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Abstract. In this paper, we study a long existing open problem on Landsberg metrics in
Finsler geometry. For this aim, we study the Landsberg curvature of three-dimensional
homogeneous Finsler manifolds. First, we express the second Matsumoto torsion of
three-dimensional Finsler manifolds, explicitly. Then, we show that the mean Lands-
berg curvature of three-dimensional homogeneous Finsler manifolds satisfy an ODE.
Finally, we prove that every homogeneous 3-dimensional L-reducible Finsler manifold
has constant relatively isotropic mean Landsberg curvature if and only if it is a Lands-
berg metric or a Randers metric of Berwald-type.
Keywords: Homogeneous metric, Landsberg metric, Randers metric.

1. Introduction

It is a long-existing open problem in Finsler geometry to find the unicorns,
that is, the Landsberg metrics which are not Berwald metrics. For the sake of
simpler prose, Bao refer to the Landsberg metrics that are not of Berwald type
as unicorns, by analogy with those mythical single-horned horse-like creatures for
which no confirmed sighting is available [2]. In [20], Shen showed that there is
not any unicorn in the class of regular (α, β)-metrics. Also, he found a family of
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unicorns in the class of non-regular (α, β)-metrics. Let F = αφ(s), s = β/α, be an
(α, β)-metric defined by following

φ(s) = exp

[∫ s

0

kt+ q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
,

where q > 0 and k are real constants. Suppose that the 1-form β satisfies

rij = c(b2aij − bibj), sij = 0,

where c = c(x) is a scalar function on M . If c 6= 0, then F is a unicorn. If c = 0,
then F reduces to a Berwald metric. If k = 0 and c 6= 0, then one obtains the family
of unicorns constructed by Asanov in [1].

In 1975, Takano developed the theory of fields in Finsler spaces, where the fields
have internal freedom. In particular, he studied the spinor fields details and found
it necessary to introduce the gauge fields into the spinor field equations. Takano
studied the field equations in a Finsler manifold and proposed certain interesting
geometrical problems [22]. He requested mathematicians to find some proper forms
of Landsberg curvature from the standpoint of physics. In 1978, Matsumoto in-
troduced the notion of L-reducible Finsler metrics as an answer to Takano, which
was a generalization of C-reducible Finsler metrics [10]. A Finsler metric F on an
n-dimensional manifold M is L-reducible if its Landsberg curvature is given by

Ly(u, v, w) =
1

n+ 1

{
Jy(u)hy(v, w) + Jy(v)hy(u,w) + Jy(w)hy(u, v)

}
,(1.1)

where J := trace(L) denotes the mean Landsberg curvature of F . As we mentioned,
Matsumoto considered (1.1) when he studied the hv-curvature Pijkl of the Cartan
connection. Then, he called such Finsler metrics by the notion of P -reducible since
it comes from the P-curvature and we call them here “L-reducible metrics” for the
relation with Landsberg curvature. If L = 0, then F is called Landsberg metric
[24]. We have concrete examples of non-Landsberg L-reducible Finsler metrics.
For example, it is evident that every C-reducible metric is L-reducible. However,
the converse of this fact may not be accurate in general. For a Finsler metric of
dimension n ≥ 3, Matsumoto found some conditions under which the Finsler metric
will be L-reducible. Since the study of Landsberg curvature has become an urgent
necessity for the Finsler geometry as well as for theoretical physics, Matsumoto-
Shimada studied some of Riemannian and non-Riemannian curvature properties of
L-reducible metrics in [16]. They proposed the following open problem:

Is there any L-reducible Finsler metric that is not C-reducible?

A Finsler space (M,F ) is called homogeneous Finsler space if the group of
isometries of (M,F ) acts transitively on M . Recently, Deng and Xu conjectured
that “A homogeneous Landsberg space must be a Berwald space” [5]. In [23], the
authors proved that every homogeneous Landsberg surface is Riemannian or locally
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Minkowskian. This result articulates the hunters of unicorns that they do not look-
ing forward to seeing such a creature in the jungle of homogeneous Finsler surfaces
(see [7], [19] and [26]). In [6], Hu-Deng studied 3-dimensional homogeneous Finsler
manifolds and obtain a complete list of invariant Finsler metrics. They considered
invariant Randers metrics and presented the classification of three-dimensional ho-
mogeneous Randers spaces under isometrics.

