
VU Research Portal

Variability Features: Extending Sustainability Decision Maps via an Industrial Case
Study
Funke, Markus; Lago, Patricia; Verdecchia, Roberto

published in
2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C)
2023

document version
Peer reviewed version

Link to publication in VU Research Portal

citation for published version (APA)
Funke, M., Lago, P., & Verdecchia, R. (2023). Variability Features: Extending Sustainability Decision Maps via
an Industrial Case Study. In 2023 IEEE 20th International Conference on Software Architecture Companion
(ICSA-C)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 19. Nov. 2023

https://research.vu.nl/en/publications/65b673d1-1fe4-4d58-bbcd-29724f91c1e9

Variability Features: Extending Sustainability
Decision Maps via an Industrial Case Study

Markus Funke, Patricia Lago, Roberto Verdecchia
Vrije Universiteit Amsterdam, Netherlands

Abstract—Over the years, various thinking frameworks have
been developed to address sustainability as a quality property
of software-intensive systems. Notwithstanding, which quality
concerns should be selected in practice that have a significant
impact on sustainability remains a challenge.

In this experience report, we propose the notion of variability
features, i.e., specific software features which are implemented in
a number of possible alternative variants, each with a potentially
different impact on sustainability. We extended sustainability
decision maps to incorporate these variability features into an
already existing thinking framework. Our findings were derived
from a qualitative case study and evaluated in an industrial
context. Data was collected by analysing a real-world application
and conducting working sessions together with expert interviews.

The variability features allowed us to identify and evaluate
alternative usage scenarios of one real-world software-intensive
system, enabling data-driven sustainability choices and
suggestions for professional practices. By providing concrete
measurements, we can support software architects at design time,
and decision makers towards achieving sustainability goals.

Index Terms—Software Architecture, Software Sustainability,
Case Study, Variability Features, Lessons Learned.

I. INTRODUCTION

Now that the energy consumed by software is exceeding the
one of the entire avionic sector [1], the sustainability impact of
software-intensive systems is no longer negligible. To address
this issue, during the years numerous approaches have been
proposed to improve the sustainability of software products.
Related literature tackles software sustainability from different
angles. While some works focus on refactoring source code to
improve energy efficiency [2]–[4], others design architectural
tactics to address software sustainability more holistically
[5], [6]. Despite such efforts, how to concretely select what
sustainability concerns to address in practice remains an open
question. As a potential solution, in recent years, thinking
frameworks were devised to reason about the sustainability
of software-intensive systems, fostering communication on
the sustainability of software products, and highlighting the
most important (or most promising) sustainability concerns
to be addressed case by case. In this work, we report on the
experience of applying Decision Maps (DMs), a software
sustainability thinking framework proposed by Lago [7], to
an industrial software product developed by our industrial
partner. The application of DMs, conducted in collaboration
with the company, aimed to empowering our collaboration

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No 871342.

partner to gain insights into (i) the sustainability of their
software product, (ii) the measurement plans which could be
used to measure software sustainability, and (iii) the strategies
that could be devised to improve it. While environmental
concerns such as energy consumption are only one example,
in this work we also cover the broader scope of sustainability
in all four dimensions (i.e., technical, environmental, social
and economic [7]). The main contributions of this study are:
(i) the introduction of the notion of variability features and
variants; (ii) an extension to sustainability decision maps; (iii)
the application and evaluation in an industrial context; (iv)
suggestions and strategies for professional practice.

II. STUDY DESIGN AND EXECUTION

In this section we describe the research methodology used
to apply the DMs in the context of the industrial partner
collaborating on the project. An overview of the research
process used for this study is depicted in Figure 1, and further
described below.

Working session: In the first phase of the research
process, a working session was held between the researchers
who authored this paper and the industrial partner. During
this session, the knowledge on DM of the researchers, and
the knowledge on the software product under consideration,
named Zahori1, was combined to model a DM. Specifically,
the industrial participants provided information on the Zahori
product, and the researchers modeled such information into
the DM, inquiring about further data, clarifications, and
confirmations when needed. As background information
about the context, Zahori is a robotic process automation
tool used in software testing, capable of capture-and-replay
testing, variable customization, and log reporting.

