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I. Introduction

The investigation of secular perturbations caused by a third-body attractor was widely studied in the past. In the

’60s, Lidov and Kozai described the mathematical model for the orbital evolution of a planet’s probes under the

effect of a third, expressing the results in the Hamiltonian phase space body[1, 2]. The particle oscillations depend

on the orbit’s initial eccentricity and inclination, and the effect is more evident for highly inclined orbits, such as

Highly Elliptical Orbits (HEOs). In recent years, many studies have arisen on the Lidov-Kozai mechanism for different

astrophysical applications. The evolution of orbits around Galilean satellites of Jupiter has been studied in several works

[3–6], where the effect of Jupiter’s attraction and planet’s oblateness 𝐽2 effect have been investigated. A double-averaged

representation of the dynamical environment has been proposed in [3]. Moreover, different orbit families have been

analyzed in [7] for a probe orbiting Jupiter’s moons Ganymede and Callisto and Saturn’s moon Titan, considering an

equatorial reference frame. Another example is the study of orbit design for a probe around Mercury, subject to the

attraction of the Sun, as proposed in [8]. A different approach has been presented in [9], where the effect of the Solar

radiation pressure has been included in the model on top of the non-spherical harmonics and the third-body perturbations

for planning future missions to Mercury. Passing to the Earth environment for satellites in HEO, [10–14] developed a

Hamiltonian formulation to include the third-body influence, coupled with the zonal effect of 𝐽2. The effect of this

coupling mechanism has been discussed in [15], notably considering the inclusion of the 𝐶22 term in the harmonics.

Starting from the Hamiltonian representation of the dynamics in [13, 14], this work proposes an innovative procedure

to design fully-analytical maneuvers for post-mission disposal of HEOs satellites, exploiting the third-body perturbations.

The Hamiltonian representation has been selected to include the external perturbing effects and to obtain a phase

space representation. Notably, the orbit evolution can be described through the variation of double-averaged orbital

elements over the orbital periods of the spacecraft and the perturbing bodies around the central planet, as described
∗This work has been presented at 29th AAS/AIAA Space Flight Mechanics Meeting, 13-17 Jan 2019, Ka’anapali (HI), paper no. AAS 19-484
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in [3, 13, 14]. Starting from [13, 14], this work conveys a two-dimensional Hamiltonian representation under the

third-body perturbations and the central planet’s oblateness. The effect of solar radiation pressure has been neglected in

this analysis. The coupling effect of the gravitational attraction of a third-body (e.g., the Sun or a moon) and the planet’s

oblateness influences the dynamics of probes flying in high-altitude, and highly-elliptic orbit region [14, 16]. Differently

from [14, 17], an equivalent representation in the central planet’s equatorial reference frame has been proposed in

this work. We derive an innovative reduced one-degree-of-freedom (DOF) model describing the satellite’s long-term

dynamical evolution in the Hamiltonian phase space. This one-DOF model has been developed for an inclined third

body. Nonetheless, we observed that in the case of the Earth-Moon-Sun system, the inclined nature of the Moon causes

troubles with the elimination of the node of the third body from the Hamiltonian formulation. On the contrary, a

non-inclined third body is not subject to this problem regarding the model’s accuracy. An example of the non-inclined

third body has already been considered for different applications in [7]. However, the potentiality of the methodology

relies on the efficient long-term dynamic representation via the reduced Hamiltonian formulation, with no integration of

the dynamical equations. From the reduced Hamiltonian, an innovative fully-analytical approach to design end-of-life

maneuvers was designed, targeting the disposal trajectory in the phase space of eccentricity and argument of periapsis.

Differently from the semi-analytical description in [18], this paper proposes an analytical model for designing the

disposal maneuver with no numerical propagation based on the reduced Hamiltonian representation. This method aims

to achieve a natural re-entry by exploiting the long-term effect of the orbital perturbations, enhanced by impulsive

maneuvers. After the impulsive maneuver, the new orbit conditions lead to a natural increase of the eccentricity until the

atmospheric re-entry is reached. The end-of-life disposal design has been developed for two test case scenarios. First,

the disposal of Venus’ orbiter has been considered, including the coupling effect of the Sun’s gravitational attraction and

Venus’ oblateness. The relatively small inclination of Venus’ equatorial plane over the ecliptic plane results in a scenario

where the third body (i.e., Sun) lies on the planet’s equatorial plane, similar to [7]. The second scenario considers

an HEO satellite orbiting the Earth under the influence of the Earth’s oblateness and the combined perturbations of

the Moon and Sun, starting from the INTEGRAL disposal in [14]. In this scenario, the fully-analytical method for

maneuver design produces discordant results compared to the semi-analytical approach. This behavior is mainly due to

the node elimination during the setup of the reduced one-DOF Hamiltonian description for the Earth system.

II. Dynamical Model Formulation
The dynamic of satellites orbiting a planet is discussed in this section, starting from [19]. First, a double-averaged

model is implemented for the secular and long-term analysis. Then, node elimination is applied to drop the dependence

on the satellite’s right ascension of the ascending node to produce a one-DOF Hamiltonian representation. The model is

implemented in the planet’s equatorial frame considering the planet’s oblateness 𝐽2 and the third-body perturbation

(e.g., Sun and Moon) up to the fourth order, as in [18].
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A. Orbital perturbations

The orbital dynamic of a massless spacecraft can be represented through the Hamiltonian formulation [20]:

H = −H𝑘𝑒𝑝 − R = − 𝜇

2 𝑎
− R𝑧𝑜𝑛𝑎𝑙 − R3𝑏, (1)

The first term represents the Keplerian contribution, with 𝜇 the planet’s gravitational parameter and 𝑎 the satellite’s

semi-major axis. The term R𝑧𝑜𝑛𝑎𝑙 represents the expression of zonal effect, via Legendre polynomials [20]:

R𝑧𝑜𝑛𝑎𝑙 = − 𝜇
𝑟

∞∑︁
𝑙=2

𝐽𝑙

(
𝑅𝛼

𝑟

) 𝑙
𝑃𝑙 (sin 𝛿), (2)

𝐽𝑙 are the zonal harmonic coefficients, 𝑅𝛼 is the planet mean equatorial radius, 𝑟 is the magnitude of the satellite position

vector, 𝑃𝑙 (sin 𝛿) are the the associated Legendre polynomials of degree 𝑙, and 𝛿 = sin(𝜔 + 𝑓 ) sin 𝑖 is the geocentric

latitude. The terms 𝜔, 𝑓 , 𝑖 are the satellite’s argument of periapsis, true anomaly, and inclination. The third-body effect

