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Abstract In thiswork, BivariateBurr-III copula is extended to the trivariate case. This copula
seems to be very general and analytically manageable and it provides an alternative to the
commonly employed elliptical copulas (such as the Gaussian or the Stutent’s t ones) since
they have, roughly, the same number of parameters. Several applications to income and wine
data are described in the paper. They show that the Trivariate Burr-III copula is, in general,
able to capture the dependence structure implicit in observed trivariate data. Moreover, they
show that the third-order interaction parameter results, in some cases, significant at 1%
significance level while, in other cases, it can be removed from the fitted model. The ability
of the Trivariate Burr-III copula in representing the dependence structure implicit in the
considered data is compared with the ones of other well known copulas: the Clayton copula,
the t copula, and the Skew-t copula. It results that the Trivariate Burr-III copula provides a
good fitting and turns out to be the best performer in fitting the considered wine data but,
on income data, the best performers are the t and Skew-t copulas. The over-performance of
the last two copulas on income data is probably due to their ability in representing right-tail
dependence (a kind of dependence that is not taken into account by the Trivariate Burr-III
copula).
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1 Introduction

The Univariate BUR-III distribution was introduced by Burr in 1942 [4]. In economics, this
distribution is more widely known, after the introduction of an additional scale parameter,
as the Dagum distribution [6]. Specifically, the Dagum cumulative distribution function with
parameter (λ, δ, β) is given by

F(x) = 1

(1 + λx−δ)β
x > 0, λ > 0, δ > 0 β > 0. (1)

Model (1) is well known for its successful applications on income, wage and wealth data
(see, for example, [14], and the references therein). The first extension of this model to the
multivariate case is due to Rodriguez [15] who introduced the so-called “Bivariate Burr-III
distribution”. The cumulative distribution of such model is given by

FX,Y (x, y) =
⎧
⎨

⎩

1

(1 + αλγ x−θ y−δ + λx−θ + γ y−δ)ε
x > 0, y > 0

0 otherwise
, (2)

with λ > 0, γ > 0, θ > 0, δ > 0, ε > 0, and 0 ≤ α ≤ (ε + 1). Indeed, (2) is a bivariate
Dagum distribution since it has Dagum univariate margins with parameters (λ, θ, ε) and
(γ, δ, ε). This distribution has been deeply studied in [9] which provides its main dependence
properties. For our purposes it is interesting to consider the copula implicit in distribution
(2):

CX,Y (u, v) =
{
1 + α(u− 1

ε − 1)(v− 1
ε − 1) + (u− 1

ε − 1) + (v− 1
ε − 1)

}−ε

, (3)

with 0 ≤ α ≤ (ε + 1).
In this paper the Bivariate Burr-III distribution and its copula are extended to the trivariate

case. Some preliminary results on these distributions are provided along with some applica-
tions to income and wine data.

2 The Trivariate Burr-III distribution and its copula

In order to extend (3) to the trivariate context, the Trivariate Burr-III distribution is first
built. Let X = (X1, X2, X3) be a random vector where Xi , i = 1, 2, 3, follows the Dagum
distribution with parameters (λi , θi , ε). In the independence case the joint distribution of X
is:

FX(x1, x2, x3) =
3∏

i=1

1
(
1 + λi x

−θi
i

)ε

=
[
1 + λ1x

−θ1
1 + λ2x

−θ2
2 + λ3x

−θ3
3 + λ1λ2x1x

θ1θ2
2 + λ1λ3x1x

θ1θ3
3

+λ2λ3x2x
θ2θ3
3 + λ1λ2λ3x1x2x

−θ1θ2θ3
3

]−ε

. (4)

In order to introduce some kind of dependence among the random variables (X1, X2, X3),
expression (4) can be modified by introducing the second order interaction parameters
(α12, α13, α23) and the third order interaction parameter α123:
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FX(x1, x2, x3) =
[
1 + λ1x

−θ1
1 + λ2x

−θ2
2 + λ3x

−θ3
3 + α12λ1λ2x1x

θ1θ2
2

+α13λ1λ3x1x
θ1θ3
3 + α23λ2λ3x2x

θ2θ3
3 + α123λ1λ2λ3x1x2x

−θ1θ2θ3
3

]−ε

(5)

with restrictions on the interaction parameters. It is worth noting that (5) has univariate
Dagummargins and bivariate Burr-III margins. Then (5) is an extension to the trivariate case
of the bivariate distribution (2).

Now, by substituting in (5) the inverse functions of the margins, the following trivariate
copula is obtained:

C(u1, u2, u3) =
[

1 +
3∑

i=1

(u
− 1

ε

i − 1) + α12(u
− 1

ε

1 − 1)(u
− 1

ε

2 − 1)

+α13(u
− 1

ε

1 − 1)(u
− 1

ε

3 − 1) + α23(u
− 1

ε

2 − 1)(u
− 1

ε

3 − 1)

+α123(u
− 1

ε

1 − 1)(u
− 1

ε

2 − 1)(u
− 1

ε

3 − 1)

]−ε

. (6)

It is worth noting that (6) is an extension of the bivariate copula (3) according to the
following definition ([12], page 155).

