example of a Failed variant (F). Failed calls are made when the variant has low 

variant support and/or reads that indicate a sequencing artifact. In this example, the variant in 

question is likely attributable to a pipeline artifact and is therefore not a true variant. When the 

IGV window is zoomed in, the variant appears to be somatic; however, in the provided zoomed-

out window, we reveal a region of high discrepancy. High discrepancy regions (HDR) can 

suggest improper alignment in regions of high homology across the genome or errors in the 

reference assembly. Given the HDR pattern observed, this variant is most likely a false positive 

and should be failed during manual review.  

 

 
 

Helpful Hints:  

1. Using Tags and Notes can help individuals understand why variants were labeled as fail. 
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Figure S5. Example of Directional (D). The Directional tag is used when the variant in 

question can only be found on reads that are sequenced in either the positive or the negative 

direction. Typically, this is caused by strand bias during sequencing. To properly visualize the 

directional artifacts, IGV tracks must be colored by read strand.  

 

 
 

Helpful Hints:  

1. This tag can best be assessed when the reads are not viewed as pairs. When viewing data tracks as pairs, the 

reads in both directions are overlaid and could possibly make the variant appear to be exclusively supported 

by read strands in a particular direction. 2) To observe this artifact, it is necessary to color the alignments 

by read strand:  

 

Right click on data track > “Color alignments by” > “read strand”  
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Figure S6. Example of No Count Normal (NCN). The No Count Normal tag is used when 

there is no coverage in the normal track, preventing adequate comparison to the tumor track. 

This can occur when there is no normal track available or if there is no coverage in the normal 

track at the locus in question. Typically, at least 20X coverage in both normal and tumor tracks is 

required to make accurate calls; however, this threshold is experiment-specific.  

 

 
 

Helpful Hints:  

1. If a variant has low coverage in the normal track, it can be treated like a tumor only sample. This might 

require populating the Genome Features section with a SNPs Track (e.g., dbSNP, 1000 genomes, ExAC, 

gnomAD, etc.) to ensure that the variant is not a polymorphism (see Step 3 in Figure 3A for setting up 

manual review).  

2. Thresholds can be used to pre-filter variants with no coverage in tumor or normal to eliminate the need to 

evaluate these variants during manual review.  
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Figure S7. Example of Low Count Normal (LCN). The Low Count Normal tag is used when 

there is inadequate coverage in the normal track (coverage < 20X), preventing adequate 

comparison to the tumor track. A popup window with coverage information can be viewed by 

clicking on the locus position in the coverage track. Typically, at least 20X coverage in both 

normal and tumor tracks is required to make accurate calls; however, this threshold is 

experiment-specific.  

 

 
 

Helpful Hints:  

1. If a variant has low coverage in the normal track, it can be treated like a tumor only sample. This might 

require populating the Genome Features section with a SNPs Track (e.g., dbSNP, 1000 genomes, ExAC, 

gnomAD, etc.) to ensure that the variant is not a polymorphism (see Step 3 in Figure 3A for setting up 

manual review).  

2. Thresholds can be used to pre-filter variants with low coverage in tumor or normal to eliminate the need to 

evaluate these variants during manual review.  
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Figure S8. Example of Low Count Tumor (LCT). The Low Count Tumor tag is used when 

there is inadequate coverage in the tumor track (coverage < 20X), preventing adequate 

comparison to the normal track. A popup window with coverage information can be viewed by 

clicking on the locus position in the coverage track. Typically, at least 20X coverage in both 

normal and tumor tracks is required to make accurate calls; however, this threshold is 

experiment-specific.  

 

 
 

Helpful Hints:  

1. Calling a variant with low coverage has important downstream implications. When the tumor track has  

low coverage, variant allele frequency (VAF) estimates can be heavily influence by sequencing noise and 

sampling bias. This may result in a false negative with an underestimated VAF, a false positive due to over-

estimation of the VAF, and/or a true positive call with inaccurate VAF.  

2. The LCT tag acts as a bare minimum for tumor coverage but only in concert with a 5% VAF minimum 

with at least 4-5 reads of support (taking into account short inserts). Therefore, the LCT tag can denote that 

a variant was considered ambiguous or somatic in a rare sequencing context.  

3. Thresholds can be used to pre-filter variants with low coverage in tumor or normal to eliminate the need  

to evaluate these variants during manual review.   
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Figure S9. Example of Multiple Variants (MV). The Multiple Variants tag is used if the 

variant’s locus has reads supporting three or more different alleles. In the example shown, there 

is read support for all four nucleotides (A, C, G, and T) at the same locus. If the putative variant 

base co-occurs with multiple instances of other bases, it is less likely to be a true somatic variant.  

 

 
 

Helpful Hints:  

1. Clicking on the coverage track will reveal a popup window with relative abundance of each base at the  

selected locus.  