Theorem 1.1. Let (M,F ) be a homogeneous 3-dimensional L-reducible Finsler
manifold. Then F has constant relatively isotropic mean Landsberg curvature if
and only if it is a Landsberg metric or a Randers metric of of Berwald-type.

Theorem 1.1 yields a negative answer to the open problem of Matsumoto-
Shimada in the class of homogeneous three-dimensional Finsler metrics with con-
stant relatively isotropic mean Landsberg curvature.

2. Preliminary

Let M be an n-dimensional C∞ manifold, TM =
⋃
x∈M TxM the tangent bundle

and TM0 := TM − {0} the slit tangent bundle. Let (M,F ) be a Finsler manifold.
The following quadratic form gy : TxM × TxM → R is called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, one can
define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that
C = 0 if and only if F is Riemannian. Also, for y ∈ TxM0, one can define Iy :
TxM → R by

Iy(u) =

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0
is called the

mean Cartan torsion. By definition, Iy(u) := Ii(y)ui, where Ii := gjkCijk. Define
the norm of I at a point x ∈M by

‖I‖x := sup
0 6=y∈TxM

√
gij(x, y)Ii(x, y)Ij(x, y).

For a non-zero vector y ∈ TxM0, one can define the Matsumoto torsion My :
TxM × TxM × TxM → R by

My(u, v, w) = Cy(u, v, w)− 1

n+ 1

{
Iy(u)hy(v, w)+ Iy(v)hy(u,w)+ Iy(w)hy(u, v)

}
,

(2.1)
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where hy(u, v) := gy(u, v) − F−2(y)gy(y, u)gy(y, v) is called the angular form in
direction y and gy is the fundamental tensor of F . Clearly, M = 0 for all two-
dimensional Finsler metrics. A Finsler metric F on a manifold M of dimension
n ≥ 2 is said to be C-reducible if My = 0. In [15], Matsumoto-Hōjō proved the
following.

Lemma 2.1. (Matsumoto-Hōjō Lemma) A positive-definite Finsler metric on a
manifold of dimension n ≥ 3 is a Randers metric if and only if the Matsumoto
torsion vanishes.

Let c = c(t) be a C∞ curve and U(t) = U i(t)∂/∂xi|c(t) be a vector field along
c. Define the covariant derivative of U(t) along c by

DċU(t) :=

{
dU i

dt
(t) + U j(t)

∂Gi

∂yj
(
c(t), ċ(t)

)} ∂

∂xi

∣∣∣
c(t)

.

U(t) is said to be linearly parallel if DċU(t) = 0.

For a vector y ∈ TxM , define

Ly(u, v, w) : =
d

dt

[
Cσ̇(t)

(
U(t), V (t),W (t)

)]
|t=0,

Jy(u) : =
d

dt

[
Iσ̇(t)

(
U(t)

)]
|t=0,

where σ(t) is the geodesic with σ(0) = x, σ̇(0) = y and U(t), V (t),W (t) are linearly
parallel vector fields along σ with U(0) = u, V (0) = v,W (0) = w. We call Ly the
Landsberg curvature. The Landsberg curvature measures the rate of change of the
Cartan torsion along geodesics. Fix a local frame {bi} for TM . Let Lijk(x, y) :=
Ly(bi,bj ,bk) and Ji(x, y) := Jy(bi). We have that Ji(x, y) = gjk(x, y)Lijk(x, y).
Thus we call Jy the mean Landsberg curvature. A Finsler metric F on a manifold
M is called of relatively isotropic mean Landsberg curvature if

J + cF I = 0,

where c = c(x) is a scalar function on M . If c = constant, then F has constant
relatively isotropic mean Landsberg curvature.

For y ∈ TxM0, define the second Matsumoto torsion M̃y : TxM×TxM×TxM →
R by

M̃y(u, v, w) := Ly(u, v, w)− 1

n+ 1

{
Jy(u)hy(v, w)+Jy(v)hy(u,w)+Jy(w)hy(u, v)

}
.

(2.2)
In local coordinates,

M̃ijk := Lijk −
1

n+ 1

{
Jihjk + Jjhik + Jkhij

}
.
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A Finsler metric F is said to be L-reducible if M̃y = 0.