R3𝑏 is modeled up to the fourth order via Legendre polynomials in terms of parallactic ratio 𝜉 = 𝑎/𝑟3𝑏 [10, 18]:

R3𝑏 =
𝜇3𝑏
𝑟3𝑏

4∑︁
𝑙=2

𝜉𝑙
( 𝑟
𝑎

) 𝑙
𝑃𝑙 [cos 𝑆], (3)

Where 𝜇3𝑏 is the third-body’s gravitational parameter, 𝑟3𝑏 is the magnitude of the third-body vector with respect to

the central planet, 𝑎 is the satellite semi-major axis, and cos 𝑆 = r̂ · r̂3𝑏, with 𝑆 the angle between the satellite and the

third-body [10, 14]. Now, the spacecraft position vector is expressed in the perifocal frame: r̂ = P̂ cos 𝑓 + Q̂ sin 𝑓 , where

P̂ = 𝑅3 (Ω)𝑅1 (𝑖)𝑅3 (𝜔)𝐼 and Q̂ = 𝑅3 (Ω)𝑅1 (𝑖)𝑅3
(
𝜔 + 𝜋

2
)
𝐼. The rotation matrices 𝑅1 (𝛼) and 𝑅3 (𝛼) are defined as:

𝑅1 (𝛼) =



1 0 0

0 cos𝛼 − sin𝛼

0 sin𝛼 cos𝛼


𝑅3 (𝛼) =



cos𝛼 − sin𝛼 0

sin𝛼 cos𝛼 0

0 0 1


. (4)

Considering the third-body unit vector as r̂3b, we define cos 𝑆 as a direct relation of the true anomaly of the satellite:

cos 𝑆 = 𝐴3𝑏 cos 𝑓 + 𝐵3𝑏 sin 𝑓 , where 𝐴3𝑏 = P̂ · r̂3b and 𝐵3𝑏 = Q̂ · r̂3b. Under these premises, the R3𝑏 becomes:

R3𝑏 =
𝜇3𝑏
𝑟3𝑏

4∑︁
𝑙=2

𝜉𝑙𝐹𝑙 (𝐴3𝑏, 𝐵3𝑏, 𝑟, 𝑓 ), (5)

Where the second-, third-, and fourth-order terms from the polynomial expansion in R3𝑏 have the following expressions:

𝐹2 =

( 𝑟
𝑎

)2
𝑃2 [cos 𝑆] = 1

2

( 𝑟
𝑎

)2 (
3 cos2 𝑆 − 1

)
, (6)
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𝐹3 =

( 𝑟
𝑎

)3
𝑃3 [cos 𝑆] = 1

2

( 𝑟
𝑎

)3 (
5 cos3 𝑆 − 3 cos 𝑆

)
, (7)

𝐹4 =

( 𝑟
𝑎

)4
𝑃4 [cos 𝑆] = 1

8

( 𝑟
𝑎

)4 (
35 cos4 𝑆 − 30 cos2 𝑆 + 3

)
. (8)

In this work, terms up to the fourth order have been included in R3𝑏, resulting in: R3𝑏 =
𝜇3𝑏
𝑟3𝑏
𝜉𝑙 (𝐹2 + 𝐹3 + 𝐹4).

B. Averaging procedure

To study the long-term dynamic of satellites, the short-term effects due to high-frequency variation along one orbit

could be canceled out with a double averaging procedure. The first averaging (see Eq. 9) is done over the satellite’s orbital

period, and to do so, the disturbing function is written in terms of the eccentric anomaly and the other orbital elements

of the space vehicle, following the approach in [3, 10, 18, 21]. Finally, the second averaging (see Eq. 10) is performed

over the third-body orbital period by re-conducing the terms to the true anomaly, yielding a more straightforward

computation.

R̄ =
1

2𝜋

∫ 2𝜋

0
R𝑑𝑀 =

1
2𝜋

∫ 2𝜋

0
R (1 − 𝑒 cos 𝐸)𝑑𝐸. (9)

¯̄R3𝑏 =
1

2𝜋

∫ 2𝜋

0
R̄𝑑𝑀3𝑏 =

1
2𝜋

∫ 2𝜋

0
R̄ (1 − 𝑒3𝑏)3/2

(𝑒3𝑏 cos 𝑓3𝑏 + 1)2 𝑑𝑓3𝑏 . (10)

In the following, the subscripts •⊙ and •$ are introduced for quantities related to the Sun and Moon, respectively. A

complete step-by-step procedure description can be found in [22].

1. Single-averaged disturbing function

The single-averaged disturbing functions have been derived analytically and compared with literature results

[3, 10, 14, 21]. The single-averaged 𝐽2, in Eq. (11), depends only on the semi-major axis 𝑎, eccentricity 𝑒, and orbit

inclination 𝑖. The single-averaged third-body disturbing function, in Eq. (12) also depends on the terms 𝐴3𝑏 and 𝐵3𝑏.

R̄𝐽2 =
1

2𝜋

∫ 2𝜋

0
R𝐽2𝑑𝑀 =

𝜇𝐽2𝑅
2
𝛼

8 𝑎3 (1 − 𝑒2)3/2 (1 + 3 cos 2𝑖). (11)

R̄3𝑏 = − 𝜇3𝑏
4𝑟3𝑏

𝜉2
(
3𝐴2

3𝑏

(
4𝑒2 + 1

)
− 3𝐵2

3𝑏

(
𝑒2 − 1

)
− 3𝑒2 − 2

)
− 5𝜇3𝑏

16𝑟3𝑏
𝜉3𝐴3𝑏𝑒

(
− 5𝐴2

3𝑏

(
4𝑒2 + 3

)
+

+ 15𝐵2
3𝑏

(
𝑒2 − 1

)
+ 9𝑒2 + 12

)
− 3𝜇3𝑏

64𝑟3𝑏
𝜉4
(
35𝐴4

3𝑏

(
8𝑒4 + 12𝑒2 + 1

)
− 10𝐴2

3𝑏

(
7𝐵2

3𝑏

(
6𝑒4 − 5𝑒2 − 1

)
+

+ 18𝑒4 + 41𝑒2 + 4
)
+ 35𝐵4

3𝑏

(
𝑒2 − 1

)2
+ 10𝐵2

3𝑏

(
3𝑒4 + 𝑒2 − 4

)
+ 15𝑒4 + 40𝑒2 + 8

)
.

