INVESTIGATION OF QUASI BI-SLANT RIEMANNIAN MAPS

Sushil Kumar ${ }^{1}$, Sumeet Kumar ${ }^{2}$ and Shashikant Pandey ${ }^{3}$
${ }^{1}$ Faculty of Science, Department of Mathematics, Shri Jai Narain Post Graduate College, Lucknow-India
${ }^{2}$ Faculty of Science, Department of Mathematics, Dr.S.K.S.Women's College Motihari, B.R. Ambedkar Bihar University, Muzaffarpur, India
${ }^{3}$ Faculty of Science, Department of Mathematics and Astronomy, University of Lucknow, Lcknow, Uttar Pradesh, India

Abstract

Riemannian maps are generalization of well-known notions of isometric immersions and Riemannian submersions. In this paper, we define and study a natural generalization of previously defined quasi bi-slant submersions [18] in the case of Riemannian maps. We mainly investigate fundamental results on quasi bi-slant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds: the integrability of distributions, geometry of foliations, the condition for such maps to be totally geodesic, etc. At the end of the article, we give proper non-trivial examples for this notion. Keywords: Riemannian maps, Quasi bi-slant Riemannian maps, Almost Hermitian manifolds.

1. Introductions

In differential geometry, initiating and utilising the idea of appropriate transformations to compare geometric properties between two manifolds is one of the main features. Immersions and submersions are the most used transformations in this sense. The study of Riemannian submersions was initiated by O^{\prime} Neill [8] and Gray

[^0]© 2023 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND
[2]. Watson [9] studied almost complex type of Riemannian submersions. Further, several kinds of Riemannian submersions were introduced and studied [3]. These maps have a wide range of applications in different branches of science and engineering, for example, the Yang-Mills theory [10], Kaluza-Klein theory [11], supergravity and superstring theories [13], [14], Euclidean super-symmetry [25] etc.

On the other side, the study of Riemannian maps have risen in popularity in recent geometric evaluations due to its envolvement in the mathematical physics. The basic properties of Riemannian maps were first given by Fischer [1]. More precisely, a differentiable map $\pi:\left(N_{1}, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ between Riemannian manifolds $\left(N_{1}, g_{1}\right)$ and $\left(N_{2}, g_{2}\right)$ is called a Riemannian map $\left(0<\operatorname{rank} \pi_{*}<\min \{m, n\}\right.$, where $\left.\operatorname{dim} N_{1}=m, \operatorname{dim} N_{2}=n\right)$ if it satisfies the equation:

$$
\begin{equation*}
g_{2}\left(\pi_{*} V_{1}, \pi_{*} V_{2}\right)=g_{1}\left(V_{1}, V_{2}\right) \tag{1.1}
\end{equation*}
$$

for $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Consequently, isometric immersions and Riemannian submersions are particular cases of Riemannian maps with ker $\pi_{*}=\{0\}$ and $\left(\text { range }_{*}\right)^{\perp}=0$, respectively. In [1], the author has shown a conspicuous property of Riemannian map is that it satisfies the generalized eikonal equation $\left\|\pi_{*}\right\|^{2}=\operatorname{rank} \pi$ and also proposed an approach to build a quantum model using Riemannian maps that would provide an interesting relationship between Riemannian maps, harmonic maps, and Lagrangian field theory. Further, the notion of Riemannian map and related topics are being studied continuously from different perspectives, as Invariant and anti-invariant Riemannian map [4], semi-invariant Riemannian map [5], slant Riemannian map ([6], [15], [19]), semi-slant Riemannian map ([12], [16], [20], [22]) and hemi-slant Riemannian map ([7], [17]) quasi-hemi-slant Riemannian map [21] etc.

In this paper, we study the notion of quasi bi-slant Riemannian maps from an almost Hermitian manifold to a Riemannian manifold. The paper is organized as follows: In Section 2, we will recall some basic definitions related to quasi bislant Riemannian maps. In section 3, we will define quasi bi-slant Riemannian map from Kähler manifolds to Riemannian manifolds and study the geometry of leaves of distributions that are involved in the definition of such maps. We will provide necessary and sufficient conditions for quasi bi-slant Riemannian maps to be totally geodesic. In section 4, we will provide some non-trivial examples of such Riemannian maps.

2. Preliminaries

Let N_{1} be an even-dimensional differentiable manifold. Let J be a $(1,1)$ tensor field on N_{1} such that $J^{2}=-I$, where I is identity operator. Then J is called an almost complex structure on N_{1}. The manifold N_{1} with an almost complex structure J is called an almost complex manifold [24]. It is well known that an almost complex manifold is necessarily orientable. Nijenhuis tensor N of an almost complex structure is defined as:

$$
\begin{equation*}
N\left(X_{1}, X_{2}\right)=\left[J X_{1}, J X_{2}\right]-\left[X_{1}, X_{2}\right]-J\left[J X_{1}, X_{2}\right]-J\left[X_{1}, J X_{2}\right] \tag{2.1}
\end{equation*}
$$

for all $X_{1}, X_{2} \in \Gamma\left(T N_{1}\right)$.
If Nijenhuis tensor field N on an almost complex manifold N_{1} is zero, then the almost complex manifold N_{1} is called a complex manifold.

Let g_{1} be a Riemannian metric on N_{1} such that

$$
\begin{equation*}
g_{1}\left(J X_{1}, J X_{2}\right)=g_{1}\left(X_{1}, X_{2}\right) \tag{2.2}
\end{equation*}
$$

for all $X_{1}, X_{2} \in \Gamma\left(T N_{1}\right)$.
Then g_{1} is called an almost Hermitian metric on N_{1} and manifold N_{1} with Hermitian metric g_{1} is called almost Hermitian manifold. The Riemannian connection ∇ of the almost Hermitian manifold N_{1} can be extended to the whole tensor algebra on N_{1}. Tensor fields $\left(\nabla_{Y_{1}} J\right)$ is defined as

$$
\begin{equation*}
\left(\nabla_{Y_{1}} J\right) Y_{2}=\nabla_{Y_{1}} J Y_{2}-J \nabla_{Y_{1}} Y_{2} \tag{2.3}
\end{equation*}
$$

for $Y_{1}, Y_{2} \in \Gamma\left(T N_{1}\right)$.
An almost Hermitian manifold $\left(N_{1}, g_{1}, J\right)$ is called a Kähler manifold if

$$
\begin{equation*}
\left(\nabla_{Y_{1}} J\right) Y_{2}=0 \tag{2.4}
\end{equation*}
$$

for $Y_{1}, Y_{2} \in \Gamma\left(T N_{1}\right)$.
Now, we recall following definitions for later use:
Definition 2.1. [3] Let π be a Riemannian map from an almost Hermitian manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. If for any non-zero vector $Y_{1} \in\left(\operatorname{ker} \pi_{*}\right)_{q}, q \in N_{1}$, the angle $\theta\left(Y_{1}\right)$ between $J Y_{1}$ and the space $\left(\operatorname{ker} \pi_{*}\right)_{q}$ is constant, i.e., it is independent of the choice of the point $q \in N_{1}$ and the tangent vector Y_{1} in $\operatorname{ker} \pi_{*}$, then we say that π is a slant Riemannian map. In this case, the angle θ is called the slant angle of the Riemannian map. If the slant angle is $0<\theta<\frac{\pi}{2}$, then the Riemannian map is called a proper slant Riemannian map.

Definition 2.2. [3] Let $\left(N_{1}, g_{1}, J\right)$ be an almost Hermitian manifold and $\left(N_{2}, g_{2}\right)$ a Riemannian manifold. A Riemannian map $\pi:\left(N_{1}, g_{1}, J\right) \rightarrow\left(N_{2}, g_{2}\right)$ is called a semi-slant Riemannian map if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} \pi_{*}$ such that

$$
\begin{equation*}
\operatorname{ker} \pi_{*}=\mathcal{D} \oplus \mathcal{D}_{1}, J(\mathcal{D})=\mathcal{D} \tag{2.5}
\end{equation*}
$$

and the angle $\theta=\theta\left(Y_{1}\right)$ between $J Y_{1}$ and the space $\left(\mathcal{D}_{1}\right)_{q}$ is constant for non-zero vector $Y_{1} \in\left(\mathcal{D}_{1}\right)_{q}$ and $q \in N_{1}$, where \mathcal{D}_{1} is the orthogonal complement of \mathcal{D} in $\operatorname{ker} \pi_{*}$.