Definition 1 A m-variate parametric family of copulas is an extension of a bivariate family
if:

(i) all bivariate marginal copulas of the multivariate copula are in the given family;
(ii) all multivariate marginal copulas of order 3 to m − 1 have the same multivariate form.

Asmentioned above, appropriate restrictions to the values of the parameters (α12, α13, α23)
and α123 had to be imposed in order to assure that (6) is a well-defined trivariate copula. As
sometimes happens (see the copula model BB4 in [12], pp. 152, point c), to find these
restrictions is quite hard. The lemma below describes a necessary condition that must be
satisfied in order to assure that (6) is a well-defined copula.

Lemma 1 If C(u1, u2, u3) in (6) is a copula then

(a) α12 ≤ (ε + 1), α13 ≤ (ε + 1), and α23 ≤ (ε + 1);
(b) α123 ≤ (ε + 1)min(α12α13; α12α23; α13α23).

Proof LetU1,U2, andU3 be three uniform random variables with joint distribution function
C(u1, u2, u3). Condition a) follows from the restrictions on the parameters of the bivariate
marginal distributions of (U1,U2), (U1,U3), and (U2,U3). In order to prove condition b),
consider the bivariate conditional cdf

C12|3(u1, u2) = P(U1 ≤ u1,U2 ≤ u2|U3 ≤ u3) (7)

= 1

u3
C(u1, u2, u3)

=
[

1 +
3∑

i=1

vi + α12v1v2 + α13v1v3 + α32v2v3 + α123v1v2v3

]−ε

(8)
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with vi = (u
− 1

ε

i − 1). The bivariate density implicit in C12|3 is

∂

∂u1∂u2

1

u3
C(u1, u2, u3) = u−ε−1

1 u−ε−1
2

εu3
H−ε−2

·

⎧
⎪⎨

⎪⎩
(ε + 1) [(1 + α12v1 + α23v3 + α123v1v3) (1 + α12v2 + α13v3 + α123v2v3)]︸ ︷︷ ︸

M1

+ H(α12 + α123v3)︸ ︷︷ ︸
M2

⎫
⎪⎬

⎪⎭
= u−ε−1

1 u−ε−1
2

εu3
H−ε−2 {M1 − M2} (9)

where

H = 1 +
3∑

i=1

vi + α12v1v2 + α13v1v3 + α32v2v3 + α123v1v2v3.

The density (9) must be positive and this fact is assured if

M1

M2
≥ 1 for all (u1, u2, u3) ∈ (0, 1)3. (10)

Now, observe that

lim
u1→1

(

lim
u2→1

(

lim
u3→0

M1

M2

))

= (ε + 1)α23α13

α123
. (11)

From (10) and (9) it results that if the bivariate density implicit in C12|3 is positive on (0, 1)2

then

(ε + 1)α23α13

α123
≥ 1

and, consequently

α123 ≤ (ε + 1)α13α23.

Repeating the same procedure by conditioning with respect to U1 and U2 the additional
constraints

α123 ≤ (ε + 1)α12α23 and α123 ≤ (ε + 1)α12α13

are obtained and their intersections coincides with condition b).

The necessary condition provided by Lemma 1 have been numerically tested in order
to understand if they can be considered also as sufficient condition. Specifically, the non-
negativity of the copula density function implicit in C(u1, u2, u3) have been tested on a very
fine grid of (0, 1)3 for a wide range of parameters values. This numerical experiment suggests
that the necessary condition is reasonably sufficient too. However, we underline that this fact
has not been confirmed analytically.

123



Trivariate Burr-III copula with applications to income data 113

3 Applications to income data: methodological aspects

Herewe try tomodel the joint distribution of different income sources.We consider the survey
on household income and wealth provided in [5] which covers 8151 households whose total
disposable income is split in four main income sources: income from salaries (S); income
from profession (P); income from capital gains (C); income from net-transfers and pensions
(T).

We study the dependence of the income deriving from work (i.e. S and/or P) and the other
two income sources (i.e. C and T). In particular, the trivariate dataset (S,C, T ), (P,C, T )

and (S + P,C, T ) will be analyzed.
The study of a model with the joint distribution of S and P is discarded since S and P are

almost incompatible.
A simple inspection of these trivariate dataset highlights that there is a high number of

observed income sources that are equal to zero or in its proximity.
In detail, in the (S,C, T ) dataset only about the 17% of observations have the three

sources jointly different from zero, in the (P,C, S) this percentage reduces about to 6%
while in the (S + P,C, T ) dataset it is equal to 21% (it is worth noting that the percentage
of observations with the income sources (S + P,C, T ) jointly different from 0 is lower than
17% + 6% = 23% since S and P are jointly equal to 0 in about the 2% of observations).