In contrast to previous work [8], where the knowledge on
DMs was first taught to industrial participants, who could
then independently apply it, the methodology used in this
study allowed to efficiently construct a DM, while ensuring
both the completeness of the information modeled, and the
syntactic/semantic correctness of the DM. The output of
this phase was a DM of Zahori, capturing its main features,
sustainability concerns, and related dependencies (see
Section III-A for the concrete DM and its documentation).

Manual code inspection: In the second phase, the
source code of the product under consideration (Zahori),
which is available as open-source1, was manually inspected

1https://github.com/zahori-io/. Accessed: 05-12-2022.

https://github.com/zahori-io/

Working session

Decision Map
knowledge Decision Map

Manual code
inspection

Preliminary reconstructed
architecture

Reconstructed
architecture

Reconstructed
Architecture
Validation

Identification of
variability feature

Evaluation

Variability Feature
Analysis Results

Variability Feature
Mini-views

Legend

Next phase

Input / output

Fig. 1: Study design overview

in order to reconstruct its architecture. During this phase,
three researchers manually analyzed the Zahori code base
to identify the architecture elements and their connections.
The output of this phase was a preliminary version of the
reconstructed architecture of Zahori, to be validated with the
developers of Zahori in the subsequent phase.

Reconstructed architecture validation: In the third phase
of the study, a series of interviews and follow-up questions
were conducted with the developers of Zahori. This process
was executed to validate the reconstructed architecture
and terminated with a documentation of the reconstructed
architecture of Zahori, as obtained via the manual inspection
and subsequent validation phase. An overview of the resulting
reconstructed architecture is reported in Section III-B.

Identification of Variability Feature: In this phase, both
the reconstructed architecture and the DM were utilized
to identify where in the Zahori architecture the different
sustainability aspects of the DM can be measured. We
exemplify this identification process by focusing on a specific
Zahori sub-feature having a potential impact on sustainability.
The sub-feature selection was driven by both the envisioned
impact of the metric, i.e., its relevancy; and the effort required
to implement its measurement plan, i.e., its measurability.
The process and the sub-feature itself are outlined below.

First, we mapped the involved sub-elements of the DM
and the reconstructed architecture to each other. This process
was conducted to identify, in the architecture, where the
sustainability concerns could be measured and evaluated. In
addition to the mapping of architecture elements to DM ones,
metrics suitable to assess the sustainability concerns were
identified as derived product.

Second, we identified one concrete variability feature, i.e.,
a specific feature modeling a variation point2 in the DM
which has already been implemented in a number of possible
alternative variants, each with a potentially different impact
on the sustainability of the application at hand.

Based on the results of the working session, the derived
DM and its analysis (described further in Section III-C),

2We borrowed from Lago et al. [9] the notions of variation point and
variants applied to features in software architecture, where the first (see
definitions in Pohl et al. [10]) is in our case an architecture element that can
be realized in different ways, i.e., the variants.

we selected the Zahori feature for creating ‘evidences’ as a
potential variability feature, which is simply referred to as
‘Evidences’ feature from this point onward. The Evidences
feature provides Zahori the capability to report to the tester
evidences on the end status of tests, in the form of either
logs, screenshots, textual documents, or videos.

The final output of this phase were two mini-views3

zooming into the selected variability feature. In particular,
the first mini-view focuses on the mapping between the
feature-related DM elements and architecture elements,
and the second mini-view visualises the variability feature
together with its variants and sustainability concerns.

Evaluation: Finally, we conducted an evaluation in
terms of a controlled experiment on the impact that varying
the selected Evidences feature entailed on the related
sustainability concern (as mapped in the mini-view DM). The
output of this phase is empirical evidence on the impact that
each variant of the variability feature has on the sustainability
concerns. An overview of the inspection of the variability
feature is reported in Section III-D.

III. RESULTS

In this section we report on the results of the industrial
collaboration. First, we present the DMs that emerged from
the workshop sessions. Then, we present the reconstructed
architecture of the software under study. Finally, a typical
software function is examined in more detail, i.e., our variabil-
ity feature, to derive a measurement plan in order to showcase
how software sustainability can be measured in practice.