(12)

The final expression for the single-averaged Hamiltonian representation depends on the zonal and third-body terms:

H̄ = − 𝜇

2 𝑎
− R̄𝐽2 − R̄⊙ − R̄$. (13)
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2. Double-averaged disturbing function

The double-averaging is now applied to the third-body disturbing function, which still depends on the true anomaly

𝑓3𝑏, via the parameters 𝐴3𝑏 and 𝐵3𝑏, and the position 𝑟3𝑏. First, the Sun double-averaged function is recovered by

expressing the Sun position vector in the equatorial frame of the central body using the ecliptic longitude 𝑙 and the

planet’s obliquity of the ecliptic 𝜖 . The coefficients 𝐴⊙ and 𝐵⊙ are [14]:

𝐴⊙ = cos 𝑙 (cos𝜔 cosΩ − sin𝜔 sinΩ cos 𝑖) + sin 𝑙 (cos 𝜖 (cos𝜔 sinΩ + cosΩ sin𝜔 cos 𝑖) + sin 𝜖 sin𝜔 sin 𝑖)

𝐵⊙ = − cos 𝑙 (cosΩ sin𝜔 + cos𝜔 sinΩ cos 𝑖) + sin 𝑙 (cos 𝜖 (sin𝜔 sinΩ + cos𝜔 cosΩ cos 𝑖) + sin 𝜖 cos𝜔 sin 𝑖)
(14)

For most planets, the eccentricity of the orbit around the Sun can be approximated to the circular case as a first

preliminary approximation. In addition, since 𝑙 of the Sun varies in one year, during the motion of each planet along

its orbit, from 0◦ to 360◦, as a first approximation, the double averaging is done over 𝑙 instead of 𝑓 . The second- and

fourth-order double-averaged expressions are reported in Eqs. (15) and (16), similar to [3, 18, 21]. Since the circular

case is adopted [18], the third-order term is null: ¯̄R⊙,3 = 0.

¯̄R⊙,2 =
𝜇⊙ 𝑎2

16 𝑟3
⊙

[
− 8 − 12 𝑒2 + 3(2 + 3 𝑒2 + 5 𝑒2 cos 2𝜔) cos2 Ω − 15 𝑒2 sin 2𝜔 sin 2Ω cos 𝑖+

− 3(−2 − 3 𝑒2 + 5 𝑒2 cos 2𝜔) sin2 Ω cos2 𝑖 −
(
− 3(cos 𝜖 sin𝜔 sinΩ + cos 𝜖 cos𝜔 cosΩ cos 𝑖+

+ cos𝜔 sin 𝜖 sin 𝑖)2 + 3 𝑒2 (− cos 𝜖 sin𝜔 sinΩ + cos 𝜖 cos𝜔 cosΩ cos 𝑖 + cos 𝜖 cos𝜔 sin 𝑖)+

− (3 + 12 𝑒2) (cos 𝜖 cos𝜔 sinΩ + cos 𝜖 cosΩ sin𝜔 cos 𝑖 + sin 𝜖 sin𝜔 sin 𝑖)2
)]
.

(15)

¯̄R⊙,4 =
3𝑎4𝜇⊙

131072𝑎5
⊙

(
215040 𝑒4 cos4 𝜔 cos4 Ω + 26880 𝑒4 cos4 Ω sin4 𝜔 + 215040 𝑒4 cos4 𝜔 cos4 𝜖⊕ sin4 Ω

+ 26880 𝑒4 cos4 𝜖⊕ sin4 𝜔 sin4 Ω − 322560 𝑒4 cos2 𝜔 cos4 𝜖⊕ sin2 𝜔 sin4 Ω + ...
) (16)

The full expression for the fourth-order term is lengthy and not reported in this paper for conciseness. The complete

expression of ¯̄R⊙,4 is provide in Appendix D.2 of reference [22]. For the particular case of the Earth’s Moon, non-null

eccentricity has been considered, yielding a different derivation. Unlike most previous works, the Moon double-averaged

function is computed in the equatorial frame and not in the Moon plane, as in [13, 18]. The terms 𝐴$ and 𝐵$ are:

𝐴$ = sin𝜔
( (

cos 𝑖 cos 𝑖$ cos(Ω −Ω$) + sin 𝑖 sin 𝑖$
)

sin(𝜔$ + 𝑓$) − cos 𝑖 cos(𝜔$ + 𝑓$) sin(Ω −Ω$)
)
+

+ cos𝜔
(

cos(𝜔$ + 𝑓$) cos(Ω −Ω$) + cos 𝑖$ sin(𝜔$ + 𝑓$) sin(Ω −Ω$)
)
,

𝐵$ = cos𝜔
( (

cos 𝑖 cos 𝑖$ sin(Ω −Ω$) + sin 𝑖 sin 𝑖$
)

sin(𝜔$ + 𝑓$) − cos 𝑖 cos(𝜔$ + 𝑓$) sin(Ω −Ω$)
)
+

− sin𝜔
(

cos(𝜔$ + 𝑓$) cos(Ω −Ω$) + cos 𝑖$ sin(𝜔$ + 𝑓$) sin(Ω −Ω$)
)
.

(17)
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The derivation is performed in terms of the true anomaly: 𝑑𝑀$ = (1 − 𝑒$)3/2/(𝑒$ cos 𝑓$ + 1)2, yielding to the

double-averaged expressions in Eqs. (18), (19), and (20). The quantity ΔΩ is the difference between the spacecraft and

Moon’s right ascension: = Ω −Ω$. Differently from [14, 18], the eccentricity of the Moon’s orbit is retained in this

work. Consequently, the potential odd terms are not null in this case.

