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Uncovering Load-Altering Attacks Against N − 1
Secure Power Grids: A Rare-Event Sampling

Approach
Maldon Patrice Goodridge, Subhash Lakshminarayana Senior Member, IEEE, and Alessandro Zocca

Abstract—Load-altering attacks targetting a large number
of IoT-based high-wattage devices (e.g., smart electric vehicle
charging stations) can lead to serious disruptions of power grid
operations. In this work, we aim to uncover spatiotemporal
characteristics of LAAs that can lead to serious impact. The
problem is challenging since existing protection measures such as
N−1 security ensures that the power grid is naturally resilient to
load changes. Thus, strategically injected load perturbations that
lead to network failure can be regarded as rare events. To this
end, we adopt a rare-event sampling approach to uncover LAAs
distributed temporally and spatially across the power network.
The key advantage of this sampling method is the ability of sam-
pling efficiently from multi-modal conditional distributions with
disconnected support. Furthermore, we systematically compare
the impacts of static (one-time manipulation of demand) and
dynamic (attack over multiple time periods) LAAs. We perform
extensive simulations using benchmark IEEE test simulations.
The results show (i) the superiority and the need for rare-event
sampling in the context of uncovering LAAs as compared to
other sampling methodologies, (ii) statistical analysis of attack
characteristics and impacts of static and dynamic LAAs, and (iii)
cascade sizes (due to LAA) for different network sizes and load
conditions.

I. INTRODUCTION

The growing penetration of internet-of-things (IoT) enabled
high-wattage appliances (e.g., electric vehicle charging stations)
may create new malicious attack opportunities against power
grids. Load-altering attacks (LAAs) are large-scale load fluctua-
tions that can be generated by changing the operational settings
of IoT-based load devices under a botnet-type attack. Such
LAAs can pose a serious threat to power grid operations [2]–
[7]. LAAs can be classified into two categories: (i) static LAAs
(S-LAAs), which refers to a sudden one-time manipulation of
power grid demand, and (ii) dynamic LAAs (D-LAAs), which
refers to a series of load alterations over time.

Analyzing the impact of LAAs on power grid operations is an
important step toward developing measures to enhance system
resilience. It was shown [3], [4] that the imbalance caused due
to the mismatch between the supply and demand under S-LAAs
can lead to unsafe frequency excursions causing line outages,
generator trips, and/or increase the grid’s operational costs.
D-LAAs, on the other hand, do not have an instantaneous
impact, but however, can potentially destabilize the power
grid’s frequency control loop over a period of time [6]. In
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[5], the authors analyzed the LAA impact under more realistic
operational regimes including protection measures such as
under-frequency load shedding, over-frequency protections, etc.,
and showed that large-scale LAAs can still cause islanding and
generator disconnections. Subsequent work has investigated
the impact of spatial (i.e., location of the attack within a power
grid network structure) and temporal (i.e., the time of the attack
at different load conditions) aspects of the attack [7]–[9]. A
framework to determine the locations of the grid (i.e., victim
buses) from which an attacker can launch the most impactful
attacks was formulated in [7] using the theory of second-order
dynamical systems. Furthermore, reference [9] showed that
low inertia conditions due to high penetration of renewable
energy resources can exacerbate the consequences of LAAs.

Recent work has also focused on defending against LAAs.
These measures can be classified into (i) offline strategies,
such as the optimal deployment of protection-enabled loads
[6] or finding generator operating points that can prevent the
destabilizing effects of LAAs [10], and (ii) online measures
such as real-time detection and localization of LAAs by moni-
toring the load data [11] or frequency/phase angle fluctuations
from phasor measurement units following an LAA [12], [13].
Reference [14] proposes an online strategy to mitigate the
destabilizing effects of LAAs by redispatching fast-acting
inverter-based resources.

Despite the growing work on LAAs, existing literature lacks
a framework to understand the full extent of the consequences
of LAAs in realistic power grid conditions and a formal
comparison of different attack strategies. In this work, we
address this critical research gap. Firstly, we identify specific
LAAs that can lead to power grid failures, even when the
system is scheduled for N − 1 contingencies. Secondly, we
extensively compare the impact of two types of LAAs (S-LAAs
and D-LAAs) to better understand their relative importance
in power grid stability. We elaborate on the importance and
challenge of these two aspects in the following.

First, N − 1 scheduling policies provide resilience to power
grids against various contingencies, including LAAs. To the
best of our knowledge, the majority of the work in this area,
with the exception of [5] and our precursor work [1], has
ignored N − 1 scheduling. However, [5] considers only a
few specific attack scenarios (e.g., “IoT demand attack even
distributed across all load points”) and only a few power
grid operational conditions (e.g., system load). Again to the
best of our knowledge, there is no work that has considered
different distributions of the attack across the victim nodes
and grid conditions. However, discovering risk-posing LAAs
is challenging since N − 1 scheduling implies that component
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disconnections due to LAAs are extremely rare. To overcome
this challenge, we employ a specialized sampling approach
known as the skipping sampler (see [15]), which has been used
in the literature to obtain samples of high-impact events of low
likelihood in low-inertial power systems [16]. The application
in our case is significantly more challenging, however, since
simulating D-LAAs requires sampling multiple load changes
at each node in the network, which can result in a challenging
high-dimension sampling problem. To address this, we extend
the skipping sampler algorithm to utilize multiple skipping
trajectories per proposal instead of the single trajectory used in
the works cited. The points sampled on each trajectory can be
understood to represent the nodal load changes applied to the
network. Thus, D-LAAs comprised of N load changes over
time can be generated from N skipping trajectories.

Second, as noted before, S-LAAs and D-LAAs are qualita-
tively different attack strategies. However, it remains uncertain
which of the two strategies has a greater impact. To address this
crucial question, we leverage the skipping sampler framework
introduced earlier. To this end, we introduce a realistic and
generalized model of D-LAAs. In particular, the original
D-LAA proposed in [6] involves (i) continuous change in
the system load with infinitesimally small intervals between
successive attacks, and (ii) follows a pre-defined pattern,
namely, the attack increases the load when the system frequency
drops below the setpoint and decreases the load when the
system frequency is above the set-point (thus worsening the
generation-load imbalance at all times). Both these assumptions
have limitations. Continuous load changes are unrealistic
considering the attacker’s limited access and load response
times. Moreover, the predefined attack pattern fails to capture
other sophisticated strategies that attackers might employ to
destabilize the system. We generalize both these aspects by (i)
considering a discretized attack model with a periodic and non-
zero interval between successive attacks, and (ii) independently
sampling load attacks across time and space. By varying the
interval between the attack, we can transition from dynamic
(short intervals between attacks) and static attacks (long interval
between attacks).