2. Do not rely on coverage track coloring as there might be multiple variants that have a variant allele 

frequency (VAF) too small to be represented in the coverage bar. The VAF threshold for coloring the 

coverage bar can be changed in the IGV preferences panel:  

 

“View” > “Preferences” > “Alignments” > “Coverage allele-fraction threshold” > insert threshold  

 

3. For very deep data, multiple variants due to random error will start to accumulate. The relative  

abundance of each base should be considered in cases with deep coverage. 4) While rare, true multi-allelic 

somatic variants are possible in tumors.  
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Figure S10. Example of Low Variant Frequency (LVF). The Low Variant Frequency tag is 

used when there are some reads of support for the variant, but the variant allele frequency (VAF) 

is relatively low. A popup window with VAF information can be viewed by clicking on the locus 

position in the coverage track. Typically, at least 5% VAF is required to make confident calls 

(given 20X coverage); however, this threshold is experiment-specific.  

 

 
 

Helpful Hints:  

1. The coverage track will be colored according to base when a variant is present at the default VAF. This 

threshold can be changed in the IGV preference panel:  

 

“View” > “Preferences” > “Alignments” > “Coverage allele-fraction threshold” > insert threshold  

 

2. This can be particularly helpful for high depth samples and/or when low VAF (e.g., sub-clonal) variants are 

expected. With sufficient depth of coverage, the VAF threshold can be reduced.  

3. Thresholds can be used to pre-filter variants with low tumor VAF to eliminate the need to evaluate these 

variants during manual review.  
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Figure S11. Example of Multiple Mismatches (MM). The Multiple Mismatches tag is used 

when the reads that contain the variant have other mismatched base pairs, which reduces the 

confidence in the read quality. Specifically, given a high error rate and a random distribution of 

errors, spurious variants can occur when the errors align across reads in the tumor sample but not 

in the normal sample. The MM and HDR tags are similar, in that both relate to mismatches in 

reads containing the variant; however, the MM tag is used when multiple mismatches are 

distributed unevenly (see Appendix 3 - Figure S12).  

 

 
 

Helpful Hints:  

1. If the mismatches are of high quality, this likely indicates that the read was properly sequenced. In this  

case, the mismatches occur due to misalignment. If the mismatches are of low quality, this likely indicates 

that the read was improperly sequenced. Both of these examples reduce confidence in the variant.  

2. High densities of mismatches in the tumor track increase the probability that identical base substitution  

errors align across reads causing the VAF to surpass filtering thresholds. The higher the read depth, the less 

likely this situation is to arise, as low percentage VAF variants increase in plausibility with increased read 

depth.  
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Figure S12. Example of High Discrepancy Region (HDR). The High Discrepancy Region tag 

is used when most reads containing the variant also contain other mismatches at the same locus. 

Typically, HDRs are observed when reads map to incorrect but homologous regions that contain 

localized differences, which are interpreted as variants. The HLA loci, duplicated loci, and other 

highly polymorphic regions are especially prone to this issue. These regions may require 

specialized alignment or assembly strategies for high quality variant calling.  

 

 
 

Helpful Hints:  

1. The presence of more than three identical mismatches within a 100-200 base-pair region is highly  

indicative of an HDR.  

2. It is important to be sure that the variant being evaluated is not surrounded by a cluster of single nucleotide 

polymorphisms (SNPs). Sometimes, true variants can occur in close proximity to multiple SNPs and might 

be confused with an area of HDR. This is particularly true for individuals with haplotypes that are not well-

represented by the reference sequence.  
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Figure S13. Example of Low Mapping (LM) quality. The Low Mapping tag is used to indicate 

variants that are mostly supported by reads that have low mapping quality. When reads are 

colored by readstrand, translucent/transparent reads indicate lower mapping quality and opaque 

reads indicate higher mapping quality. Mapping quality refers to a measure of confidence or 

probability that a read has been correctly aligned to the reference genome. Variants that are 

supported primarily or solely by low mapping quality reads are considered suspect.  

 

 
 

Helpful Hints:  

1. Mapping quality scores can be ascertained by clicking on the read.  

2. In regions where numerous reads have a mapping quality of 0, the reads are often mapped to multiple 

locations across the genome. This results in low mapping quality reads in both the normal and tumor tracks. 

Alternate mapping locations can be ascertained by clicking on the read.  

3. By default, all reads are shown in IGV, even if the mapping quality is 0. This threshold can be adjusted  

to eliminate low quality reads from IGV during manual review:  

 

“View” > “Preferences” > “Alignments” > “Mapping quality threshold” > insert threshold  
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Figure S14. Example of Tumor in Normal (TN). The Tumor in Normal tag is used to indicate 

that the variant has reads of support in the normal track. This is a common occurrence in certain 

blood tumors (e.g., leukemia) as well as tumors that are highly metastatic. In some instances, TN 

might be a reason to fail the variant, whereas in other situation it can be used to denote ambiguity 

in the manual review call.  

 

 
 

Helpful Hints:  

1. TN does not occur in all hematopoietic tumors but is likely when tumor cells are circulating in the  

bloodstream (e.g., acute myeloid leukemias with high blast counts).  

2. Tumors that are metastatic may have tumor cells circulating in the bloodstream and thus can also have  

TN contamination.  

3. Problems with sample barcoding (indexing) or cross contamination of samples can also lead to apparent 

support for a somatic variant in the normal.  