A. Decision Map

As outlined in Section II, the workshop session aimed to
elicit and uncover sustainability concerns related to the Zahori
software product. The workshop resulted in an initial DM
version, which was revised in an iteration by the researcher and
re-evaluated together with the software developers, resulting in
the final DM, as shown in Figure 2. The DM identifies the two
technical features (i) Automated Regression Testing and (ii)
Dataset Creation and Maintenance. Since Zahori is defined as

3Mini-view is a simple term introduced to illustrate an architecture model
that according to the ISO/IEC/IEEE 42010:2011 standard [11] is used to
focus on specific elements or aspects of a view.

 SYSTEMIC

ZAHORI
(for functional

testing)

COST
(for customer)

SHORT
RELEASE

TIME

EASE OF TEST
IMPLEMENTATION

(BUILDING A)
COMMUNITY

TIME TO
MARKET

REPUTATION

TALENT
SCOUTABILITY

(QA experts,
juniors)

TRUST
(of potential
customers)

LEVEL OF
(TEST)

AUTOMATION

IMMEDIATE

AUTOMATED
REGRESSION

TESTING

DATASET
CREATION &

MAINTENANCE
COST OF

AUTOMATION
EXECUTION

TIME

QUALITY OF
TEST

COVERAGE

higher

PROCESS
EFFICIENCY

PROFESSIONAL
GROWTH

team motivation =
build knowhow
about automation

optimization of
boring stuff

(WORK)
MORALE

quality of work

INCLUSIVITY
(for less technical

people)

change mindset
about software

ENABLING

LEARNABILITY

COST
(for Panel)

REUSABILITY
(of tests)

customer, for possible
audit (traceability)

QUALITY OF
SYSTEM UNDER

TEST (SUT)

at least the same quality

low code

test case replicability
also for types of functions

PROJECT SOCIAL
CONCERN

TECHNICAL
CONCERN

ENVIRONMENTAL
CONCERN

ECONOMIC
CONCERN

SUSTAINABILITY TYPES OF ARCH. DESIGN CONCERNS NEGATIVE EFFECT

POSITIVE EFFECT

UNDECIDED EFFECT

SUSTAINABILITY IMPACT

IMMEDIATE ENABLING SYSTEMIC

REQUIREMENT

FEATURE

Fig. 2: Zahori sustainability decision map (DM)

an automation tool for software testing, it is apparent that with
automated regression testing, Zahori aims to improve espe-
cially technical aspects such as the level of (test) automation
or the reusability of tests. These technical concerns do also
have a positive effect on social sustainability, such as building
trust among customers by improving the traceability of test
cases for potential audits. Further, by automating manual and
repetitive tasks, the liberated human resources can now be used
for other, more efficient and rewarding work, leading to higher
process efficiency and thus being defined as a social concern.

The working session uncovered an economic trade-off
related to the cost for customer. On the one hand, costs
decrease due to a shorter time to market as tests can be
automated and no manual execution or reporting is required.
On the other hand, costs can also increase given that test
data still needs to be created and maintained manually by the
test team. This constraint is attributed to the feature dataset
creation & maintenance. Nevertheless, these implications
do not emerge immediately, but only over time. Hence, the
trade-off is defined as an enabling impact.

Considering that Zahori was developed as open source
software and all resources are publicly available on GitHub,
the developers aim to build a social community around the
software itself. This social feature could help with talent
scouting. However, building an actual community would
require behavioral changes, i.e., systemic changes, in the

way Zahori is accepted as a software product by both the
testing and software development communities. Nonetheless,
building a community around Zahori would also lead to
an increased reputation for the software product itself,
and thus for the responsible development organization. An
increased reputation would in turn support the building of the
actual community; the more the product is accepted by the
community, the larger the community becomes. We identify
such a “reinforcement” as a positive network effect [12].

B. Reconstructed Architecture

Following the working session and the resulting DM, the
architecture of Zahori was manually reconstructed. The aim
was to create an architectural view that highlights potential
architectural patterns and illustrates software components.
Such an additional view allows us to map architecture
elements to sustainability aspects in more detail. We
combined existing documentation with manual source code
inspections to arrive at this view. Figure 3 shows the high-level
architecture retrieved from the GitHub repository. As shown,
the system is divided into the Server and the Automated
Processes. The Server is responsible for all tasks related
to regression testing, such as defining, orchestrating, and
monitoring test cases. The server can be accessed either using
a dedicated graphical user interface (GUI) or a REST API.
The API is also utilized by the Zahori server itself for process

communication and enables process discovery together with
Eureka [13] , a service registration and discovery integration.