We address these two research questions by performing
extensive simulations using the skipping sampler. We simulate
the power grid’s transient dynamics using a third-order model
that accounts for both the frequency as well as the voltage
dynamics [17]. We treat the cumulative magnitude of LAA
load changes that perturb the dynamical system as random
variables whose realisations are sampled independently at each
target node according to a log-normal distribution1, which was
assumed to reflect a realistic magnitude occurrence distribution
based on the empirical data from data breaches [18]. We
perform simulations including appropriate emergency responses
(ERs), such as generation/load shedding, etc., for different
system load conditions (evening, night, etc.), and various
degrees of network vulnerability to load-altering attacks.

Our results provide several novel insights into different
strategies that an adversary can potentially adopt to cause

1Note that the proposed framework works independently of the chosen
underlying cyber-attack distribution.

a grave impact on the system by manipulating large-scale
demand. The results show that adversaries employing D-LAA
strategies can induce the disconnection of critical network
components when manipulating a smaller magnitude of loads
in the network as compared to S-LAAs. Furthermore, while S-
LAA strategies cause the most damage to the power grid during
low-demand periods, the system is particularly vulnerable to
D-LAAs during the peak demand period. We also identify the
dominant failure modes in these different load conditions (in
terms of emergency response that is activated most frequently).

This paper significantly extends our preliminary work [1],
providing an in-depth extended analysis. Specifically, the
contributions of this paper can be summarized as follows:

• We propose a rare-event sampling approach to uncover
LAAs that lead to power system emergency actions in
N − 1 secure power grids. We compare its performance
with several other sampling methodologies and show that
the skipping sampler identifies significantly more attack
strategies (in terms of load attack distributions over the
victim nodes and attack time window) that can lead to
network component disconnections.

• Our previous analysis [1] only considered S-LAAs, but in
this paper, we expand our investigation to include D-LAAs.
Unlike S-LAAs, these dynamic attacks enable adversaries
to exploit both spatial and temporal distributions of load
changes to elicit network disruptions. However, analyzing
the risks posed by D-LAAs comes with increased sampling
complexity. To address this challenge, we extend the
functionality of the skipping sampler algorithm to include
multiple, simultaneous skipping trajectories.

• We exhaustively compare the impacts of S-LAAs and
D-LAAs in terms of (i) the proportion of vulnerable loads
on the network, (ii) the average magnitude of each load
change prior to the first disconnection event, (iii) the
interval between attacks, and (iv) the diurnal load balance.

The rest of the paper is organised as follows. Section II
introduces the system model; Section III presents the statistical
model and details of the rare-event sampling method. Section IV
discusses the simulation results and Section V concludes.

II. SYSTEM MODEL

The power system model for rare-event sampling is based
on the 3rd-order model for generators [19]. In addition, our
mathematical model accounts for generator governor action,
automatic voltage regulation, and protection system emergency
responses which disconnect loads, lines, and generators when
network parameters exceed pre-defined thresholds.

A. Power System Model

We consider a third-order model for generator dynamics,
which includes both frequency and voltage dynamics [16], [17],
enabling reliable estimation of frequency dynamics for longer
transient periods. We model subsequent power grid emergency
actions occurring after the initial LAA, allowing us to capture
critical actions during both primary and secondary frequency
control over the entire simulation duration.
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Consider a graph theoretic formulation of a power system
G = (N , T ), where N is the set of network buses and T is
the set of transmission lines connecting the buses. The set N
has cardinality |N | = N +L, and contains N generation buses
and L load buses. At each generation bus i = 1, . . . N , the
dynamics for the voltage phase angle δi, voltage magnitude
Ei, and governor action ρi are described by:

M(ψ)δ̈i +Dδ̇i = ψiP
G
i − PL

i (ιi)

− Ei

N+L∑
j=1

BijΩijEj sin(δij)

SiĖi = ψi(Ef,i − vi)− Ei +Xi

N+L∑
j=1

BijΩijEj cos(δij)

ρ̇i = −Aiδ̇i(1− 1W [δ̇i]).

(1a)

(1b)

(1c)

In a similar manner, the dynamics for δi and Ei at each load
bus i = N + 1, . . . , N + L are given by:

M(ψ)δ̈i +Dδ̇i = −PL
i (ιi)− Ei

N+L∑
j=1

BijΩijEj sin(δij)

SiĖi = ψiEf,i − Ei +Xi

N+L∑
j=1

BijΩijEj cos(δij).

(2a)

(2b)

In equations (1) and (2), the indicator variables ψi, Ωij and ιi
represent the state of relays which control generator, line, and
load disconnections respectively (discussed in Section II-C).
Table I provides descriptions of model variables.

TABLE I: Variables used in (1) and (2).

Symbol Meaning Units
Ai Governor’s droop response MW/rad
Bij Susceptance matrix p.u.
PG
i Net generation at node i p.u.

PL
i (ι) Net loads at node i p.u.
D System damping %
δi Phase angle at node i p.u
δij δi − δj p.u.
δ̇i Frequency at node i p.u
δ̈i Rate of change of frequency (RoCoF) p.u.
Ei Voltage at node i p.u.
Ef,i Machine i rotor field voltage p.u.
M(ψ) System angular momentum Ws2
Ωij Line ij disconnection indicator -
ψi Generator shed indicator -
ιi UFLS counter -
Si Machine i transient time constant s
Xi Machine i equivalent reactance ohms
W Governor’s deadband frequency range Hz

At nodes i = [1, . . . N ], net generation is given by PG
i :=

min{Pmax
i , P e

i + ρi}, where Pmax
i is the nominal maximum

power output of generator i, P e
i is the equilibrium power of

the generator at t = 0− before any disturbance is applied to the
network, and ρi models the action of the generator governor,
with dynamics given in (1c). The variable vi accounts for
automatic voltage regulation (cf. [16] for further details).