This fact emphasizes that an absolutely continuous model is not adequate to represent the
joint distribution of (S,C, T ), (P,C, T ) and (S+P,C, T ). For instance, the joint distribution
of (S,C, T ) can be split as follow:

FSCT (s, c, t) = FSCT (s, c, t |S �= 0,C �= 0, T �= 0)P(S �= 0,C �= 0, T �= 0)

+FSCT (s, c, 0|S �= 0,C �= 0)P(S �= 0,C �= 0, T = 0)

+FSCT (s, 0, t |S �= 0, T �= 0)P(S �= 0,C = 0, T �= 0)

+FSCT (0, c, t |C �= 0, T �= 0)P(S = 0,C �= 0, T �= 0) (12)

+FSCT (s, 0, 0|S �= 0)P(S �= 0,C = 0, T = 0) +
+FSCT (0, c, 0|C �= 0)P(S = 0,C �= 0, T = 0)

+FSCT (0, 0, t |T �= 0)P(S = 0,C = 0, T �= 0)

+FSCT (0, 0, 0)P(S = 0,C = 0, T = 0)

A similar decomposition can be done concerning (P,C, T ) and (S+ P,C, T ). Each part
of the model can now be fitted separately.

At first we consider the estimation problem of the trivariate distributions FSCT (s, c, t |S �=
0,C �= 0, T �= 0), FPCT (p, c, t |P �= 0,C �= 0, T �= 0), and F(S+P)CT (s + p, c, t |S +
P �= 0,C �= 0, T �= 0) which can be reasonably assumed absolutely continuous. In particu-
lar, considering, for example, (S,C, T ), the estimate of FSCT (s, c, t |S �= 0,C �= 0, T �= 0)
is given by:

F̂SCT (s, c, t |S �= 0,C �= 0, T �= 0) = Ĉ(ĜS(s), ĜC (c), ĜT (t)) (13)

where Ĉ denotes estimated trivariate Burr-III copula in formula (6) while Ĝ• is the fitted
model for the single income component “•”. In the following, the estimates are obtained
by considering a “pseudo”-CML method. In particular, the Canonical Maximum Likelihood
method (CML method, see [10]) is related to the IFM method proposed in [13] and consists
in a two step approach in which the ML estimates of the marginal distributions are estimated
first and, at second, the estimates of the remaining dependence parameters are obtained by
maximizing the likelihood related to the empirical copula function. Here we adopt a slight
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modification of this method. In detail: (a) the parameters of the marginal distribution are
estimated by following the minimum χ2-method in place of the ML method (see [1], [2],
and [8], for application of this estimation method in incomes modeling); (b) the parameters
of the copula function are separately obtained by using two different estimation methods:
the minimum χ2 method and the ML method. Concerning the estimation of the marginal
distributions, three different models for single income components are here considered. The
three-parameters Zenga Distribution (ZD) [16], with cumulative distribution function

G(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

B(α; θ)

∞∑

i=0

(

I B

(
x

μ
: α + i; θ

)

−
(μ

x

) 1
2
I B

(
x

μ
: α + i + 1

2
; θ

))

0 < x ≤ μ

1 − 1

B(α; θ)

∞∑

i=0

(

I B

(
x

μ
: α + i; θ

)

−
(μ

x

) 1
2
I B

(
x

μ
: α + i + 1

2
; θ

))

μ < x .

(14)
The four-parameters generalization of ZD (GZD) [7], with cumulative distribution function

G̃(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
∞∑

i=0

∞∑

j=0

(−1) j
γ j

j !
(

I B

(
x

μ
: α + i + j; θ

)

−
(μ

x

) 1
2
I B

(
x

μ
: α + i + j + 1

2
; θ

))

0 < x ≤ μ

1 − C
∞∑

i=0

∞∑

j=0

(−1) j
γ j

j !
(

I B

(
x

μ
: α + i + j; θ

)

−
(μ

x

) 1
2
I B

(
x

μ
: α + i + j + 1

2
; θ

))

μ < x,

(15)
where C = (B(α; θ)1F1(α; θ + α;−γ ))−1. Finally, even the Dagum distribution (1) is
considered.

A location parameter h has been added to these models in order to accounts for the
possible negative values of some income components. Negative values occur especially for
the C component (probably due to losses derived from financial investments) and for the T
component (due to the payment of alimony and gifts).

We observed a high concentration of values in the interval (−100; 100) in the distributions
of the component C and T (which correspond to interests or coupon of small investments or
negligible transfers). For this reasonwe take into account a further model with the restrictions
C /∈ (−100; 100) and T /∈ (−100; 100) instead of C �= 0 and T �= 0. In detail, in the
following applications the distribution functions

FSCT (s, c, t |S �= 0,C /∈ (−100; 100), T /∈ (−100; 100)),

FPCT (p, c, t |P �= 0,C /∈ (−100; 100), T /∈ (−100; 100))
and

F(S+P)CT (s + p, c, t |S + P �= 0,C /∈ (−100; 100), T /∈ (−100; 100))
will be estimated too.

The distributions FSCT (s, c, 0|S �= 0,C �= 0), FSCT (s, 0, t |S �= 0, T �= 0) and
FSCT (0, c, t |C �= 0, T �= 0) (2nd–4th rows of formula 13) are estimated by considering
the bivariate BUR III copula in formula (3).