Fig. 3: Zahori components4

The actual test cases are implemented and created by
the Process Automation component. Selenium [14] is used
for web browser automation. This enables functional and
regression testing for web-based processes and applications.
Beyond the testing capabilities, this automated process
component is also responsible for the Evidences feature.

Figure 4 outlines the final reconstructed architecture after
validating the preliminary reconstructed architecture with
the Zahori developers. As shown, the resulting view retains
the division between Zahori Server and Process Automation.
However, by also including the source code packages in the
view , we can unambiguously identify the architectural pattern
Model-View-Controller (MVC) for the Zahori server. The
MVC pattern allows the separation of the user interface(s)
from the actual business logic. In addition, based on the
source code packages (i.e., Repository and DB), it was
possible to uncover the Data Access Object (DAO) pattern.
Together with an Object Relation Mapping (ORM), this
enables the abstraction and isolation of the database and the
use of object-oriented abstraction at the data layer.

We also uncovered an inconsistency between the
architecture given on GitHub and the reconstructed
architecture. Instead of having Eureka service registration
and discovery as a component only on the Zahori server,
Eureka is used as a cross-cutting component to register
both the server and process automation. Therefore, in our
reconstructed architecture, we have separated Eureka from
the server and presented it as a self-contained element.

After inspecting the source code, we located the Java
class responsible for generating the Evidences. As part
of the Zahori Framework component, the class itself uses
components from e.g., Selenium, Apache [15] and Simple

4https://github.com/zahori-io/zahori-doc. Accessed: 05-12-2022.

Arche
Type

Control-
ler

Service

Repo.

DB

MODELVIEW CONTROLLER

Zahori Server

Front
End

CLIENT

Model

PROCESSUTILS

Framework Process

BLUEPRINT

Aerokube

EUREKA

Zahori
Model

evidences

Process Automation

Fig. 4: Reconstructed Zahori architecture

Logging Facade for Java (SLF4J [16]) to generate the various
evidences of the executed tests (logs, screenshots, documents,
videos, HAR files) [17].

In summary, the reconstruction of the architecture confirmed
as well as extended the existing architecture description.
Hence, for the rest of our study, we can use the reconstructed
architecture to map the uncovered elements to the related
sustainability concerns and features.

C. Variability Feature Mini-views

Considering the two results from the previous steps, we se-
lected a specific variability feature, i.e., Evidences, to demon-
strate the identification of architecture elements (given by the
reconstructed architecture) that affect the sustainability con-
cerns (given by the DM). This feature selection is based on the
observation that the DM established during the working ses-
sion had not addressed environmental concerns. However, as
Zahori’s current customers have a strict sustainability strategy
(due to the utilization in the aviation sector), environmental
concerns should indeed be part of the overall architecture. Af-
ter consultation and analysis of the reconstructed architecture
together with the developers, it turned out that the Evidences
feature could have an impact on the execution time of Zahori
itself and thus on energy efficiency. Such “reassessment” is
part of the DM thinking process to uncover missing con-
cerns [7]. To establish empirically evidence on this hypothesis,
i.e., the impact of Evidences on environmental sustainability,
we created a measurement plan to monitor this impact. Below
we illustrate and examine how variability feature mini-views
help to visualise (i) the mapping between architecture elements
and concerns, and (ii) the variability feature itself.

Figure 5a shows the mapping of the Evidences feature to its
architecture element and the sustainability concern. We can see
that the Zahori feature is implemented by the Evidences Java
class, which is part of the Zahori framework component. We
can locate this component in its context in Figure 4, i.e., in the

https://github.com/zahori-io/zahori-doc

Zahori process automation component. As shown in the DM
in Figure 2, we can also locate the sustainability concern Exe-
cution Time. Since it is only feasible to monitor the execution
time of a particular test case for the entire Zahori application,
we need to estimate the execution time for the particular Evi-
dences component (this is further discussed in Section III-D).