We call the angle θ a semi-slant angle.
Definition 2.3. [7] Let N_{1} be an almost Hermitian manifold with Hermitian metric g_{1} and almost complex structure J, and N_{2} be a Riemannian manifold with Riemannian metric g_{2}. A Riemannian map $\pi:\left(N_{1}, g_{1}, J\right) \rightarrow\left(N_{2}, g_{2}\right)$ is called a
hemi-slant Riemannian map if the vertical distribution $\operatorname{ker} \pi_{*}$ of π admits two orthogonal complementary distributions D^{θ} and D^{\perp} such that D^{θ} is slant with angle θ and D^{\perp} is anti-invariant, i.e, we have

$$
\begin{equation*}
\operatorname{ker} \pi_{*}=D^{\theta} \oplus D^{\perp} \tag{2.6}
\end{equation*}
$$

In this case, the angle θ is called the hemi-slant angle of the Riemannian map.
Define O'Neill's tensors \mathcal{T} and \mathcal{A} by [8]

$$
\begin{align*}
\mathcal{A}_{F_{1}} F_{2} & =\mathcal{H} \nabla_{\mathcal{H} F_{1}} \mathcal{V} F_{2}+\mathcal{V} \nabla_{\mathcal{H} F_{1}} \mathcal{H} F_{2}, \tag{2.7}\\
\mathcal{T}_{F_{1}} F_{2} & =\mathcal{H} \nabla_{\mathcal{V} F_{1}} \mathcal{V} F_{2}+\mathcal{V} \nabla_{\mathcal{V} F_{1}} \mathcal{H} F_{2}, \tag{2.8}
\end{align*}
$$

for any vector fields F_{1}, F_{2} on N_{1}, where ∇ is the Levi-Civita connection of g_{1}. It is easy to see that $\mathcal{T}_{F_{1}}$ and $\mathcal{A}_{F_{1}}$ are skew-symmetric operators on the tangent bundle of N_{1} reversing the vertical and the horizontal distributions.

From equations (2.7) and (2.8), we have

$$
\begin{align*}
\nabla_{Z_{1}} Z_{2} & =\mathcal{T}_{Z_{1}} Z_{2}+\mathcal{V} \nabla_{Z_{1}} Z_{2}, \tag{2.9}\\
\nabla_{Z_{1}} Y_{1} & =\mathcal{T}_{Z_{1}} Y_{1}+\mathcal{H} \nabla_{Z_{1}} Y_{1}, \tag{2.10}\\
\nabla_{Y_{1}} Z_{1} & =\mathcal{A}_{Y_{1}} Z_{1}+\mathcal{V} \nabla_{Y_{1}} Z_{1}, \tag{2.11}\\
\nabla_{Y_{1}} Y_{2} & =\mathcal{H} \nabla_{Y_{1}} Y_{2}+\mathcal{A}_{Y_{1}} Y_{2} \tag{2.12}
\end{align*}
$$

for $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, where $\mathcal{H} \nabla_{Z_{1}} Y_{1}=\mathcal{A}_{Y_{1}} Z_{1}$, if Y_{1} is basic. It is not difficult to observe that \mathcal{T} acts on the fibers as the second fundamental form, while \mathcal{A} acts on the horizontal distribution and measures the obstruction to the integrability of this distribution [3].

It is seen that for $p \in N_{1}, Z_{1} \in \mathcal{V}_{p}$ and $Y_{1} \in \mathcal{H}_{p}$ the linear operators

$$
\begin{equation*}
\mathcal{A}_{Y_{1}}, \mathcal{T}_{Z_{1}}: T_{q} N_{1} \rightarrow T_{q} N_{1} \tag{2.13}
\end{equation*}
$$

are skew-symmetric, that is

$$
\begin{equation*}
g_{1}\left(\mathcal{A}_{Y_{1}} F_{1}, F_{2}\right)=-g_{1}\left(F_{1}, \mathcal{A}_{Y_{1}} F_{2}\right), g_{1}\left(\mathcal{T}_{Z_{1}} F_{1}, F_{2}\right)=-g_{1}\left(F_{1}, \mathcal{T}_{Z_{1}} F_{2}\right) \tag{2.14}
\end{equation*}
$$

for $F_{1}, F_{2} \in \Gamma\left(T_{p} N_{1}\right)$. Since $\mathcal{T}_{Y_{1}}$ is skew-symmetric, we observe that π has totally geodesic fibres if and only if $\mathcal{T} \equiv 0$.

We recall that the notation of second fundamental form of a map between two Riemannian manifolds. Let $\left(N_{1}, g_{1}\right)$ and $\left(N_{2}, g_{2}\right)$ be Riemannian manifolds and $\pi:\left(N_{1}, g_{1}\right) \rightarrow\left(N_{2}, g_{2}\right)$ be a C^{∞} map then the second fundamental form of π is given by

$$
\begin{equation*}
\left(\nabla \pi_{*}\right)\left(Z_{1}, Z_{2}\right)=\nabla_{Z_{1}}^{\pi} \pi_{*} Z_{2}-\pi_{*}\left(\nabla_{Z_{1}}^{N_{1}} Z_{2}\right) \tag{2.15}
\end{equation*}
$$

for $Z_{1}, Z_{2} \in \Gamma\left(T N_{1}\right)$, where ∇^{π} is the pullback connection and we denote for convenience by ∇ the Riemannian connections of the metrics g_{1} and $g_{2}[23]$.

Finally we also recall that a differentiable map π between two Riemannian manifolds is totally geodesic if

$$
\begin{equation*}
\left(\nabla \pi_{*}\right)\left(Z_{1}, Z_{2}\right)=0, \tag{2.16}
\end{equation*}
$$

for all $Z_{1}, Z_{2} \in \Gamma\left(T N_{1}\right)$. A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base space in proportion to arc lengths.

3. Quasi bi-slant Riemannian maps

Now, we introduce the notion of a quasi bi-slant Riemannian map as a natural generalization of hemi-slant Riemannian map and semi-slant Riemannian map from almost Hermitian manifolds to Riemannian manifolds.

Definition 3.1. Let $\left(N_{1}, g_{1}, J\right)$ be an almost Hermitian manifold and $\left(N_{2}, g_{2}\right)$ be a Riemannian manifold. A Riemannian map

$$
\begin{equation*}
\pi:\left(N_{1}, g_{1}, J\right) \rightarrow\left(N_{2}, g_{2}\right) \tag{3.1}
\end{equation*}
$$

is called a quasi bi-slant Riemannian map if there exist three mutually orthogonal distribution D, D_{1} and D_{2} such that
(i) $\operatorname{ker} \pi_{*}=D \oplus D_{1} \oplus D_{2}$,
(ii) $J(D)=D$ i.e., D is invariant,
(iii) $J\left(D_{1}\right) \perp D_{2}$ and $J\left(D_{2}\right) \perp D_{1}$,
(iv) for any non-zero vector field $Y_{1} \in\left(D_{1}\right)_{q}, q \in N_{1}$, the angle θ_{1} between $J Y_{1}$ and $\left(D_{1}\right)_{q}$ is constant and independent of the choice of point q and Y_{1} in $\left(D_{1}\right)_{q}$,
(v) for any non-zero vector field $Z_{1} \in\left(D_{2}\right)_{q}, q \in N_{1}$, the angle θ_{2} between $J Z_{1}$ and $\left(D_{2}\right)_{q}$ is constant and independent of the choice of point q and Z_{1} in $\left(D_{2}\right)_{q}$,

These angles θ_{1} and θ_{2} are called slant angles of the Riemannian map.
We easily observe that
(a) If $\operatorname{dim} D=0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0, \theta_{2}=\frac{\pi}{2}$, then π is a hemi-slant Riemannian map.
(b) If $\operatorname{dim} D=0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0,0<\theta_{2}<\frac{\pi}{2}$, then π is a bi-slant Riemannian map.
(c) If $\operatorname{dim} D \neq 0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0, \theta_{2}=\frac{\pi}{2}$, then we may call π is an quasi-hemi-slant Riemannian map.
(d) If $\operatorname{dim} D \neq 0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0,0<\theta_{2}<\frac{\pi}{2}$, then π is proper quasi bi-slant Riemannian map.

Let π be quasi bi-slant Riemannian maps from an almost Hermitian manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, we have

$$
\begin{equation*}
T N_{1}=\operatorname{ker} \pi_{*} \oplus\left(\operatorname{ker} \pi_{*}\right)^{\perp} \tag{3.2}
\end{equation*}
$$

Now, for any vector field $V_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$, we put

$$
\begin{equation*}
V_{1}=P V_{1}+Q V_{1}+R V_{1} \tag{3.3}
\end{equation*}
$$

where P, Q and R are projection morphisms [13] of ker π_{*} onto D, D_{1} and D_{2}, respectively.