B. Modelling network loads

For each network, we model a fixed, maximum magnitude
of loads PTL

i at each node. We model nominal equilibrium
loads at t = 0− as a fraction of total loads are modelled to

be online and active P eq
i < PTL

i , reflecting typical power
balances observed during critical points of the diurnal cycle.
We introduce the network variable ν ∈ [0, 1] to represent the
proportion of total loads susceptible to LAAs (i.e., connectivity-
enabled loads that are vulnerable to cyber attacks). Thus, we
decompose the total loads at each node into a vulnerable
component νPTL

i , comprised of unsecured, IoT devices, and
a secure component (1 − ν)PTL

i , comprised of non-IoT or
protected devices.

Load-altering attack model: LAA refers to the manipu-
lation of the vulnerable component of network loads by an
attacker to disrupt the power balance of the network with the
intention of leading the system to an unsafe state. Existing
literature models two different types of LAAs – S-LAAs
consisting of a one-time load manipulation) and D-LAAs
consisting of multiple changes to loads in the network over a
period of time [4]–[7].

In this work, we present a unified model for S- and D-LAAs
consisting of discrete-time load changes. In particular, we
model load manipulations occurring at regular discrete times tj
spaced I seconds apart, i.e., tj = (j− 1)I for j = 1, 2, . . . , n,
with n load changes during the simulation duration denoted
by Tmax seconds. We assume that I ≥ Imin, where Imin > 0
represents the physical limits on how quickly load magnitudes
can change. Under this model, an S-LAA can be considered
a limiting case of a dynamic attack with n = 1. Without a
loss of generality, the first load change is modelled to occur at
t = t1 = 0 for both strategies.

We model the jth commanded nodal load change at time
tj to be a time-dependent fraction of the equilibrium loads,
namely ηi(tj)P

eq
i , for some factor ηi(tj) ∈ [ηmin, ηmax], where

ηi(tj) < 0 (ηi(tj) > 0) can be understood as a command
to reduce (respectively, increase) the load of node i at time
tj

2. The variables ηmin and ηmax represent the minimum and
maximum allowed values of ηi(tj) in order to model the
physical limits of the load change. For a fixed number n of load
changes, a load-altering attack is thus fully described by the
L×n matrix η whose entries describe all the commanded load
changes, more specifically ηi,j := ηi(tj). The commanded load
change at time t at node i can be modelled via the step-function
ûi : R+ 7→ R+:

ûi(t) = P eq
i

n∑
j=1

ηi(tj)1[tj ,tj+1)(t), (3)

where 1[tj ,tj+1)(t) = 1 if tj ≤ t < tj+1 and 0 otherwise.
However, despite the commanded load change, the fixed
quantity of loads on the network limits the realized load change
experienced. Therefore, at time t during the simulation, the
actual net load at node i, including the realized LAA but not
the emergency responses, is given by:

P̂L
i (t) := (1− ν)P eq

i + νmin
[
0,max

(
PTL
i , P eq

i + ûi(t)
)]
.

(4)

2Note that this model also presents a generalized version of D-LAAs as
compared to prior works [6], [7] which modelled them as continous load
changes and the load change pattern was restricted to being proportional to
the instantaneous frequency deviations.
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The second term on the RHS represents the realized load
change, which restricts the authority of the attacker to manipu-
late the vulnerable loads present at node i between a minimum
of 0 MW and an upper limit of νPTL

i . This upper limit also
highlights that the attacker can bring inactive vulnerable loads
online during the LAA. To record the realised load change
applied at t = tj , at each node, we define the set of time-
dependent realized load changes {λi(t1), λi(t2), . . . , λi(tn)},
where each λi(tj) ∈ R at node i can be calculated as:

λi(tj) := P̂L
i (tj)− P̂L

i (tj − δt), j = 1, . . . , n, (5)

where δt represents a small time increment. At each node i,
the realized load changes λi(tj)’s can be aggregated over time
to describe the full extent of the nodal attack, yielding the
nodal cumulative realised attack Σi defined as

Σi :=

n∑
j=1

|λi(tj)| . (6)

This is a measure valid for both S- and D-LAAs of the total
magnitude of realised load changes deployed against each node
(in units of power) over the entire simulation.

C. Emergency Responses

We model independent network protection systems intended
to emulate the systems designed to protect sensitive power
system components from transients in network frequency and
voltage following a change in the active power balance. We
provide a brief description of these protection systems.

1) Generation shedding: Two schemes are modelled to
disconnect generators from the network: (1) excessive RoCoF
induced generation shedding (RIGS), where generators are
disconnected if the locally measured RoCoF |δ̈i| exceeds a pre-
specified upper threshold, and (2) over frequency generation
shedding (OFGS), which disconnects generators when nodal
frequency δ̇i deviations surpass a pre-specified upper threshold.

2) Load shedding: Loads in the network can be shed via
two independent schemes: (1) Under Voltage Load Shedding
(UVLS) and (2) Under Frequency Load Shedding (UFLS).
We model a simplified UVLS scheme that disconnects 5%
of nodal loads if nodal voltage magnitude Ei falls below the
pre-specified threshold of 0.9 p.u for more than 5 seconds.
This mechanism activates only once and is designed to prevent
voltage collapse. We introduce an indicator variable Vi, which
equals 1 when the nodal voltage magnitude at node i meets
the activation criterion for the UVLS relay and 0 otherwise.

The UFLS scheme is designed to prevent frequency collapse
by progressively disconnecting loads when nodal frequency δ̇i
falls below a strictly decreasing sequence of thresholds FU :=
{FU

1 , . . . , F
U
4 } where FU

j−1 > FU
j [16]. At each threshold,

10% of equilibrium loads P eq
i is disconnected to arrest the

decline in nodal frequency. Letting Fi ∈ {0, 1, 2, 3, 4} count
the cumulative number of UFLS relay activations at node i at
each time step t in the simulation, the net load inclusive of
any UFLS and UVLS activations up to time t, is a dynamic
variable in the power system model:

PL
i (t, ι) = ιi · P̂L

i (t), (7)

where ιi :=
(
1 − 0.1Fi − 0.05Vi

)
. Correspondingly, load-

shedding events reduce the effectiveness of LAAs by discon-
necting compromised loads, degrading the attacker’s ability to
further manipulate the network’s power balance.