4. Evaluating other normal samples from your cohort, or evaluating multiple variants within the same 

sample/experiment, can help set a relative acceptable TN threshold. This will help to differentiate 

sequencing and pipeline artifacts from tumor contamination of normal tracks.  

5. Variants created by sequencing or alignment artifacts will also often occur in both the tumor and the  

normal tracks and can be labeled with TN.  
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Figure S15. Example of Short Inserts (SI) and Short Inserts Only (SIO). The Short Inserts 

tag is used when the variant is found on small nucleic acid fragments whereby sequencing from 

each end results in overlapping reads. In IGV, this is indicated as a grey bar through the middle 

of reads when reads are viewed as pairs. Variants supported by read pairs produced from these 

short fragments can result in the appearance of two independent reads supporting a variant when 

in reality, they represent only a single nucleic acid molecule. The SI tag is used when support for 

the called variant is primarily from short-insert read pairs but other read strands that are not short 

inserts also show variant support. The SIO tag is used when support for the called variant is 

exclusively present in paired reads from short inserts. This issue is prevalent in data derived from 

archival material (FFPE samples) or other source material with small/degraded DNA fragments 

(e.g., cell-free DNA).  

 

 
 

Helpful Hints:  

1. To visualize short insert variants, you must view the tracks as pairs. Regions where the paired reads overlap 

will be dark purple and contain a horizontal grey line. At the ends, where there is no overlap, reads will 

remain blue or pink. Reads can be viewed as pairs using IGV commands:  

 

right click each data track > “View as pairs”  

 

2. When viewing reads as pairs, short inserts can be observed; however, it will also overlay reads to  

reduce the total information available to the reviewer.  

3. Short inserts are generally observed at lower variant frequencies and present in two or three read pairs (i.e., 

four to six reads in total).   
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Figure S16. Example of Adjacent Indel (AI). The Adjacent Indel tag is used when a somatic 

variant was possibly caused by misalignment around a germline or somatic insertion/deletion 

(indel). In this example, it is likely that a real somatic variant is present, however, the variant is 

neither a simple 'A' insertion, nor a simple 'A' substitution. It is possible that the true variant is an 

‘AA’ insertion that was miscalled by the automated somatic variant callers.  

 

 
 

Helpful Hints:  

1. To effectively visualize this pattern, it is necessary to zoom out using the IGV Genome Ruler.  

2. It is important to evaluate the Genome Features section to visualize possible tandem repeats that might  

be implicated in the misalignment.  

3. These cases can sometimes be resolved by correcting the nature of one or more called variants rather than 

failing the variant entirely. This is an instance where the IGV Notes section would be valuable. 

4. This phenomenon is common with larger deletions where ends of reads will be misaligned within the  

deletion.  
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Figure S17. Example of Same Start/End (SSE). The Same Start/End tag is used when the 

variant is only contained by reads that start and stop at the same genomic loci. This is typically 

attributed to a variant called in multiple reads created from the same originating molecule during 

the library amplification process but erroneously not removed during read deduplication.  

 

 
 

Helpful Hints:  

1. Identifying SSE artifacts requires first sorting the reads by base and subsequently zooming out to view a 

larger genomic region. This allows for visualization of the ends of the reads.  
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Figure S18. Example of End of reads (E). The End of reads tag is used when the variant called 

is within 30 base pairs of the end of the variant-supporting reads. At read ends (especially the 3’ 

end), there is an increased rate of error generation that can cause appearance of an erroneous 

variant.  

 

 
 

Helpful Hints:  

1. Identifying End of reads artifacts requires first sorting the reads by base and subsequently zooming out  

to view a larger genomic region. This allows for visualization of the ends of the reads.  

2. Additional mismatches downstream the called variant can increase confidence that the variant in question is 

a sequencing artifact.  

3. This artifact is more easily evaluated by coloring the alignments by read strand:  

 

Right click on data track > “Color alignments by” > “read strand”  
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Figure S19. Example of Mononucleotide repeat (MN). The Mononucleotide tag is used when 

a variant is called in proximity to a region of the reference sequence that contains a single 

nucleotide repeat (e.g., AAAAAAA...). In this instance, the called variant is most likely caused 

by misalignment of the reads to the reference genome. Some sequencers, particularly those 

dependent on the polymerase, are prone to making mistakes in repeat regions. However, it is 

important to note that mononucleotide repeats are also a common source of real human variation 

(inherited germline, de novo germline, or somatic) that arise due to errors produced by 

polymerase during DNA replication. Other factors, such as the size of the repeat, the VAF, or 

appearance in the normal, should be considered during manual review to confidently call the 

variant. The frequency in other samples processed in the same way (capture reagent, alignment 

algorithm, etc.) can be helpful in identifying common artifacts. Special alignment, assembly, or 

even additional sequencing technologies may be needed to validate short repeats of this nature.  

 

 
 

Helpful Hints:  

1. Typically, these variants are small deletions or insertions, and they are usually visualized in both the  

tumor and normal tracks. 