For $Z_{1} \in\left(\Gamma \operatorname{ker} \pi_{*}\right)$, we set

$$
\begin{equation*}
J Z_{1}=\phi Z_{1}+\omega Z_{1} \tag{3.4}
\end{equation*}
$$

where $\phi Z_{1} \in\left(\Gamma \operatorname{ker} \pi_{*}\right)$ and $\omega Z_{1} \in\left(\Gamma \operatorname{ker} \pi_{*}\right)^{\perp}$.
From equations (3.3) and (3.4), we have

$$
\begin{aligned}
J Z_{1} & =J\left(P Z_{1}\right)+J\left(Q Z_{1}\right)+J\left(R Z_{1}\right) \\
& =\phi\left(P Z_{1}\right)+\omega\left(P Z_{1}\right)+\phi\left(Q Z_{1}\right)+\omega\left(Q Z_{1}\right)+\phi\left(R Z_{1}\right)+\omega\left(R Z_{1}\right)
\end{aligned}
$$

since $J D=D$, we get $\omega P Z_{1}=0$.
Hence above equation reduces to

$$
\begin{equation*}
J Z_{1}=\phi\left(P Z_{1}\right)+\phi Q Z_{1}+\omega Q Z_{1}+\phi R Z_{1}+\omega R Z_{1} \tag{3.5}
\end{equation*}
$$

Thus we have the following decomposition

$$
\begin{equation*}
J\left(\operatorname{ker} \pi_{*}\right)=D \oplus\left(\phi D_{1} \oplus \phi D_{2}\right) \oplus\left(\omega D_{1} \oplus \omega D_{2}\right) \tag{3.6}
\end{equation*}
$$

where \oplus denotes orthogonal direct sum.
Further, let $V_{1} \in \Gamma\left(D_{1}\right)$ and $V_{2} \in \Gamma\left(D_{2}\right)$. Then

$$
\begin{equation*}
g_{1}\left(V_{1}, V_{2}\right)=0 \tag{3.7}
\end{equation*}
$$

From definition 3.1(iii), we have

$$
\begin{equation*}
g_{1}\left(J V_{1}, V_{2}\right)=g_{1}\left(V_{1}, J V_{2}\right)=0 \tag{3.8}
\end{equation*}
$$

Now, consider

$$
\begin{aligned}
g_{1}\left(\phi V_{1}, V_{2}\right) & =g_{1}\left(J V_{1}-\omega V_{1}, V_{2}\right) \\
& =g_{1}\left(J V_{1}, V_{2}\right) \\
& =0
\end{aligned}
$$

Similarly, we have

$$
\begin{equation*}
g_{1}\left(V_{1}, \phi V_{2}\right)=0 \tag{3.9}
\end{equation*}
$$

Let $U_{1} \in \Gamma(D)$ and $U_{2} \in \Gamma\left(D_{1}\right)$. Then we have

$$
\begin{aligned}
g_{1}\left(\phi U_{2}, U_{1}\right) & =g_{1}\left(J U_{2}-\omega U_{2}, U_{1}\right) \\
& =g_{1}\left(J U_{2}, U_{1}\right) \\
& =-g_{1}\left(U_{2}, J U_{1}\right) \\
& =0
\end{aligned}
$$

as D is invariant i.e., $J U_{1} \in \Gamma(D)$.
Similarly, for $U_{1} \in \Gamma(D)$ and $U_{3} \in \Gamma\left(D_{2}\right)$, we obtain

$$
\begin{equation*}
g_{1}\left(\phi U_{3}, U_{1}\right)=0 \tag{3.10}
\end{equation*}
$$

From above equations, we have

$$
\begin{equation*}
g_{1}\left(\phi W_{1}, \phi W_{2}\right)=0 \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}\left(\omega W_{1}, \omega W_{2}\right)=0 \tag{3.12}
\end{equation*}
$$

for all $W_{1} \in \Gamma\left(D_{1}\right)$ and $W_{2} \in \Gamma\left(D_{2}\right)$.
So, we can write

$$
\begin{equation*}
\phi D_{1} \cap \phi D_{2}=\{0\}, \omega D_{1} \cap \omega D_{2}=\{0\} . \tag{3.13}
\end{equation*}
$$

If $\theta_{2}=\frac{\pi}{2}$, then $\phi R=0$ and D_{2} is anti-invariant, i.e., $J\left(D_{2}\right) \subseteq\left(\operatorname{ker} \pi_{*}\right)^{\perp}$. In this case we denote D_{2} by D^{\perp}.

We also have

$$
\begin{equation*}
J\left(\operatorname{ker} \pi_{*}\right)=D \oplus \phi D_{1} \oplus \omega D_{1} \oplus J D^{\perp} \tag{3.14}
\end{equation*}
$$

Since $\omega D_{1} \subseteq\left(\operatorname{ker} \pi_{*}\right)^{\perp}, \omega D_{2} \subseteq\left(\operatorname{ker} \pi_{*}\right)^{\perp}$. So we can write

$$
\begin{equation*}
\left(\operatorname{ker} \pi_{*}\right)^{\perp}=\omega D_{1} \oplus \omega D_{2} \oplus \mu \tag{3.15}
\end{equation*}
$$

where μ is orthogonal complement of $\left(\omega D_{1} \oplus \omega D_{2}\right)$ in $\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Also for any non-zero vector field $Y_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, we have

$$
\begin{equation*}
J Y_{1}=B Y_{1}+C Y_{1} \tag{3.16}
\end{equation*}
$$

where $B Y_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $C Y_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Lemma 3.1. Let π be a quasi bi-slant Riemannian map from an almost Hermitian manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, we have

$$
\begin{align*}
\phi^{2} W_{1}+B \omega W_{1} & =-W_{1}, \omega \phi W_{1}+C \omega W_{1}=0 \tag{3.17}\\
\omega B W_{2}+C^{2} W_{2} & =-W_{2}, \phi B W_{2}+B C W_{2}=0 \tag{3.18}
\end{align*}
$$

for all $W_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. Using equations (3.4), (3.16) and $J^{2}=-I$, we have Lemma 3.1.
Lemma 3.2. Let π be a quasi bi-slant Riemannian map from an almost Hermitian manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, we have
(i) $\phi^{2} Z_{i}=-\left(\cos ^{2} \theta_{1}\right) Z_{i}$
(ii) $g_{1}\left(\phi Z_{i}, \phi V_{i}\right)=\cos ^{2} \theta_{1} g_{1}\left(Z_{i}, V_{i}\right)$,
(iii) $g_{1}\left(\omega Z_{i}, \omega V_{i}\right)=\sin ^{2} \theta_{1} g_{1}\left(Z_{i}, V_{i}\right)$,
for all $Z_{i}, V_{i} \in \Gamma\left(D_{i}\right)$, where $i=1,2$.

Proof. By Lemma (3.2) in [18], we obtain Lemma 3.2.

Lemma 3.3. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, we have

$$
\begin{align*}
\mathcal{V} \nabla_{Y_{1}} \phi Y_{2}+\mathcal{T}_{Y_{1}} \omega Y_{2} & =\phi \mathcal{V} \nabla_{Y_{1}} Y_{2}+B \mathcal{T}_{Y_{1}} Y_{2}, \tag{3.19}\\
\mathcal{T}_{Y_{1}} \phi Y_{2}+\mathcal{H} \nabla_{Y_{1}} \omega Y_{2} & =\omega \mathcal{V} \nabla_{Y_{1}} Y_{2}+C \mathcal{T}_{Y_{1}} Y_{2}, \tag{3.20}\\
\mathcal{V} \nabla_{Z_{1}} B Z_{2}+\mathcal{A}_{Z_{1}} C Z_{2} & =\phi \mathcal{A}_{Z_{1}} Z_{2}+B \mathcal{H} \nabla_{Z_{1}} Z_{2}, \tag{3.21}\\
\mathcal{A}_{Z_{1}} B Z_{2}+\mathcal{H} \nabla_{Z_{1}} C Z_{2} & =\omega \mathcal{A}_{Z_{1}} Z_{2}+C \mathcal{H} \nabla_{Z_{1}} Z_{2}, \tag{3.22}\\
\mathcal{V} \nabla_{Y_{1}} B Z_{1}+\mathcal{T}_{Y_{1}} C Z_{1} & =\phi \mathcal{T}_{Y_{1}} Z_{1}+B \nabla_{Y_{1}} Z_{1}, \tag{3.23}\\
\mathcal{T}_{Y_{1}} B Z_{1}+\mathcal{H} \nabla_{Y_{1}} C Z_{1} & =\omega \mathcal{T}_{Y_{1}} Z_{1}+C \nabla_{Y_{1}} Z_{1}, \tag{3.24}\\
\mathcal{V} \nabla_{Z_{1}} \phi Y_{1}+\mathcal{A}_{Z_{1}} \omega Y_{1} & =B \mathcal{A}_{Z_{1}} Y_{1}+\phi \mathcal{V} \nabla_{Z_{1}} Y_{1}, \tag{3.25}\\
\mathcal{A}_{Z_{1}} \phi Y_{1}+\mathcal{H} \nabla_{Z_{1}} \omega Y_{1} & =C \mathcal{A}_{Z_{1}} Y_{1}+\omega \mathcal{V} \nabla_{Z_{1}} Y_{1} \tag{3.26}
\end{align*}
$$