¯̄R$,2 =
𝜇$

32 𝑎3
$ (1 − 𝑒2

$)3/2

( (
6 + 9 𝑒2

)
cos 2ΔΩ + 6

(
2 + 3 𝑒2 + 5 𝑒2 cos 2𝜔)

)
sin2 ΔΩ cos2 𝑖$+

+ 6(2 + 3 𝑒2 − 5 𝑒2 cos 2𝜔)
(
(cosΔΩ cos 𝑖$ cos 𝑖 + sin 𝑖$ sin 𝑖)2 + sin2 ΔΩ cos2 𝑖

)
+

+ 5
(
−2 − 3 𝑒2 + 6 𝑒2

(
cos2 ΔΩ cos 2𝜔 + (sinΔΩ sin 2𝑖$ sin 𝑖 − sin 2ΔΩ sin2 𝑖$ cos 𝑖)

)
sin 2𝜔

) )
,

(18)

¯̄R$,3 =
𝜇$15𝑎3 𝑒 𝑒$

512𝑎4
$ (1 − 𝑒2

$)5/2

(
cos𝜔 cos𝜔$ cosΔΩ(35𝑒2 cos(2(ΔΩ + 𝜔)) + 35𝑒2 cos(2(𝜔 − ΔΩ))+

+ 10(𝑒2 + 6) cos(2ΔΩ) + 70𝑒2 cos 2𝜔 − 86𝑒2 − 68) − 20 sin2 𝑖 cos𝜔(7𝑒2 cos 2𝜔 − 5𝑒2 − 2) sin2 𝑖$

cos𝜔$ cosΔΩ + sin 𝑖 sin𝜔 sin 𝑖$ sin𝜔$ (35𝑒2 cos(2(ΔΩ + 𝜔)) + 35𝑒2 cos(2(𝜔 − ΔΩ))+

+ 10(5𝑒2 + 2) cos(2ΔΩ) + 70𝑒2 cos 2𝜔 − 46𝑒2 − 108) + ...
)
,

(19)

¯̄R$,4 =

3𝑎4 (15𝑒4 + 40𝑒2 + 8
) (

3𝑒2
$ + 2

)
𝜇$

128𝑎5
$

(
1 − 𝑒2

$

)
7/2

+
9𝑎4

(
𝑒2
$ + 2

)
𝜇$

1024𝑎5
$

(
1 − 𝑒2

$

)
7/2

(
35(𝑒2 − 1)2 (cos 𝑖 cos𝜔

(cos i$ cos𝜔$ cosΔΩ + sin𝜔$ sinΔΩ) + sin 𝑖 cos𝜔 sin i$ cos𝜔$ − sin𝜔 cos i$ cos𝜔$ sinΔΩ

+ sin𝜔 sin𝜔$ cosΔΩ)4 + 35(8𝑒4 + 12𝑒2 + 1) (cos𝜔 cos 𝑖$ cos𝜔$ sinΔΩ+

+ cos 𝑖 sin𝜔(cos 𝑖$ cos𝜔$ cosΔΩ + sin𝜔$ sinΔΩ) + ...
)
.

(20)

The full expressions for the third- and fourth-order terms are lengthy and not reported in this paper for conciseness. The

complete expression of ¯̄R⊙,4 is provided in Appendix C.3 of reference [22]. The final expressions of the double-averaged

potential for the Sun and Moon are reported in Eq. (21). Considering the satellite semi-major axis 𝑎 as a constant of

motion, the double-average potential is a function of the spacecraft’s orbital elements and the physical properties of

the third body. For the Moon case, the potential depends on the node Ω$ and inclination 𝑖$, which are time-varying

quantities in the equatorial representation.

¯̄R⊙ = ¯̄R⊙ (𝑎, 𝑒, 𝑖, 𝜔, Ω, −; 𝜖, 𝑟⊙ , 𝜇⊙)

¯̄R$ = ¯̄R$ (𝑎, 𝑒, 𝑖, 𝜔, Ω, −, 𝑎$, 𝑒$, 𝑖$, 𝜔$, Ω$, −; 𝜇$).
(21)

The final expression for the double-averaged Hamiltonian representation depends on the zonal and third-body terms:

¯̄H = − 𝜇

2 𝑎
− ¯̄R𝐽2 − ¯̄R⊙ − ¯̄R$. (22)
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3. Single- and double-averaged models validation

After the derivation of single- and double-averaged potentials, the model’s accuracy is compared to the non-averaged

expression of the dynamics (see Eq. (22)). The reference Earth’s orbit under study is an INTEGRAL-like orbit with

initial conditions on 22/03/2013 [14]. The parameters for setting up the simulation are reported in Table 1, including the

orbital elements in Earth’s J2000 frame. The dynamic is integrated via an ordinary differential equation solver for stiff

problems, with a variable step and order (1 to 5). Fig. 1 shows the comparison of the time evolution of the Keplerian

elements and the altitude of periapsis ℎ𝑝 between full, single- and double-averaged models for about 3.5 years. One can

note that the averaging procedure correctly approximates the long-term dynamic. After the double-averaging procedure,

the Hamiltonian is a non-autonomous 2-DOF system, with the time dependencies stemming from the third bodies’

ephemeris. An additional reduction of the Hamiltonian description to 1-DOF is required to get a two-dimensional phase

space for a fully-analytical design of disposal maneuvers (see Section III).

Table 1 Initial conditions for simulating an INTEGRAL-like orbit.

Parameters Unit Value
Orbit’s Keplerian el. (𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝑀) (km, -, rad, rad, rad, rad) [87705.22, 0.8766, 1.0739, 2.2516, 4.6385, 4.15]
Earth’s gravitational constant km3/s2 3.9860 · 105

Earth’s mean equatorial radius km 6.3782 · 103

Earth’s oblateness 𝐽2 - 0.001082628
Obliquity of the ecliptic 𝜖 rad 0.4091
Sun’s gravitational constant 𝜇⊙ km3/s2 1.3271 · 1011

Sun-Earth distance km 1.4962 · 108

Moon’s gravitational constant 𝜇$ km3/s2 4.903 · 103

Moon’s Keplerian el.∗ (𝑎, 𝑒, 𝑖,Ω, 𝜔) (km,-,rad,rad,rad)
[
3.8440 · 105, 0.4877, 0.0549, 4.4685, 0.1013

]
∗Analytical ephemeris of the Moon from [20]

Fig. 1 Comparison between the full (exact), single-, and double-averaged models.
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C. Reduced Hamiltonian Formulation

The approach to reducing the Hamiltonian to a 1-DOF is based on an averaging procedure over the satellite node

Ω, called the elimination of the node. Only the second-order contributions are fully reported in this article, while the

complete derivation has been described in [22].