3) Line disconnection: We model the disconnection of inter-
area transmission lines, as their loss can exacerbate frequency
instability and lead to islanding. When the power flow ϕij :=
BijEiEj sin(δij) through any interconnector line (i, j) exceeds
a pre-set power threshold Pϕ, the line (i, j) is tripped, and
power is no longer allowed to flow through it for the rest
of the simulation. The indicator Ωij represents the state of
the interconnector between nodes i and j, with the value 1
indicating nominal operation. Once the conditions for line
disconnection are triggered, Ωij switches to 0 for the rest of
the simulation and the power flow on this line stops [16].

As the simulation evolves, the ER model inspects δ̇i(t), δ̈i(t),
Ei(t) and ϕij(t) from the power system model (1). Once the
activation criterion for an ER is observed, the corresponding
ER is activated. This results in a discontinuity in (1), where
changes to the relevant line, generator, or load are applied. The
simulation is then resumed with the new network parameters.

III. STATISTICAL MODEL AND RARE-EVENT SAMPLING
APPROACH FOR LAAS

Direct prediction of network-threatening LAA characteristics
is particularly challenging, as they can exploit unforeseen
vulnerabilities in network architecture or operational practices,
inducing emergency responses in unforeseen ways. Instead, this
work employs a sampling approach to identify LAAs that lead
to at least one subsequent emergency response, by applying
randomly generated load changes and network conditions
(referred to as ‘proposals’) to the power system described
in Section II-A. We then construct the sample of successful
LAAs by only retaining proposals that (1) trigger at least one
emergency response and (2) follow a desired distribution.

A. The statistical model

To enable the aforementioned sampling approach, we account
for the uncertainty in key LAA characteristics (magnitude and
frequencies) and network parameters (load vulnerability and
equilibrium conditions) as follows:

• Distribution of network variables: To explore the inter-
play between LAAs and different network operational
configurations, we sample two network parameters: (i) the
network vulnerability ratio ν from a uniform distribution
ν ∼ U([0, 1]) and (ii) the diurnal power balance scenarios
τ uniformly from the set {1, 2, 3, 4}. These scenarios
correspond to expected load magnitudes observed during
night, morning, afternoon, and evening hours, respec-
tively. The nodal equilibrium loads P eq

i under these load
scenarios are proportional adjustments to the published
power balance of the networks investigated [19], [20]. The
relative factors {0.4, 1, 0.85, 1.3} for τ = 1, . . . , 4 reflect
the peaks in the UK’s daily load cycle [21].

• Distribution of LAA frequency and magnitudes: For
dynamic LAAs, we assume the time between attack I
is a uniform random variable with I ∼ U([1, Tmax]),
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excluding intervals of less than 1 second to account for
the time taken to process and execute programmed load
changes (i.e., Imin = 1 second), and Tmax = 60 seconds
is the total duration of each simulation. Once I has been
sampled, we determine the corresponding number n of
attacks with n = ⌊Tmax/I⌋ and assume they are equally
interspersed at times tj = (j − 1)I for j = 1, . . . , n.

• Distribution of LAA magnitudes: We generate a set
of commanded proportional load changes by sampling
uniformly at random from [ηmin, ηmax]

L×n and storing
them in a L × n matrix η. Each entry ηi,j represents
the load change factor at time tj with respect to the
equilibrium load i. In particular, we set ηmin = −1
and ηmax = 5. The minimum value of −1 signifies
reducing the entire vulnerable part of the load at node i
to zero, while positive values indicate load increases. The
maximum load change factor is set to 5 to account for
the fixed total load magnitude in the network.

Therefore, in our setting, a load-altering attack is fully
characterized by the quadruple (η, ν, τ, I), where ν is the
proportion of vulnerable loads, τ describes the network power
equilibrium state, I is the interval between attacks and the
L × n matrix η whose entries describe all the commanded
load changes (recall that n is automatically determined by I).
Using the power system model (PSM) (1)–(2), for each attack
(η, ν, τ, I), we calculate the nodal cumulative realized attack
Σ and determine if it was successful S by

(S,Σ) = PSM(η, ν, τ, I),

where S = 1 if the attack was successful and 0 otherwise.
Ultimately, we desire the nodal LAAs in the final sam-

ple reflect a realistic distribution of LAA sizes expected
in real-world attacks, where LAAs with larger cumulative
magnitudes Σ are rare. To achieve this bias for each nodal
LAA, we set a target probability density ρ on RL

+ to be
ρ ∼

∏L
i=1 LogNormal(µ, σ2), with parameters µ = 1 and

σ = 5. This joint distribution is supported on [0,+∞)L, and
renders large magnitude LAAs at each node rare.

Thus, letting A denote the set (or ‘event’) of LAA magni-
tudes that results in the activation of at least one emergency
response, our goal is to sample from the conditional distribution
π = ρ(Σ)1A

ρ(A) , where ρ(Σ) is the probability density of an LAA
with nodal magnitudes Σ, (where Σ = (Σi)

L
i=1), and ρ(A) is

the likelihood that an LAA triggers an emergency response.
The indicator 1A = S ∈ {0, 1} takes a value of 1 if the LAA
with nodal magnitudes Σ is associated with the activation of
at least one emergency response, and 0 otherwise. Together, π
describes a probability distribution conditioned on the activation
of at least one emergency response occurring (event A).

B. The Need for Rare-Event Sampling

Directly sampling π using popular algorithms like Monte
Carlo samplers can be challenging due to several reasons:
(1) Since networks are designed and operated to maximize
resilience against contingencies, the event A of interest is a
rare event with a low probability density in realistic LAA
distributions. Consequently, evaluating a large number of

proposed attacks is necessary to identify a single relevant attack.
(2) Understanding the characteristics of network-threatening
LAAs requires sampling individual load changes at multiple
nodes. For large networks, this leads to a high-dimensional
sampling problem that can hinder algorithm performance. This
problem is exacerbated for D-LAAs, which require sampling
multiple load changes at each node. (3) Emergency responses
depend on complex interactions between network conditions
and the magnitude, spatial distribution, and timing of load
changes. As a result, the set A may exhibit complex geometry
and possibly disconnected regions in the high-dimensional
sample space of all possible LAAs (cf. Figure 1).