The distributions FSCT (s, 0, 0|S �= 0), FSCT (0, c, 0|C �= 0) and FSCT (0, 0, t |T �= 0)
(5th-7th rows of formula 13) are estimated by considering the univariate distributions ZD,
GZD and Dagum in formula (14), (15) and (1), respectively. The same is done for the dataset
(P,C,T) and (S + P,C,T).

The estimation is repeated for the dataset with restrictions on C and T .
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4 Applications to income data: results

The parameter estimates of the Trivariate Burr-III copula in the three dataset (S,C, T ),
(P,C, T ) and (S + P,C, T ) are reported in Table 1. These estimates are obtained, as
explained in the previous Section, by using the minimum χ2 method (the number of classes
k used to implement this method is reported in the third column of that Table 1) and the ML
method.

Table 1 Parameter estimates of the Burr-III copula saturated model and of the reduced model with α123 = 0

Dataset n k mi α12 α13 α23 α123 ε χ2

Estimates obtained via the minimum χ2 estimation method

(S, C, T) 1419 43 0 0.4894 1.1235 0.3929 0.1823 0.4607 0.3084

(S, C, T) 1419 43 0 0.4279 1.1574 0.3160 – 0.8775 0.3382

(S, C, T) 1278 43 100 0.5243 1.1203 0.4768 0.207 0.4056 0.3166

(S, C, T) 1278 43 100 0.4727 1.1473 0.4150 – 0.8579 0.3495

(P, C, T) 475 43 0 0.4998 1.3425 0.2157 ≈0 1.1175 0.3604

(P, C, T) 475 43 0 0.4997 1.3423 0.2158 – 1.1174 0.3605

(P, C, T) 448 43 100 0.5940 1.26792 0.2847 0.1685 0.7193 0.3653

(P, C, T) 448 43 100 0.5361 1.3373 0.1932 – 1.0535 0.3735

(S + P, C, T) 1706 43 0 0.4994 1.22 0.3645 0.1690 0.4438 0.2901

(S + P, C, T) 1706 43 0 0.4454 1.2907 0.2981 – 0.8135 0.3272

(S + P, C, T) 1548 43 100 0.5363 1.2019 0.3995 0.1625 0.4293 0.2723

(S + P, C, T) 1548 43 100 0.5107 1.2563 0.3466 – 0.7373 0.3010

Dataset n – mi α12 α13 α23 α123 ε l L R

Estimates obtained via the Maximum Likelihood estimation method

(S, C, T) 1419 0 0.4816 1.2248 0.3666 0.1902 0.3337 147.15

(S, C, T) 1419 0 0.4502 1.1808 0.3152 – 0.9819 105.72 82.86

(S, C, T) 1278 100 0.5359 1.1068 0.4162 0.1928 0.3528 113.54

(S, C, T) 1278 100 0.4979 1.2223 0.3500 – 1.0154 79.07 68.94

(P, C, T) 475 0 0.5214 1.0502 0.3378 0.1586 0.3026 55.96

(P, C, T) 475 0 0.4887 1.3311 0.2387 – 0.9844 42.29 27.34

(P, C, T) 448 100 0.5084 1.06188 0.3363 0.1468 0.3209 53.43

(P, C, T) 448 100 0.5107 1.2647 0.2394 – 0.8620 45.04 16.78

(S + P, C, T) 1706 0 0.5065 1.2009 0.3468 0.1813 0.3801 212.87

(S + P, C, T) 1706 0 0.4531 1.2766 0.2882 – 0.8538 166.97 91.8

(S + P, C, T) 1548 100 0.5114 1.1088 0.3668 0.1417 0.3560 177.83

(S + P, C, T) 1548 100 0.4890 1.3191 0.3105 – 0.8690 140.63 74.4

k The number of classes used to implement the minimum χ2 method, n The number of observations in the
corresponding dataset; mi is the threshold of the sources C and T, χ2 the value of the χ2-statistic and l the
value of the log-likelihood function, LR the likelihood ratio statistic to test the full models in the odd rows
against the reduced models in the pair rows
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Concerning the minimum χ2 estimates, it can be observed that, for each dataset, the
multivariate Burr-III copula has a goodness of fit less or equal to 0, 35 except for (P,C, T ),
which has the smallest number of observations. The parameters estimates obtained with the
minimum χ2 or with the ML methods are quite similar. Moreover, as expected, the value
of the χ2 statistics and of the log-likelihood function in the last column of Table 1 worsen
when passing from the saturated copula model to the constrained one (with α123 = 0) and,
in some cases, a sensible difference is observed. In order to evaluate if the parameter α123

is significantly different from zero, a likelihood ratio test is performed. In all cases the null
hypothesis H0 : α123 = 0 is rejected at a significance level α = 0.01.