2. Although the variant being evaluated here is a one base-pair deletion, other reads at the same locus 

typically have insertions and deletions of varying lengths.  
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Figure S20. Example of Dinucleotide repeat (DN). The Dinucleotide repeat tag is used when a 

variant is called in proximity to a region of the reference sequence that contains two alternating 

nucleotides (e.g., TGTGTG...). In this instance, the called variant is most likely caused by 

misalignment of the reads to the reference genome. Some sequencers, particularly those 

dependent on the polymerase, are prone to making mistakes in repeat regions. However, it is 

important to note that dinucleotide repeats are also a common source of normal human variation 

(inherited germline, de novo germline, or somatic) that arise due to errors produced by 

polymerase during DNA replication. Other factors, such as the size of the repeat, the VAF, or 

appearance in the normal, should be considered during manual review to confidently call the 

variant. The frequency in other samples processed in the same way (capture reagent, alignment 

algorithm, etc.) can be helpful in identifying common artifacts. Special alignment, assembly, or 

even additional sequencing technologies may be needed to validate short repeats of this nature.  

 

 
 

Helpful Hints:  

1. Typically, these variants are small deletions or insertions, and they are usually visualized in both tumor and 

normal tracks.  

2. Although the variant being evaluated is a two base-pair deletion, other reads at the same locus typically 

have insertions and deletions in multiples of two.  
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Figure S21. Example of Tandem Repeat (TR). The Tandem Repeat tag is used when a variant 

is called in proximity to a region of the reference sequence that contains some number of 

repeated nucleotides (e.g., GTGGTGGTG...). In this instance, the called variant is most likely 

caused by misalignment of the reads to the reference genome. Some sequencers, particularly 

those dependent on a polymerase, are prone to making mistakes in repeat regions. However, it is 

important to note that tandem repeats are also a common source of normal human variation 

(inherited germline, de novo germline, or somatic) that arise because of errors produced by 

polymerase during DNA replication. Other factors, such as the size of the repeat, the VAF, or 

appearance in the normal, should be considered during manual review to confidently call the 

variant. The frequency in other samples processed in the same way (capture reagent, alignment 

algorithm, etc.) can be helpful in identifying common artifacts. Special alignment, assembly, or 

even additional sequencing technologies may be needed to validate short repeats of this nature.  

 

 
 

Helpful Hints:  

1. Typically, these variants are small deletions or small insertions, and they are usually visualized in both the 

tumor tracks and the normal tracks. 

2. In this example, the variant being evaluated is a three base-pair deletion, whereas other reads at the same 

locus have insertions and deletions in multiples of three, which reduces confidence in the called variant. 

This pattern can help distinguish a TR artifact from a true somatic variant.   
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Figure S22. Example of Ambiguous Other (AO). The Ambiguous Other tag is used to define a 

variant surrounded by inconclusive genomic features that cannot be explained by the other tags. 

In this example, we observe a low complexity region (e.g., genomic regions with increased A/T 

or G/C content), which can accurately be described with the AO tag.  

 

 
 

Helpful Hints:  

1. If the Ambiguous Other tag is used, it is highly recommended to include a short description in the notes 

section.  
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Appendix 4. Chapter 3 Supplementary Tables 
 

Table S1. Values for inter-reviewer correlation matrix. 

Example Call #1 Example Call #2 Score 

S S 1 

A A 1 

F F 1 

G G 1 

F G 0.5 

F A 0.5 

A S 0.5 

G A 0.5 

S F 0 

G S 0 
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Appendix 5. Chapter 4 Supplementary Methods 
 

Determining eligible CIViC variants for smMIP capture 

Filtering based on the Variant Evidence Score 

All variants within the CIViC database are built on evidence statements that have been manually 

curated from the medical literature. Given that variants within the CIViC database have diverse 

quantity and quality of evidence support, the variant evidence score was developed to calculate 

the relative abundance of total available curated evidence for each variant. The variant evidence 

score reflects: 1) the strength of the evidence that was curated and 2) the total amount of curation 

that has been completed for each variant. To determine evidence strength, the Evidence Level 

Score and the Trust Rating Score were calculated. The Evidence Level Score is a 10-point scale 

that weighs the evidence strength based on category. Broadly, highest points are awarded to large 

clinical studies and lower points are awarded to case studies, in vitro studies, and inferential 

evidence. The Trust Rating Score is a 5-star scale that reflects the curator’s confidence in the 

quality of the study. To determine the total level of curation for each variant, Evidence Level 

Scores were multiplied by Trust Rating Scores and summed across all Evidence Items. This final 

value (i.e., the CIViC Variant Evidence Score) was incorporated into the CIViC database and is 

now available for all variants in the CIVIC web interface, regular data releases, and application 

programming interface (API). Using the CIViC Variant Evidence Score, variants within the top 

10% of total curation (corresponding to variant evidence score > 20 points) were selected to 

develop the CIViC smMIPs capture panel and were eligible for smMIP targeting. Of note, the 

CIViC Variant Evidence Score evaluates the total level of curation within the database and does 

not reflect the community consensus of clinical relevance. 