CREATING
EVIDENCES

realized by

Zahori
Framework

Evidences

EXECUTION
TIME

measured for

estimated for

(a) Architecture element “Zahori Evidences” mapped on the Zahori
feature and its sustainability concerns

 SYSTEMIC

ZAHORI
(for functional

testing)

IMMEDIATE

AUTOMATED
REGRESSION

TESTING

ENABLING

EXECUTION
TIME

ENERGY
EFFICIENCY

[CREATING
EVIDENCES]

[CREATING
EVIDENCES]

ALL EVIDENCES

[CREATING
EVIDENCES]

NO EVIDENCES
(BASELINE)

[CREATING
EVIDENCES]

DEFAULT
EVIDENCES

(b) Decision map illustrating the notion of variability feature, i.e.,
the Zahori Evidences feature; its variants, i.e., (i) no evidences, (ii)
default evidences, (iii) all evidences; and the impact on sustainability,
i.e., execution time in the technical dimension and energy efficiency
in the environmental dimension

Fig. 5: Variability Feature Mini-views

Figure 5b shows the variability feature in its context by
zooming in the DM from Figure 2. This mini-view illustrates
Evidences as a sub-feature of the main-feature Automated
Regression Testing. Invoking an additional feature, i.e.,
creating Evidences, obviously negatively impacts the overall
Execution Time of a given test case (red arrow). However,
the execution time depends on the evidence variant. In this
research, we consider three alternative variants: (i) default
evidence (including logs and screenshots), (ii) all evidence
(logs, screenshots, documents, videos), and (iii) no evidence.
To illustrate the different variants, we extended the notation
of DMs by adopting the notation of “alternative features”

from Lago et al. [9]. As empirical measurements are not
yet incorporated, the impact of execution time on the overall
energy efficiency is defined as undecided (black arrow). In
the next section, however, we report on the results of the
controlled experiment to provide the empirical evidence.

D. Variability Feature Analysis
In this final step, we created a measurement plan for our

variability feature to implement the metrics related to the

two sustainability concerns, i.e., execution time and energy
efficiency, and to monitor their impact on sustainability. To
do so, we used the sustainability-quality (SQ) model from
the Sustainability Assessment Framework (SAF) Toolkit [18].
Table I lists the two sustainability concerns Execution Time
(ET) and Energy Efficiency (EE) as quality attributes (QAs).
However, as mentioned in the previous section, the metrics
for ET and EE are variant specific. To estimate ET and EE,
we first measured the impact of the entire variant and then
subtract the baseline measurement, as indicated in Equation
(1) and (2) in the SQ model in Table I, where:

ET =Execution Time
EE =Energy Efficency
feature =Var. Feature; CreatingEvidences
variantX =Variant; [no|default|all]-Evidences

From an additional study [17], where the measurement
plan has been implemented in a controlled experiment, we
can derive the following conclusion:

“Default Evidences (logs and screenshot) have neg-
ligible impact on energy, while All Evidences (logs,
screenshot, video and document) lead to increased
energy consumption.” [17]

The result of this study shows the substantial impact of
the all evidences variant on energy consumption. Therefore,
we can support Zahori developers in their decision making by
allowing them to better understand the impact of the variability
function on the targeted sustainability concerns. We suggest
using default evidences as the standard variant in a production
environment, so that valuable insights are gained in every case,
and using all evidences only when absolutely necessary.

IV. DISCUSSION AND LESSONS LEARNED

In the following, we summarize our key observations
emerged from this industrial collaboration and report on the
lessons learned. The section is organized according to the
phases and outcomes defined in the study design (Section II).

Working session: As described in our study design, the
methodology used in this research to model a DM differs from
previous work. By defining the researcher as the DM specialist
and modeling entity, and the industry partner as the knowledge
specialist and validation entity, we observed a considerable
increase in time efficiency. While previous work spent
several days teaching the methodology for DMs and the SAF
toolkit itself [8], our working session took only about three
hours to produce the initial DM. In addition, new perspectives
on Zahori and its overall sustainability goal emerged
from the inquiries of the researchers. For example, the social
feature of ‘building a community’ was before only implicit
in the minds of the developers (i.e., tacit knowledge [19]).