In order to evaluate the goodness of fit of the estimated copula models, a comparison with
the fitting obtained by using the trivariate Clayton copula (which has only one parameter),
the trivariate Student’s t copula (which has 4 parameters), and the trivariate Skew-t copula
(which has 7 parameters, see [3]) is performed. For these copulas, the parameters estimates
are obtained by using the minimum χ2 method. The obtained results are reported in Tables
2, 3, and 4, for the Clayton, t , and Skew-t copulas, respectively. In order to make a fair
comparison among the various models, in Table 5 the adjusted χ2 statistics are reported.
From that table it emerges that the Burr-III copula provides a good fitting. However, the best
performers turned out to be the Student’s t copula and the Skew-t copula. It is worth noting
that for these two copula models there are not explicit parameters for the interaction of the
third order. Nonetheless, these models seems to be the most promising among the considered
ones. One possible motivation of this empirical evidence can be the fact that the bivariate

Table 2 Parameter estimates of the Clayton copula

Dataset k n mi θ χ2

(S, C, T) 43 1419 0 0.1744 0.4520

(S, C, T) 43 1278 100 0.1379 0.4470

(P, C, T) 43 475 0 0.1264 0.4959

(P, C, T) 43 448 100 0.1356 0.5157

(S + P, C, T) 43 1706 0 0.1381 0.4849

(S + P, C, T) 43 1548 100 0.1161 0.4600

k The number of classes used to implement the minimum χ2 method, n the number of observations in the
corresponding dataset, mi the threshold of the sources C and T, χ2 the value of the χ2-statistic

Table 3 Parameter estimates of the t copula

Dataset k n mi v ρ12 ρ13 ρ23 χ2

(S, C, T) 43 1419 0 10 0.2837 −0.0552 0.3155 0.3004

(S, C, T) 43 1278 100 12 0.2729 −0.0620 0.2702 0.3263

(P, C, T) 43 475 0 5 0.2295 −0.1072 0.3746 0.2875

(P, C, T) 43 448 100 6 0.2225 −0.1078 0.3870 0.3166

(S + P, C, T) 43 1706 0 8 0.2797 −0.1066 0.3703 0.2793

(S + P, C, T) 43 1548 100 12 0.2581 −0.1221 0.3245 0.2794

In the table k indicates the number of classes used to implement the minimum χ2 method; n is the number
of observations in the corresponding dataset; mi is the threshold of the sources C and T and χ2 denotes the
value of the χ2-statistic
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Table 4 Parameter estimates of the Skew-t copula

Dataset k n mi v ρ12 ρ13 ρ23 α12 α13 α23 χ2

(S, C, T) 43 1419 0 6 0.3039 −0.3390 0.2181 1.3641 0.2082 −0.8461 0.2384

(S, C, T) 43 1278 100 9 0.3458 −0.3682 0.1039 1.3092 0.3450 −0.9022 0.2756

(P, C, T) 43 475 0 5 0.2185 −0.1414 0.3641 −0.2772 0.0002 0.2393 0.2871

(P, C, T) 43 448 100 5 0.2163 −0.1064 0.3848 −0.0108 0.0712 0.0372 0.3189

(S + P, C, T) 43 1706 0 8 0.3942 −0.3367 0.2164 1.8326 0.4102 −0.5464 0.2486

(S + P, C, T) 43 1548 100 10 0.4269 −0.3357 0.1582 1.8414 0.5545 −0.5293 0.2400

k The number of classes used to implement the minimum χ2 method, n the number of observations in the
corresponding dataset, mi the threshold of the sources C and T, χ2 the value of the χ2-statistic

Table 5 Adjusted χ2 statistic
for the four copulas: Clayton, t ,
Skew-t and Burr-III

Dataset mi Adjusted χ2-statistic

Clayton t Skew-t Burr-III

(S, C, T) 0 0.0174 0.0131 0.0119 0.0140

(S, C, T) 100 0.0172 0.0142 0.0138 0.0144

(P, C, T) 0 0.0191 0.0125 0.0144 0.0164

(P, C, T) 100 0.0198 0.0138 0.0160 0.0166

(S + P, C, T) 0 0.0187 0.0122 0.0124 0.0132

(S + P, C, T) 100 0.0177 0.0122 0.0120 0.0124

Table 6 Estimated parameters of the ZD and of the GZD obtained on the dataset (S,C, T )

Comp. Dist. k mi h μ α θ γ χ2 Adjusted-χ2

S ZD 18 0 −3894 23,122 2.8268 2.8554 0.1570 0.0121

S ZD 18 100 −1.1598 20,195 1.8519 2.4381 0.2082 0.0160

S GZD 18 0 5890 15,988 0.1972 14.286 −24.279 0.1263 0.0105

S GZD 18 100 −2883 22,708 2.7587 2.7586 1.4881 0.2047 0.0171

C ZD 11 0 2.2401 7756 1.3767 2.4386 0.4492 0.0749

C ZD 11 100 0.2081 6754 1.3426 3.4070 0.4483 0.0747

C GZD 11 0 2366 6892 0.1259 23.142 −35.83 0.4139 0.0828

C GZD 11 100 3053 6573 0.2250 25.12 −36.460 0.4328 0.0866

T ZD 12 0 4.0311 17,567 0.50296 1.3228 0.1363 0.0195

T ZD 12 100 3.0897 19,287 0.5019 1.2827 0.3005 0.0429

T GZD 12 0 −881.2 17,928 0.6126 1.6670 −0.3703 0.1100 0.0183

T GZD 12 100 −632.3 18,057 0.4799 3.3033 −4.2529 0.1258 0.0210

The notation for the parameters is the same adopted in [16] and in [7]

Burr-III copulas implicit in the proposed trivariate extension do not exhibit tail dependence
while the Student’s t and Skew-t copulas incorporates also this kind of dependence.