for any $Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. Using equations (2.9), (2.10), (2.11), (2.12), (3.4) and (3.16), we get equations (3.19)-(3.26).

Now, we define

$$
\begin{align*}
\left(\nabla_{V_{1}} \phi\right) V_{2} & =\mathcal{V} \nabla_{V_{1}} \phi V_{2}-\phi \mathcal{V} \nabla_{V_{1}} V_{2} \tag{3.27}\\
\left(\nabla_{V_{1}} \omega\right) V_{2} & =\mathcal{H} \nabla_{V_{1}} \omega V_{2}-\omega \mathcal{V} \nabla_{V_{1}} V_{2} \tag{3.28}\\
\left(\nabla_{Z_{1}} C\right) Z_{2} & =\mathcal{H} \nabla_{Z_{1}} C Z_{2}-C \mathcal{H} \nabla_{Z_{1}} Z_{2} \tag{3.29}\\
\left(\nabla_{Z_{1}} B\right) Z_{2} & =\mathcal{V} \nabla_{Z_{1}} B Z_{2}-B \mathcal{H} \nabla_{Z_{1}} Z_{2} \tag{3.30}
\end{align*}
$$

for $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Lemma 3.4. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, we have

$$
\begin{gather*}
\left(\nabla_{V_{1}} \phi\right) V_{2}=B \mathcal{T}_{V_{1}} V_{2}-\mathcal{T}_{V_{1}} \omega V_{2} \tag{3.31}\\
\left(\nabla_{V_{1}} \omega\right) V_{2}=C \mathcal{T}_{V_{1}} V_{2}-\mathcal{T}_{V_{1}} \phi V_{2} \tag{3.32}\\
\left(\nabla_{Z_{1}} C\right) Z_{2}=\omega \mathcal{A}_{Z_{1}} Z_{2}-\mathcal{A}_{Z_{1}} B Z_{2} \tag{3.33}\\
\left(\nabla_{Z_{1}} B\right) Z_{2}=\phi \mathcal{A}_{Z_{1}} Z_{2}-\mathcal{A}_{Z_{1}} C Z_{2} \tag{3.34}
\end{gather*}
$$

for $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.

Proof. Using equations (3.19), (3.20), (3.21), (3.22), (3.27), (3.28), (3.29) and (3.30), we get all equations of Lemma 3.4.

If the tensors ϕ and ω are parallel with respect to the linear connection ∇ on N_{1}, respectively, then

$$
\begin{equation*}
B \mathcal{T}_{U_{1}} U_{2}=\mathcal{T}_{U_{1}} \omega U_{2}, C \mathcal{T}_{U_{1}} U_{2}=\mathcal{T}_{U_{1}} \phi U_{2} \tag{3.35}
\end{equation*}
$$

for $U_{1}, U_{2} \in \Gamma\left(T N_{1}\right)$.
Theorem 3.1. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the invariant distribution D is integrable if and only if

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{Z_{1}} J Z_{2}-\mathcal{T}_{Z_{2}} J Z_{1}, \omega Q V_{1}+\omega R V_{1}\right)=g_{1}\left(\mathcal{V} \nabla_{Z_{1}} J Z_{2}-\mathcal{V} \nabla_{Z_{2}} J Z_{1}, \phi Q V_{1}+\phi R V_{1}\right) \tag{3.36}
\end{equation*}
$$

for $Z_{1}, Z_{2} \in \Gamma(D)$ and $V_{1} \in \Gamma\left(D_{1} \oplus D_{2}\right)$.
Proof. For $Z_{1}, Z_{2} \in \Gamma(D)$, and $V_{1} \in \Gamma\left(D_{1} \oplus D_{2}\right)$, using equations (2.2), (2.4), (2.9), (3.3) and (3.4), we have

$$
\begin{aligned}
& g_{1}\left(\left[Z_{1}, Z_{2}\right], V_{1}\right) \\
= & g_{1}\left(\nabla_{Z_{1}} J Z_{2}, J V_{1}\right)-g_{1}\left(\nabla_{Z_{2}} J Z_{1}, J V_{1}\right), \\
= & g_{1}\left(\mathcal{T}_{Z_{1}} J Z_{2}-\mathcal{T}_{Z_{2}} J Z_{1}, \omega Q V_{1}+\omega R V_{1}\right)-g_{1}\left(\mathcal{V} \nabla_{Z_{1}} J Z_{2}-\mathcal{V} \nabla_{Z_{2}} J Z_{1}, \phi Q V_{1}+\phi R V_{1}\right),
\end{aligned}
$$

which completes the proof.
Theorem 3.2. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the slant distribution D_{1} is integrable if and only if

$$
\begin{aligned}
& g_{1}\left(\mathcal{T}_{X_{1}} \omega \phi X_{2}-\mathcal{T}_{X_{2}} \omega \phi X_{1}, Z_{1}\right) \\
= & g_{1}\left(\mathcal{T}_{X_{1}} \omega X_{2}-\mathcal{T}_{X_{2}} \omega X_{1}, J P Z_{1}+\phi R Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega X_{2}-\mathcal{H} \nabla_{X_{2}} \omega X_{1}, \omega R Z_{1}\right)
\end{aligned}
$$

$$
\text { for } X_{1}, X_{2} \in \Gamma\left(D_{1}\right) \text { and } Z_{1} \in \Gamma\left(D \oplus D_{2}\right)
$$

Proof. For $X_{1}, X_{2} \in \Gamma\left(D_{1}\right)$ and $Z_{1} \in \Gamma\left(D \oplus D_{2}\right)$, we have

$$
\begin{equation*}
g_{1}\left(\left[X_{1}, X_{2}\right], Z_{1}\right)=g_{1}\left(\nabla_{X_{1}} X_{2}, Z_{1}\right)-g_{1}\left(\nabla_{X_{2}} X_{1}, Z_{1}\right) \tag{3.37}
\end{equation*}
$$

Using equations (2.2), (2.4), (2.9), (2.10), (3.4) and Lemma 3.2, we have

$$
\begin{aligned}
& g_{1}\left(\left[X_{1}, X_{2}\right], Z_{1}\right) \\
= & g_{1}\left(\nabla_{X_{1}} J X_{2}, J Z_{1}\right)-g_{1}\left(\nabla_{X_{2}} J X_{1}, J Z_{1}\right), \\
= & g_{1}\left(\nabla_{X_{1}} \phi X_{2}, J Z_{1}\right)+g_{1}\left(\nabla_{X_{1}} \omega X_{2}, J Z_{1}\right)-g_{1}\left(\nabla_{X_{2}} \phi X_{1}, J Z_{1}\right)-g_{1}\left(\nabla_{X_{2}} \omega X_{1}, J Z_{1}\right), \\
= & \cos ^{2} \theta_{1} g_{1}\left(\nabla_{X_{1}} X_{2}, Z_{1}\right)-\cos ^{2} \theta_{1} g_{1}\left(\nabla_{X_{2}} X_{1}, Z_{1}\right)-g_{1}\left(\mathcal{T}_{X_{1}} \omega \phi X_{2}-\mathcal{T}_{X_{2}} \omega \phi X_{1}, Z_{1}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega X_{2}+\mathcal{T}_{X_{1}} \omega X_{2}, J P Z_{1}+\phi R Z_{1}+\omega R Z_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{X_{2}} \omega X_{1}+\mathcal{T}_{X_{2}} \omega X_{1}, J P Z_{1}+\phi R Z_{1}+\omega R Z_{1}\right) .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& \sin ^{2} \theta_{1} g_{1}\left(\left[X_{1}, X_{2}\right], Z_{1}\right) \\
= & g_{1}\left(\mathcal{T}_{X_{1}} \omega X_{2}-\mathcal{T}_{X_{2}} \omega X_{1}, J P Z_{1}+\phi R Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega X_{2}-\mathcal{H} \nabla_{X_{2}} \omega X_{1}, \omega R Z_{1}\right) \\
& -g_{1}\left(\mathcal{T}_{X_{1}} \omega \phi X_{2}-\mathcal{T}_{X_{2}} \omega \phi X_{1}, Z_{1}\right)
\end{aligned}
$$