Throughout this paper, we use the Berwald connection on Finsler manifolds.
The pulled-back bundle π∗TM admits a unique linear connection, called the Berwald
connection. Its connection forms are characterized by the structure equations as
follows

� Torsion freeness:

dωi = ωj ∧ ωij .(2.3)

� Almost metric compatibility:

dgij − gkjωki − gikωkj = −2Lijkω
k + 2Cijkω

n+k,(2.4)

where
ωi := dxi, ωn+k := dyk + yjωkj .

The horizontal and vertical covariant derivations with respect to the Berwald con-
nection respectively are denoted by “|” and “, ”. Thus

gij|k = −2Lijk, gij,k = 2Cijk.

Also, the structure equation of curvature tensors of Berwald connection is given by
following

Ωij := dωij − ωkj ∧ ωik =
1

2
Rijklω

k ∧ ωl −Bijklωk ∧ ωn+l.(2.5)

For more details, one can see [21].

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this aim, we remark
that in [9], Latifi-Razavi proved that every homogeneous Finsler manifold is forward
geodesically complete. In [24], Tayebi-Najafi improved their result and proved the
following.

Lemma 3.1. ([24]) Every homogeneous Finsler manifold is complete.

By definition, every two points of a homogeneous Finsler manifold (M,F ) map
to each other under an isometry. This causes the norm of an invariant tensor under
the isometries of a homogeneous Finsler manifold is a constant function on M , and
consequently, it has a bounded norm. Then, we conclude the following.

Lemma 3.2. ([24]) Let (M,F ) be a homogeneous Finsler manifold. Then, every
invariant tensor under the isometries of F has a bounded norm with respect to F .



146 A. Tayebi and B. Najafi

In order to prove Theorem 1.1, first, we consider the Landsberg curvature of
homogeneous 3-dimensional Landsberg metrics.

Lemma 3.3. The second Matsumoto torsion of a 3-dimensional Finsler metric is
given by following

M̃y(u, v, w) = −1

2

(
gy(b, Dσ̇I) + gy(Dσ̇b, I)

){
Iy(u)hy(v, w) + Iy(v)hy(u,w)

+Iy(w)hy(u, v)
}
− 1

2
gy(b, I)

{
Jy(u)hy(v, w) + Jy(v)hy(u,w)

+Jy(w)hy(u, v)
}
− 1

4
||I||2

{
hy(v, w)Dσ̇by(u) + hy(u,w)Dσ̇by(v)

+hy(u, v)Dσ̇by(w)
}
− 1

2
gy(I,J)

{
by(u)hy(v, w) + by(v)hy(u,w)

+by(w)hy(u, v)
}

+ by(u)
(
Jy(v)Iy(w) + Jy(w)Iy(v)

)
+ by(v)

(
Jy(u)Iy(u)

+Jy(w)Iy(u)
)

+ by(w)
(
Jy(u)Iy(v) + Jy(v)Iy(u)

)
+ Iy(v)Iy(w)Dσ̇by(u)

+Iy(w)Iy(u)Dσ̇by(v) + Iy(u)Iy(v)Dσ̇by(w).(3.1)

Proof. Let y ∈ TxM be an arbitrary non-zero vector and let σ = σ(t) be the geodesic
with σ(0) = x and σ̇(0) = y. Since the Finsler metric is complete, one may assume
that σ is defined on (−∞,∞). I and J restricted to σ are vector fields along σ,

I(t) := Ii
(
σ(t), σ̇(t)

) ∂

∂xi
∣∣
σ(t)

, J(t) := J i
(
σ(t), σ̇(t)

) ∂

∂xi
∣∣
σ(t)

.

Thus

Dσ̇I(t) = Ii|m

(
σ(t), σ̇(t)

)
σ̇m(t)

∂

∂xi
∣∣
σ(t)

= J(t).

In [18], Moór introduced a special orthonormal frame field (`,m,n) in the three
dimensional Finsler space. The first vector of the frame is the normalized supporting
element, the second is the normalized mean Cartan torsion vector, and third is the
unit vector orthogonal to them. Let (M,F ) be a 3-dimensional Finsler manifold.
Suppose that `i is the unit vector along the element of support, m is the unit vector
along mean Cartan torsion I, i.e., m := I/||I|| and n is a unit vector orthogonal
to the vectors ` and m. Then the triple (`,m,n) is called the Moór frame. In
3-dimensional Finsler manifolds, we have

gy(u, v) = `y(u)`y(v) + my(u)my(v) + ny(u)ny(v).