Finally, the estimation of the marginal distribution had to be considered. The results
obtained by applying the minimum χ2 method on the ZD and on the GZD are reported in
Tables 6, 7 and 8 for the dataset (S,C, T ), (P,C, T ), and (S + P,C, T ), respectively. The
ones related to the Dagum distribution are given in Table 9. From these tables it emerges that
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Table 7 Parameter estimates of the ZD and of the GZD obtained on the dataset (P,C, T )

Comp. Dist. k mi h μ α θ γ χ2 Adjusted-χ2

P ZD 18 0 2.4419 18,140.54 1.0500 2.41916 0.1739 0.0134

P ZD 18 100 1.5475 19,018 0.994 0.9948 0.2108 0.0162

P GZD 18 0 414.89 17897 0.8097 3.6190 −3.0831 0.1713 0.0143

P GZD 18 100 −1839 20,420 2.4237 0.2516 9.1023 0.1825 0.0152

C ZD 11 0 −315.21 13,554 2.58816 6.8519 0.2450 0.0408

C ZD 11 100 1.3314 13,604 4.7552 12.1484 0.1133 0.0189

C GZD 11 0 1361.75 12,577 0.0571 81.72 −113.36 0.1123 0.0225

C GZD 11 100 1305 12,811 0.0843 81.5993 −113.36 0.0514 0.0103

T ZD 12 0 0.3056 16,955 3.4733 123.77 1.7049 0.2436

T ZD 12 100 −901 15,884 0 20.238 1.5201 0.2172

T GZD 12 0 −461.2 20,658 0.2963 6.0022 −10.908 0.1927 0.0321

T GZD 12 100 −65.57 19,720 0.2100 8.9470 −16.519 0.2067 0.0345

The notation for the parameters is the same adopted in [16] and in [7]

Table 8 Parameter estimates of the ZD and of the GZD obtained on the dataset (S + P,C, T )

Comp. Dist. k mi h μ α θ γ χ2 Adjusted-χ2

S + P ZD 18 0 0.27 21,639 1.991 3.225 0.2294 0.0176

S + P ZD 18 100 0.26 21,851 1.8414 2.9153 0.2332 0.0179

S + P GZD 18 0 5737 18,175 0.1373 24.0782 −38.2197 0.1553 0.0129

S + P GZD 18 100 4933 19,271 0.2264 16.8936 −27.42 0.1946 0.0162

C ZD 11 0 −4020 11,973 2.0355 2.5092 0.2748 0.0458

C ZD 11 100 1.47 9404 2.2456 4.1942 0.2437 0.0406

C GZD 11 0 164 9758 0.0588 28.3357 −46.77 0.1810 0.0362

C GZD 11 100 2287 8247 0.1538 43.5449 −62.31 0.1938 0.0388

T ZD 12 0 0.79 18,627 0.5113 1.2589 0.1933 0.0276

T ZD 12 100 0.042 18,522 0.5566 1.2803 0.1472 0.0210

T GZD 12 0 −321 17,938 0.3685 4.0662 −6.437 0.1492 0.0249

T GZD 12 100 −390 18,583 0.4567 2.8070 −3.780 0.1116 0.0187

The notation for the parameters is the same adopted in [16] and in [7]
h The location parameter added to the original proposal of the ZD and GZD, k the number of classes used to
implement the minimum χ2 estimation method

the GZD is outperformed (in terms of Adjusted χ2) the ZD and the Dagum distribution in 12
cases out of 18. As observed in [7] and [8] and emphasized by the graphical representation in
Fig. 1, the over-performance of the GZD is particularly evident in the cases in which the left
tail of the distribution has an irregular behavior. Finally, in order to get a look to the shape
of the estimated joint distributions, in Figs. 2, 3 and 4 the plots of the estimated bivariate
densities implicit in the dataset (S + P,C, T ) are provided.
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Table 9 Parameter estimates of the Dagum distribution obtained on the dataset (S,C, T ),(P,C, T ) and
(S + P,C, T ) respectively