which completes the proof.
The proof of the following theorem is similar as the Theorem 3.2.
Theorem 3.3. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the slant distribution D_{2} is integrable if and only if

$$
\begin{align*}
& g_{1}\left(\mathcal{T}_{Z_{1}} \omega \phi Z_{2}-\mathcal{T}_{Z_{2}} \omega \phi Z_{1}, X_{1}\right) \tag{3.38}\\
= & g_{1}\left(\mathcal{H} \nabla_{Z_{1}} \omega Z_{2}-\mathcal{H} \nabla_{Z_{2}} \omega Z_{1}, \omega X_{1}\right)+g_{1}\left(\mathcal{T}_{Z_{1}} \omega Z_{2}-\mathcal{T}_{Z_{2}} \omega Z_{1}, \phi X_{1}\right)
\end{align*}
$$

for $Z_{1}, Z_{2} \in \Gamma\left(D_{2}\right)$ and $X_{1} \in \Gamma\left(D \oplus D_{1}\right)$.
Theorem 3.4. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then the horizontal distribution $\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ defines a totally geodesic foliation on N_{1} if and only if

$$
\begin{array}{ll}
& g_{1}\left(\mathcal{A}_{V_{1}} V_{2}, P W_{1}+\cos ^{2} \theta_{1} Q W_{1}+\cos ^{2} \theta_{2} R W_{1}\right) \tag{3.39}\\
= & g_{1}\left(\mathcal{H} \nabla_{V_{1}} V_{2}, \omega \phi P W_{1}+\omega \phi Q W_{1}+\omega \phi R W_{1}\right) \\
& +g_{1}\left(\mathcal{A}_{V_{1}} B V_{2}+\mathcal{H} \nabla_{V_{1}} C V_{2}, \omega W_{1}\right)
\end{array}
$$

for $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $W_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$.
Proof. For $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ and $W_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$, we have

$$
\begin{equation*}
g_{1}\left(\nabla_{V_{1}} V_{2}, W_{1}\right)=g_{1}\left(\nabla_{V_{1}} V_{2}, P W_{1}+Q W_{1}+R W_{1}\right) \tag{3.40}
\end{equation*}
$$

Using equations $(2.2),(2.4),(2.11),(2.12),(3.3),(3.4),(3.16)$ and 3.2 , we have

$$
\begin{aligned}
g_{1}\left(\nabla_{V_{1}} V_{2}, W_{1}\right)= & g_{1}\left(\nabla_{V_{1}} J V_{2}, J P W_{1}\right)+g_{1}\left(\nabla_{V_{1}} J V_{2}, J Q W_{1}\right)+g_{1}\left(\nabla_{V_{1}} J V_{2}, J R W_{1}\right), \\
= & g_{1}\left(\mathcal{A}_{V_{1}} V_{2}, P W_{1}+\cos ^{2} \theta_{1} Q W_{1}+\cos ^{2} \theta_{2} R W_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{V_{1}} V_{2}, \omega \phi P W_{1}+\omega \phi Q W_{1}+\omega \phi R W_{1}\right) \\
& +g_{1}\left(\mathcal{A}_{V_{1}} B V_{2}+\mathcal{H} \nabla_{V_{1}} C V_{2}, \omega P W_{1}+\omega Q W_{1}+\omega R W_{1}\right) .
\end{aligned}
$$

Now, since $\omega P W_{1}+\omega Q W_{1}+\omega R W_{1}=\omega W_{1}$ and $\omega P W_{1}=0$, one obtains

$$
\begin{aligned}
g_{1}\left(\nabla_{V_{1}} V_{2}, W_{1}\right)= & g_{1}\left(\mathcal{A}_{V_{1}} V_{2}, P W_{1}+\cos ^{2} \theta_{1} Q W_{1}+\cos ^{2} \theta_{2} R W_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{V_{1}} V_{2}, \omega \phi P W_{1}+\omega \phi Q W_{1}+\omega \phi R W_{1}\right) \\
& +g_{1}\left(\mathcal{A}_{V_{1}} B V_{2}+\mathcal{H} \nabla_{V_{1}} C V_{2}, \omega W_{1}\right) .
\end{aligned}
$$

Theorem 3.5. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then the vertical distribution $\left(\operatorname{ker} \pi_{*}\right)$ defines a totally geodesic foliation on N_{1} if and only if

$$
\begin{aligned}
& g_{1}\left(\mathcal{T}_{X_{1}} X_{2}, Z_{1}\right)+\cos ^{2} \theta_{1} g_{1}\left(\mathcal{T}_{X_{1}} Q X_{2}, Z_{1}\right)+\cos ^{2} \theta_{2} g_{1}\left(\mathcal{T}_{X_{1}} R X_{2}, Z_{1}\right)(3.41) \\
= & g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega \phi P X_{2}+\mathcal{H} \nabla_{X_{1}} \omega \phi Q X_{2}+\mathcal{H} \nabla_{X_{1}} \omega \phi R X_{2}, Z_{1}\right) \\
& +g_{1}\left(\mathcal{T}_{X_{1}} \omega X_{2}, B Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega X_{2}, C Z_{1}\right)
\end{aligned}
$$

for $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Z_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. For $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $Z_{1} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, using equations (2.2), (2.4) and (3.3), we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{X_{1}} X_{2}, Z_{1}\right) \\
= & g_{1}\left(\nabla_{X_{1}} J P X_{2}, J Z_{1}\right)+g_{1}\left(\nabla_{X_{1}} J Q X_{2}, J Z_{1}\right)+g_{1}\left(\nabla_{X_{1}} J R X_{2}, J Z_{1}\right) .
\end{aligned}
$$

Now, using equations (2.9), (2.10), (3.4), (3.16) and Lemma 3.2, we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{X_{1}} X_{2}, Z_{1}\right) \\
= & g_{1}\left(\mathcal{T}_{X_{1}} X_{2}, Z_{1}\right)+\cos ^{2} \theta_{1} g_{1}\left(\mathcal{T}_{X_{1}} Q X_{2}, Z_{1}\right)+\cos ^{2} \theta_{2} g_{1}\left(\mathcal{T}_{X_{1}} R X_{2}, Z_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega \phi P X_{2}+\mathcal{H} \nabla_{X_{1}} \omega \phi Q X_{2}+\mathcal{H} \nabla_{X_{1}} \omega \phi R X_{2}, Z_{1}\right) \\
& +g_{1}\left(\nabla_{X_{1}} \omega P X_{2}+\nabla_{X_{1}} \omega Q X_{2}+\nabla_{X_{1}} \omega R X_{2}, J Z_{1}\right) . \\
\text { Since } \omega P & X_{2}+\omega Q X_{2}+\omega R X_{2}=\omega X_{2} \text { and } \omega P X_{2}=0, \text { we have } \\
& g_{1}\left(\nabla_{X_{1}} X_{2}, Z_{1}\right) \\
= & g_{1}\left(\mathcal{T}_{X_{1}} X_{2}, Z_{1}\right)+\cos ^{2} \theta_{1} g_{1}\left(\mathcal{T}_{X_{1}} Q X_{2}, Z_{1}\right)+\cos ^{2} \theta_{2} g_{1}\left(\mathcal{T}_{X_{1}} R X_{2}, Z_{1}\right) \\
& -g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega \phi P X_{2}+\mathcal{H} \nabla_{X_{1}} \omega \phi Q X_{2}+\mathcal{H} \nabla_{X_{1}} \omega \phi R X_{2}, Z_{1}\right) \\
& +g_{1}\left(\mathcal{T}_{X_{1}} \omega X_{2}, B Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{X_{1}} \omega X_{2}, C Z_{1}\right) .
\end{aligned}
$$