The results summarised in Table II highlight the sampling
challenge the statistical model presents. Consider the case of
sampling network-threatening, static LAAs (S-LAAs) against
the IEEE 39 test network.A Monte Carlo sampler was unable
to draw any samples of network-threatening LAAs in the stipu-
lated time, regardless of network resilience or LAA uncertainty
model. This is a consequence of the extreme rareness of such
events in the high dimension sample space of the problem,
leading the algorithm to spend the entire computational effort
evaluating the more common, but irrelevant LAAs which do not
threaten the network. This renders these approaches inefficient
or ineffective when attempting to sample LAAs from π.

Markov Chain Monte Carlo (MCMC) sampling techniques
can overcome many of these challenges and enable efficient
sampling of rare events. In general, MCMC algorithms can
be summarised as a two-step procedure: (1) a Proposal step,
where a new, proposed state Z for consideration is generated
from a distribution of the user’s choice (with few restrictions);
(2) an Acceptance/rejection step- using the target distribution
π, the density of the proposed state π(Z) is compared to the
density of the most recently accepted state, denoted Y (thus,
π(Y )), always accepting Z into the sample if its density is
higher (i.e. it is more likely to occur than an already accepted
state), and sometimes accepting Z if its density is lower.

The generality of the MCMC methodology has led to
multiple variants, including the well-known Random-Walk
Metropolis (RWM) algorithm. However, standard formulations
of RWM may also be ineffective when the event of interest (in
our case, event A) is both rare with respect to some underlying
distribution and disconnected in the sample space. In these
cases, RWM algorithms are liable to become ‘stuck’ in one
component of the event, unable to escape to draw samples from
others [15]. We observe evidence of this phenomenon when
an RWM is applied to draw samples of network-threatening
S-LAAs against different case studies involving the IEEE 39
network, cf. Table II. The RWM algorithm generates valid
S-LAA samples only in simplified sampling cases, where the
set of threatening LAAs is much less rare in the state space,
namely in the cases of: (1) an insecure N−0 IEEE 39 network
with Log-Normal distribution for attack factors or (2) a N − 1
secure IEEE 39 network with uniform distribution for attack
factors. However, the limited range of ν in the sample suggests
the algorithm became trapped in a local subset of A, and did
not fully explore the state space. When applied to the desired,
more challenging case of sampling threatening S-LAAs with a
Log-Normal distribution against a N − 1 secure network, the
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TABLE II: Comparison of sampling methodologies when drawing realizations of network threatening nodal static-LAAs, against two versions
of the IEEE 39 test network – one with protection systems and network characteristics tuned to satisfy the N − 1 contingency criterion and a
second one that is N − 0 secure that does not consider contingencies in its design. Additionally, we investigate two uncertainty models for
LAAs, the first, a uniform distribution (all LAAs are equally likely), and a LogNormal distribution (large magnitude LAAs are rare). All
simulations were conducted for 100 hours, at which point the resulting sample size was recorded.

Network Security Sampling Methodology Underlying Distribution Accepted samples Acceptance Rate, % range ν

N − 0 Secure
Monte Carlo LogNormal(1, 5) 0 0 n/a
Random walk Metropolis LogNormal(1, 5) 5000 5 [0.15, 0.99]
Skipping Sampler LogNormal(1, 5) 57000 50 [0.12, 0.99]

N − 1 Secure

Monte Carlo U [0, 5] 0 0 n/a
Monte Carlo LogNormal(1, 5) 0 0 n/a
Random walk Metropolis U [0, 5] 200 0.0019 [0.95, 0.99]
Random walk Metropolis LogNormal(1, 5) 0 0 n/a
Skipping Sampler U [0, 5] 37000 37 [0.64, 0.99]
Skipping Sampler LogNormal(1, 5) 9000 16 [0.66, 0.99]

RWM also failed to generate any samples. Consequentially,
these results justify the need for specialized algorithms to
efficiently sample realistically distributed LAAs which may
induce disconnections in large, N − 1 secure power systems.

C. Sampling Procedure

The flexibility in the specification of the proposal step of
MCMC algorithms allows users to devise variant methodologies
to tackle unique sampling challenges. In this work, we apply
one such variant, i.e., the skipping sampler that ‘skips’ over Ac

until a point from A is sampled or a specific halting index K is
reached (in our simulations, we use K = 5 for each skipping
path). We further amend this MCMC variant to provide a
unified framework to generate both S-LAAs (n = 1) and
D-LAAs (n > 1) load changes leading to the methodology
detailed in Algorithm 1. In the special case of S-LAA, it is
enough to consider the interval between attacks constant and
equal to Tmax, which results in n = 1 and a much smaller
dimensional sampling problem. The main ideas underlying the
procedure presented in Algorithm 1 can be summarised as
follows:

The proposal step: We first sample (i) the parameters
governing the network, i.e., vulnerability ratio (ν) and the load
scenario (τ ), and (ii) the interval between attacks (I), which
to compute the number of load changes as n = ⌊Tmax/I⌋.
We then generate n distinct L-dimensional commanded load
changes η(0)1 , . . . η

(0)
n uniformly at random from [−1, 5]L (recall

that η(0)j encodes the attack at time tj). These, along with
the network parameters, are evaluated in the power system
model. If no emergency response is activated, we return to and
update each commanded load change using the key feature
of the skipping sampler- we linearly displace and thus update
each η(0)j → η

(1)
j = η

(0)
j + Φjrj by generating n trajectories

Φ1, . . . ,Φn from a unit Gaussian density as well as n random
distance increments r1, . . . , rj from a suitable distribution with
strictly positive support. The updated load changes η(1)1 , . . . η

(1)
n ,

along with the previous network conditions, are applied to
the power system as before. This linear update for η(k)j is
repeated by sampling further random distance increments until
either an emergency response is reported by the power system
model, or the halting index K is reached. Taking the final
outcome of this subroutine, the resulting cumulative LAA
magnitudes Σk, emergency response indicator Sk as well as

