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Abstract. For a graph G = (V,E), a sequence S = (v1, . . . , vk) of distinct vertices
of G it is called a dominating sequence if NG[vi] \

⋃i−1
j=1N [vj ] 6= ∅. The maximum

length of dominating sequences is denoted by γgr(G). We define the Grundy bondage
numbers bgr(G) of a graph G to be the cardinality of a smallest set E of edges for
which γgr(G − E) > γgr(G). In this paper the exact values of bgr(G) are determined
for several classes of graphs.
Keywords: Grundy Domination Number,Grundy Bondage Number.

1. Introduction

In this paper, G is a simple graph with the vertex set V = V (G) and the edge set
E = E(G). For notation and graph theoretical terminology, we generally follow
[8]. The order |V | and the size |E| of G is denoted by n = n(G) and m = m(G),
respectively. For every vertex v ∈ V , the open neighborhood NG(v) of v is the set
{u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set NG[v] =
NG(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = dG(v) = |NG(v)|. The
minimum degree and the maximum degree of a graph G are denoted by δ = δ(G)
and ∆ = ∆(G), respectively. We write Pn for the path of order n, Cn for the cycle
of order n, Kn for the complete graph of order n and Km,n for complete bipartite
graph. Also K1,n is called star graph and is denoted by Sn.
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The cartesian product of graphs G = G1 ×G2, are sometimes simply called the
graph product of graphs G1 and G2 with point sets V1 and V2 and edge sets E1

and E2 is the graph with the point set V1 × V2 and u = (u1, u2) is adjacent with
v = (v1, v2) whenever (u1 = v1 and u2 adjacent v2) or (u1 adjacent v1 and u2 = v2).
The join of two graphs G and H is denoted by G ∨ H is a graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy|x ∈ V (G), y ∈ V (H)}. The graph
K1 ∨ Cn−1 is called wheel graph and is denoted by Wn.
Let G be a graph of order n and let H1, H2, · · · , Hn, be n graphs. The generalized
corona product, is the graph obtained by taking one copy of graphsG,H1, H2, · · · , Hn

and joining the ith vertex of G to every vertex of Hi. This product is denoted by
G◦∧ni=1Hi. If each Hi is isomorphic to a graph H, then generalized corona product
is called the corona product of G and H and is denoted by G ◦H.

A subset D of V (G) is called a dominating set of G if every vertex of G is
either in D or adjacent to at least one vertex in D. The domination number of G,
denoted by γ(G), is the number of vertices in a smallest dominating set of G. A
dominating set of cardinality γ(G) is called a γ-set. For further information about
various domination sets in graphs, we refer reader to [9, 10].

Based on the domination number, Grundy domination invariants has been in-
troduced in recent years by some authors [1, 5, 6] and then they continued the study
of these concepts in [3, 2, 4, 7].

In [5] the first type of Grundy dominating sequence was introduced. Let S =
(v1, . . . , vk) be a sequence of distinct vertices of a graph G. The corresponding

set {v1, . . . , vk} of vertices from the sequence S will be denoted by Ŝ. A sequence
S = (v1, . . . , vk) is called a closed neighborhood sequence if, for each i,

NG[vi] \
i−1⋃
j=1

NG[vj ] 6= Ø.

If for a closed neighborhood sequence S, the set Ŝ is a dominating set of G, then S
is called a dominating sequence of G. Clearly, if S = (v1, v2, . . . , vk) is a dominating
sequence for G, then k ≥ γ(G). We call the maximum length of a dominating se-
quence in G the Grundy domination number of G and denote it by γgr(G). The cor-
responding sequence is called a Grundy dominating sequence of G or γgr-sequence
of G.

The Grundy bondage number bgr(G) of a non-empty graph G is the cardinality
of a smallest set of edges whose removal from G results in a graph with Grundy
domination number greater than γgr(G). For empty graph G, we define bgr(G) = 0.