Theorem 3.6. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the invariant distribution D defines a totally geodesic foliation on N_{1} if and only if

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{U_{1}} J P U_{2}, \omega Q W_{1}+\omega R W_{1}\right)=-g_{1}\left(\mathcal{V} \nabla_{U_{1}} J P U_{2}, \phi Q W_{1}+\phi R W_{1}\right) \tag{3.42}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{U_{1}} J P U_{2}, C W_{2}\right)=-g_{1}\left(\mathcal{V} \nabla_{U_{1}} J P U_{2}, B W_{2}\right) \tag{3.43}
\end{equation*}
$$

for $U_{1}, U_{2} \in \Gamma(D), W_{1} \in \Gamma\left(D_{1} \oplus D_{2}\right)$ and $W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. For $U_{1}, U_{1} \in \Gamma(D), W_{1} \in \Gamma\left(D_{1} \oplus D_{2}\right)$ and $W_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, using equations (2.2), (2.4), (2.9), (3.3) and (3.4), we have

$$
\begin{aligned}
g_{1}\left(\nabla_{U_{1}} U_{2}, W_{1}\right) & =g_{1}\left(\nabla_{U_{1}} J U_{2}, J W_{1}\right) \\
& =g_{1}\left(\nabla_{U_{1}} J P U_{2}, J Q W_{1}+J R W_{1}\right) \\
& =g_{1}\left(\mathcal{T}_{U_{1}} J P U_{2}, \omega Q W_{1}+\omega R W_{1}\right)+g_{1}\left(\mathcal{V} \nabla_{U_{1}} J P U_{2}, \phi Q W_{1}+\phi R W_{1}\right)
\end{aligned}
$$

Using equations (2.2), (2.4), (2.9), (3.3) and (3.16), we have

$$
\begin{aligned}
g_{1}\left(\nabla_{U_{1}} U_{2}, W_{2}\right) & =g_{1}\left(\nabla_{U_{1}} J U_{2}, J W_{2}\right), \\
& =g_{1}\left(\nabla_{U_{1}} J P U_{2}, B W_{2}+C W_{2}\right), \\
& =g_{1}\left(\mathcal{V} \nabla_{U_{1}} J P U_{2}, B W_{2}\right)+g_{1}\left(\mathcal{T}_{U_{1}} J P U_{2}, C W_{2}\right),
\end{aligned}
$$

which completes the proof.
Theorem 3.7. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the slant distribution D_{1} defines a totally geodesic foliation on N_{1} if and only if

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{V_{1}} \omega \phi V_{2}, Z_{1}\right)=g_{1}\left(\mathcal{T}_{V_{1}} \omega Q V_{2}, J P Z_{1}+\phi R Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega Q V_{2}, \omega R Z_{1}\right) \tag{3.44}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega \phi V_{2}, Z_{2}\right)=g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega V_{2}, C Z_{2}\right)+g_{1}\left(\mathcal{T}_{V_{1}} \omega V_{2}, B Z_{2}\right) \tag{3.45}
\end{equation*}
$$

for $V_{1}, V_{2} \in \Gamma\left(D_{1}\right), Z_{1} \in \Gamma\left(D \oplus D_{2}\right)$ and $Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. For $V_{1}, V_{2} \in \Gamma\left(D_{1}\right), Z_{1} \in \Gamma\left(D \oplus D_{2}\right)$ and $Z_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, using equations (2.2), (2.4), (2.10), (3.3), (3.4) and Lemma 3.2, we have

$$
\begin{aligned}
& g_{1}\left(\nabla_{V_{1}} V_{2}, Z_{1}\right) \\
= & g_{1}\left(\nabla_{V_{1}} \phi V_{2}, J Z_{1}\right)+g_{1}\left(\nabla_{V_{1}} \omega V_{2}, J Z_{1}\right), \\
= & \cos ^{2} \theta_{1} g_{1}\left(\nabla_{V_{1}} V_{2}, Z_{1}\right)-g_{1}\left(\mathcal{T}_{V_{1}} \omega \phi V_{2}, Z_{1}\right) \\
& +g_{1}\left(\mathcal{T}_{V_{1}} \omega Q V_{2}, J P Z_{1}+\phi R Z_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega Q V_{2}, \omega R Z_{1}\right) .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& \sin ^{2} \theta_{1} g_{1}\left(\nabla_{V_{1}} V_{2}, Z_{1}\right) \\
= & -g_{1}\left(\mathcal{T}_{V_{1}} \omega \phi V_{2}, Z_{1}\right)+g_{1}\left(\mathcal{T}_{V_{1}} \omega Q V_{2}, J P Z_{1}+\phi R Z_{1}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega Q V_{2}, \omega R Z_{1}\right)
\end{aligned}
$$

Next, from equations $(2.2),(2.4),(2.10),(3.3),(3.16)$ and Lemma 3.2, we have

$$
\begin{aligned}
g_{1}\left(\nabla_{V_{1}} V_{2}, Z_{2}\right)= & g_{1}\left(\nabla_{V_{1}} \phi V_{2}, J Z_{2}\right)+g_{1}\left(\nabla_{V_{1}} \omega V_{2}, J Z_{2}\right), \\
= & \cos ^{2} \theta_{1} g_{1}\left(\nabla_{V_{1}} V_{2}, Z_{2}\right)-g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega \phi V_{2}, Z_{2}\right) \\
& +g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega V_{2}, C Z_{2}\right)+g_{1}\left(\mathcal{T}_{V_{1}} \omega V_{2}, B Z_{2}\right) .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& \sin ^{2} \theta_{1} g_{1}\left(\nabla_{V_{1}} V_{2}, Z_{2}\right) \\
= & -g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega \phi V_{2}, Z_{2}\right)+g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega V_{2}, C Z_{2}\right)+g_{1}\left(\mathcal{T}_{V_{1}} \omega V_{2}, B Z_{2}\right) .
\end{aligned}
$$

The proof of the following theorem is similar as the Theorem 3.7.
Theorem 3.8. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, the slant distribution D_{2} defines a totally geodesic foliation on N_{1} if and only if

$$
\begin{equation*}
g_{1}\left(\mathcal{T}_{U_{1}} \omega \phi U_{2}, Y_{1}\right)=g_{1}\left(\mathcal{T}_{U_{1}} \omega Q U_{2}, J P Y_{1}+\phi R Y_{1}\right)+g_{1}\left(\mathcal{H} \nabla_{U_{1}} \omega Q U_{2}, \omega R Y_{1}\right) \tag{3.46}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}\left(\mathcal{H} \nabla_{U_{1}} \omega \phi U_{2}, Y_{2}\right)=g_{1}\left(\mathcal{H} \nabla_{U_{1}} \omega U_{2}, C Y_{2}\right)+g_{1}\left(\mathcal{T}_{U_{1}} \omega U_{2}, B Y_{2}\right) \tag{3.47}
\end{equation*}
$$

for $U_{1}, U_{2} \in \Gamma\left(D_{2}\right), Y_{1} \in \Gamma\left(D \oplus D_{1}\right)$ and $Y_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Theorem 3.9. Let π be a quasi bi-slant Riemannian map from a Kähler manifold $\left(N_{1}, g_{1}, J\right)$ to a Riemannian manifold $\left(N_{2}, g_{2}\right)$. Then, π is a totally geodesic map if and only if

$$
\begin{array}{ll}
= & g_{1}\left(\mathcal{H} \nabla_{V_{1}} \omega \phi Q V_{2}+\mathcal{H} \nabla_{V_{1}} \omega \phi R V_{2}-\cos ^{2} \theta_{1} \nabla_{V_{1}} Q V_{2}-\cos ^{2} \theta_{2} \nabla_{V_{1}} R V_{2}, U_{1}\right) \\
= & g_{1}\left(\mathcal{V} \nabla_{V_{1}} J P V_{2}+\mathcal{T}_{V_{1}} \omega Q V_{2}+\mathcal{T}_{V_{1}} \omega R V_{2}, B U_{1}\right) \\
& +g_{1}\left(\mathcal{T}_{V_{1}} J P V_{2}+\mathcal{H} \nabla_{V_{1}} \omega Q V_{2}+\mathcal{H} \nabla_{V_{1}} \omega R V_{2}, C U_{1}\right),
\end{array}
$$