However, involving the researcher in the DM modeling
process could bias the results and pose a potential threat to
construct validity. The “experimenter expectancies” [20] may
have influenced the way the DM was created by incorporating
the researcher’s own expectations and their experience in
modeling DMs. To mitigate this risk, non-DM experts also

TABLE I: Sustainability Quality (SQ) Model
REF = Reference; Dimensions: TEC = Technical; ENV = Environmental; ECO = Economic; SOC = Social

QUALITY
ATTRIBUTE DEFINITION REF TEC ENV ECO SOC METRIC/KPI

Execution
Time (ET)

the time it takes for
Zahori to execute the
predefined set of tests;
Time (in seconds)

[17] X ETfeature(variantX)=ETsystem(variantX)

−ETsystem(baseline)
(1)

Energy
Efficiency (EE)

the total energy consumed
by Zahori to execute a
predefined set of tests;
Energy (in Joule)

[17] X EEfeature(variantX)=EEsystem(variantX)

−EEsystem(baseline)
(2)

participated in the working session, and the resulting DM was
re-presented to the industry partner as a final validation step.

Reconstructed architecture: A thoroughly documented
software architecture is essential to map the architecture
elements to quality concerns and features at a fine
granularity. Having only high-level components available
hampers in-depth investigation and examination of the
architecture elements that impact sustainability. Therefore, we
reconstructed the architecture of Zahori. By comparing the
given architecture with the reconstructed one, we were able
to (i) confirm the given view, (ii) uncover inconsistencies
between the given architecture and the source code, and
(iii) identify common software architecture patterns.

Variability Feature: By introducing variability features,
we were able to identify a particular application feature
and identify three alternative variants, each with a different
impact on the overall sustainability of the Zahori application.
We incorporated the “alternative feature” notation of
Lago et al. [9] into our DM to visualise variability features
and variants. With this extension, it is now possible to attribute
sustainability concerns and corresponding metrics to different
instances, i.e., variants of the application and a given feature.
Moreover, introducing the notion of variability feature
supports the evaluation of different usage scenarios, hence
enabling data-driven sustainability choices.

Variability Feature Mini-views: A variability feature
mini-view allows us to map architecture elements (e.g., com-
ponents, classes, instances) to both system features and sus-
tainability concerns. While the mapping of elements to features
identifies the associated implementation units; the mapping of
elements to concerns identifies the implementation units that
can be used to measure. Such mini-views are a first attempt
to integrate architecture elements in a thinking framework
and to visualise their mapping with quality concerns.

Strategies and Suggestions: Based on our results and
the introduction of the notion of variability features, we were
able to provide our industry partner with strategies and
suggestions to improve the sustainability of their software
product. First, along with the reconstructed architecture,
developers are now able to map additional architecture
elements to the available DM and their quality concerns in
order to create a concrete measurement plan and monitor their
impact. Second, by using the concept of variability features,

we provide developers the ability to analytically investigate
further Zahori features and their impact on sustainability, mea-
sure them, and make design choices based on sustainability
concerns. Finally, to decrease execution time and thus be
more energy efficient, we can provide empirically-derived
guidance (cf. Section III-D), i.e., suggest the variant No
Evidences in a development and test environment, Default
Evidences in a production environment, and All Evidences
only if absolutely necessary, e.g., for legal matters. Adjusting
the level of evidences in favor of energy efficiency could, of
course, impact other sustainability concerns, such as Trust in
the social dimension. Therefore, we generally suggest a thor-
ough trade-off analysis to ensure that when one sustainability
aspect is taken into account, the others are not affected to
such an extent that the measure becomes unacceptable.

V. CONCLUSION AND FUTURE WORK

In this paper, we reported on the experience of applying the
thinking framework decision maps [7] to an industrial software
product. We introduced for the first time the notion of variabil-
ity feature applied to sustainability. Through our case study,
variability features resulted to be beneficial in supporting the
architecture process towards more sustainable decisions.

In the future, we plan to further evaluate both the notion of
variability feature and the associated mini-views with software
architects to assess their modeling feasibility in more complex
software-intensive systems, and their practical application in
other domains. This extended evaluation will also allow us
to mitigate potential threats to external validity linked to the
single case study adopted for this research. In addition, we
intend to further design and evaluate a systematic process to
map architecture elements to sustainability concerns.

For researcher, this work provides an experience report
on the application and assessment of variability features
in an industrial context. For practitioners, we provide a
comprehensive use case on how architecture elements can be
determined to evaluate their impact on sustainability concerns
and hence assessing the overall sustainability of the system
at hand. Based on specific measurements, software architects
are supported at design time and decision makers can develop
strategies towards achieving sustainability goals.

REFERENCES

[1] ACM Technology Policy Council, “ACM TechBrief: Computing and
Climate Change,” Tech. Rep. Issue 1, Nov. 2021.