 

Filtering based on the Sequence Ontology Identification Number 

Variants were also filtered to only include variants that could be analyzed using a DNA-based 

sequencing platform. This required use of curated Sequence Ontology IDs (SOIDs). Within 

CIViC, SOIDs are manually classified as either: “DNA-based”, “RNA-based”, and/or “Protein-

based”. For example, variants with the Variant Type of “missense_variant” would be labeled as 

“DNA-based,” whereas variants with the Variant Type of "transcript_variant" would be labeled 

as “RNA-based”. Variants that had a “DNA-based” SOID were considered eligible for smMIP 

targeting and variants whose SOIDs were “RNA-based” and/or “Protein-based” were ineligible.  

 

Categorization of variants based on length 

Using CIViC curated coordinates, variant length was determined (i.e., variant start position 

minus variant stop position). This difference inferred the total number of smMIPs probes 

required to adequately assess each variant.  
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Hotspot targeting 

If the variant length was <250 base pairs, the variant was eligible for hotspot targeting. For 

variants that required hotspot targeting, smMIPs probes were designed for the genomic region 

indicated in the CIViC database.  

 

Sparse exon tiling and full exon tiling 

If the variant was >250 base pairs, the variant required some or total tiling of the protein coding 

exons. For all variants that required sparse exon tiling or full exon tiling, the representative 

transcript from the CIViC database was used to obtain all possible exons associated with each 

Ensembl gene. The Ensembl gene was used to obtain all possible exons 

(biomart="ENSEMBL_MART_ENSEMBL", host="grch37.ensembl.org", 

dataset="hsapiens_gene_ensembl"). Exons were further filtered by Biotype to remove 

untranslated regions. Some large-scale copy number variants (i.e., “AMPLIFICATION”, 

“LOSS”, “DELETION”), were eligible for sparse tiling, wherein 10 probes distributed across the 

exons of the gene were retained to enable assessment of copy number state. Other variant types 

such as “MUTATION”, or “FRAMESHIFT MUTATION”, etc., required tiling of all protein 

coding exons. For variants that required full exon tiling, overlapping smMIPs (i.e., at least one 

basepair of overlap) were designed to tile across all protein coding exons in the gene that 

encompassed the variant. For variants that required sparse exon tiling, approximately 10 smMIPs 

were designed to cover a portion of the transcript.  

 

smMIP sequencing and data analytics 

Sequencing library construction and balancing of the probe pool were performed as described 

previously121, and sequencing was performed using an Illumina NextSeq 500. Probes were 

excluded from the final reagent if they demonstrated poor hybridization to target sequence 

during initial quality checks. 

 

Sequence data analysis was performed as previously described121 with three enhancements. First, 

consensus reads were generated using the fgbiotools (http://fulcrumgenomics.github.io/fgbio/) 

CallMolecularConsensusReads utility with parameters “--error-rate-post-umi=30 --min-reads=2 -

-min-input-base-quality=20”. Second, a custom variant caller was utilized to identify all 

consensus calls at a site having at least 2 supporting reads with a minimum specified mapping 

quality (mapping quality score > 0). Third, variants were required to be detected on at least four 

DNA strands (at least 2 positive and at least 2 negative) in order to be considered real, rather 

than post-biological artifacts.174  Collectively, these provisions require that at least two reads are 

derived from a common unique molecular identifier (UMID) to create a consensus read and that 

multiple consensus reads in both directions support the apparent variant. This helps to exclude 

pre-analytic artifacts reflecting DNA damage and stochastic errors that occur during library 

construction and sequencing. DNA input ranged from 100-500 ng across samples, however, any 

https://paperpile.com/c/92aiQS/W8ZUa
https://paperpile.com/c/92aiQS/W8ZUa
https://paperpile.com/c/92aiQS/V6Wf5
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sample with an overlapping variant that had a VAF <5% utilized 500 ng to increase the number 

of template molecules interrogated. 

 

Orthogonal sequencing and data analytics 

Orthogonal sequencing data from previously conducted whole exome or genome sequencing was 

used to validate the CIViC smMIPs capture design. Sequencing alignment and somatic variant 

calling for the AML31 sample was performed according to Griffith et al.22 Briefly, reads were 

aligned to GRCh37 using BWA v0.5.9175 and variants were called using one of seven variant 

callers listed in the manuscript. Sequencing data from the SCLC cases, OSCC cases, and HL 

cases were analyzed using the Genome Modeling System5 at the McDonnell Genome Institute. 