and

$$
\begin{array}{ll}
& g_{1}\left(\mathcal{H} \nabla_{U_{1}} \omega \phi Q V_{1}+\mathcal{H} \nabla_{U_{1}} \omega \phi R V_{1}-\cos ^{2} \theta_{1} \nabla_{U_{1}} Q V_{1}-\cos ^{2} \theta_{2} \nabla_{U_{1}} R V_{1}, U_{2}\right) \\
= & g_{1}\left(\mathcal{V} \nabla_{U_{1}} J P V_{1}+\mathcal{A}_{U_{1}} \omega Q V_{1}+\mathcal{A}_{U_{1}} \omega R V_{1}, B U_{2}\right) \\
& +g_{1}\left(\mathcal{A}_{U_{1}} J P V_{1}+\mathcal{H} \nabla_{U_{1}} \omega Q V_{1}+\mathcal{H} \nabla_{U_{1}} \omega R V_{1}, C U_{2}\right)
\end{array}
$$

for $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
Proof. Since π is a Riemannian map, we have

$$
\begin{equation*}
\left(\nabla \pi_{*}\right)\left(U_{1}, U_{2}\right)=0 \tag{3.48}
\end{equation*}
$$

for $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$.
For $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)$ and $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \pi_{*}\right)^{\perp}$, using equations (2.2), (2.4), (2.9), (2.10), (2.15), (3.3), (3.4) and Lemma 3.2, we have

$$
\begin{aligned}
& g_{2}\left(\left(\nabla \pi_{*}\right)\left(V_{1}, V_{2}\right), \pi_{*} U_{1}\right) \\
= & -g_{1}\left(\nabla_{V_{1}} V_{2}, U_{1}\right) \\
= & -g_{1}\left(\nabla_{V_{1}} J V_{2}, J U_{1}\right) \\
= & -g_{1}\left(\nabla_{V_{1}} J P V_{2}, J U_{1}\right)-g_{1}\left(\nabla_{V_{1}} J Q V_{2}, J U_{1}\right)-g_{1}\left(\nabla_{V_{1}} J R V_{2}, J U_{1}\right), \\
= & -g_{1}\left(\nabla_{V_{1}} J P V_{2}, J U_{1}\right)-g_{1}\left(\nabla_{V_{1}} \phi Q V_{2}, J U_{1}\right)-g_{1}\left(\nabla_{V_{1}} \phi R V_{2}, J U_{1}\right) \\
& -g_{1}\left(\nabla_{V_{1}} \omega Q V_{2}, J U_{1}\right)-g_{1}\left(\nabla_{V_{1}} \omega R V_{2}, J U_{1}\right),
\end{aligned}
$$

$$
=\begin{align*}
& g_{2}\left(\left(\nabla \pi_{*}\right)\left(V_{1}, V_{2}\right), \pi_{*} U_{1}\right) \tag{3.49}\\
& -g_{1}\left(\mathcal{V} \nabla_{V_{1}} J P V_{2}+\mathcal{T}_{V_{1}} \omega Q V_{2}+\mathcal{T}_{V_{1}} \omega R V_{2}, U_{1}\right) \\
& \\
& -g_{1}\left(\mathcal{T}_{V_{1}} J P V_{2}+\mathcal{H} \nabla_{V_{1}} \omega Q V_{2}+\mathcal{H} \nabla_{V_{1}} \omega R V_{2}, C U_{1}\right) \\
& \\
& -g_{1}\left(\cos ^{2} \theta_{1} \nabla_{V_{1}} Q V_{2}+\cos ^{2} \theta_{2} \nabla_{V_{1}} R V_{2}-\mathcal{H} \nabla_{V_{1}} \omega \phi Q V_{2}-\mathcal{H} \nabla_{V_{1}} \omega \phi R V_{2}, U_{1}\right) .
\end{align*}
$$

Next, using equations (2.2), (2.4), (2.9), (2.10), (2.15), (3.3), (3.4), (3.16) and Lemma 3.2 , we have

$$
\begin{align*}
& g_{2}\left(\left(\nabla \pi_{*}\right)\left(U_{1}, V_{1}\right), \pi_{*} U_{2}\right) \\
&=-g_{1}\left(\nabla_{U_{1}} V_{1}, U_{2}\right) \\
&=-g_{1}\left(\nabla_{U_{1}} J V_{1}, J U_{2}\right) \\
&=-g_{1}\left(\nabla_{U_{1}} J P V_{1}, J U_{2}\right)-g_{1}\left(\nabla_{U_{1}} J Q V_{1}, J U_{2}\right)-g_{1}\left(\nabla_{U_{1}} J R V_{1}, J U_{2}\right), \\
&=-g_{1}\left(\nabla_{U_{1}} J P V_{1}, J U_{2}\right)-g_{1}\left(\nabla_{U_{1}} \phi Q V_{1}, J U_{2}\right)-g_{1}\left(\nabla_{U_{1}} \phi R V_{1}, J U_{2}\right) \\
&-g_{1}\left(\nabla_{U_{1}} \omega Q V_{1}, J U_{2}\right)-g_{1}\left(\nabla_{U_{1}} \omega R V_{1}, J U_{2}\right), \\
& g_{2}\left(\left(\nabla \pi_{*}\right)\left(U_{1}, V_{1}\right), \pi_{*} U_{2}\right) \tag{3.50}\\
&=--g_{1}\left(\mathcal{V} \nabla_{U_{1}} J P V_{1}+\mathcal{A}_{U_{1}} \omega Q V_{1}+\mathcal{A}_{U_{1}} \omega R V_{1}, B U_{2}\right) \\
&- g_{1}\left(\mathcal{A}_{U_{1}} J P V_{1}+\mathcal{H} \nabla_{U_{1}} \omega Q V_{1}+\mathcal{H} \nabla_{U_{1}} \omega R V_{1}, C U_{2}\right) \\
&- g_{1}\left(\cos ^{2} \theta_{1} \nabla_{U_{1}} Q V_{1}+\cos ^{2} \theta_{2} \nabla_{U_{1}} R V_{1}-\mathcal{H} \nabla_{U_{1}} \omega \phi Q V_{1}-\mathcal{H} \nabla_{U_{1}} \omega \phi R V_{1}, U_{2}\right) .
\end{align*}
$$

The proof follows in view of equations (3.49) and (3.50).

4. Example

Note that given an Euclidean space $R^{2 s}$ with coordinates $\left(y_{1}, y_{2}, \ldots \ldots, y_{2 s-1}, y_{2 s}\right)$ we can canonically choose an almost complex structure J on $R^{2 s}$ as follows:

$$
\begin{aligned}
& J\left(a_{1} \frac{\partial}{\partial y_{1}}+a_{2} \frac{\partial}{\partial y_{2}}+\ldots \ldots \ldots . .+a_{2 s-1} \frac{\partial}{\partial y_{2 s-1}}+a_{2 s} \frac{\partial}{\partial y_{2 s}}\right) \\
= & -a_{2} \frac{\partial}{\partial y_{1}}+a_{1} \frac{\partial}{\partial y_{2}}+\ldots \ldots \ldots \ldots-a_{2 s} \frac{\partial}{\partial y_{2 s-1}}+a_{2 s-1} \frac{\partial}{\partial y_{2 s}},
\end{aligned}
$$

where a_{1}, a_{2}, \qquad $a_{2 s}$ are C^{∞} functions defined on $R^{2 s}$. Throughout this section, we will use this notation.