1. Elimination of the node

The elimination of the node consists of the averaging on Ω over one orbital period. The following expression for the

reduced Hamiltonian Ĥ has been computed for the second-order term:

Ĥ =
1

2𝜋

∫ 2𝜋

0

¯̄H 𝑑Ω = − 𝜇

2𝑎
−

J2𝜇𝑅
2
⊕ (3 cos 2𝑖 + 1)

8𝑎3 (1 − 𝑒2)3/2 −
𝜇$𝑎

2

32 𝑎3
$ (1 − 𝑒2

$)3/2

(
15 𝑒2 cos𝜔(2 sin2 𝑖 sin2 𝑖$+

+ (−1 + cos2 𝑖) (1 + cos2 𝑖$)) − (2 + 3 𝑒2) (−5 + +3 cos2 𝑖(1 + cos2 𝑖$) + 6 sin2 𝑖 sin2 𝑖$)
)
+

− 𝜇⊙𝑎2

64 𝑟3
⊙

(
10(−2 − 3 𝑒2 + 3 𝑒2 cos𝜔) − 3(3 + cos 2𝜖) cos2 𝑖(−2 − 3 𝑒2 + 5 𝑒2 cos 2𝜔)6 cos2 𝜖

(2 + 3 𝑒2 + 3 𝑒2 cos 2𝜔) − 12(−2 − 3 𝑒2 + 5 𝑒2 cos 2𝜔) sin2 𝜖 sin2 𝑖
)
.

(23)

The third- and fourth-order terms have not been included in the Hamiltonian expression for conciseness of the

representation, but they have been considered during the simulations. Considering constant orbital elements of the

perturbing bodies, the reduced Hamiltonian is a function of (𝑎, 𝑒, 𝑖, 𝜔):

Ĥ = Ĥ (𝑎, 𝑒, 𝑖, 𝜔, −, −; 𝑎$, 𝑒$, 𝑖$, 𝜔$ 𝜖, 𝑟⊙ , 𝐽2, 𝜇, 𝜇⊙ , 𝜇$, 𝑅⊕) −→ Ĥ (𝑎, 𝑒, 𝑖, 𝜔) (24)

Thanks to the time independency of Eq. 24, the Kozai parameter representation can be applied to the model [2].

The Kozai parameter was defined in [2] as a constant of motion, function of eccentricity and inclination of an orbit:

Θ𝑘𝑜𝑧𝑎𝑖 = (1 − 𝑒2) cos2 𝑖. Substituting the inclination dependency on the eccentricity from Θ in Eq. 24, and considering

a constant semi-major 𝑎 = 𝑎0, the reduced Hamiltonian becomes a function of (𝑒, 𝜔) only: Ĥ (−, 𝑒, −, 𝜔). The reduced

Hamiltonian representation Ĥ provides two-dimensional phase-space maps in terms of a constant semi-major axis and

the initial conditions of the satellite’s orbit. The phase space maps are produced by computing the contour plot of the

Hamiltonian function, defined as:

F = Ĥ (𝑒, 𝜔) − Ĥ0 (𝑒0, 𝜔0), (25)

Where (𝑒0, 𝜔0) are the initial conditions (only the dynamical dependencies are reported in Eq. (25)). The two-dimensional

phase-space maps are used to design the fully-analytical maneuvers in Section III.B. Note that the Kozai parameter

would not be constant for the Earth-Moon-Sun system. Particularly, Θ𝑘𝑜𝑧𝑎𝑖,0 has been derived by [2] assuming a

non-inclined third body. This is invalid for the Moon’s orbit, and the node elimination introduces an approximation.

8



2. Reduced Hamiltonian model validation

The reduced Hamiltonian Ĥ has been compared with the full, single-, and double-averaged for validation. Two

situations have been analyzed. First, we consider a satellite orbiting the Earth with initial conditions of Table 1, under

the 𝐽2, Moon, and Sun effects. We also assume a small area-to-mass ratio (≪1) to neglect the solar radiation pressure.

Fig. 2 shows a non-accurate approximation of the reduced Hamiltonian model, caused by the approximation introduced

by the 1-DOF reduction (see the discussion in Section IV.B.2). Second, we introduce the assumption that the third

bodies lie on the Earth’s equatorial plane (i.e., no inclination of the Moon over the equator, 𝑖$ = 0 deg) for initial

conditions of Table 1. This situation represents a system where the third body lies on the equatorial plane of the central

planet (e.g., a probe around Venus or Jupiter’s moons, Europa, Ganymede, and Callisto). In this case, the 1-DOF model

accurately describes the long dynamic dynamics for a non-inclined third-body, as shown in Fig. 3.

Fig. 2 Comparison of full, single/double-averaged, and reduced Hamiltonian models (inclined Moon).

Fig. 3 Comparison of full, single/double-averaged, and reduced Hamiltonian models (non-inclined Moon).
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After validating the double-averaged and the reduced Hamiltonian models against the full (exact) propagation, the

manuscript presents an innovative strategy for end-of-life maneuvers design based on the phase-space representation of

the spacecraft dynamics from the reduced Hamiltonian model Ĥ .

III. Design of Optimal Disposal Maneuvers in the Phase-Space
This section presents the design of optimal disposal maneuvers in the atmosphere, exploiting the phase-space

representation. The procedure consists of an impulsive ΔV maneuver to target specific orbital elements to reach the

disposal condition. Differently from the semi-analytical model in [23], this work proposes a novel fully-analytical

approach to design the disposal maneuver based on the reduced Hamiltonian formulation. The disposal in the atmosphere

requires the altitude of the periapsis below a specific threshold. Starting from the relation among the semi-major axis,

altitude of the periapsis, and eccentricity of an orbit: 𝑒 = 1 − ℎ𝑝+𝑅𝛼

𝑎
, the eccentricity value corresponding to the altitude

for atmospheric re-entry is identified, namely the critical eccentricity 𝑒𝑐𝑟 . The altitude threshold is typically set around

120 km for an Earth satellite [24]. The ΔV maneuver is designed in the local orbital frame, i.e., the Local Vertical/Local

Horizontal (LV/LH), defined by: x-axis aligned with the velocity vector, y-axis in the direction of the orbital angular

momentum, and the z-axis completes the orthogonal frame (i.e., toward the nadir). A maneuver in the LV/LH frame can

be described using two angles 𝛼 (in-plane x-z) and 𝛽 (out-of-plane y) and the magnitude ΔV:

𝚫V|𝐿𝑉/𝐿𝐻 = Δ𝑉

[
cos𝛼 cos 𝛽; sin 𝛽; sin𝛼 cos 𝛽

] ′
(26)

After the application of the impulsive ΔV, the new Keplerian elements kep+ are computed from the finite variation of

initial conditions kep− through the Gauss planetary equations in terms of impulsive 𝚫V|𝐿𝑉/𝐿𝐻 [25] (see [20] for a

full description of the Gauss planetary equations ). Then, the kep+ is propagated to check for atmospheric re-entry

conditions under two different approaches: first, a semi-analytical propagation based on the double-averaged model;

second, a fully-analytical propagation based on the reduced Hamiltonian model.