Reads from these studies were aligned to the reference genome (hg19/GRCh37 or 

hg38/GRCh38) using BWA-MEM v0.7.1077 and duplicates were marked by Picard78 and/or 

SAMBLASTER v0.1.22.176. For the SCLC cases, Single nucleotide variants (SNVs) were called 

using SomaticSniper88,177, VarScan19, and Strelka17; small insertions and deletions (indels) were 

called using GATK16, Pindel61, VarScan2178, and Strelka. For OSCC cases, SNVs were detected 

using SomaticSniper v1.0.4, VarScan2 v2.3.6, Strelka v1.0.11, SAMtools r98260, and Mutect 

v1.1.418. Small indels were detected by GATK v5336179, VarScan2, Strelka, and Mutect. For HL 

cases, SNVs were called using the intersection of SomaticSniper v1.0.4, VarScan v2.3.6, Strelka 

v1.0.11, and Mutect v1.1.4, and indels were called using GATK, Pindel v0.5, VarScan v2.3.6, 

and Strelka v1.0.11. For these three cohorts, variants identified by automated callers were 

subjected to heuristic filtering (removal of variants with low VAF [<5%] or low coverage [<20X 

in tumor or normal track]) and false positives were removed via manual somatic variant 

refinement.58 If variant coordinates corresponded to GRCh38, their coordinates were converted 

to GRCh37 using LiftOver.180 For the CRC cohort, sequencing, variant calling, and clinical 

annotation were performed according to methods highlighted in Pritchard et al.181 Briefly, 

sequencing was performed using Illumina next-generation sequencing (Illumina, San Diego, CA) 

and sequencing reads were aligned using BWA v0.6.1 and SAMtools v0.1.18. Indel realignment 

was then performed using GATK v1.6 and duplicate reads were removed using Picard v1.72. 

SNV and indel calling was performed using the GATK Universal Genotyper with default 

parameters and VarScan v2.3.2. 

 

Assessment of variants missed using the CIViC smMIPs capture panel 

Of the 65 variants identified on exome sequencing, all but 4 were also identified using CIViC 

smMIP sequencing. One variant was missed due to lack of adequate coverage, two variants were 

missed due to low performing probes, and one variant was retrospectively considered ineligible 

due to smMIPs design. The variant missed due to inadequate coverage was a TP53 (p.G266R) 

variant identified in the AML31 tumor sample. Original sequencing indicated that this variant 

was present at 0.04% VAF, therefore, given smMIPs coverage of 2,388 reads at this site, there 

was only a 0.01% chance that this variant would have been detected (one-tailed probability of 

exactly, or greater than, 4 reads (K) out of 2,388 reads (n); p = 0.0046). However, this low-

https://paperpile.com/c/92aiQS/wPj6
https://paperpile.com/c/92aiQS/U0Xwx
https://paperpile.com/c/92aiQS/1Hw3
https://paperpile.com/c/92aiQS/ySjJ
https://paperpile.com/c/92aiQS/BADp
https://paperpile.com/c/92aiQS/gVq9w
https://paperpile.com/c/92aiQS/8RL2+wtoqg
https://paperpile.com/c/92aiQS/kTku
https://paperpile.com/c/92aiQS/2XGJ
https://paperpile.com/c/92aiQS/JPeZ
https://paperpile.com/c/92aiQS/qFbe
https://paperpile.com/c/92aiQS/bTDpg
https://paperpile.com/c/92aiQS/7zYC
https://paperpile.com/c/92aiQS/Sk3f
https://paperpile.com/c/92aiQS/IcwVN
https://paperpile.com/c/92aiQS/mecG
https://paperpile.com/c/92aiQS/86Mce
https://paperpile.com/c/92aiQS/uGJUO
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prevalence variant could have been recovered given additional sequence coverage. Additionally, 

there were two variants missed due to low MIP performance. The first variant that was missed 

(chr10:g.89690805G>A in the SCLC8 tumor sample at 94% VAF) was due to poor performance 

of the MIP covering the region of interest in the reverse direction. This MIP showed only 1 

aligned read across all 36 samples and had no aligned reads in SCLC8. Despite the fact that there 

was extensive support from the forward MIP (95% VAF with 34 / 35 consensus reads), the 

requirement that both forward and reverse reads show support prevented this variant from being 

called. The second missed variant (PTEN - e8-1 in the SCLC4 tumor sample at 100% VAF) was 

due to low performance of MIPs in both directions. Even though both the forward and the 

reverse MIP showed variant support, the forward MIP only contained 2 consensus reads and the 

reverse MIP only contained 1 consensus read, preventing it from being called as somatic. The 

final variant (chr17:g7577094C>T in the CRC5 tumor sample at 32% VAF) was retrospectively 

considered ineligible because the original smMIPs developed to cover the eligible STK variant 

called for sparse tiling (i.e., identification of copy number change). As such, the variant was 

contained by a region that did not have full coverage in the forward direction. When evaluating 

the reverse MIP that contained this site, we observed a 34% VAF (402 / 1,184 reads), which was 

comparable to the original sequencing data. However, lack of a secondary probe designed 

against the complementary DNA strand prevented this variant from being called as somatic.  
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Appendix 6. Chapter 4 Supplementary Tables 
 

Table S1. Variants and associated genes eligible for CIViC smMIPs design after filtering 

based on CIViC Variant Evidence Score and Sequence Ontology ID (SOID). 