Algorithm 1: Adjusted skipping sampler algorithm

1 Input: halting index K, number of steps m;

2 Sample a network state triplet as
(ν, τ, I) ∼ U [0, 1]× U [0, 4]× U [1, Tmax];

3 Calculate the number of load attacks n = ⌊Tmax/I⌋;
4 Generate a L× n matrix η(0) with i.i.d. entries sampled

from U [−1, 5] describing an initial set of commanded
load changes;

5 (S0,Σ0) = PSM(η(0), ν, τ, I);
6 Y0 := [S0,Σ0, ν, τ, I];
7 for w = 0, 1, . . . ,m− 1 do
8 Set k = 1 and η̂(1) := η(t);
9 Generate n skipping directions Φj ∈ RL for

j = 1, . . . , n;
10 while Sk ̸= 1 and k < K do
11 Generate n random distance increments R(k)

j

conditionally on Φj for j = 1, . . . , n;
12 Calculate the new matrix of commanded load

changes by setting η̂(k+1)
i,j := η̂

(k)
i,j +R

(k)
j Φj for

j = 1, . . . , n;
13 (Sk+1,Σk+1) = PSM(η̂(k+1), ν, τ, I);
14 Increment k by 1;
15 if Sk = 1 then
16 Set Z := [Sk,Σk, ν, τ, I];
17 Evaluate the acceptance probability:

α(Yt, Z) =

{
min

(
1, π(Z)

π(Yt)

)
if π(Yt) ̸= 0,

1, otherwise,

Generate a uniform r.v. V on (0, 1);
18 if V ≤ α(Yi, Z) then
19 Yw+1 = Z;
20 else
21 Yw+1 = Yw;
22 else
23 Yw+1 = Yw;
24 Output: [Y1, Y2, . . . , Ym]

the network parameters (ν, τ, I) are reported as the proposal
Z to be accepted or rejected in the next step.

The acceptance/rejection step: The proposal Z :=
(Σk, ν, τ, I) is evaluated using the target density π to determine
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Fig. 1: Illustration of a skipping proposal for a D-LAA in the
commanded load change η state space (where the ‘skipping’ update
occurs) [left] and the realised load change (Σ) state space (where
proposals are accepted/rejected) [right]. The set A of realised load
changes associated with emergency responses is denoted in orange.
Each sampled D-LAA is composed of n = 3 load changes in
L = 2 nodes and is thus described by three vectors η̂1, η̂2, η̂3 ∈ R2,
which are thus represented as distinct points [left]. Instead of simply
discarding the initial sampled unsuccessful LAA η(1) (S1 = 0 and
the corresponding point Σ1 is not in the target region A in orange),
each commanded load change (at t1, t2, and t3) is updated in a
linear fashion by randomly generating new points along the random
directions Φ1, Φ2, and Φ3 respectively, determining η̂(2), η̂(3), . . . and
thus of Σ2,Σ3, . . . (via the power system model, denoted PSM). This
skipping process continues until the resulting realised load changes
trigger at least one emergency response, corresponding to Σ4 (which
is the first in the target region A in orange, i.e., the first with S4 = 1).

whether it should be admitted to the final sample. As described
earlier for all MCMC algorithms, if the density of Z (π(Z))
is greater than the density of the most recently accepted
state π(Yw), then Z is added to the final sample and can be
understood as the algorithm moving to a more likely state in
the density π. Conversely, if its density is lower, it is sometimes
accepted (as controlled by the uniform r.v. V ). This move to a
less desirable state allows the algorithm to escape high-density
regions of the state space and promotes greater exploration.

This particular formulation of an MCMC algorithm allows
more efficient sampling of rare events which may be discon-
nected in state space, as the skipping proposal mechanism
prioritizes exploration of the state space. This emphasis allows
the algorithm to avoid being trapped in local modes of π
depending on the initial starting point of the algorithm, a
potential weakness of other MCMC algorithms (e.g. a random
walk Metropolis algorithm). Further, the use of multiple
skipping paths for each load change over time offers both
a general and practical mathematical framework to represent
both S-LAAs and D-LAAs. This technique eliminates the need
to change the dimensions of the state space between proposals
when more (or fewer) load changes are required.

As per Table II, in contrast to MC and RMW algorithms,
the skipping approach generated sufficiently large samples
in all cases and was the only algorithm to generate S-LAAs
of interest in the most realistic scenario where a resilient,
N − 1 compliant network was subjected to LAAs with rare
large attacks (LogNormal distribution), thus showing the
effectiveness of the methodology in sampling relevant LAAs.

IV. SIMULATIONS

A. Simulation Settings

We consider two well-known test networks in the literature:
the Kundur 4-bus, two-area system (KTAS) [19] and the IEEE
39 network [20]. The Kron-reduced versions of these networks
are used, with the reduced KTAS comprising N = 4 nodes
with generation units and L = 2 pure loads and the reduced
IEEE 39 network consisting of N = 10 generator buses (two
of which are modelled to include loads as well), and L = 17
pure load buses. In the KTAS network, the interconnectors
correspond to the transmission lines connecting Areas 1 and
2 (see [22]). The larger IEEE 39 network was divided into 3
areas, connected by a total of 4 interconnector lines (see [20]).
The emergency response parameters are adjusted to ensure
N − 1 security for each system.

Simulations are conducted independently for each network
and for each LAA type (dynamic and static). The system is
initialized in one of 4 power equilibrium states specified by
the sampled load scenario at t = 0−. The initial states of
each system3 variable (δi (0), Ei (0), ρi(0)) are determined
numerically such that δ̈i ≈ 0. The skipping sampler is
employed to generate a sample of LAA magnitudes and
network parameters, conditioned on at least one activation of an
emergency response. In each proposal step of the algorithm, we
generate a matrix of commanded load changes η̂(k) ∈ RL×n.
Along with the network variables, these inputs are fed into the
power system model (1), which we use to simulate frequency
and voltage dynamics for Tmax = 60 seconds using MATLAB.
For each experiment, we conducted 50, 000 proposals.