A. Semi-analytical approach

The Keplerian elements kep+ are propagated in time using the double-averaged model under a semi-analytical

propagation [18]. A set of 𝚫V with different magnitudes and orientations is applied to the initial conditions kep− .

During the dynamical propagation kep+, the eccentricity value is compared with the critical value 𝑒𝑐𝑟 . Only the ΔVs

that result in the atmospheric re-entry are retained in the solution (i.e., if 𝑒𝑐𝑟 is reached). For those conditions, the

time evolution in terms of altitude of periapsis ℎ𝑝 (𝑡) is computed, and the minimum altitude ℎ𝑝,𝑚𝑖𝑛 for atmospheric

re-entry is achieved at a specific time instant, similar to the work in [26]. The true anomaly 𝑓 of the impulsive ΔV can

be optimized a-posteriori since the double-averaged model is independent of the true anomaly 𝑓 .
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B. Fully-analytical approach

An innovative fully-analytical procedure has been proposed starting from the reduced Hamiltonian model. The

corresponding phase space provides an intuitive visualization of the maneuver effect. We use the expression in Eq. 25 to

obtain the two-dimensional maps: the phase space corresponds to its contour plot. An example of the phase space

map is reported in Fig. 4 (a), depicting an INTEGRAL-like orbit. The value for the critical eccentricity 𝑒𝑐𝑟 to reach

re-entry conditions is represented in Fig. 4 (b) with a blue rectangle. The ΔV modifies the INTEGRAL trajectory

in the phase space so that the critical eccentricity condition is reached (see the red trajectory). After applying a ΔV,

the 𝑒𝑐𝑟 is achieved if the maximum eccentricity of the trajectory evolution in the phase space is equal or higher to

𝑒𝑐𝑟 . The maximum eccentricity value can be computed analytically from Eq. 25, as a stationary point as a function of

𝜔 (maximum of F ). This procedure is more computationally efficient than the semi-analytical one, as no numerical

integration is required. Depending on the impulsive ΔV, for a given magnitude and directions 𝛼 and 𝛽, we obtain

different conditions for Keplerian elements kep+. The Hamiltonian contour line could translate up or down: for a

reduction of 𝑎, the phase space translates towards higher eccentricity values, enhancing the disposal condition, and

vice-versa. Fig 4 (b) shows how the Hamiltonian phase space changes after the ΔV is applied for an INTEGRAL-like

trajectory in the Earth-Moon-Sun system. The black trajectory represents the evolution from the initial conditions, while

the red one describes the evolution of the orbital conditions after the maneuver. Since the initial trajectory (in light

blue) is not tangent to the disposal condition, i.e. 𝑒𝑐𝑟 , an impulsive maneuver is applied to enhance the effect of Earth’s

oblateness 𝐽2 and third-body perturbations. However, once the ΔV is applied, the new orbital elements of the satellites

result in a new trajectory (in red), tangent to the critical condition 𝑒𝑐𝑟 . The re-entry could not be immediate, but the

trajectory propagates in time until the critical eccentricity condition is reached, leading to atmospheric re-entry.

Fig. 4 2D phase-space in Earth-Moon-Sun system for INTEGRAL-like trajectory.
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C. Optimisation procedure

An optimization procedure has been implemented to compute the optimal maneuver in terms of ΔV magnitude,

direction, and true anomaly 𝑓 . A similar approach of [14, 18] has been adopted, implementing some improvements as

presented in this section. The optimization aims to determine the minimum impulsive ΔV to perform an atmospheric

re-entry for a specific scenario. The optimization parameters are defined as x = [𝛼, 𝛽,Δ𝑉, 𝑓𝑚]. A multi-objective

optimization has been implemented [27], where the optimal solution targets the critical eccentricity and the minimum

ΔV. The former condition is related to the altitude of the periapsis for the re-entry, and it has a higher relative importance

than the ΔV, related to propellant consumption. The cost function for the optimal control problem is selected as:

C =
1
2

(
𝐾Cℎ𝑝

+𝑊CΔ𝑉

)
, (27)

Where 𝐾 = 1 and𝑊 = 1 × 10−2 are the weighting constants for the optimization. The weighting constants are selected

to grant the convergence in terms of target periapsis for the re-entry condition and minimum ΔV. The first term Cℎ𝑝

minimizes the altitude of periapsis to target the re-entry altitude. It depends on the actual and critical values of ℎ𝑝 , and

ℎ𝑝,𝑐𝑟 , where the latter value corresponds to the eccentricity 𝑒𝑐𝑟 :

Cℎ𝑝
= max

(
ℎ𝑝,𝑚𝑖𝑛 − ℎ𝑝,𝑐𝑟

ℎ𝑝,𝑐𝑟
, 0

)2
. (28)

Differently from the cost function used in [26], the variation in the periapsis altitude is divided by the target altitude to

introduce a weighting coefficient for the objective function, resulting in an a-dimensional cost function. The second

objective of the optimization is to maintain the ΔV cost the smallest as possible, as the onboard fuel at the end of the

mission is typically extremely low. The cost function for the optimal ΔV impulse is defined as:

CΔ𝑉 =

(
Δ𝑉

𝜎𝑣

)2
, (29)

Where 𝜎𝑣 is set equal to 1 km/s to have an a-dimensional cost function. Differently from [18, 26], we introduced in the

cost function the weighting factors (ℎ𝑝,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝜎𝑣). The following optimal control problem has been set up:

minimize C =
1
2

(
𝐾Cℎ𝑝

+𝑊CΔ𝑉

)
subject to − 𝜋 ≤ 𝛼 ≤ 𝜋 ; −𝜋/2 ≤ 𝛽 ≤ 𝑝𝑖/2 ; Δ𝑉min ≤ Δ𝑉 ≤ Δ𝑉max ; 0 ≤ 𝑓𝑚 ≤ 2𝜋

(30)

Where Δ𝑉min and Δ𝑉max are the minimum and maximum magnitude for the maneuver. The optimization is performed

with a multi-start method. It exploits local searching procedures from random initial solutions, including lower and

upper boundaries [28]. It generates multiple local solutions starting from various initial points in an attempt to find the
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global minima inside the boundaries, and it is based on constrained nonlinear programs. Specifically, the MultiStart

algorithm in MATLAB® has been considered. The solution provides information on the global minimum and the initial

conditions that lead to the minimum. The advantage of using the MultiStart solver relies on the identification of

global optima and a faster convergence compared to a genetic algorithm (see Ref. [22]).