Gene Variant   Gene Variant  Gene Variant 

ABCB1 I1145I   CALR EXON 9 

FRAMESHIFT 

 ERCC2 K751Q 

ABL1 BCR-ABL F317L   CCND1 AMPLIFICATION  EZH2 MUTATION 

AKT1 E17K   CCNE1 AMPLIFICATION  EZH2 Y646 

ALK ALK FUSION I1171   CDK4 AMPLIFICATION  FCGR2A H167R 

ALK F1174L   CDKN2A LOSS  FCGR3A F212V 

ALK R1275Q   CEBPA INACTIVATION  FGFR1 AMPLIFICATION 

ASXL1 MUTATION   CTNNB1 S45F  FGFR2 AMPLIFICATION 

ATM MUTATION   CTNNB1 S45P  FLT3 D835 

BAP1 MUTATION   DNMT3A MUTATION  FLT3 ITD 

BCL2L11 DELETION   DNMT3A R882  FLT3 MUTATION 

BRAF MUTATION   DPYD DPYD*13 

HOMOZYGOSITY 

 FLT3 TKD MUTATION 

BRAF V600   DPYD DPYD*2A 

HOMOZYGOSITY 

 GNAS T393C 

BRAF V600D   EGFR AMPLIFICATION  HOXB13 G84E 

BRAF V600E   EGFR EXON 19 

DELETION 

 IDH1 R132 

BRAF V600K   EGFR G719  IDH1 R132C 

BRCA1 LOSS-OF-FUNCTION   EGFR G719S  IDH2 MUTATION 

BRCA1 MUTATION   EGFR L858R  IDH2 R140 

BRCA2 LOSS-OF-FUNCTION   EGFR S492R  IDH2 R172 

BRCA2 MUTATION   EGFR T790M  IDH2 R172K 

BTK C481S   ERBB2 AMPLIFICATION  IKZF1 DELETION 
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Gene Variant  Gene Variant  Gene Variant 

JAK2 V617F  PDGFRA D842V  TP53 R273C 

KIT D816V  PIK3CA AMPLIFICATION  TP53 R273H 

KIT EXON 11 

MUTATION 

 PIK3CA E542K  U2AF1 Q157P/R 

KIT M541L  PIK3CA E545K  U2AF1 S34Y/F 

KRAS A146T  PIK3CA H1047R  UGT1A1 UGT1A1*28 

KRAS EXON 2 

MUTATION 

 PIK3CA MUTATION  VHL C162F (c.485G>T) 

KRAS RS61764370  PTEN DELETION  VHL N131P (c.390 

MAP2K7 E116K  PTEN LOSS  VHL P86S (c.256C>T) 

MET AMPLIFICATION  PTEN MUTATION  VHL R167Q (c.500G>A) 

MET EXON 14 

SKIPPING 

MUTATION 

 RET M918T  WT1 EXON 7 MUTATION 

MTHFR A222V  ROS1 CD74-ROS1 

G2032R 

 XRCC1 Q399R 

MTOR MUTATION  SF3B1 MUTATION    

MYCN AMPLIFICATION  SMAD4 MUTATION    

MYD88 L265P  SRSF2 MUTATION    

NOTCH1 MUTATION  STK11 LOSS    

NOTCH1 P2514FS  TERT C228T    

NPM1 EXON 12 

MUTATION 

 TERT PROMOTER 

MUTATION 
   

NRAS MUTATION  TET2 MUTATION    

NRAS Q61  TP53 DNA BINDING 

DOMAIN 

MUTATION 

   

NT5C2 K359Q  TP53 P72R    
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Table S2. Sequencing data availability for samples used in analysis. 

Malignancy Abbreviation Cases (n=22) Publication 

status 

Pubmed link DBGaP 

Head and neck squamous cell 

carcinoma 

HNSCC 5 In preparation Not Available phs001623 

Small cell lung cancer SCLC 9 Published https://www.ncbi.nlm.nih

.gov/pubmed/30224629 

phs0001049 

Hodgkin's lymphoma HL 2 In preparation Not Available Not Available 

Acute myeloid leukemia AML 1 Published https://www.ncbi.nlm.nih

.gov/pubmed/26645048 

phs000159 

Colorectal Cancer CRC 5 In preparation Not Available Not Available 

  

https://www.ncbi.nlm.nih.gov/pubmed/30224629
https://www.ncbi.nlm.nih.gov/pubmed/30224629
https://www.ncbi.nlm.nih.gov/pubmed/26645048
https://www.ncbi.nlm.nih.gov/pubmed/26645048
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Appendix 7. Chapter 4 Supplementary Figures 
 

Figure S1. Exemplary OpenCAP interpretation report to highlight OpenCAP features. This 

report was generated using the OpenCAP annotation pipeline to showcase features of the 

software. In each report, the variant name, protein change, coordinates, ENST ID, and HGVS 

Expressions are shown. The report also links to external databases including ClinVar, dbSNP, 

and COSMIC. Finally, OpenCAP pulls data directly from the CIViC interface. Specifically, the 

report shows all CIViC Variant Descriptions, Associated CIViC Assertions, and Associated 

CIViC Evidence Items (EIDs). CIViC Evidence Items are only displayed if the EID is accepted 

and has an A- or B-level Evidence Item. If the EID is displayed, a link to the CIViC interface, 

and the supporting publication is displayed. Processing information, including total variants 

processed and those that had a clinical annotation, are also shown. This report was generated 

using variants associated with a non-small cell lung cancer described by Lee et al.118 In this case, 

the patient had an EGFR - L858R variant and a KRAS - G12D variant.  