[2] M. Uddin and A. A. Rahman, “Energy efficiency and low carbon
enabler green IT framework for data centers considering green metrics,”
Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp.
4078–4094, Aug. 2012.

[3] K. Janssen, T. Pelle, L. de Geus, R. van der Gronden, T. Islam,
and I. Malavolta, “On the Impact of the Critical CSS Technique on
the Performance and Energy Consumption of Mobile Browsers,” in
International Conference on Evaluation and Assessment in Software
Engineering. Gothenburg Sweden: ACM, Jun. 2022, pp. 130–139.

[4] R. Verdecchia, R. Aparicio Saez, G. Procaccianti, and P. Lago,
“Empirical Evaluation of the Energy Impact of Refactoring Code
Smells,” in International Conference on ICT for Sustainability (ICT4S),
2018, pp. 365–345.

[5] S. Vos, P. Lago, R. Verdecchia, and I. Heitlager, “Architectural Tactics
to Optimize Software for Energy Efficiency in the Public Cloud,” in
International Conference on ICT for Sustainability (ICT4S). IEEE,
Jun. 2022, pp. 77–87.

[6] R. Kazman, S. Haziyev, A. Yakuba, and D. A. Tamburri, “Managing
Energy Consumption as an Architectural Quality Attribute,” IEEE
Software, vol. 35, no. 5, pp. 102–107, Sep. 2018.

[7] P. Lago, “Architecture Design Decision Maps for Software Sustainabil-
ity,” in 41st International Conference on Software Engineering: Software
Engineering in Society (ICSE-SEIS). IEEE/ACM, May 2019, pp. 61–64.

[8] P. Lago, R. Verdecchia, N. Condori-Fernandez, E. Rahmadian,
J. Sturm, T. van Nijnanten, R. Bosma, C. Debuysscher, and P. Ricardo,
“Designing for Sustainability: Lessons Learned from Four Industrial
Projects,” in Advances and New Trends in Environmental Informatics.
Springer, 2021, pp. 3–18.

[9] P. Lago, H. Muccini, and H. van Vliet, “A scoped approach to
traceability management,” Journal of Systems and Software, vol. 82,
no. 1, pp. 168–182, 2009.

[10] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer
Science & Business Media, Aug. 2005.

[11] International Organization Of Standardization, “ISO/IEC/IEEE
42010:2011 - Systems and Software Engineering – Architecture
Description,” International Organization for Standardization (ISO),
Tech. Rep., 2011.

[12] G. G. Parker, M. W. Van Alstyne, and S. P. Choudary, Platform
Revolution: How Networked Markets Are Transforming the Economy
and How to Make Them Work for You. Norton & Company, 2016.

[13] Spring-Cloud, “Eureka,” accessed: 2022-12-05. [Online]. Available:
https://github.com/spring-cloud/

[14] Software Freedom Conservancy, “Selenium,” accessed: 2022-12-05.
[Online]. Available: https://www.selenium.dev

[15] The Apache Software Foundation, “Apache,” accessed: 2022-12-05.
[Online]. Available: https://www.apache.org/

[16] SLF4J, “Simple logging facade for java,” accessed: 2022-12-05.
[Online]. Available: https://www.slf4j.org/

[17] M. Dı̂nga, “An Empirical Evaluation of the Energy and Performance
Overhead of Monitoring Tools on Docker-based Systems,” Master’s
thesis, Vrije Universiteit Amsterdam, The Netherlands, 2022.

[18] P. Lago and N. Condori-Fernandez, “The Sustainability Assessment
Framework (SAF) Toolkit: Instruments to help sustainability-driven
software architecture design decision making,” Apr. 2022. [Online].
Available: https://github.com/S2-group/SAF-Toolkit

[19] M. Ali Babar, T. Dingsøyr, P. Lago, and H. van Vliet, Eds., Software
Architecture Knowledge Management. Springer, 2009.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer, 2012.

https://github.com/spring-cloud/
https://www.selenium.dev
https://www.apache.org/
https://www.slf4j.org/
https://github.com/S2-group/SAF-Toolkit

	Introduction
	Study design and execution
	Results
	Decision Map
	Reconstructed Architecture
	Variability Feature Mini-views
	Variability Feature Analysis

	Discussion and Lessons Learned
	Conclusion and Future Work
	References