IV. Results
The semi- and fully-analytical methods have been applied to two case scenarios. As described in Section III, the

former method is based on the double-averaged model, which accurately approximates the exact dynamical propagation

under 𝐽2 and third-body perturbations. The latter is based on the reduced Hamiltonian. As described in Section II.C, the

reduced Hamiltonian accurately describes the dynamics for the case of a non-inclined third body. However, it fails

to capture the dynamical evolution for the inclined case accurately. Consequently, the following test case scenarios

have been considered in this work to assess the potential efficiency of the fully-analytical methods compared to the

semi-analytical ones.

The first test case considers a scenario with the third body lying on the equator of the central planet. To avoid

approximating the Moon effect to a non-inclined body, Venus was selected as the central planet instead of the Earth.

Mission to Venus are of interest in the scientific community to improve the knowledge of its atmospheric composition

and other physical properties [7, 27, 29] The Venus-Sun system has been considered including the planet’s oblateness and

Sun’s third-body effects. The relatively small inclination of Venus’ equatorial plane over the ecliptic plane (around 2.64

deg) allows the approximation of the Sun on the planet’s equatorial plane [7]. The following Hamiltonian representation

has been considered to derive the fully-analytical approach:

H = − 𝜇

2 𝑎
− R𝐽2 − R⊙ . (31)

The validation of the model for a non-inclined third-body has been described in Fig.3.

The second test case considers an INTEGRAL-like satellite in the Earth-Moon-Sun system, under the Earth’s

oblateness, the Sun’s and the Moon’s gravitational effects. The following Hamiltonian representation was implemented:

H = − 𝜇

2 𝑎
− R𝐽2 − R⊙ − R$. (32)

When an inclined third body is considered, the reduced Hamiltonian method does not correctly approximate the

dynamical behavior. Consequently, the analysis is performed by comparing the results of the semi- and the fully-analytical

approaches. In addition, the results of both approaches are compared with the literature results for INTEGRAL satellite

[14, 26].
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A. Test case 1: Venus Orbiter

This scenario describes the atmospheric re-entry of a probe on an HEO around Venus. The atmospheric interface is

around 250 km [30], and the target altitude has been selected slightly lower (130 km) in the optimization problem to

ensure re-entry. Moreover, the following constraints have been considered: the disposal should be provided within a

15-year window, the Δv can vary in the interval (0 - 1.2) km/s, and 𝛼 and 𝛽 angles in the range (0,360) deg. Table 2 reports

the initial conditions for the probe around Venus and the physical properties of the central planet. The target altitude for

the re-entry corresponds to a critical eccentricity condition 𝑒𝑐𝑟 = 0.9281. The analyses consist of two optimization

simulations to compare the performances of two different maneuver points: at M1, the minimum eccentricity condition,

and at M2, the maximum eccentricity condition. The maneuver was modeled with the fully-analytical and semi-analytical

approaches to assess the accuracy of the results. The representation of the disposal maneuver in the phase space is

shown in Fig. 5: the initial phase space is shown by the blue lines, while the final phase space is in red. It also represents

the maneuver points M1 and M2. The semi- and fully-analytical optimization procedure results are reported in Table 3.

Overall, the fully-analytical method is more computationally efficient than the semi-analytical one, requiring less than

10 seconds to converge to the optimal solution. Moreover, one can observe that the disposal maneuver at M2 (i.e. point

Table 2 Initial conditions for simulating a probe around Venus.

Parameters Unit Value
Coordinate Universal Time - 00:00 22-03-2013
Orbit’s Keplerian el. (𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝑀) (km, -, rad, rad, rad, rad) [87000.0, 0.87, 1.047, 4.42, 4.64, 2.25]
Venus’s gravitational constant km3/s2 3.2486 · 105

Venus’s mean equatorial radius km 6.0518 · 103

Venus’s oblateness 𝐽2 - 4.458 · 10−6

Obliquity of the ecliptic 𝜖 rad 0.046
Sun’s gravitational constant 𝜇⊙ km3/s2 1.3271 · 1011

Sun’s semi-major axis km 1.0821 · 108

Fig. 5 Phase space trajectory in (𝜔, 𝑒) to target the re-entry.

14



at maximum eccentricity) is more expensive than the maneuver at M1 (i.e. point of minimum eccentricity) in terms of

ΔV. A maneuver at M2 corresponds to a direct reduction of the periapsis altitude below the disposal condition. On the

other hand, the maneuver at M1 produces a decrease in the semi-major axis and inclination of the orbit, with a lower

altitude of periapsis: the natural evolution under external perturbation generates a re-entry in about five years from the

maneuver. Finally, Table 3 shows that the two methods provide similar results for modeling the disposal maneuver of

Venus’ probe, validating the relevance of the innovative fully-analytical approach for fast and accurate design.

Table 3 Results for Δv optimization procedure for the disposal of Venus’ orbiter.

Method Maneuver point ΔV, m/s Minimum altitude, km Computational time, min
Semi-analytical M1 60 130 ∼60
Semi-analytical M2 84 130 ∼60
Fully-analytical M1 57 130 ∼3
Fully-analytical M2 86 130 ∼5

B. Test case 2: INTEGRAL satellite

The second test case considers the disposal maneuver for the INTEGRAL satellite. The target altitude is selected

equal to 50 km (well below 120 km) to ensure the re-entry and minimize possible atmospheric fragmentation before the

re-entry. The initial conditions for the simulation of the INTEGRAL re-entry are reported in Table 1. As for the first test

case, the disposal is required within a 15-year window, and the Δv can vary in the interval 0 − 1.2 km/s, and 𝛼 and 𝛽

angles in the range 0 − 360 deg. Two different analyses have been performed for this scenario. First, the cost of the

disposal maneuver is evaluated at two eccentricity conditions, minimum (M1) and maximum (M2). The maneuver has

been modeled with the semi- and fully analytical approaches. Figure 6 a) shows the initial and final phase space, in blue

and red, respectively, and the two maneuvers at M1 and M2. Table 4 reports the results in terms of Δv, computational

time, and minimum periapsis altitude. The fully analytical solution results in a minimum Δv at M2 and a maximum

Δv at M1, contrary to the results of the semi-analytical one. This discrepancy is due to the lower accuracy of the

reduced Hamiltonian model for the case of an inclined Moon. The second analysis consists of an optimization procedure

considering a set of 20 initial conditions in terms of initial time, starting from 2013 for 25 years. We also compare

the results with the outcomes of [26]. Figure 6 b) shows the optimal Δv for different initial disposal times. The blue

Table 4 Results for the disposal of INTEGRAL satellite at initial time 22-03-2013.