 

  

https://paperpile.com/c/92aiQS/RHRSS
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Appendix 8. Chapter 5 Supplementary Figures 
 

Figure S1. Distribution of variants identified in 346 MyeloSeq® reports.  The number of variants 

identified in each of the 40 genes targeted by the MyeloSeq® panel, according to diagnosis. 
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Figure S2. Evaluation of all AML patients that had multiple MyeloSeq® reports generated. Each 

panel represents a single patient where multiple MyeloSeq® panels were ordered. The plot indicates the 

variants observed with associated variant allele frequencies (VAFs). Each time point is labeled with 

associated bone marrow biopsy (BMBx) results and measurable residual disease (MRD) results, if 

available. Below each graph is a direct quote from physicians who ordered the report. 
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Appendix 9. Chapter 5 Supplementary Tables 

 

Table S1. Genes (and gene hotspots) targeted using the MyeloSeq®️ panel. 

BRAF (V600E) FLT3 (TKD and ITD) JAK2 (V617, exon 12) KIT (exons 2, 8-13, 17) 

KRAS (G12, G13, Q61)  MPL (exon 10) NF1 NRAS (G12, G13, Q61) 

PTPN11 (exons 3, 13, 14) GATA2 ASXL1 EZH2 

SUZ12 CSF3R WT1 RAD21 

SMC1A SMC3 STAG2 DNMT3A 

IDH1 (R132 IDH2 (R140, R172) TET2 CALR (exon 9) 

CBL (exons 8, 9) NPM1 (exon 11) PIGA PPM1D (exon 6) 

CUX1 SF3B1 SRSF2 (exon 1) U2AF1 (exons 2, 6) 

ZRSR2 BCOR BCORL1 CEBPA 

ETV6 RUNX1 PHF6 TP53 
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Table S2. 16-question survey provided to presiding physicians to inquire about change in 

treatment protocol based on MyeloSeq®️ results. 

 Question Available Responses 

1 What is the study number for the case? [Free Text] 

2 Please indicate if there is a reason why you are unable to complete a survey for the 

patient (e.g., lost to follow-up or Refused Treatment) 

[Free Text] 

3 Did you provide any of the following for the patient? 1) Hi-dose cytotoxic 

salvage chemotherapy 

2) Targeted therapy 

3) Clinical Trial Target 

Therapy 

4) Transplant in Relapse 

5) Other [Free Text] 

4 Are you considering a potential transplant for this patient? 1) Yes 

2) No 

5 Do any of the following prevent the patient from being eligible for a transplant 1) N/A Considering a 

Transplant 

2) Social Barriers 

3) Too many 

comorbidities 

3) No suitable donor 

4) Clinical Trial would be 

better 

5) Gene was targetable 

6) Other [Free Text] 

6 Did you change your therapeutic plan based on results from the MyeloSeq® assay? 1) Yes 

2) No 

7 Please describe how the MyeloSeq® changed your treatment plan. [Free Text] 

8 Did your patient accept your treatment plan recommendation? 1) Yes 

2) No 

3) Have not discuss with 

patient 

9 If applicable, please provide any additional commentary on how the MyeloSeq® 

panel informed your treatment decision 

[Free Text] 
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Table S3. Genes that recurrently failed sequencing based on a 50X coverage requirement 

across all protein coding exons contained by the gene. 

Gene 

Number of cases where 

coverage was <50X at 

some point in gene 

 

Gene 

Number of cases where 

coverage was <50X at some 

point in gene 

WT1 212  SF3B1 5 

CUX1 199  PIGA 5 

CEBPA 114  PHF6 5 

None 87  KIT 5 

RUNX1 55  CALR 5 

ZRSR2 45  EZH2 4 

SUZ12 36  NRAS 3 

MPL 20  RAD21 3 

NF1 18  SMC1A 2 

TP53 16  SMC3 2 

PTPN11 11  BCORL1 2 

BCOR 10  ASXL1 2 
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Table S4. Data describing the response rate for the 122 cases evaluated by the 14 physicians 

involved in the study. For each physician, the total number of patient cases (Cases), the total 

number of cases with a survey response (Responses), the total number of eligible surveys 

(Eligible Surveys), and the number of cases whereby the results from the MyeloSeq® panel 

changed the treatment plan (Changed Plan) are indicated. 

Physician Cases Responses Eligible Surveys Changed Plan 

A 7 7 7 0 (0%) 

B  13 11 11 6 (54%) 

C 10 10 10 9 (90%) 

D 13 13 12 3 (25%) 

E 8 8 8 4 (50%) 

F 19 19 19 7 (37%) 

G 2 2 2 2 (100%) 

H 5 5 4 2 (50%) 

I 1 1 1 0 (0%) 

J 14 14 14 7 (50%) 

K 8 8 8 4 (36%) 

L 13 13 11 2 (20%) 

M 8 8 6 4 (40%) 

N 1 1 1 0 (0%) 

Total 121 119 113 50 
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