Comp. k mi h λ θ ε χ2 Adjusted-χ2

S 18 0 −2888 640 1.3840 1078 0.5563 0.0428

S 18 100 −2939 881 1.4257 1186 0.5443 0.0419

C 11 0 −5393 3737 1.863 6539 0.4840 0.0807

C 11 100 −490 754 1.5785 1045 0.4002 0.0667

T 12 0 −10408 12,536 1.9439 12,598 0.3617 0.0517

T 12 100 −27446 67,460 1.9553 11,676 0.6829 0.0976

P 18 0 −11813 500,838 2.4561 77,794 0.2352 0.0181

P 18 100 −21737 178,982,734 3.4612 19,787,024 0.2411 0.0185

C 11 0 −667 745 1.3333 168.25 0.3143 0.0524

C 11 100 −1820 586 1.7689 16614 0.1301 0.0217

T 12 0 −39525 10e10 4.3011 3.5e10 0.3131 0.0447

T 12 100 −18926 16,039 1.7805 5703 0.6013 0.0859

S + P 18 0 −17069 3181 e16 4.360 1.708 0.2160 0.0166

S + P 18 100 −16265 1883e16 4.305 1.557 0.2245 0.0173

C 11 0 −3428 6987e7 2.702 0.894 0.3347 0.0558

C 11 100 −2436 2696e7 2.705 1.862 0.2202 0.0367

T 12 0 −25675 1208e25 6.105 0.744 0.1481 0.0212

T 12 100 −26680 1168e26 6.293 0.736 0.1271 0.0182

h The location parameter added to the original proposal of the ZD and GZD, k the number of classes used to
implement the minimum χ2 estimation method

5 Applications to wine data

The results obtained on income data could discourage the application of the TrivariateBurr-III
copula. However it is not difficult to find trivariate real data inwhich Trivariate Burr-III copula
performs substantially better than the t and Skew-t copulas. In this section we present such an
application. The data here considered concern the concentrations of 13 different chemicals in
wines grown in the same region in Italy that are derived from three different cultivars [11]. The
chemicals are: Alcohol (Al), Malic acid (M), Ash (As), Alcalinity of ash (AA), Magnesium
(Mag), Total phenols (TP), Flavanoids (F), Nonflavanoid phenols (NP), Proanthocyanins
(Pa), Color intensity (CI), Hue (H), OD280/OD315 of diluted wines (OD) and Proline (Pl)
. The sample is composed by n = 178 units. Similarly to the previous section, t , Skew-t
and Trivariate Burr-III copulas are fitted to all the possible

(13
3

)
trivariate data implicit in the

original 13-variate data-set. Similarly to the previous section the parameters of these copulas
are estimated by using the minimum χ2 method with 3 classes for each marginal distribution.
The estimation of themarginal distributions is not performed here since the aim of the present
section is to show the potentiality of the Trivariate Burr-III copula.

The results obtained over the
(13
3

)
trivariate data-set clearly exhibit the potential usefulness

of the Trivariate Burr-III copula: in almost all cases it provides the better goodness-of-fit.
Moreover, the parameter estimates obtained on these data are characterized by the fact that,
usually, estimates of the third-order interaction parameter are substantially null. For this
reason the reduced Trivariate Burr-III copula (in which the parameter α123 is set equal to 0)
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Fig. 1 Histogram of the marginal distributions of the dataset (S + P,C, T ) and graphical representation of
the estimated ZD, GZD and Dagum distributions
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Fig. 2 Bivariate density estimate and scatterplot of observed data of component (S + P,C) in the data-set
(S + P,C, T )

is estimated too and the obtained results confirm the very good performance obtained with
the full model.

Below, we do not report the result obtained over all the
(13
3

)
possible trivariate data-set but

in Table 10 we provide only 9 of the most representative results.
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Fig. 3 Bivariate density estimate and scatterplot of observed data of component (S + P, T ) in the data-set
(S + P,C, T )
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Fig. 4 Bivariate density estimate and scatterplot of observed data of component (C, T ) in the data-set
(S + P,C, T )

6 Conclusion and further research

An extension of the Burr-III copula to the trivariate case is proposed and applied to an
income dataset by considering three income components and the ZD [16], the GZD [7],
and the Dagum as marginal distributions. A comparison with the Clayton, t , and Skew-t
copulas shows that the last two models perform better in all the cases, probably because they
possess a certain degree of tail dependence, which Burr-III has not. However, it is not difficult
to find trivariate real data in which Trivariate Burr-III copula performs substantially better
than the t and Skew- t copulas, as shown by the applications on wine data presented in this
paper.

There are several properties of the Burr-III copula that are to be deepened in future work,
mainly concerning theoretical aspects. Specifically, it would be important to deepen the result
of Lemma 1 by providing the full characterization of the parametric space. This result is in
fact essential in order to implement an estimation algorithm providing parameters estimates
that certainly correspond to well defined distributions. A further interesting topic that can
be explored in future research is the extension to the multivariate context of the Trivariate
Burr-III copula. Indeed, similarly to the trivariate case, starting from the independence case
it is possible to introduce the following d-variate function:
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Table 10 Parameter estimates and goodness-of-fit of the Burr-III, t , and Skew-t copula on wine data