In this paper we introduced this concept and in Section 2, we obtain bgr(G) for
some families of graphs.
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2. Main results

In this section, we compute the Grundy bondage numbers of some special family of
graph. First, we state some necessary known results.

Proposition 2.1. [5] Let n be a positive integer.Then

i) For n ≥ 3, γgr(Cn) = n− 2, while for n ≥ 2, γgr(Pn) = n− 1.

ii) For n ≥ 1, we have γgr(Kn) = 1, while for complete bipartite graphs Kr,s we
have γgr(Kr,s) = s if r ≤ s.

iii) If G is the join of G1 and G2, Then

γgr(G) = max{γgr(G1), γgr(G2)}.

In the following theorem we study some families of graphs with Grundy bondage
numbers are equal 1

Theorem 2.1. Let G be a graph of order n ≥ 4. If G ∈ {Kn, Cn,Wn,K2 × Cn},
then bgr(G) = 1.

Proof. We have γgr(Kn) = 1, by Proposition 2.1 [ii]. Let e = xy. It is not difficult
to see that S = (x, y) is a dominating sequence for Kn − e. So we conclude that
γgr(Kn − e) > γgr(Kn) and thus bgr(Kn) = 1.

Now consider the graph Cn. By Proposition 2.1, we have γgr(Cn) = n − 2.
Consider the edge e from Cn,. Hence Cn = Pn and therefore γgr(Cn−e) > γgr(Cn).
Hence, bgr(Cn) = 1.

Let G = Wn. Since Wn = K1 + Cn−1, by Proposition 2.1, we have

γgr(Wn) = max{γgr(K1), γgr(Cn−1)}.

So, γgr(Wn) = n− 3. Consider an edge e from Cn−1. Then

γgr(Wn − e) = γgr(K1 + Pn−1) = n− 2.

Thus, bgr(Wn) = 1.

Now Consider K2 × Pn. Let V (K2 × Pn) = {vij | 1 ≤ i ≤ 2, 1 ≤ j ≤ n}.
The Grundy domination number of K2 × Cn is equal to 2n − 4. Now consider
K2 × Cn − v11v1n. Hence

(v11, v21, v12, v22, · · · , v1n−1)

is a Grundy sequences in K2 × Cn − v11v1n of size 2n− 3. Hence γgr((K2 × Cn)−
v11v1n) > γgr(K2 × Cn) and we conclude that bgr(K2 × Cn) = 1.
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Theorem 2.2. Let G be a caterpillar of order n ≥ 2. Then bgr(G) = n− 1.

Proof. Note that for a graph H, we have γgr(H) = n if and only if H is an empty
graph. Hence if E0 is a subset of edge set G, such that γgr(G − E0) > γgr(G),
then G − E0 is an empty graph. Therefore |E0| ≥ n − 1 and we conclude that
bgr(G) = n− 1.

Corollary 2.1. bgr(Pn) = bgr(Sn) = n− 1.

Proof. The results follows from Theorem 2.2, since paths and stars are caterpil-
lar.

Theorem 2.3. Let 2 ≤ m ≤ n. Then bgr(Km,n) ≤ n− 1.

Proof. LetG = Km,n and V1 and V2 are two parts ofG of sizesm and n, respectively.
Suppose that V2 = {w1, w2, · · · , wn}. Consider the arbitrary vertex v1 ∈ V1 and
edge set E0 = {v1wi|1 ≤ i ≤ n}. Clearly Km,n − E0 = K1

⋃
Km−1,n and hence

γgr(Km,n − E0) = n+ 1. This implies that bgr(Km,n) ≤ n− 1.

The following lemma is a useful result for computing bgr(K2 × Pn).

Lemma 2.1. Let G be a connected graph of order n ≥ 2. Then γgr(G) = n− 1 if
and only if G is a caterpillar.