Example 4.1. Define a map $\pi: R^{16} \rightarrow R^{8}$ by
$\pi\left(y_{1}, y_{2}, \ldots \ldots \ldots ., y_{15}, y_{16}\right)=\left(y_{3} \sin \alpha-y_{5} \cos \alpha, 2021, y_{6}, y_{7} \sin \beta-y_{9} \cos \beta, 2022, y_{10}, y_{13}, y_{14}\right)$,
which is a quasi bi-slant Riemannian map such that

$$
\begin{align*}
V_{1} & =\frac{\partial}{\partial y_{1}}, V_{2}=\frac{\partial}{\partial y_{2}}, V_{3}=\cos \alpha \frac{\partial}{\partial y_{3}}+\sin \alpha \frac{\partial}{\partial y_{5}}, V_{4}=\frac{\partial}{\partial y_{4}}, \tag{4.1}\\
V_{5} & =\cos \beta \frac{\partial}{\partial y_{7}}+\sin \beta \frac{\partial}{\partial y_{9}}, V_{6}=\frac{\partial}{\partial y_{8}}, V_{7}=\frac{\partial}{\partial y_{11}}, V_{8}=\frac{\partial}{\partial y_{12}}, V_{9}=\frac{\partial}{\partial y_{15}}, V_{10}=\frac{\partial}{\partial y_{16}},
\end{align*}
$$

$$
\begin{equation*}
\operatorname{ker} \pi_{*}=D \oplus D_{1} \oplus D_{2} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
D= & <V_{1}=\frac{\partial}{\partial y_{1}}, V_{2}=\frac{\partial}{\partial y_{2}}, V_{7}=\frac{\partial}{\partial y_{11}}, V_{8}=\frac{\partial}{\partial y_{12}}, V_{9}=\frac{\partial}{\partial y_{15}}, V_{10}=\frac{\partial}{\partial y_{16}}> \\
D_{1}= & <V_{3}=\cos \alpha \frac{\partial}{\partial y_{3}}+\sin \alpha \frac{\partial}{\partial y_{5}}, V_{4}=\frac{\partial}{\partial y_{4}}> \\
D_{2}= & <V_{5}=\cos \beta \frac{\partial}{\partial y_{7}}+\sin \beta \frac{\partial}{\partial y_{9}}, V_{6}=\frac{\partial}{\partial y_{8}}> \\
& \left(\operatorname{ker} \pi_{*}\right)^{\perp} \\
= & <\frac{\partial}{\partial y_{6}}, \sin \alpha \frac{\partial}{\partial y_{3}}-\cos \alpha \frac{\partial}{\partial y_{5}}, \sin \beta \frac{\partial}{\partial y_{7}}-\cos \beta \frac{\partial}{\partial y_{9}}, \frac{\partial}{\partial y_{10}}, \frac{\partial}{\partial y_{13}}, \frac{\partial}{\partial y_{14}}>
\end{aligned}
$$

with bi-slant angles α and β.
Example 4.2. Define a map $\pi: R^{14} \rightarrow R^{8}$ by

$$
\begin{equation*}
\pi\left(y_{1}, y_{2}, \ldots \ldots \ldots, y_{13}, y_{14}\right)=\left(\frac{y_{1}-y_{3}}{\sqrt{2}}, 101, y_{2}, \frac{y_{7}-\sqrt{3} y_{9}}{2}, 202, y_{10}, y_{13}, y_{14}\right) \tag{4.3}
\end{equation*}
$$

which is a quasi bi-slant Riemannian map such that

$$
\begin{align*}
& V_{1}= \frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial y_{1}}+\frac{\partial}{\partial y_{3}}\right), V_{2}=\frac{\partial}{\partial y_{4}}, V_{3}=\frac{\partial}{\partial y_{5}}, V_{4}=\frac{\partial}{\partial y_{6}} \\
& V_{5}= \frac{1}{2}\left(\sqrt{3} \frac{\partial}{\partial y_{7}}+\frac{\partial}{\partial y_{9}}\right), V_{6}=\frac{\partial}{\partial y_{8}}, V_{7}=\frac{\partial}{\partial y_{11}}, V_{8}=\frac{\partial}{\partial y_{12}}, \\
& \operatorname{ker} \pi_{*}=D \oplus D_{1} \oplus D_{2} \tag{4.4}\\
& D=<V_{3}=\frac{\partial}{\partial y_{5}}, V_{4}=\frac{\partial}{\partial y_{6}}, V_{7}=\frac{\partial}{\partial y_{11}}, V_{8}=\frac{\partial}{\partial y_{12}}> \\
&=<V_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial y_{1}}+\frac{\partial}{\partial y_{3}}\right), V_{2}=\frac{\partial}{\partial y_{4}}>, \\
& D_{1}=<V_{5}=\frac{1}{2}\left(\sqrt{3} \frac{\partial}{\partial y_{7}}+\frac{\partial}{\partial y_{9}}\right), V_{6}=\frac{\partial}{\partial y_{8}}>, \\
& D_{2}= \\
&=\quad<\frac{\partial}{\partial y_{2}}, \frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial y_{1}}-\frac{\partial}{\partial y_{3}}\right), \frac{1}{2}\left(\frac{\partial}{\partial y_{7}}-\sqrt{3} \frac{\partial}{\partial y_{9}}\right), \frac{\partial}{\partial y_{10}}, \frac{\partial}{\partial y_{13}}, \frac{\partial}{\partial y_{14}}>
\end{align*}
$$

with bi-slant angles $\theta_{1}=\frac{\pi}{4}$ and $\theta_{2}=\frac{\pi}{6}$.

REFERENCES

1. A.E. Fischer, Riemannian maps between Riemannian manifolds, Contemporary Math. 132 (1992), 331-366.
2. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-737.
3. B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Elsevier, Academic Press (2017).
4. B. Sahin, Invariant and anti-invariant Riemannian maps to Kahler manifolds, Int. J. Geom. Methods Mod. Phys., 7 (2010), no. 3, 337-355.
5. B. Sahin, Semi-invariant Riemannian maps from almost Hermitian manifolds, Indagationes Math., 23 (2012), 80-94.
6. B. Sahin, Slant Riemannian maps from almost Hermitian manifolds, Quaest. Math., 36 (2013), n. 3, 449-461.
7. B. Sahin, Hemi-slant Riemannian Maps, Mediterr. J. Math., 14 (2017), no. 1, 1-17.
8. B. O'Neill, The fundamental equations of a submersions, Mich. Math. J., 13 (1966), no. 4, 458-469.
9. B. Watson, Almost Hermitian submersions, J. Differential Geom., 11 (1976), no. 1, 147-165.
10. J. P. Bourguignon and H.B. Lawson, Stability and isolation phenomena for Yang-mills fields, Commun. Math. Phys., 79 (1981), 189-230.
11. J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza Klein theory, Rend. Semin. Mat. Univ. Politec. Torino Special Issue., (1989), 143-163.
12. K. S. Park, and B. Sahin Semi-slant Riemannian maps into almost Hermitian manifolds, Czech. Math. J., 64 (2014), no. 4, 1045 -1061.
13. P. Baird and J.C. Wood, Harmonic Morphism between Riemannian Manifolds, Oxford science publications, Oxford (2003).
14. P. Chandelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for super-strings, Nuclear Physics B, 258 (1985), 46-74.
15. R. Prasad and S. Pandey, Slant Riemannian maps from an almost contact manifold, Filomat, 31 (2017), no. 13, 3999-4007.
16. R. Prasad and S. Pandey, Semi-slant Riemannian maps from almost contact manifolds Analele Universitatii, Oradea Fasc. Matematica, Tom XXV (2018), Issue No. 2, 127141.
17. R. Prasad and S. Pandey, Hemi-slant Riemannian maps from almost contact metric manifolds, PJM, 9 (2020), no. 2, 811-823.
18. R. Prasad, S.S. Shukla and S. Kumar, On Quasi bi-slant Submersions, Mediterr. J. Math., 16 (2019), 16:155, https://doi.org/10.1007/s00009-019-1434-7.
19. R. Prasad and S. Kumar, Slant Riemannian maps from Kenmotsu manifolds into Riemannian manifolds, Global J. Pure Appl. Math., 13 (2017), no. 4, 1143-1155.
20. R. Prasad and S. Kumar, Semi-slant Riemannian maps from almost contact metric manifolds into Riemannian manifolds, Tbilisi Mathematical Journal, 11 (2018), no. 4, 19-34.
21. R. Prasad, S. Kumar, S. Kumar and A. T. Vanli, On Quasi-Hemi-Slant Riemannian Maps, Gazi University Journal of Science, 34 (2021), no. 2, 477-491.
22. R. Prasad and S. Kumar, Semi-slant Riemannian maps from Cosymplectic manifolds into Riemannian manifolds, Gulf Journal of Mathematics., 9 (2020), no. 1, 62-80.
23. T. Nore, Second fundamental form of a map, Ann Mat Pur Appl., 146 (1987), 281-310.
24. U.C. De and A.A. Shaikh, Differential Geometry of Manifolds, Narosa Pub. House (2009).
25. V. Cortes, C Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean super-symmetry, Vector multiplets, J. High Energy Phys., 03 (2004), 028.

[^0]: Received July 14, 2022. accepted October 19, 2022.
 Communicated by Uday Chand De
 Corresponding Author: Shashikant Pandey , Faculty of Science, Department of Mathematics and Astronomy, University of Lucknow, 226007 Lcknow, Uttar Pradesh, India | E-mail: shashi.royal.lko@gmail.com
 2010 Mathematics Subject Classification. 00A11, 53C15, 53C43, 53B20, 55B55.