Data α12 α13 α23 α123 ε χ2 χ2
ad j

Burr-III copula

Al As Pa 0.4481 ≈0 0.4502 ≈0 0.5573 0.2648 0.0883

AA Mag OD 5.8861 7.234 1.5182 ≈0 10.4183 0.3112 0.1037

Al NP CI 1.4512 0.0251 1.0124 ≈0 0.4512 0.3259 0.1086

M F OD 1.3989 1.3980 ≈0 ≈0 0.3980 0.5941 0.1980

M Pa CI 1.9035 0.2773 1.0066 ≈0 0.9035 0.4424 0.1475

As F H 0.7782 0.8522 ≈0 ≈0 0.6154 0.3435 0.1145

As F OD 0.7826 1.0098 ≈0 ≈0 0.3540 0.3848 0.1283

As H OD 0.8902 1.1479 ≈0 ≈0 0.8281 0.4433 0.1478

AA CI OD 2.6859 5.0632 5.3434 ≈0 8.005 0.4110 0.1367

Reduced Burr-III copula

Al As Pa 0.4482 ≈0 0.4503 – 0.5573 0.2648 0.0662

AA Mag OD 5.8947 7.2437 1.5209 – 10.4370 0.3112 0.0778

Al NP CI 1.5197 ≈0 1.0906 – 0.5197 0.3332 0.0833

M F OD 1.3982 1.3982 ≈0 – 0.3982 0.5941 0.1485

M Pa CI 2.5149 ≈0 1.3660 – 1.5149 0.4607 0.1152

As F H 0.7783 0.8521 ≈0 – 0.6158 0.3435 0.0859

As F OD 0.7826 1.0098 ≈0 – 0.3541 0.3848 0.0962

As H OD 0.8899 1.1478 ≈0 – 0.8284 0.4433 0.1108

AA CI OD 2.6858 5.0645 5.3456 – 8.0070 0.4110 0.1028

Data v ρ12 ρ13 ρ23 χ2 χ2
ad j

t copula

Al As Pa 46 0.2873 0.7125 0.2687 0.3204 0.0801

AA Mag OD 52 −0.2726 −0.3481 −0.0337 0.3822 0.0956

Al NP CI 49 −0.1883 0.6962 0.0274 0.3893 0.0973

M F OD 52 −0.4222 −0.3765 0.7894 0.6086 0.1521

M Pa CI 48 −0.3199 0.3341 0.0382 0.4908 0.1227

As F H 53 0.0422 −0.0225 0.6276 0.4276 0.1069

As F OD 46 0.0.575 −0.0782 0.7896 0.4993 0.1248

As H OD 47 0.03571 −0.0873 0.4984 0.5435 0.1359

AA CI OD 7 −0.0959 −0.3049 −0.3582 0.5049 0.1262

Data α12 α13 α23 v ρ12 ρ13 ρ23 χ2 χ2
ad j

Skew-t copula

Al As Pa 0.0049 −0.1667 0.0461 53 0.2851 0.7097 0.2698 0.3188 0.3188

AA Mag OD 0.0429 0.0706 0.0904 52 −0.2711 −0.3517 −0.0370 0.3792 0.3792

Al NP CI 0.0021 2.8271 0.4688 48 −0.1348 0.6537 0.2647 0.3752 0.3752

M F OD 0.1702 0.0032 0.0368 53 −0.4176 −0.3760 0.7888 0.6062 0.6062

M Pa CI 0.0884 −0.1167 0.0538 53 −0.3235 0.3350 0.0390 0.4904 0.4904

As F H 0.5611 0.0312 −0.0392 53 0.0435 −0.0206 0.6223 0.4269 0.4269

As F OD 0.4458 −0.0333 −0.0884 52 0.0373 −0.1125 0.7801 0.4971 0.4971

As H OD 3.4029 0.5674 0.3054 48 0.3381 0.1293 0.5255 0.5235 0.5235

AA CI OD 1.4354 −1.901 0.5299 7 −0.4618 −0.0688 −0.4762 0.4463 0.4463
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C(u1, ..., ud) =
⎡

⎣1 +
d∑

i=1

(u
− 1

ε

i − 1) +
∑

i< j

αi j (u
− 1
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i − 1)(u
− 1

ε

j − 1)

+
∑
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i − 1)(u
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ε

k − 1) + · · · + α

d∏
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(u
− 1

ε

i − 1)

⎤

⎦

−ε

.

(16)

This function possesses 2d − d − 1 interaction parameters. These are given by
(d
2

)
second-

order interaction parametersαi j ,
(d
3

)
third-order interaction parametersαi jk ... etc. If the value

of these parameters are appropriately chosen function (16) is a copula that can be applied
to fit multivariate phenomena. However, the number of parameters in (16) is very high and,
in practice, it could be sufficient to consider only the interaction parameters up to the third
order obtaining the model:

C(u1, ..., ud) =
⎡

⎣1 +
d∑

i=1

(u
− 1

ε

i − 1) +
∑

i< j

αi j (u
− 1

ε

i − 1)(u
− 1

ε

j − 1)

+
∑

i< j<k

αi jk(u
− 1

ε

i − 1)(u
− 1

ε

j − 1)(u
− 1

ε

k − 1)

⎤

⎦

−ε

. (17)

Intuition suggests that the conditions provided by Lemma 1 could be applied to model (17)
too. However, a preliminary analysis shows that the admissible values of each third-order
interaction parameter αi jk depend on all the second-order interaction parameters and not only
on ε, αi j , αik , and α jk . It will be very hard to exploit a full characterization of the parametric
space for model (17) but, if the results obtained in the future research on the trivariate case
will be encouraging, it will be certainly worth to continue the study of the multivariate model.
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