Then the Cartan torsion of F is written as follows

FCy(u, v, w) = Hmy(u)my(v)my(w)− J
{

my(u)my(v)ny(w) + my(v)my(w)ny(u)

+my(w)my(u)ny(v) + ny(u)ny(v)ny(w)
}

+ I
{

my(u)ny(v)ny(w)

+my(v)ny(w)ny(u) + my(w)ny(u)ny(v)
}
,(3.2)
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where H = H(x, y), I = I(x, y) and J = J (x, y) are called the main scalars such
that H+ I = F ||I||. Since the angular metric is given by

hy(u, v) = my(u)my(v) + ny(u)ny(v).

Then (3.2) can be written as following

Cy(u, v, w) =
{

ay(u)hy(v, w) + ay(v)hy(w, u) + ay(w)hy(u, v)
}

+
{

by(u)Iy(v)Iy(w) + by(v)Iy(w)Iy(u) + by(w)Iy(u)Iy(v)
}
,(3.3)

where

ay(u) :=
1

3F

[
3Imy(u) + Jny(u)

]
,(3.4)

by(u) :=
1

3F ||I||2
[
(H− 3I)my(u)− 4Jny(u)

]
.(3.5)

It is easy to see that gy(a,y) = 0 and gy(b,y) = 0. It follows from (3.3) that

ay(u) =
1

4

[(
1− 2gy(b, I)

)
Iy(u)− ||I||2by(u)

]
.(3.6)

Substituting (3.6) into (3.3), we get

Cy(u, v, w) =
1

4

{
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
−1

2
gy(b, I)

{
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
−1

4
||I||2

{
by(u)hy(v, w) + by(v)hy(u,w) + by(w)hy(u, v)

}
+
{

by(u)Iy(v)Iy(w) + by(v)Iy(w)Iy(u) + by(w)Iy(u)Iy(v)
}
.(3.7)

The relation (3.7) can be written as follows

My(u, v, w) = − 1

2
gy(b, I)

{
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
− 1

4
||I||2

{
by(u)hy(v, w) + by(v)hy(u,w) + by(w)hy(u, v)

}
+
{

by(u)Iy(v)Iy(w) + by(v)Iy(w)Iy(u) + by(w)Iy(u)Iy(v)
}
.(3.8)

By taking a horizontal derivation of (3.8), we get (3.1).

Let us define the norm of the second Matsumoto torsion at x ∈M by

‖M̃‖x := sup
y,u,v,w∈TxM\{0}

F (y)|M̃y(u, v, w)|√
gy(u, u)gy(v, v)gy(w,w)

.

Then, the following holds.
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Lemma 3.4. The second Matsumoto torsion of an n-dimensional homogeneous
Finsler manifold is bounded.

Proof. By (2.2), we get

||M̃||2 = ||L||2 − 3

n+ 1
‖J‖2.(3.9)

According to definition, we have Jy(u) =
∑n
i=1 g

ij(y)Ly(u, ∂i, ∂j), where {∂i} is a
basis for TxM at x ∈M . Then

‖J‖ ≤ n‖L‖.(3.10)

Therefore, we get

||M̃||2 ≤
[
1 +

3n

n+ 1

]
‖L‖2 ≤ 4‖L‖2(3.11)

By considering Lemma 3.2, it follows that ||M̃|| <∞.

Here, we study the Landsberg curvature of homogeneous 3-dimensional Lands-
berg metrics. We show that the Landsberg curvature of homogeneous 3-dimensional
Landsberg metrics satisfies an ODE.

Lemma 3.5. Every 3-dimensional L-reducible Finsler metric satisfies following

gσ̇(b,J)I− gσ̇(b, I)J− gσ̇(I,J)b =
1

2
||I||2Dσ̇b,(3.12)

where ||I|| :=
√
gijIiIj.