The proposal densities of the sampling procedures are tuned
separately for IEEE 39 and KTAS simulations to achieve an
acceptance rate (the proportion of accepted proposals with
respect to the total number of proposals) between 10% and 40%,
as recommended in the literature [23] for adequate exploration
of the sample space. This results in sample sizes of ∼14000
for D-LAAs, and ∼9000 for S-LAAs, providing sufficient data
for meaningful inferences.

B. Comparison of S- and D-LAAs via Statistical Analysis

We perform statistical analysis (of the impactful LAAs
uncovered by the skipping sampler in Section III-B) to compare
S-LAAs and D-LAAs in terms of the average magnitude
of load change before the first disconnection event, denoted
µλ− :=

∑L
i=1

∫ r

0
λi(tj)1{t=tj}dt where t = r is the response

time – the time of first disconnection for S-LAAs and D-LAAs.
Simulation results for the IEEE 39 network (Figure 2) reveal
that both the average and minimum of µλ− are lower for D-
LAAs (Figure 2a) as compared to S-LAAs (Figure 2c), with a
hypothesis test comparing the averages revealing the difference,
is statistically significant (p-value = 2 × 10−25). The reason
behind this is that static attacks must deliver the entire load
change needed to destabilize the network in a single event at
time t = 0, leading to a bias towards larger magnitude load
changes. Conversely, the ability to induce multiple load changes
provides additional mechanisms to trigger disconnections by

3Note: Parameters for each network can be found at https://github.com/
maldongoodridge/power system model MG.git

https://github.com/maldongoodridge/power_system_model_MG.git
https://github.com/maldongoodridge/power_system_model_MG.git
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(a) Distribution of µλ− for high-frequency D-LAAs (I < 30s).

(b) Distribution of µλ− for low-frequency D-LAAs (I ≥ 30s).

(c) Distribution of µλ− for S-LAAs .

Fig. 2: Distributions of the average load change magnitude during
response time µλ− for D-LAAs and S-LAAs applied against the
IEEE 39 network, conditioned on the occurrence of at least one
disconnection event X . Illustrations are provided for high-frequency
D-LAAs, low-frequency D-LAAs, and static LAAs.

varying the temporal characteristics of the LAA. This reduces
the reliance on magnitude-dominant approaches in LAA design
and enables the use of lower-magnitude D-LAA strategies.

In the IEEE 39 network, we observe bi-modality of the
conditional distribution of µλ− for both low-frequency D-LAA
and S-LAA strategies. These modes correspond to different
attack strategies during varying load balance scenarios (τ ). The
lower mode is associated with LAAs leading to emergency
responses during the peak demand period (Evening), while
the higher mode is linked to LAAs during the nadir demand
period (Night). Further details explaining these observations
are provided in Section IV-C. In contrast, the distribution of
µλ− for high-frequency LAAs lacks bi-modality, indicating
the inherent threat posed by this attack strategy to network
operations. Such attacks induce disconnections in all scenarios
with load changes of much smaller average magnitude.

C. Impact of Intra-Day Power Equilibrium

We examined the vulnerability of both networks to LAAs
under different load balance scenarios, reflecting diurnal
demand cycles. In the KTAS network (Figure 3), the risk of
disconnections is proportional to the magnitude of equilibrium
loads. This risk is maximum during periods of peak demand
when adversaries can induce a disconnection event by manipu-
lating only ∼ 6% of equilibrium loads (see Table III). This low
threshold is due to the larger absolute magnitude of loads online
during peak demand and the network’s high-stress state in this
period. Thus, even marginal increases in loads can overwhelm

Fig. 3: Average cascade size for the IEEE 39-bus network.

network generation and trigger a localized load-shedding
event. Conversely, the risk of LAA-induced disconnections is
minimized during nadir demand periods (referred to as Night).
Although disconnections are rare during this scenario, our
analysis provides insights into how such events could occur. In
this scenario, successful attacks strategies are power-dominated
instead of period-dominated: observing µλ− in Table III, both
S-LAA and D-LAA strategies require attackers to manipulate
large proportions of active loads to trigger disconnections.
While an attacker can induce disconnections using D-LAAs
with smaller load change magnitudes, this dramatically extends
the response r, underscoring the dominance of low-frequency,
large-magnitude strategies in this scenario.

LAA-induced emergency responses exhibit fundamental
differences in the larger and more connected IEEE 39 network.
Firstly, successful attack strategies in this network require
multiple load changes, with the average response time r
exceeding the average attack period I as shown in Table III.
This contrasts with the KTAS network, where an initial
load change at t = 0 was typically sufficient to induce the
first disconnection event. Secondly, the results highlight how
successful LAA strategies in the IEEE 39 network depend
on the load scenario. During low-demand scenarios, larger
magnitude load changes are required on average to trigger
disconnections, resulting in a significantly reduced response
time. Conversely, during peak demand periods, the preferred
strategy is to manipulate a smaller proportion of loads to trigger
a disconnection, providing more response time.

These distinct characteristics of successful attack strategies
based on the load scenario are also evident in the induced
emergency responses, see Figure 4. During low demand periods,
RoCoF generation shedding dominated power disconnected
over the entire simulation, leading to the loss of a significant
proportion of generation in the network. This highlights the
network’s vulnerability to power-focused LAA strategies during
the nadir demand period (Night). In higher demand scenarios,
the damping effect of loads, coupled with the relatively smaller
magnitude of load changes, limits RoCoF effects. Instead,
successful LAAs in this regime exploit the cumulative effect
of multiple load changes to gradually overwhelm already
stressed generation capabilities, resulting in UFLS dominating
emergency responses. Generation losses, a common failure
mechanism profile of network overload, are rare in this regime.

Overall, these findings suggest the IEEE 39 network is
particularly vulnerable to LAA-induced disconnections in
periods of extreme demand. This is further supported by the
bi-modal distribution of disconnections conditioned on load
scenarios in Figure 3, with increased vulnerability in nadir
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TABLE III: Summary of successful attacks in terms of the average magnitude of each load change (µλ), average response time r, and
average attack period I for each network and LAA strategy.