Proof. We prove by induction on n. For n = 2, the result is true. Suppose that
result is true for any connected graph of order n − 1 and G is a connected graph
of order n ≥ 3 with γgr(G) = n − 1. Let (v1, v2, · · · , vn−2, vn−1) be a dominating
sequences of G. Hence there exists

x ∈ (NG[vn−1] \
n−2⋃
j=1

NG[vj ]).

Note that x 6= vj for 1 ≤ j ≤ n− 2. If x = vn, then vn is not adjacent to any vj for
1 ≤ j ≤ n− 2 and this fact implies that deg(vn) = 1. Hence (v1, v2, · · · , vn−3, vn−2)
is a dominating sequences for G − vn. The graph G − vn is a connected graph of
order n − 1 with γgr(G − vn) = n − 2. Hence G − vn is a caterpillar and this fact
implies that G is a caterpillar. If x = vn−1, then vn−1 is not adjacent to any vj for
1 ≤ j ≤ n − 2. Since G is connected, we conclude that vn−1 is adjacent to vn and
deg(vn−1) = 1. By changing the the dominating sequence (v1, v2, · · · , vn−2, vn−1)
to dominating sequence (v1, v2, · · · , vn−2, vn) and a same argument the result can
be obtained.
The converse of lemma obtained by 2.1.

Theorem 2.4. Let n ≥ 2. Then bgr(K2 × Pn) = n− 1.
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Proof. Let V (K2 × Pn) = {vij | 1 ≤ i ≤ 2, 1 ≤ j ≤ n}. We know that
γgr(K2 × Pn) = 2n − 2 [2]. Consider the set E0 = {v1iv2i| 1 ≤ i ≤ n − 1}.
Clearly E0 ⊆ E(K2 × Pn) and K2 × Pn − E0 = P2n. Hence γgr(K2 × Pn − E0) =
2n− 1. Thus bgr(K2 × Pn) ≤ n− 1. On the other hand, if E0 ⊆ E(K2 × Pn) such
that γgr(K2 × Pn − E0) = 2n − 1, then (K2 × Pn) − E0 is a forest such that all
components except one are a single vertex. Hence |E0| ≥ n − 1 and we conclude
that bgr(K2 × Pn) = n− 1.

An additional variant of the Grundy domination number was introduced in [1].
Let G be a graph without isolated vertices. A sequence S = (v1, . . . , vk), where
vi ∈ V (G), is called a Z − sequence if for each i,

NG(vi) \
i−1⋃
j=1

NG[vj ] 6= Ø.

Then the Z-Grundy domination number γZgr(G) of the graph G is the length of a
longest Z-sequence.

The following results are known

Proposition 2.2. [5, 1] For n ≥ 3, γgr(Cn) = γZgr(Cn) = n− 2, while for n ≥ 2,

γgr(Pn) = γZgr(Pn) = n− 1.

Theorem 2.5. [11] Let G and H1, H2, . . . ,Hn be n+1 graphs with without isolated
vertices. Then

γgr(G ◦ ∧ni=1Hi) =

n∑
i=1

γgr(Hi) + γZgr(G).

Theorem 2.6. Let G and H1, H2, . . . ,Hn be n + 1 graphs with without isolated
vertices. If G = Cn or H1 = Cn, then bgr(G ◦ ∧ni=1Hi) = 1.

Proof. Suppose that G = Cn and consider an edge e from G. Hence G − e = Pn

and therefor by Proposition 2.2 and Theorem 2.5

γgr(G ◦∧ni=1Hi) =

n∑
i=1

γgr(Hi) +n− 2 < γgr(G− e ◦∧ni=1Hi) =

n∑
i=1

γgr(Hi) +n− 1.

Thus bgr(G ◦ ∧ni=1Hi) = 1.
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5. B. Brešar, T. Gologranc, M. Milanič, D. F. Rall and R. Rizzi: Dominating
sequences in graphs, Discrete Math., 336 (2014), 22-36.
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