Proof. By assumption, F is a L-reducible metric and satisfies M̃ = 0. Thus (3.1)
reduces to following

||I||2
{

hy(v, w)Dσ̇by(u) + hy(u,w)Dσ̇by(v) + hy(u, v)Dσ̇by(w)
}

−4by(u)
(
Jy(v)Iy(w) + Jy(w)Iy(v)

)
− 4by(v)

(
Jy(u)Iy(u) + Jy(w)Iy(u)

)
−4by(w)

(
Jy(u)Iy(v) + Jy(v)Iy(u)

)
+2
(
gy(b, Dσ̇I) + gy(Dσ̇b, I)

){
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
+2gy(Dσ̇I,J)

{
by(u)hy(v, w) + by(v)hy(u,w) + by(w)hy(u, v)

}
−4
{

Iy(v)Iy(w)Dσ̇by(u) + Iy(w)Iy(u)Dσ̇by(v) + Iy(u)Iy(v)Dσ̇by(w)
}

+2gy(b, I)
{

Jy(u)hy(v, w) + Jy(v)hy(u,w) + Jy(w)hy(u, v)
}

= 0.(3.13)
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Applying I]y(u) on (3.13) yields

||I||2
{

gσ̇(Dσ̇b, I)hy(v, w) +Dσ̇by(v)Iy(w) +Dσ̇by(w)Iy(v)
}

−4
{

gσ̇(b, I)
(
Jy(v)Iy(w) + Iy(v)Jy(w)

)
+ by(v)

(
gσ̇(I,J)Iy(w) + ||I||2Jy(w)

)
+by(w)(gσ̇(I,J)Iy(v) + ||I||2Jy(v))

}
+2
(
gσ̇(b,J) + gσ̇(Dσ̇b, I)

){
||I||2hy(v, w) + 2Iy(v)Iy(w)

}
+2gσ̇(I,J)

{
gσ̇(b, I)hy(v, w) + by(v)Iy(w) + by(w)Iy(v)

}
+2gσ̇(b, I)

{
gσ̇(I,J)hy(v, w) + Jy(v)Iy(w) + Jy(w)Iy(v)

}
−4
{

gσ̇(Dσ̇b, I)Iy(v)Iy(w) + ||I||2Dσ̇by(v)Iy(w)

+||I||2Dσ̇by(w)Iy(v)
}

= 0.(3.14)

Contracting (3.14) with I]y(v) implies (3.12).

Proof of Theorem 1.1: We have two main cases. If c = 0, then F is a weakly

Landsberg metric J = 0 and by considering M̃ = 0 it follows that F is a Landsberg
metric. Now, suppose that c 6= 0. By assumption, F has constant relatively isotropic
mean Landsberg curvature J = cF I. Then (3.12) reduces to following

||I||2(Dσ̇b + 2cFb) = 0.(3.15)

If ||I|| = 0, then by Deicke theorem F is Riemannian. Suppose that F is not a
Riemannian metric. On Finslerian geodesics, (3.15) is written as follows

b′ + 2cb = 0.(3.16)

Then the solution of (3.16) is given by

b(t) = exp(−2ct)b(0).(3.17)

Since the main scalars are bounded then ||b|| < ∞. Therefore, letting t → −∞
implies that b = 0. Putting this in (3.3) implies that

Cy(u, v, w) = ay(u)hy(v, w) + ay(v)hy(w, u) + ay(w)hy(u, v).(3.18)

Taking a trace from (3.18) give us the following

ay(w) =
1

4
Iy(w).(3.19)

Putting (3.19) into (3.18) yields

Cy(u, v, w) =
1

4

{
Iy(u)hy(v, w) + Iy(v)hy(w, u) + Iy(w)hy(u, v)

}
.(3.20)
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By (3.20), the Matumoto torsion of F vanishes, i.e., M = 0. Then, according to
Matsumoto-Hōjō’s lemma, F is a Randers metric. It is easy to see that for a Randers
metric, J = cF I if and only if L = cFC. In [4], it is proved that a Randers metric
F = α + β satisfies J = cF I if and only if it has isotropic S-curvature S = 4cF
and β is closed. It is proved that every homogeneous Finsler metric of isotropic
S-curvature has vanishing S-curvature S = 0 (Corollary 4.3. in [8]). Thus F is
a Landsberg metric. It is well-known that every Randers metric with vanishing
Landsberg curvature is a Berwald metric. This completes the proof.

By Shen’s theorem, every regular (α, β)-metric with vanishing Landsberg cur-
vature is a Berwald metric [20]. Then, by Theorem 1.1 we conclude the following.

Corollary 3.1. Let F = F (x, y) be a homogeneous 3-dimensional L-reducible
(α, β)-metric on a manifold M . Then F has relatively isotropic mean Landsberg
curvature if and only if it is a a Berwald metric.
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