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A SHORT SIMPLE PROOF OF CLOSEDNESS OF CONVEX

CONES AND FARKAS’ LEMMA

WOUTER KAGER

Farkas’ lemma is a cornerstone of the theory of linear inequalities, and is often
the starting point for proving the duality theorem of linear programming (see,
e.g., [1] and [7, Ch. 6]). Suppose A is a real m × n matrix with column vectors
a1, . . . , an, and b is a vector in R

m. To avoid trivial cases, assume A 6= 0 and (with
no loss of generality) a1 6= 0. Let K be the convex cone {Ax : x ∈ R

n
+}, where R+

denotes the set of non-negative reals. Then

Farkas’ lemma. Either b lies in K, or there exists a vector y in R
m such that

〈a1, y〉 ≥ 0, . . . , 〈an, y〉 ≥ 0 and 〈b, y〉 < 0 (but not both).

In [6], Komornik gave a simple proof of Farkas’ lemma, and stated as a difficulty
with “intuitive” proofs that “the proof of the closedness of K is not obvious”.
Broyden in fact calls this “the most difficult part of a geometric proof” [4]. But
here we show that closedness of K follows simply from the Bolzano–Weierstrass
theorem once we have introduced the notion of an optimal vector in [0, 1]n. Farkas’
lemma follows from this by standard means.

To illustrate why it is not obvious thatK is closed, let C be the set of points (x, y)
such that −1 < x < 1 and y ≤ ln(1 − x2). Then C is convex and closed in R

2,
but the convex cone generated by C, i.e., the set {λz : λ ∈ R+, z ∈ C}, is the open
lower half-plane in R

2 plus the point 0, which is not closed. Also, the linear map
f : (x, y) 7→ x maps C to the open interval (−1, 1). So it is not true that a set is
closed simply because it is the convex cone generated by a closed set of vectors, or
because it is the linear image of such a set. We need a more refined argument.

We call a vector u = (u1, . . . , un) optimal if u lies in [0, 1]n, has length ‖u‖ = 1,
and there is no vector z in R

n
+ which satisfies Az = Au and has fewer non-zero

components than u. Note that Au = 0 is impossible if u is optimal, but any vector
v = Ax with x ∈ R

n
+ can be written in the form λAu with λ ∈ R+ and u optimal:

we can take λ = 0, u = (1, 0, . . . , 0) if v = 0, and if v 6= 0 we can first choose from
the set {z ∈ R

n
+ : v = Az} a vector z with a minimal number of non-zero compo-

nents, and then take λ = ‖z‖, u = ‖z‖−1z. We use this to prove closedness of K.

Lemma. Let K be the convex cone defined above, and suppose {vk} is a sequence
of points in K that converges to some limit v. Then v lies in K.

Proof. Write vk = λk Auk with λk ∈ R+ and uk = (u1k, . . . , u
n
k ) an optimal vector.

Then the sequence {uk} has a subsequence {ukj} that converges to some limit u
in [0, 1]n of length 1. Let I be the set of indices i for which ui > 0, and choose k
in {kj} so that uik > 0 for each i in I. Define µ := mini∈I (u

i
k/u

i ) and z := uk−µu.
Then mini∈I ( z

i/ui ) = 0 and zi = uik if i /∈ I, so z lies in R
n
+ and has at least one

non-zero component less than uk. Since uk was optimal, this implies Az 6= Auk,
hence Au 6= 0. But we know that ‖Aukj‖ → ‖Au‖ and λkj ‖Aukj‖ = ‖vkj‖ → ‖v‖.
It follows that λkj → λ := ‖Au‖−1‖v‖, hence v = λAu, which lies in K. �

We do not claim complete originality of the ideas used in the proof, but are
not aware of other publications that prove the lemma in exactly the same way. In

1

http://arxiv.org/abs/2208.11678v2


2 WOUTER KAGER

particular, while this note was under review it was brought to the author’s notice
that Bonnans and Shapiro [3, Prop. 2.41] use optimal vectors in a similar way, yet
their proof is more involved than necessary and not as direct as the one presented
here. Other closely related but distinct proofs can be found for instance in [2, 5]
and [7, pp. 96–97]. We close with a proof of Farkas’ lemma:

Proof of Farkas’ lemma. Suppose b does not lie in K. Set δ := infv∈K ‖v− b‖ and
for each k in N, choose a point vk in K such that ‖vk − b‖ < δ+k−1. Then ‖vk‖ ≤
‖b‖ + δ + 1, so the sequence {vk} is bounded and hence has a subsequence {vkj}
which converges to some v. By the lemma, v ∈ K, hence δ = ‖v − b‖ > 0. Now
write y = v − b, and let w be one of the vectors a1, . . . , an or −v. Note that then
‖y‖ = δ, and ‖y + λw‖ ≥ δ for λ in (0, 1) because v + λw ∈ K. Therefore,

0 ≤ lim
λ→0+

1

2λ

(

‖y + λw‖2 − ‖y‖2
)

= lim
λ→0+

λ

2
‖w‖2 + 〈w, y〉 = 〈w, y〉.

This gives 〈a1, y〉 ≥ 0, . . . , 〈an, y〉 ≥ 0 and −〈b, y〉 = 〈−v, y〉+ ‖y‖2 ≥ δ2.
If b does lie in K, then b = Ax for some x in R

n
+. It follows that for any y in R

m,

〈b, y〉 =
∑n

i=1 x
i 〈ai, y〉. But then 〈b, y〉 < 0 implies 〈ai, y〉 < 0 for some ai. �

Remark 1. The point v is actually the unique point in K closest to b. To see
this, recall that y = v − b, let w be in K, and write z = w − b. Then the point
1
2
(v + w) lies in K, so ‖y + z‖ = ‖v + w − 2b‖ ≥ 2δ. Hence, v 6= w implies

2 ‖z‖2 = ‖y − z‖2 + ‖y + z‖2 − 2 ‖y‖2 ≥ ‖v − w‖2 + 2δ2 > 2δ2.

Remark 2. Let c be the infimum of ‖Au‖ over all optimal vectors u, and choose a
sequence {uk} of optimal vectors such that ‖Auk‖ → c. Then the argument from
the proof of our lemma yields c > 0, which is a key step in Bonnans and Shapiro.
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