Method Maneuver point ΔV, m/s Minimum altitude, km Computational time, min
Semi-analytical M1 45.7 50 ∼60
Semi-analytical M2 97 50 ∼60
Fully-analytical M1 106 50 ∼3
Fully-analytical M2 67 50 ∼5
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line represents the fully-analytical solution, the green one the semi-analytical, and the red line represents the solution

obtained in Colombo et al. (2014) [26] for the same initial conditions. As expected, the computations performed with

the semi-analytical method are much more accurate than the fully-analytical one. The latter results in cheaper maneuvers

when it should be more expensive and vice-versa. The behavior of the semi-analytical method is comparable with the

results in Colombo et al. (2014) [26], even if a smaller number of initial conditions have been analyzed. The numerical

results are reported in Table 5, where the best solutions in terms of Δv and periapsis altitude are highlighted in blue. The

three best options can be identified in 2014, 2023, and 2032. the cheapest option is in 2023, with a Δv of about 47 m/s.

Fig. 6 INTEGRAL satellite: a) Phase space, b) Optimization procedure.

1. Semi-analytical and Fully-analytical methods performances

The comparison between the computational time for disposal options demonstrates that using a semi-analytical

propagation for maneuver optimization is more expensive than a fully-analytical method based on the solution of the

reduced Hamiltonian. Furthermore, the semi-analytical method could take several hours to produce optimal results, as

reported in Table 6. For this reason, the optimal solution is typically computed on the ground, and then the instructions

are sent to the onboard system. On the contrary, the approach based on the reduced Hamiltonian significantly reduces the

computational time of the optimization procedure. The power of the fully-analytical approach relies on the computational

time to solve for stationary point conditions. As shown in Table 6, it requires less than 10 min to converge to the optimal

solution and about 0.02 seconds to propagate the trajectory’s initial conditions for 25 years, compared to the 60 minutes

and 3 seconds, respectively, for the semi-analytical one. The performances have been evaluated with a processor of 2.60

GHz and 16.0GB of RAM. To conclude, the computational time is reduced significantly, yielding the need to develop a

more accurate analytical model.
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Table 5 Results for the disposal of INTEGRAL satellite at initial time 22-03-2013.

Fully-analytical Semi-analytical
Maneuver date Δv, m/s Minimum altitude, km Δv, m/s Minimum altitude, km
01/06/2013 73.3 34.69 75.2 50.02
04/06/2014 67.7 33.18 35.5 49.5
08/06/2015 67.4 43.45 36.5 50.3
11/06/2016 73.1 43.17 48.8 49.8
14/06/2017 74.9 53.23 50.6 49.7
18/06/2018 77.7 38.76 100.1 49.1
22/06/2019 83.7 44.37 112.8 50.2
24/06/2020 94.0 32.37 100.3 49.4
28/06/2021 97.8 35.37 118.5 49.9
02/07/2022 85.9 44.38 50.1 50.0
05/07/2023 78.9 37.43 17.2 47.8
08/07/2024 75.5 37.21 47.9 45.6
12/07/2025 73.8 37.63 52.6 48.5
15/07/2026 68.8 33.12 80.4 49.7
19/07/2027 66.8 52.19 96.3 50.8
22/07/2028 74.2 40.47 83.2 47.3
25/07/2029 74.8 43.05 70.6 50.3
29/07/2030 77.3 45.10 55.3 46.2
02/08/2031 83.0 40.85 37.2 48.8
05/08/2032 92.2 42.49 25.6 49.3

Table 6 Difference in computational time between the semi- and fully-analytical approaches.

Method Propagation time for 25 years, sec Optimization time, min
Semi-analytical 3.63 > 60
Fully-analytical 0.022 < 10

2. Problem of Node elimination for Earth-Moon-Sun system

The results, given by the Earth-Moon-Sun model, highlight the limitations of the reduced Hamiltonian model for the

inclined third-body case. Even if the reduced Hamiltonian methodology is very promising as it allows the design of

optimal disposal maneuvers with no integration of the dynamics but simply by solving the 2D Hamiltonian equation,

the model produces reliable results only for a system where the relative inclination of the third body upon the equator

is negligible, as the Venus case. This suggests that different approaches should be investigated for the Hamiltonian

reduction in the case of an inclined third body. For these cases, eliminating the satellite’s node is a non-trivial process.

Therefore, the complexity of such an aspect should be tackled directly in the reduction procedure of the Hamiltonian.

Specifically, for the Earth-Moon-Sun system, the Moon node has a non-linear variation on the equatorial plane. The

coupling effect with the satellite node causes complex secular dynamical behavior. Accordingly, the reduction procedure

drops important contributions in the secular and long-term satellite evolution, reducing the model’s accuracy.
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V. Conclusions
This manuscript presents a design procedure for disposal maneuvers of a probe orbiting a planet under the oblateness

and third-body perturbations. As a result of the 2-D phase-space maps, this work provide a preliminary method to design

disposal maneuvers for spacecraft in highly elliptical orbits. The benefit of the presented fully-analytical approach is the

reduction of the computational time for delta-v maneuver optimization. For the case of non-inclined third body, the

fully-analytical approach accurately describes the long-term dynamical evolution and provides comparable results to

the semi-analytical procedure, already proposed in past works. Therefore, the fully-analytical approach is a promising

method for systems with non-inclined third bodies. As an example, this work proposes an innovative, fast, and reliable

way to design maneuvers for probes orbiting Venus or Jupiter’s moons. However, the methodology proposed in this

work has some limitations. The procedure followed to obtain the reduced Hamiltonian model causes a loss in accuracy

when the third body is on an inclined orbit around the central planet. This is the main drawback for scenarios in

the Earth-Moon-Sun system. The node elimination procedure removes complex dynamics of the Moon’s third-body

perturbation by eliminating the dependency on the Moon node. For this reason, the fully-analytical model is not accurate

for the Earth’s system and, therefore, can only be used for a very preliminary analysis of the order of magnitude of the

maneuver effort.
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