Network LAA Metric Night Morning Afternoon Evening

IEEE 39
D-LAA

Avg. µλ 35.70 24.35 31.37 16.07
Avg. r, s 34.75 48.82 39.99 50.79
Avg. I, s 32.25 31.45 30.46 33.96

S-LAA Avg. µλ 44.1 43.91 48.96 29.69
Avg. r, s 29.60 48.62 40.73 50.17

KTAS
D -LAA

Avg. µλ 55.29 18.86 32.62 6.31
r, s 18.37 8.28 10.93 8.39

Avg. I,s 30.33 31.89 31.11 31.63

S-LAA Avg.µλ 72.36 20.17 36.78 6.56
r, s 5.88 7.23 6.64 8.09

(a) Average cascade sizes during nadir demand Night scenario.

(b) Average cascade sizes during peak-demand Evening scenario.

Fig. 4: Average cascade size for the IEEE 39-bus network.

(Night) and peak (Evening) demand scenarios.

D. Analysis of D-LAA Attack Patterns
In the literature, a common descriptor of D-LAAs which

potentially threaten network security is the so-called ‘reverse
governor’ model, characterized by a negative relationship
between network frequency and the effective network load
change. Such load changes act in opposition to and therefore
exacerbate frequency deviations, eventually exceeding preset
protection systems thresholds for activation [6].

We use a simple linear model, Σ̂ = β̂0 − β̂1δ̇, where
Σ̂ :=

∑L
i=1 λ

k
i is the net load change over the network, δ̇

is the system frequency at the time of each load change
event, and β1 is the slope coefficient measuring the impact
of load changes on frequency. The reverse governor model
posits that β1 should be negative. We investigate this claim
using the samples generated from our simulations. The pie-
chart in Figure 5 suggests a reverse governor model was
statistically valid in only 40% of cases sampled where LAAs
led to subsequent emergency responses. In these cases, negative
slope estimators (β̂ < 0) with p-values less than 0.05 indicate
there is less than a 5% chance this relationship is spurious.
However, in 52% of the sample, there was no statistically
significant relationship between network frequency and LAA
load changes. Surprisingly, in 8% of samples, there was even
a positive relationship between load changes and frequency

Fig. 5: Summary of linear regression analyses between network
frequency and network load changes in each sample. The chart
illustrates the proportion of results where the relationship between
load changes and frequency conforms to the reverse governor model
(blue), the proportion which does not (yellow), and the proportion
where there is no statistically significant relationship between loads
and frequency (red). Samples with fewer than 3 load changes were
excluded to remove trivial regression cases. We take a p-value less
than 5% as an indicator of statistical significance.

deviations, directly contradicting the assumption of a reverse
governor model for D-LAAs.

These results reflect the literature in that when a meaningful
relationship between load changes and frequency can be
extrapolated, the reverse governor model dominates, describing
80% of such cases. However, in general, the reverse governor
model is applicable only to a minority of all potential failure
scenarios. The statistical analysis highlights variations in
network frequency alone explained 22–30% of the variation
in network loads, as measured by the average coefficient of
determination R2. This suggests the reverse governor model is
actually only one of many potential dynamic attack strategies.

V. CONCLUSIONS AND FUTURE RESEARCH

In this work, we present a rare-event sampling framework to
uncover impactful LAAs in power grids designed with N − 1
security criteria and provide a rigorous comparison between
S-LAAs and D-LAAs. Our results highlight the importance
of adopting specialized sampling methodologies such as the
skipping sampler in discovering impactful LAAs. Furthermore,
we draw the following conclusions: (i) D-LAAs can induce
power grid failures by manipulating a smaller fraction of IoT
loads (cumulatively) as compared to S-LAAs. (ii) In low-
demand scenarios, larger magnitude load changes are required
on average to trigger disconnections (i.e., the dominant attack
strategy being S-LAAs). Conversely, during peak-demand
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periods, manipulation of a smaller and high-frequency load
manipulation triggers a disconnection (i.e., the dominant attack
strategy being D-LAAs). These findings are corroborated by
the time taken and the nature of emergency responses. (iii) We
discovered a significant number of attack samples that do not
conform to the ‘reverse governor’ attack model proposed in [6],
highlighting the need for advanced sampling methodologies
to identify impactful LAAs. In the future, we will investigate
defence measures to enhance the resilience of power systems
to LAAs using the insight derived from this work.
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APPENDIX: CASE STUDIES

We present two case studies below, one which exemplifies
the reverse governor LAA model, and one which does not.

(a) Example of a high-frequency D-LAA which exhibits a
‘reverse governor’ relationship between frequency and load
changes.

(b) Example of a low-frequency D-LAA where there is no
significant relationship between loads and frequency.

Fig. 6: Network frequency profiles (black, with nodal frequencies
super-imposed in colour), network generation profiles (green), and
network load profiles (blue) during simulated D-LAA in the IEEE 39
network. Load changes are depicted with a blue marker and emergency
responses as vertical red dashed lines at the time of their occurrence.

Figures 6a and 6b displays frequency, power, and load
dynamics during simulated D-LAAs against the IEEE 39
network. At t = 0−, the system is in equilibrium, with
loads equal to generation and network frequency of 60Hz.
Figure 6a illustrates a high-frequency D-LAA where load
changes oscillate in opposition to generation to exacerbate
both frequency deviations and RoCoF, eventually triggering
a loss of load event and the disconnection of a generator at
51 and 59 seconds respectively. This attack was modelled to
occur in the low-demand night scenario, thus generators had
excess capacity to attempt to stabilize frequency excursions.
However, the adversary exploited this response mechanism by
commanding alternating load changes which exacerbate the
frequency dynamics instead of dampening them.

In Figure 6b, the D-LAA is instead deployed against the
IEEE 39 network during a peak loading period when generation
is near capacity. The attacker deploys a low-frequency D-
LAA strategy, where at t = 0, the initial attack increases
loads beyond the capacity of the online generation. Thus, even
after ramping to full capacity, there is net demand in the
network, leading to a collapse in frequency. With no recourse,
under frequency load shed relays independently activate across
the network to arrest the decline in frequency. As the failure
sequence is primarily induced by the initial LAA, there is little
relationship between load changes and frequency deviations,
violating the tenets of the reverse governor model.
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